JPH07130535A - Magnetization of electromagnet and printed wiring type electromagnet - Google Patents

Magnetization of electromagnet and printed wiring type electromagnet

Info

Publication number
JPH07130535A
JPH07130535A JP27389493A JP27389493A JPH07130535A JP H07130535 A JPH07130535 A JP H07130535A JP 27389493 A JP27389493 A JP 27389493A JP 27389493 A JP27389493 A JP 27389493A JP H07130535 A JPH07130535 A JP H07130535A
Authority
JP
Japan
Prior art keywords
spiral
core
printed wiring
wiring
coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27389493A
Other languages
Japanese (ja)
Inventor
Hiroshi Hosaka
寛 保坂
Hiroki Kuwano
博喜 桑野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP27389493A priority Critical patent/JPH07130535A/en
Publication of JPH07130535A publication Critical patent/JPH07130535A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/44Magnetic coils or windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/54Contact arrangements
    • H01H50/60Contact arrangements moving contact being rigidly combined with movable part of magnetic circuit

Landscapes

  • Electromagnets (AREA)

Abstract

PURPOSE:To enable an occupied area of coils to be constructed in reduction under the same generated magnetomotive force by generating inverse spiral currents two-dimensionally on the same plane adjacently and alternately with each core, as a center, in which parallel core ends are alternately in continuous series. CONSTITUTION:Outside soldered connection terminals 13a and 13b of spiral wiring coils 10a and 10d are respectively connected to both ends of a power source 15 through a jumper line 14c and an exciting current I is charged. Then the exciting current I runs through jumper lines 14a and 14b consistently, consecutively and commonly to spiral wiring coils 10a to 10d. At this time, spiral currents are generated adjacently and alternately with each core 11a to 11d two-dimensionally on the same surface 9a of a printed board 9 and magnetic fields are generated in the direction or arrow on each core 11a to 11d, and a line of magnetic force, which is consistent, consecutive, and common c in one direction from S pole to N pole along a crank core 1-1, is excited.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電磁リレー等の駆動用
励磁コイルが、プリント配線基板上にエッチング等によ
り導体配線パターンを印刷被着して形成された電磁石の
磁化法およびその実施に直接使用するプリント配線型電
磁石に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for magnetizing an electromagnet formed by printing and depositing a conductor wiring pattern on a printed wiring board by a driving excitation coil such as an electromagnetic relay by etching or the like, and directly to its implementation The present invention relates to a printed wiring type electromagnet used.

【0002】[0002]

【従来の技術】従来より一般に使用されていたコア巻付
型の電磁石は、軟鉄等の励磁コア表面にコイル巻線を捲
着した三次元立体構造を有するものであった。このため
当該電磁石の作製プロセスに於いては、励磁コア上にコ
イル巻線を捲着する作業が不可欠となり、これが電磁石
の作製コストを引き上げる大きな要因となっていた。
2. Description of the Related Art A core winding type electromagnet generally used conventionally has a three-dimensional three-dimensional structure in which a coil winding is wound around the surface of an exciting core such as soft iron. Therefore, in the manufacturing process of the electromagnet, the work of winding the coil winding on the excitation core is indispensable, which has been a major factor in raising the manufacturing cost of the electromagnet.

【0003】この作業工程の省略及び作製コストの低減
を図るため、コイル巻線をプリント配線基板上にエッチ
ング処理によりコイルパターンを印刷形成したプリント
配線型電磁石が提案されている。これは具体的にはコイ
ルを渦巻状の印刷配線により作製し、当該コイル中心に
軟鉄等より組成される強磁性体のコアを基板面に対し鉛
直に貫通させたものであり、複数個のコイルを一工程で
作製できることから、電磁石の製造コストを著しく低減
できる利点がある。
In order to omit this work process and reduce the manufacturing cost, there has been proposed a printed wiring type electromagnet in which a coil winding is printed on a printed wiring board by etching to form a coil pattern. Specifically, a coil is made of spiral printed wiring, and a ferromagnetic core composed of soft iron or the like is vertically penetrated through the coil at the center of the coil. Since it can be manufactured in one step, there is an advantage that the manufacturing cost of the electromagnet can be remarkably reduced.

【0004】この従来のプリント配線型電磁石の構成に
ついて説明する。図5に従来例のプリント配線型電磁石
の平面図を、図6に図5中VI−VI線視縦断面図を示
す。図中、αは従来例のプリント配線型電磁石、1は両
面プリント配線基板、2は渦巻配線コイル、3は棒状コ
ア、4はコア貫通孔、5はスルーホール、6a,6bは
接続用配線パターン、7a,7bは半田接続端子、8は
電源である。
The structure of this conventional printed wiring type electromagnet will be described. FIG. 5 shows a plan view of a conventional printed wiring type electromagnet, and FIG. 6 shows a vertical sectional view taken along line VI-VI in FIG. In the figure, α is a conventional printed wiring type electromagnet, 1 is a double-sided printed wiring board, 2 is a spiral wiring coil, 3 is a rod-shaped core, 4 is a core through hole, 5 is a through hole, and 6a and 6b are connection wiring patterns. , 7a, 7b are solder connection terminals, and 8 is a power source.

【0005】図5乃至図6に示す従来例のプリント配線
型電磁石αは、両面プリント配線基板1表面1a上に、
中心寄りから外方に向かって渦巻型のコイルパターンを
有する渦巻配線コイル2がエッチング処理により被着形
成され、当該渦巻配線コイル2中心部には軟鉄等による
強磁性体材料によるコア3が渦巻配線コイル2中心に設
けられたコア貫通孔4に両面プリント配線基板1面直交
方向に挿着されており、前記渦巻配線コイル2より発生
した磁界は当該コア3内を通過する。
A conventional printed wiring type electromagnet α shown in FIGS. 5 to 6 is provided on the front surface 1a of the double-sided printed wiring board 1.
A spiral wiring coil 2 having a spiral coil pattern is formed by etching from an area closer to the center, and a core 3 made of a ferromagnetic material such as soft iron is formed in the center of the spiral wiring coil 2 in the spiral wiring. The coil 2 is inserted in a core through hole 4 provided in the center of the coil 2 in a direction orthogonal to the surface of the double-sided printed wiring board 1, and the magnetic field generated by the spiral wiring coil 2 passes through the core 3.

