JPH07147745A - Motor - Google Patents

Motor

Info

Publication number
JPH07147745A
JPH07147745A JP5293498A JP29349893A JPH07147745A JP H07147745 A JPH07147745 A JP H07147745A JP 5293498 A JP5293498 A JP 5293498A JP 29349893 A JP29349893 A JP 29349893A JP H07147745 A JPH07147745 A JP H07147745A
Authority
JP
Japan
Prior art keywords
armature
field magnet
magnetic flux
salient pole
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5293498A
Other languages
Japanese (ja)
Inventor
Kuniaki Tanaka
邦章 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP5293498A priority Critical patent/JPH07147745A/en
Publication of JPH07147745A publication Critical patent/JPH07147745A/en
Pending legal-status Critical Current

Links

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

PURPOSE:To reduce the short-circuits of field fluxes in armature salient poles without increasing the flux density in the gap parts between the armature salient poles and the field magnets by a method wherein diamagnetic material members are provided on the side edge parts of the plane of the armature salient poles which face the field magnets. CONSTITUTION:A rotor 21 is composed of a core 4 made of soft magnetic material and field magnets 1. On the other hand, and armature 22 is made from a bulk material or laminated steel plates and has six armature salient poles 2. Diamagnetic material members 5 made of silver are provided on the side edge parts of the planes of the armature salient poles 2 which face the field magnets 1. With this constitution, the short-circuits of fluxes in the armature salient poles can be reduced, so that a high efficiency motor can be realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は軟磁性材料のバルク材も
しくは積層鋼板よりなる電機子と界磁用磁石とを有する
突極型集中巻線方式の電動機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a salient pole type concentrated winding type electric motor having an armature made of a bulk material of soft magnetic material or a laminated steel sheet and a field magnet.

【0002】[0002]

【従来の技術】FA機器、自動車関連に搭載される電動
機をはじめとして、近年電動機の小型化、軽量化のニー
ズが強くなっている。例えばFA機器の場合、搭載スペ
ースが限られること、また電動機自身が他のアクチュエ
ータにより駆動される対象となることなどから、小型
化、軽量化のニーズが高い。また車載用アクチュエータ
に関しても、自動車の低燃費化のためには車両重量の軽
減が課題となっており、各構成部品も同様に軽量化の必
要にせまられている。このように電動機の小型化、軽量
化は各種の産業分野において望まれている技術である。
2. Description of the Related Art In recent years, there has been a strong need for downsizing and weight reduction of electric motors including FA devices and electric motors mounted in automobiles. For example, in the case of FA equipment, there is a strong need for downsizing and weight saving because the mounting space is limited and the electric motor itself is the target to be driven by another actuator. In addition, with regard to in-vehicle actuators, reduction of vehicle weight has become an issue in order to reduce fuel consumption of automobiles, and each component is also required to be lightweight. As described above, downsizing and weight reduction of electric motors are technologies desired in various industrial fields.

【0003】そのような中で電動機の小型化、軽量化に
適したモータ構造として突極型集中巻線方式が挙げられ
る。突極型集中巻線式方式は電機子突極の一本毎に巻線
を施す方式であり、電機子突極の数本をまとめて巻線を
施す分布巻線方式とは異なる方式である。分布巻線方式
に対する突極型集中巻線方式の特徴は、コイル導体数
(巻数)が同一巻数の設計であっても、全導線長さが短
くなり、またコイルエンド高さが小さく設計できるため
に、電動機の小型化、軽量化が可能であることである。
また巻線抵抗が小さくなるために電動機の銅損失が小さ
くなるといった特徴も有している。しかしながらその一
方で突極型集中巻線方式は、電機子突極部における界磁
用磁石の磁束の短絡が生じ、電機子内部を通過する有効
磁束の減少が避けられない。よって突極型集中巻線方式
の電動機においては有効磁束を十分に得ることが難しい
ために、電動機の高トルク化や高効率化が困難であると
いった問題点を有していた。
In such a situation, a salient pole type concentrated winding method can be mentioned as a motor structure suitable for downsizing and weight reduction of an electric motor. The salient pole type concentrated winding method is a method in which winding is performed for each armature salient pole, and is different from the distributed winding method in which several armature salient poles are collectively wound. . The salient pole-type concentrated winding method is characterized by the fact that the total conductor length can be shortened and the coil end height can be reduced even if the number of coil conductors (number of turns) is the same. In addition, it is possible to reduce the size and weight of the electric motor.
It also has a feature that the copper loss of the electric motor is small because the winding resistance is small. On the other hand, however, in the salient pole type concentrated winding method, the magnetic flux of the field magnet in the salient pole portion of the armature is short-circuited, and the reduction of the effective magnetic flux passing through the inside of the armature cannot be avoided. Therefore, in the salient pole type concentrated winding type electric motor, it is difficult to obtain a sufficient effective magnetic flux, so that it is difficult to increase the torque and efficiency of the electric motor.