【0006】当該渦巻配線コイル2の中心側端に対応す
る両面プリント基板1にはスルーホール5が貫設され、
プリント配線基板1裏面1bに被着形成された励磁電流
I供給用の接続用配線パターン6bと電気的に接続され
ており、裏面1b周端縁の電源供給端子7bに引き出さ
れている。
The double-sided printed circuit board 1 corresponding to the center side end of the spiral wiring coil 2 has a through hole 5 formed therethrough.
The printed wiring board 1 is electrically connected to the connection wiring pattern 6b for supplying the exciting current I formed on the back surface 1b and is drawn to the power supply terminal 7b at the peripheral edge of the back surface 1b.

【0007】同様に渦巻配線コイル2の外周側端より当
該両面プリント配線基板1表面1a周端縁の電源供給端
子7aに励磁電流I供給用の接続用配線パターン6aが
電気的に接続されている。
Similarly, a connection wiring pattern 6a for supplying the exciting current I is electrically connected from the outer peripheral side end of the spiral wiring coil 2 to the power supply terminal 7a on the peripheral edge of the front surface 1a of the double-sided printed wiring board 1. .

【0008】当該電源供給端子7a,7b間への励磁電
流Iの通電によって図中矢印方向で示す磁界が発生し、
コア3が磁化されて電磁石として動作するようになって
いる。また、両面プリント配線基板1に代えて図示しな
い多層プリント配線基板を採用し、渦巻配線コイル2を
複数個一体積層する事によって、起磁力を層数分に応じ
て増加させた構造も必要に応じて選択的に採用されてい
る。
By passing the exciting current I between the power supply terminals 7a and 7b, a magnetic field indicated by the arrow in the drawing is generated,
The core 3 is magnetized and operates as an electromagnet. Further, a multilayer printed wiring board (not shown) is adopted in place of the double-sided printed wiring board 1, and a plurality of spiral wiring coils 2 are integrally laminated to increase the magnetomotive force according to the number of layers. Have been adopted selectively.

【0009】[0009]

【発明が解決しようとする課題】しかしながら前記従来
のプリント配線型電磁石αは、何れも渦巻配線コイル2
を両面プリント配線基板1面上に二次元平面構成してい
るため、プリント配線型電磁石αそのものを薄型に構成
することは可能であるが、これに伴い渦巻配線コイル2
の占有面積が巻線数の2乗に比例して増加する欠点があ
った。
However, each of the conventional printed wiring type electromagnets α has the spiral wiring coil 2
Since the two-dimensional printed wiring board 1 has a two-dimensional plane structure, it is possible to make the printed wiring type electromagnet α itself thin.
However, there is a drawback that the occupied area increases in proportion to the square of the number of windings.

【0010】特に電磁リレー等の構成寸法が小さくかつ
発生磁界が強力であることを要求される装置への適用を
考慮するにあたっては、コイル巻線数の増加は構成上不
可欠な要素であり、この場合電磁石の占有面積が飛躍的
に増大する欠点があった。ここにおいて本発明は、同一
の発生起磁力のもとでコイルの占有面積を縮減構成可能
な電磁石磁化法およびプリント配線型電磁石を提供せん
とするものである。
In consideration of application to a device which requires a small construction size such as an electromagnetic relay and a strong magnetic field to be generated, an increase in the number of coil windings is an essential element in the construction. In this case, there is a drawback that the occupied area of the electromagnet increases dramatically. Here, the present invention is to provide an electromagnet magnetization method and a printed wiring type electromagnet capable of reducing the occupied area of a coil under the same generated magnetomotive force.

【0011】[0011]

【課題を解決するための手段】前記課題の解決は、本発
明が次に列挙する新規な特徴的構成手法および手段を採
用することにより達成される。すなわち、本発明方法の
第1の特徴は、並列コア端を互い違いに連続直列した各
コアを中心に二次元的に同一平面上かつ隣接交互に逆向
渦巻電流を起生して、前記コア群を一方向に一貫連続共
通する磁力線を起磁してなる電磁石磁化法である。
The solution to the above-mentioned problems can be achieved by adopting the novel characteristic construction method and means listed in the following by the present invention. That is, the first feature of the method of the present invention is to generate reverse eddy currents in the two-dimensionally on the same plane and adjacent alternately centering on each core in which parallel core ends are staggered in series, and the core groups are formed. This is an electromagnet magnetization method in which lines of magnetic force that are consistently continuous in one direction are magnetized.

【0012】本発明方法の第2の特徴は、前記方法の第
1の特徴における逆向渦巻電流群が、一貫連続共通起生
してなる電磁石磁化法である。
A second feature of the method of the present invention is an electromagnet magnetization method in which the reverse spiral current groups in the first feature of the method are generated in a consistent continuous common manner.

【0013】本発明方法の第3の特徴は、前記方法の第
1又は第2の特徴にける各逆向渦巻電流が、多層平面毎
に同一方向重層起生してなる電磁石磁化法である。
The third feature of the method of the present invention is an electromagnetization method in which the reverse eddy currents in the first or second feature of the method are generated in the same direction in each of the multilayer planes.

【0014】本発明方法の第4の特徴は、前記方法の第
1,第2又は第3の特徴における逆向渦巻電流群が、単
一電源にてプリント基板に印刷された渦巻配線コイル群
を介して起生されてなる電磁石磁化法である。
A fourth characteristic of the method of the present invention is that the reverse spiral current group in the first, second or third characteristic of the method is printed on a printed circuit board by a single power source through a spiral wiring coil group. It is an electromagnet magnetization method that is created by

【0015】本発明装置の第1の特徴は、複数の渦巻配
線コイルを印刷したプリント基板と、当該各渦巻配線コ
イルの中心に貫通突出した並列コア端を互い違いに齟齬
状に適宜磁路を介し順次直列連続されたコア群とを具備
してなるプリント配線型電磁石である。
The first feature of the device of the present invention is that the printed circuit board on which a plurality of spiral wiring coils are printed and the parallel core ends projecting through the centers of the respective spiral wiring coils are staggered in a staggered manner through a magnetic path. A printed wiring type electromagnet including a core group that is sequentially connected in series.

【0016】本発明装置の第2の特徴は、前記装置の第
1の特徴におけるコア群が、一体直列するクランクコア
とされてなるプリント配線型電磁石である。
A second feature of the device of the present invention is a printed wiring type electromagnet in which the core group in the first feature of the device is a crank core integrally connected in series.

【0017】本発明装置の第3の特徴は、前記装置の第
1又は第2の特徴におけるプリント基板が、各表裏両面
対応箇所に、同一方向に渦巻電流を重層起生する相互逆
向の渦巻配線コイルをそれぞれ印刷してなるプリント配
線型電磁石である。
A third feature of the device of the present invention is that the printed circuit board according to the first or second feature of the device has spiral wirings in mutually opposite directions in which spiral currents are generated in multiple layers in the same direction at positions corresponding to both front and back surfaces. It is a printed wiring type electromagnet formed by printing coils respectively.

【0018】本発明装置の第4の特徴は、前記装置の第
1,第2又は第3の特徴におけるプリント基板が、多層
に一体積重してなるプリント配線型電磁石である。
A fourth feature of the device of the present invention is a printed wiring type electromagnet in which the printed circuit boards according to the first, second or third features of the device are laminated in a volume.

【0019】本発明装置の第5の特徴は、前記装置の第
1,第2,第3又は第4の特徴における渦巻配線コイル
が、1巻当りの当該渦巻配線コイル配線幅と当該渦巻配
線コイル巻幅の和をd、各コアの半径をrとしたとき、
当該各渦巻配線コイルの巻数nがn=r/dなる関係を
満足してなるプリント配線型電磁石である。
A fifth feature of the device of the present invention is that the spiral wiring coil in the first, second, third or fourth feature of the device is the spiral wiring coil wiring width per winding and the spiral wiring coil. When the sum of winding widths is d and the radius of each core is r,
The printed wiring type electromagnet satisfies the relation that the number of turns n of each spiral wiring coil is n = r / d.

【0020】[0020]

【作用】本発明は前記のような手法および手段を講じた
ので、その構成上コンパクトにしかもコイルの個数を
m、各コイルの巻数をnとした場合に、コイルの占有面
積をコイルの総巻数nmに比例させることができる。加
えてプリント基板に多層構造を採用することにより、さ
らにコイルの占有面積を縮減して構成可能である。
Since the present invention has taken the above-mentioned methods and means, the area occupied by the coils is the total number of turns of the coil when the structure is compact and the number of coils is m and the number of turns of each coil is n. can be proportional to nm. In addition, by adopting a multilayer structure for the printed circuit board, the area occupied by the coil can be further reduced.

【0021】[0021]

【実施例】(装置例1)本発明の第1装置例を図面を参
照しつつ説明する。図1は本装置例を示すプリント配線
型電磁石の平面図、図2は同・II−II線視縦断面図
である。
(Embodiment 1) A first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a plan view of a printed wiring type electromagnet showing an example of the present device, and FIG. 2 is a vertical sectional view taken along line II-II of the same.

【0022】図中、βはプリント配線型電磁石、9は片
面プリント配線基板、10a〜10dは片面プリント配
線基板9の表面9aに印刷形成された渦巻配線コイル、
11はクランクコア、11a〜11dは前記渦巻配線コ
イル10a〜10dの中心をそれぞれ貫通するコア、1
2a〜12dは前記コア11a〜11dがそれぞれ貫通
するコア貫通孔、13a,13bは各渦巻配線コイル1
0a〜10dの内端側と外端側のそれぞれ両極に接続さ
れた内外半田接続端子、14a,14bは隣接する当該
内半田接続端子13a相互間と当該外半田接続端子13
b相互間をそれぞれ電気的に接続するジャンパ線、15
は最両側に配置された渦巻配線コイル10a,10dの
外半田接続端子13b同志を接続するジャンパ線14c
に挿設された電源である。
In the drawing, β is a printed wiring type electromagnet, 9 is a single-sided printed wiring board, and 10a to 10d are spiral wiring coils printed on the surface 9a of the single-sided printed wiring board 9.
Reference numeral 11 is a crank core, 11a to 11d are cores penetrating the centers of the spiral wiring coils 10a to 10d, respectively.
2a to 12d are core through holes through which the cores 11a to 11d pass, and 13a and 13b are spiral coil 1
0a to 10d are connected to both inner and outer ends of the inner and outer solder connecting terminals, and 14a and 14b are adjacent inner solder connecting terminals 13a and the outer solder connecting terminals 13 respectively.
b Jumper wires for electrically connecting each other, 15
Is a jumper wire 14c for connecting the outer solder connection terminals 13b of the spiral wiring coils 10a and 10d arranged on the outermost sides.
It is a power source inserted in.