【0004】一方上記問題点を解決するための従来技術
として、例えば文献『永久磁石磁気回路の設計・特性計
算法』(大川光吉著)に示されるように、電機子突極に
対向する面の界磁用永久磁石一極の見開き角と、界磁用
磁石に対向する電機子突極一本の見開き角の関係を適正
な値に設計することが提案されている。図14は従来の
突極型集中巻線方式の電動機の上側半分を示す正面図で
あり、回転子21と電機子22から構成されている。図
14の従来例は界磁用磁石1が4極、電機子突極2が6
本であり、前記電機子突極2には電機子巻線3が集中巻
線方式にて巻かれている。また界磁用磁石1が回転する
内転型DCブラシレスモータの例を示す。
On the other hand, as a conventional technique for solving the above-mentioned problems, for example, as shown in a document "Designing and Characteristic Calculation Method of Permanent Magnet Magnetic Circuit" (written by Mitsuyoshi Okawa), the surface facing the armature salient pole is It has been proposed to design the relationship between the spread angle of one pole of the field magnet and the spread angle of one armature salient pole facing the field magnet to an appropriate value. FIG. 14 is a front view showing the upper half of a conventional salient pole concentrated winding type electric motor, which is composed of a rotor 21 and an armature 22. In the conventional example of FIG. 14, the field magnet 1 has 4 poles and the armature salient pole 2 has 6 poles.
The armature winding 3 is wound around the armature salient pole 2 by a concentrated winding method. Further, an example of an inversion type DC brushless motor in which the field magnet 1 rotates will be shown.

【0005】図14に示すように、電機子突極2に対向
する面の界磁用磁石1の一極分の見開き角をψm(ラジ
アン)、界磁用磁石1に対向する電機子突極2の一本の
見開き角をψe(ラジアン)とする。さらに界磁用磁石
1の見開き角の割合を示すパラメータとして界磁磁石の
極孤率αmを、同じく電機子突極の一本の見開き角の割
合を示すパラメータとして電機子突極の極孤率αeを定
義すると、前記界磁用磁石の極孤率αmと前記電機子突
極の極孤率αeが下記式1に示す関係を満たすような値
とすることにより界磁用磁石の電機子突極における短絡
が少ない設計が可能であることが述べられている。
As shown in FIG. 14, the spread angle of one pole of the field magnet 1 on the surface facing the armature salient pole 2 is ψm (radian), and the armature salient pole facing the field magnet 1 is shown. The spread angle of one of the two is ψe (radian). Further, the pole arc rate αm of the field magnet is used as a parameter indicating the spread angle ratio of the field magnet 1, and the pole arc ratio of the armature salient pole is used as a parameter indicating the spread angle ratio of one armature salient pole. When αe is defined, the pole arc rate αm of the field magnet and the pole arc rate αe of the armature salient pole are set to values satisfying the relationship shown in the following formula 1, whereby the armature salient of the field magnet is set. It is stated that a design with few shorts at the poles is possible.