【0023】図1乃至図2に本実施例のプリント配線型
電磁石βを示す。本実施例のプリント配線型電磁石β
は、中心寄りから外方に向かって時計回りの渦巻配線パ
ターンコイル10a〜10dを片面プリント配線基板9
表面9a上に一直線上に配列するようエッチング等によ
り導体金属を印刷形成し、当該渦巻配線パターン10a
〜10dの中心にそれぞれ貫設されたコア貫通孔12a
〜12dに、軟鉄等の強磁性体よりなるコア11a〜1
1dが当該片面プリント配線基板9面に対し鉛直方向に
貫通支持されている。
1 and 2 show a printed wiring type electromagnet β of this embodiment. The printed wiring type electromagnet β of this embodiment
Is a single-sided printed wiring board 9 with the spiral wiring pattern coils 10a to 10d clockwise from the center toward the outside.
A conductive metal is printed on the surface 9a by etching or the like so as to be arranged in a straight line, and the spiral wiring pattern 10a is formed.
Core through holes 12a which are respectively provided at the centers of 10d.
12d to cores 11a to 1 made of a ferromagnetic material such as soft iron
1d is pierced and supported in the vertical direction with respect to the surface of the single-sided printed wiring board 9.

【0024】隣接する渦巻配線コイル10a〜10dは
電気的に直列接続されており、当該接続のための渦巻配
線コイル10a〜10d相互間の配線には、内外半田接
続端子13a,13bを介して接続される図中のジャン
パ線14a,14bを用い、或いは片面プリント配線基
板9に代えて両面プリント配線基板を採用して何れも図
示しないスルーホールを貫設形成し、当該両面プリント
配線基板裏側面に形成されたジャンパ接続用配線パター
ンを用いて接続する等の構成が採用される。
Adjacent spiral wiring coils 10a to 10d are electrically connected in series, and the wiring between the spiral wiring coils 10a to 10d for the connection is connected via inner and outer solder connecting terminals 13a and 13b. The jumper wires 14a and 14b in the figure are used, or a double-sided printed wiring board is adopted in place of the single-sided printed wiring board 9 to form through holes not shown in the drawings, and on the back surface of the double-sided printed wiring board. A configuration such as connection using the formed jumper connection wiring pattern is adopted.

【0025】また当該渦巻配線コイル10a〜10dの
中心に挿着されたコア11a〜11dは、予め一体に形
成されたクランクコア11を片面プリント配線基板9に
一貫貫通したり、若しくは、コア11a〜11dを装着
した後、当該コア11a〜11d並列端相互間を互い違
いに齟齬状に磁気的に結合する磁路たる連結コア11e
〜11gを用いてクランクコア11を連結構成される。
さらにコイル1巻当りの渦巻配線コイル10a〜10d
配線幅と配線間間隔の和をd、コア11a〜11dの半
径をrとした場合に、各渦巻配線コイル10a〜10d
の巻数nがn=r/dの関係を満足するように各部材の
寸法を設定する。
The cores 11a to 11d inserted in the centers of the spiral wiring coils 10a to 10d either penetrate the crank core 11 integrally formed in advance through the single-sided printed wiring board 9 or the cores 11a to 11d. After mounting 11d, the cores 11a to 11d are coupled cores 11e which are magnetic paths for magnetically coupling the parallel ends in a staggered manner in a staggered manner.
The crank core 11 is connected by using ~ 11g.
Furthermore, the spiral wiring coils 10a to 10d per coil turn
When the sum of the wiring width and the spacing between the wirings is d, and the radius of the cores 11a to 11d is r, each spiral wiring coil 10a to 10d
The dimensions of each member are set so that the number of turns n satisfies the relation of n = r / d.

【0026】処で当該片面プリント配線基板9に、当該
プリント配線型電磁石βのみならず図示されない他の各
種のプリント配線パターンも同一基板上に被着形成する
のは任意であるが、ここでは説明の簡略化の為、他のプ
リント配線パターンは図示しないこととする。
Here, it is optional to form not only the printed wiring type electromagnet β but also various other printed wiring patterns (not shown) on the single-sided printed wiring board 9 on the same substrate, but the description will be given here. Other printed wiring patterns are not shown for the sake of simplicity.

【0027】ここで、本装置例の構成原理を以下に数式
を用いて詳説する。何れも巻数をnとするm個の渦巻配
線コイル10a〜10dに励磁電流Iを通電すると、本
発明のプリント配線型電磁石βの総起磁力Hは、H=n
mIと表される。次に、総起磁力Hを一定、則ち総巻数
N=nmを一定とした場合に於ける、片面プリント配線
基板9面上の渦巻配線コイル10a〜10d及びコア1
1a〜11dの総占有面積Sβが最小となる巻数nを導
出する。
Here, the constitutional principle of the present apparatus example will be described in detail below by using mathematical expressions. When an exciting current I is applied to m spiral wiring coils 10a to 10d each having n turns, the total magnetomotive force H of the printed wiring type electromagnet β of the present invention is H = n.
Expressed as mI. Next, when the total magnetomotive force H is constant, that is, the total number of turns N = nm is constant, the spiral wiring coils 10a to 10d and the core 1 on the surface of the single-sided printed wiring board 9 are formed.
The number of turns n that minimizes the total occupied area Sβ of 1a to 11d is derived.

【0028】総占有面積Sβは(式1)で与えられる。 Sβ=mπ(nd+r)2 …(式1) (式1)で渦巻配線コイル10a〜10dの個数m=N
/nと置換し、総占有面積Sβを巻数nで微分すると、 dSβ/dn=Nπ(n2 2 −r2 )/n2 となる。
The total occupied area Sβ is given by (Equation 1). Sβ = mπ (nd + r) 2 (Equation 1) In (Equation 1), the number of spiral wiring coils 10a to 10d is m = N.
Substituting / n and differentiating the total occupied area Sβ by the number n of turns, dSβ / dn = Nπ (n 2 d 2 −r 2 ) / n 2 .

【0029】ここで、総占有面積Sβが最小となる条件
はdSβ/dn=0、則ち、 Nπ(n2 2 −r2 )/n2 =0 となる。両辺を整理することにより、 n=r/d …(式2) が求められ、この条件のもとで総占有面積Sβは最小値
Sβminをとる。
Here, the condition that the total occupied area Sβ is minimum is dSβ / dn = 0, that is, Nπ (n 2 d 2 −r 2 ) / n 2 = 0. By rearranging both sides, n = r / d (Equation 2) is obtained, and the total occupied area Sβ takes the minimum value Sβmin under this condition.

【0030】求められた条件n=r/dを前記(式1)
に代入して総占有面積Sβの最小値Sβminを求める
と、 Sβmin=4Nπrd と算出される。
The obtained condition n = r / d is expressed by the above (formula 1).
When the minimum value Sβmin of the total occupied area Sβ is obtained by substituting for, Sβmin = 4Nπrd is calculated.

【0031】次に同一起磁力を発生する従来例のプリン
ト配線型電磁石αを用いて、占有面積を比較する。従来
例のプリント配線型電磁石αにおいて、渦巻配線コイル
2の配線幅と配線間間隔の和d・コア半径rを本装置例
と同一寸法で作製することとすると、占有面積Sαは、 Sα=π(Nd+r)2 と表される。
Next, the occupied areas are compared by using a conventional printed wiring type electromagnet α which generates the same magnetomotive force. In the conventional printed wiring type electromagnet α, if the sum of the wiring width of the spiral wiring coil 2 and the space between the wirings d and the core radius r are made to have the same dimensions as those of this device example, the occupied area Sα is Sα = π It is represented as (Nd + r) 2 .

【0032】ここで本装置例のプリント配線型電磁石β
の占有面積Sβの最小値Sβminと従来例のプリント
配線型電磁石の占有面積Sαとを比較すると、Sβmi
nは総巻数Nに比例するのに対して、Sαは総巻数Nの
2乗であるN2 に比例する支配項を包含する。よって総
巻数Nの増加に伴ってSαは飛躍的に増加し、Sβmi
n<<Sαの関係が成立することが証明される。
Here, the printed wiring type electromagnet β of this device example is used.
When the minimum value Sβmin of the occupied area Sβ of the above is compared with the occupied area Sα of the conventional printed wiring type electromagnet, Sβmi
While n is proportional to the total number of turns N, Sα includes a control term proportional to N 2 which is the square of the total number of turns N. Therefore, as the total number of turns N increases, Sα increases dramatically, and Sβmi
It is proved that the relationship of n << Sα holds.

【0033】(方法例1)当該第1装置例に適用する本
発明の第1方法例を図1乃至図2について説明する。ま
ず渦巻配線コイル10a,10dの外半田接続端子13
b,13bをジャンパ線14cを介して電源15の両極
にそれぞれ接続し、励磁電流Iを通電すると、励磁電流
Iは途中ジャンパ線14a,14bを介して渦巻配線コ
イル10a〜10dを一貫連続共通する。
(Method Example 1) A first method example of the present invention applied to the first apparatus example will be described with reference to FIGS. 1 and 2. First, the outer solder connection terminals 13 of the spiral wiring coils 10a and 10d
When b and 13b are respectively connected to both poles of the power supply 15 through the jumper wire 14c and the exciting current I is passed, the exciting current I is shared by the spiral wiring coils 10a to 10d through the jumper wires 14a and 14b on the way. .

【0034】その際、プリント基板9の二次元的に同一
表面9a上を各コア11a〜11dを中心に隣接交互に
逆向渦巻電流を起生して各コア11a〜11dに図2中
に示す矢印方向に磁界が発生しクランクコア11に沿っ
てS極からN極への一方向に一貫連続共通する磁力線を
起磁する。
At this time, opposite eddy currents are alternately generated adjacent to each other on the same two-dimensional surface 9a of the printed circuit board 9 centering on the cores 11a to 11d, and the arrows shown in FIG. 2 are applied to the cores 11a to 11d. A magnetic field is generated in the direction, and a magnetic field line that is consistently and continuously common is generated in one direction from the S pole to the N pole along the crank core 11.

【0035】(装置例2)本発明の第2装置例を図面を
参照しつつ説明する。図3は本装置例を示すプリント配
線型電磁石の平面図、図4は同・IV−IV線視縦断面
図である。
(Device Example 2) A second device example of the present invention will be described with reference to the drawings. FIG. 3 is a plan view of a printed wiring type electromagnet showing the present apparatus example, and FIG. 4 is a vertical sectional view taken along line IV-IV of the same.

【0036】図中、β’は本装置例のプリント配線型電
磁石、16は両面プリント配線基板、17a〜17d,
17a’〜17d’はそれぞれ両面プリント配線基板1
6の表裏面16a,16bに印刷した渦巻配線コイル、
18はクランクコア、18a〜18dはコア、18e〜
18gは連結コア、20a〜20dは表裏面の渦巻配線
コイル17a〜17d,17a’〜17d’相互を電気
的に接続するスルーホール、21a,21bはそれぞれ
両面プリント配線基板16表裏面16a,16bの半田
接続端子、22は電源、23はジャンパ線である。
In the figure, β'is a printed wiring type electromagnet of this apparatus example, 16 is a double-sided printed wiring board, 17a to 17d,
17a 'to 17d' are double-sided printed wiring boards 1
Spiral coil printed on the front and back surfaces 16a, 16b of 6,
18 is a crank core, 18a-18d is a core, 18e-
18g is a connecting core, 20a to 20d are through holes for electrically connecting the spiral wiring coils 17a to 17d, 17a 'to 17d' on the front and back surfaces, 21a and 21b are front and back surfaces 16a and 16b of the double-sided printed wiring board 16, respectively. Solder connection terminals, 22 is a power supply, and 23 is a jumper wire.

【0037】図3乃至図4に本装置例のプリント配線型
電磁石β’を示す。本実施例では第1装置例にて採用し
た片面プリント配線基板9に代えて両面プリント配線基
板16を採用しており、渦巻配線コイル17a〜17
d,17a’〜17d’を当該両面プリント配線基板1
6の表裏両面16a,16bにそれぞれ印刷形成してい
る。
3 to 4 show a printed wiring type electromagnet β'of this device example. In this embodiment, a double-sided printed wiring board 16 is used instead of the single-sided printed wiring board 9 used in the first device example, and the spiral wiring coils 17a to 17 are used.
d, 17a ′ to 17d ′ are the double-sided printed wiring board 1
6 are printed on both front and back surfaces 16a and 16b.

【0038】当該両面プリント配線基板16表面16a
から見た場合、渦巻配線コイル17a〜17dは中心寄
りより外方に向かって左巻に、渦巻配線コイル17a’
〜17d’は同じく右巻になるように相互に逆向に巻回
されている。当該両面プリント配線基板16の相対峙す
る渦巻配線コイル17a〜17d,17a’〜17d’
相互間は、当該両面プリント配線基板16に貫設された
スルーホール20a〜20dにより電気的に接続され
る。
The surface 16a of the double-sided printed wiring board 16
When viewed from above, the spiral wiring coils 17a to 17d are wound leftward from the center toward the outside, and the spiral wiring coils 17a '
.About.17d 'are also wound in opposite directions so that they are also right-handed. Spiral wiring coils 17a to 17d and 17a 'to 17d' which are opposite to each other on the double-sided printed wiring board 16.
The two sides are electrically connected to each other by through holes 20a to 20d penetrating the double-sided printed wiring board 16.

【0039】同様に両面プリント配線基板16の同側に
配置された隣接渦巻配線コイル17a〜17d,17
a’〜17d’一つ置き相互間は、渦巻配線コイル17
a〜17d,17a’〜17d’を外周部分を延長連続
することにより相互に電気的にS字接続され、渦巻配線
コイル17a〜17d,17a’〜17d’は一貫直列
接続されている。
Similarly, adjacent spiral wiring coils 17a to 17d, 17 arranged on the same side of the double-sided printed wiring board 16 are provided.
a 'to 17d' every other space between the spiral wiring coils 17
The a to 17d and 17a 'to 17d' are electrically connected to each other in an S-shape by continuously extending the outer peripheral portion, and the spiral wiring coils 17a to 17d and 17a 'to 17d' are connected in series.

【0040】さらに前記第1装置例と同様に、コイル1
巻当りの渦巻配線コイル17a〜17d,17a’〜1
7d’の配線幅と配線間間隔の和をd、コア18a〜1
8dの半径をrとした場合に、各渦巻配線コイル17a
〜17d,17a’〜17d’の巻数nが前記第1装置
例で示した(式2)のn=r/dの関係を満足するよう
に各部材の寸法を設定する。
Further, similarly to the first device example, the coil 1
Spiral wiring coils 17a to 17d, 17a 'to 1 per winding
7d ′ is the sum of the wiring width and the spacing between the wirings, and the cores 18a to 1
When the radius of 8d is r, each spiral wiring coil 17a
The dimensions of each member are set so that the number of turns n of 17d and 17a 'to 17d' satisfies the relationship of n = r / d of (Equation 2) shown in the first device example.

【0041】(方法例2)当該第2装置例に適用する本
発明の第2方法例を図3乃至図4につき説明する。ま
ず、渦巻配線コイル17a,17dのそれぞれの両自由
端に接続された半田接続端子21a,21dを電源22
の両極にジャンパ線23を介してそれぞれ接続し励磁電
流Iを通電すると、渦巻配線コイル17a〜17d,1
7a’〜17d’に亙り一貫連続共通するが、その際励
磁電流Iは両面プリント基板16表裏各面16a,16
bで各コア18a〜18dを中心に同一方向に重層旋回
し、第1方法例と同様、図中矢印で示すようにコア18
a〜18d上には磁界が同時発生する。
(Method Example 2) A second method example of the present invention applied to the second device example will be described with reference to FIGS. First, the solder connection terminals 21a and 21d connected to both free ends of the spiral wiring coils 17a and 17d are connected to the power source 22.
When the exciting current I is applied to both poles of the spiral wiring coil 17 through the jumper wires 23, the spiral wiring coils 17a to 17d, 1
7a 'to 17d' are consistently and continuously common, but at that time, the exciting current I is the double-sided printed circuit board 16 front and back surfaces 16a, 16 respectively.
In the same manner as in the first method example, the cores 18a to 18d are rotated in the same direction in the same direction as shown in FIG.
A magnetic field is simultaneously generated on a to 18d.

【0042】その結果、表裏両面16a,16bの各対
応箇所において磁界発生方向が同一となりクランクコア
18に沿ってS極からN極への一方向に一貫連続共通す
る磁力線を起磁する。当該起磁力Hは第1実施例と比較
して2倍に増大する。この場合にもプリント配線型電磁
石β’の占有面積Sβ’の最小値Sβ’minは片面あ
たりの総巻数Nに比例することとなる。
As a result, the magnetic field generation directions are the same at the corresponding locations on the front and back surfaces 16a and 16b, and magnetic force lines that are consistent and continuous in one direction from the S pole to the N pole are generated along the crank core 18. The magnetomotive force H is doubled as compared with the first embodiment. Also in this case, the minimum value Sβ′min of the occupied area Sβ ′ of the printed wiring type electromagnet β ′ is proportional to the total number of turns N per one surface.

【0043】前記第1乃至第2実施例では何れも渦巻配
線コイル10a〜10d,17a〜17d,17a’〜
17d’の個数mがそれぞれ4個及び8個の場合を例示
したが、渦巻配線コイル10a〜10d,17a〜17
d,17a’〜17d’の個数が増加しても、渦巻配線
コイル10a〜10d,17a〜17d,17a’〜1
7d’がそれぞれ二次元的に同一平面内に存在する限り
プリント配線基板9,16は1枚で良い。則ち、渦巻配
線コイル10a〜10d,17a〜17d,17a’〜
17d’の個数mが増加しても二次元平面的コイルの製
造コストは変化しない。
In each of the first and second embodiments, the spiral wiring coils 10a to 10d, 17a to 17d, 17a '.
Although the number m of 17d 'is 4 and 8 respectively, the spiral wiring coils 10a to 10d and 17a to 17 are illustrated.
Even if the number of d, 17a 'to 17d' increases, the spiral wiring coils 10a to 10d, 17a to 17d, 17a 'to 1
As long as 7d ′ are two-dimensionally in the same plane, the number of printed wiring boards 9 and 16 may be one. That is, the spiral wiring coils 10a to 10d, 17a to 17d, 17a 'to
The manufacturing cost of the two-dimensional planar coil does not change even if the number m of 17d 'increases.

【0044】同様に単一層から形成されたプリント配線
基板9,16を用いたが、これを多層プリント配線基板
とし、各層に励磁電流Iが同一方向に重層旋回するよう
に渦巻配線コイル10a〜10d,17a〜17dを複
数個印刷形成し、発生磁界Hは層数に比例して増大させ
ても構わない。
Similarly, the printed wiring boards 9 and 16 formed of a single layer are used, but this is used as a multilayer printed wiring board, and the spiral wiring coils 10a to 10d are arranged so that the exciting current I makes multiple layers in the same direction in each layer. , 17a to 17d may be formed by printing, and the generated magnetic field H may be increased in proportion to the number of layers.

【0045】[0045]

【発明の効果】かくして本発明をプリント配線型電磁石
に採用することにより、従来装置と比較した場合に同一
面積を有しながらもより高い磁気駆動効率を有するの
で、装置の薄型構成に加えてさらに小型化・高密度構成
に寄与する。特にこの効果は巻数の多い場合に顕著に現
れ、電磁リレー等の構成にあたっては従来より小型かつ
駆動力が大なるものを実現可能でありスペースメリット
に優れる。さらに多層化・閉磁路化により磁束密度を向
上させて、より一層の小型化・高密度構成を実現する。
As described above, by adopting the present invention in the printed wiring type electromagnet, the magnetic drive efficiency is higher while having the same area as compared with the conventional device. Therefore, in addition to the thin structure of the device, Contributes to downsizing and high-density construction. In particular, this effect is remarkable when the number of turns is large, and it is possible to realize an electromagnetic relay or the like that is smaller and has a larger driving force than the conventional one, which is excellent in space. Furthermore, by increasing the number of layers and forming a closed magnetic circuit, the magnetic flux density will be improved, and further miniaturization and high-density construction will be realized.

【0046】これ以外にも作製コストを従来のプリント
配線型電磁石とほぼ同程度に抑制可能な利点を有し、な
おかつコイル数の増加に伴う作製コストの上昇が僅少な
ため、優れた経済性を示す。
In addition to this, the manufacturing cost can be suppressed to almost the same level as that of the conventional printed wiring type electromagnet, and the manufacturing cost hardly increases with the increase in the number of coils. Show.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1装置例を示すプリント配線型電磁
石の平面図である。
FIG. 1 is a plan view of a printed wiring type electromagnet showing a first device example of the present invention.

【図2】同上・II−II線視縦断面図である。FIG. 2 is a vertical sectional view taken along line II-II of the above.

【図3】本発明の第2装置例を示すプリント配線型電磁
石の平面図である。
FIG. 3 is a plan view of a printed wiring type electromagnet showing a second device example of the present invention.

【図4】同上・IV−IV線視縦断面図である。FIG. 4 is a vertical sectional view taken along line IV-IV of the same.

【図5】従来例のプリント配線型電磁石を示す平面図で
ある。
FIG. 5 is a plan view showing a conventional printed wiring type electromagnet.

【図6】同上・VI−VI線視縦断面図である。FIG. 6 is a vertical sectional view taken along line VI-VI of the above.

【符号の説明】[Explanation of symbols]

α,β,β’…プリント配線型電磁石 1…両面プリント配線基板 2…渦巻配線コイル 3…コア 4…コア貫通孔 5…スルーホール 6…接続用配線パターン 7…電源供給端子 8…電源 9…片面プリント配線基板 9a…表面 10a〜10d…渦巻配線コイル 11…クランクコア 11a〜11d…コア 11e〜11g…連結コア 12a〜12d…コア貫通孔 13a,13b…内外半田接続端子 14a〜14c,23…ジャンパ線 15…電源 16…両面プリント配線基板 16a…表面 16b…裏面 17a〜17d,17a’〜17d’…渦巻配線コイル 18…クランクコア 18a〜18d…コア 18e〜18g…連結コア 19a〜19d…コア貫通孔 20a〜20d…スルーホール 21a,21b…半田接続端子 22…電源 α, β, β '... Printed wiring electromagnet 1 ... Double-sided printed wiring board 2 ... Spiral wiring coil 3 ... Core 4 ... Core through hole 5 ... Through hole 6 ... Connection wiring pattern 7 ... Power supply terminal 8 ... Power supply 9 ... Single-sided printed wiring board 9a ... Front surface 10a-10d ... Spiral wiring coil 11 ... Crank core 11a-11d ... Core 11e-11g ... Connecting core 12a-12d ... Core through hole 13a, 13b ... Inner / outer solder connecting terminal 14a-14c, 23 ... Jumper wire 15 ... Power source 16 ... Double-sided printed wiring board 16a ... Front surface 16b ... Back surface 17a to 17d, 17a 'to 17d' ... Spiral wiring coil 18 ... Crank core 18a to 18d ... Core 18e to 18g ... Connection core 19a to 19d ... Core Through holes 20a to 20d ... Through holes 21a, 21b ... Solder connection terminals 22 ... Power supply

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】並列コア端を互い違いに連続直列した各コ
アを中心に二次元的に同一平面上かつ隣接交互に逆向渦
巻電流を起生して、前記コア群を一方向に一貫連続共通
する磁力線を起磁することを特徴とする電磁石磁化法。
1. A spiral eddy current is generated two-dimensionally on the same plane and adjacently alternately with respect to each core in which parallel core ends are alternately and serially connected in series, and the core groups are consistently and continuously shared in one direction. An electromagnet magnetization method characterized in that magnetic lines of force are generated.
【請求項2】逆向渦巻電流群は、一貫連続共通起生する
ことを特徴とする請求項1記載の電磁石磁化法。
2. The electromagnet magnetization method according to claim 1, wherein the reverse spiral current groups are consistently and continuously generated.
【請求項3】各逆向渦巻電流は、多層平面毎に同一方向
重層起生することを特徴とする請求項1又は2記載の電
磁石磁化法。
3. The electromagnet magnetization method according to claim 1, wherein each of the backward spiral currents is generated in the same direction in each of the multilayer planes.
【請求項4】逆向渦巻電流群は、単一電源にてプリント
基板に印刷された渦巻配線コイル群を介して起生される
ことを特徴とする請求項1,2又は3記載の電磁石磁化
法。
4. The electromagnetization method according to claim 1, wherein the reverse spiral current group is generated via a spiral wiring coil group printed on a printed circuit board by a single power source. .
【請求項5】複数の渦巻配線コイルを印刷したプリント
基板と、 当該各渦巻配線コイルの中心に貫通突出した並列コア端
を互い違いに齟齬状に適宜磁路を介し順次直列連続され
たコア群とを具備したことを特徴とするプリント配線型
電磁石。
5. A printed circuit board on which a plurality of spiral wiring coils are printed, and a core group in which parallel core ends projecting through the centers of the respective spiral wiring coils are staggered alternately in series in series through appropriate magnetic paths. A printed wiring type electromagnet, comprising:
【請求項6】コア群は、一体直列するクランクコアであ
ることを特徴とする請求項5記載のプリント配線型電磁
石。
6. The printed wiring type electromagnet according to claim 5, wherein the core group is a crank core integrally connected in series.
【請求項7】プリント基板は、各表裏両面対応箇所に、
同一方向に渦巻電流を重層起生する相互逆向の渦巻配線
コイルをそれぞれ印刷したことを特徴とする請求項5又
は6記載のプリント配線型電磁石。
7. A printed circuit board is provided on each of the front and back sides corresponding to each other.
The printed wiring type electromagnet according to claim 5 or 6, wherein spirally wound coil coils having mutually opposite directions in which spiral currents are layered in the same direction are printed.
【請求項8】プリント基板は、多層に一体積重したこと
を特徴とする請求項5,6又は7記載のプリント配線型
電磁石。
8. The printed wiring type electromagnet according to claim 5, 6 or 7, wherein the printed circuit boards are stacked in multiple layers in a volume.
【請求項9】渦巻配線コイル群は、1巻当りの当該渦巻
配線コイル配線幅と当該渦巻配線コイル巻幅の和をd、
各コアの半径をrとしたとき、当該各渦巻配線コイルの
巻数nがn=r/dなる関係を満足したことを特徴とす
る請求項5,6,7又は8記載のプリント配線型電磁
石。
9. The spiral wiring coil group is configured such that the sum of the spiral wiring coil wiring width and the spiral wiring coil winding width per winding is d,
9. The printed wiring type electromagnet according to claim 5, wherein the number of turns n of each spiral wiring coil satisfies a relationship of n = r / d, where r is the radius of each core.
JP27389493A 1993-11-01 1993-11-01 Magnetization of electromagnet and printed wiring type electromagnet Pending JPH07130535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27389493A JPH07130535A (en) 1993-11-01 1993-11-01 Magnetization of electromagnet and printed wiring type electromagnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27389493A JPH07130535A (en) 1993-11-01 1993-11-01 Magnetization of electromagnet and printed wiring type electromagnet

Publications (1)

Publication Number Publication Date
JPH07130535A true JPH07130535A (en) 1995-05-19

Family

ID=17534059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27389493A Pending JPH07130535A (en) 1993-11-01 1993-11-01 Magnetization of electromagnet and printed wiring type electromagnet

Country Status (1)

Country Link
JP (1) JPH07130535A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107769391A (en) * 2017-09-28 2018-03-06 深圳威兹新能源科技有限公司 A kind of wireless charging system of multi-coil series connection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107769391A (en) * 2017-09-28 2018-03-06 深圳威兹新能源科技有限公司 A kind of wireless charging system of multi-coil series connection

Similar Documents

Publication Publication Date Title
JP4472589B2 (en) Magnetic element
EP0856855A2 (en) Printed coil with magnetic layer
JP2010529828A (en) Foil coil structure for axial type electrodynamic device and winding method thereof
JPH08181018A (en) Coil device
JP4579515B2 (en) Chip-type electronic components
KR102687173B1 (en) Planar transformer
JPH07130535A (en) Magnetization of electromagnet and printed wiring type electromagnet
EP4033781A1 (en) Moving coil for flat panel speaker
JP2007317892A (en) Multilayered inductor
JP2013055194A (en) Laminated inductor
JP2000166211A (en) Voice coil type linear motor
JPH05198440A (en) Coil for thin-film magnetic element and wire wound type thin film transformer
JPH0745932Y2 (en) Laminated coil
JPH08316067A (en) Choke coil
JP3127239B2 (en) Method and apparatus for magnetizing a metal magnet
JPH07147745A (en) Motor
JPH04255437A (en) Stator for motor
JP2020155733A (en) Thin-film magnetic device
JP2958893B2 (en) Planar inductor
JPH11186055A (en) Composite magnetic parts
US3777369A (en) Method of making a magnetic recording head
JP2000173837A (en) Sheet transformer for switching power supply
JP2001285005A (en) Noise filter
JP2558986Y2 (en) Laminated coil
JPH056643Y2 (en)