【0006】 αm=0.66〜1.0 αe=0.5×αm (式
1) ただしここでαm=ψm×p/π αe=ψe×p/π p:極対数 このような関係に電機子突極の極孤率αeと界磁用磁石
の極孤率αmがある場合、電機子突極2の見開き角が界
磁用磁石1の見開き角の約半分になることから、界磁用
磁石間の電機子突極部における磁束の短絡は少なくな
る。
Αm = 0.66 to 1.0 αe = 0.5 × αm (Equation 1) Here, αm = ψm × p / π αe = ψe × p / π p: number of pole pairs When there is a pole arc rate αe of the salient salient poles and a pole arc rate αm of the field magnets, the spread angle of the armature salient poles 2 is about half of the spread angle of the field magnets 1. Short circuits of magnetic flux in the armature salient pole portion between the magnets are reduced.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、電機子
突極の見開き角αeと界磁用磁石のαmが前記式1を満
たす範囲内、すなわち電機子突極の見開き角を小さく設
計がなされる場合も、電機子突極部において界磁用磁石
の磁束の短絡は必ず生じ、電機子内部を通過する有効磁
束量が減少する。図15は電機子突極付近の磁束の流れ
をモデル化した図であり、電機子突極2と界磁用磁石1
から構成されている。図に示す電機子突極2と界磁用磁
石1は、電機子突極の極弧率αeと界磁用磁石の極弧率
αmを従来技術の関係式に示した設計値の範囲となって
いる。電機子突極2と界磁用磁石1が図に示す位置関係
にあるとき、磁束の流れ6は電機子内部に進入し有効磁
束となっていることがわかる。しかしながら回転子が回
転し界磁用磁石と電機子突極の位置が相対的に変化する
と磁束の流れは変化する。図16は電機子突極付近の磁
束の流れをモデル化した図であり、電機子突極2と回転
子21から構成されている。電機子突極2と界磁用磁石
1との位置関係は、界磁用磁石1の異極間に電機子突極
2が位置する。すなわち磁束の流れ10が示すように電
機子突極2において界磁用磁石1の磁束が短絡を起こし
ており、電機子内部へ進入する有効磁束がほとんど無い
ことがわかる。図17は回転子の回転角と有効磁束量の
関係図であり、界磁用磁石の回転角にともなう電機子突
極を通過する有効磁束量の変化を示す図である。図中破
線が理論的に電機子突極を通過する有効磁束量を示して
おり、実線が電機子内部を通過する有効磁束量を示して
いる。すなわち理論的には回転子21の位置状態が図1
4に示す位置から回転した場合の電機子を通過する有効
磁束量は、界磁用磁石の回転角がθ(ラジアン)までは
電機子突極2が界磁用磁石の極間に位置しないために、
一定の有効磁束を得ることが可能である。ここで回転子
1の回転角θ(ラジアン)は界磁用磁石の見開き角ψm
(ラジアン)と電機子突極見開き角ψe(ラジアン)の
差の半分の角度を示している。また界磁用磁石の回転角
がθ〜(π/2p)(ラジアン)の範囲内においては電
機子突極2において界磁用磁石の短絡磁束が発生するた
めに電機子内に流れ込む有効磁束は段階的に減少し、電
機子突極2が異なる極の界磁用磁石の中間に位置すると
き、すなわち回転角が(π/2p)(ラジアン)となっ
たときに有効磁束はゼロとなる。さらに実際に電機子突
極を通過する有効磁束量は前記理論的な有効磁束よりも
減少する。すなわち図16に示した磁束の流れ10は電
機子突極2の透磁率が空気中の透磁率と比較して格段に
高いために曲げられて、電機子突極2を回転子の回転方
向に横切る磁束が発生し大きい磁束の短絡を生ずる事が
わかる。よって理論的な短絡よりも大きな短絡を生じて
しまい有効磁束量が十分に得れないことがわかる。また
電機子の見開き角をさらに小さく設計することにより、
界磁用磁石の磁束の電機子突極における短絡が減少し、
有効磁束量が増大することは明らかであるが、電機子突
極と界磁用磁石とのギャップ部分の磁束密度が高くなる
ために、コキングが大きくなり安定した駆動が確保でき
なくなる。
However, in the case where the opening angle αe of the armature salient poles and αm of the field magnets are within the range that satisfies the above expression 1, that is, when the opening angle of the armature salient poles is designed to be small. However, the magnetic flux of the field magnet is always short-circuited in the armature salient pole portion, and the amount of effective magnetic flux passing through the inside of the armature is reduced. FIG. 15 is a diagram modeling the flow of magnetic flux in the vicinity of the armature salient poles. The armature salient poles 2 and the field magnet 1 are shown in FIG.
It consists of The armature salient poles 2 and field magnets 1 shown in the figure are within the range of design values shown in the relational expression of the prior art regarding the pole arc rate αe of the armature salient poles and the pole arc rate αm of the field magnets. ing. It can be seen that when the armature salient poles 2 and the field magnet 1 are in the positional relationship shown in the figure, the flow 6 of the magnetic flux enters the inside of the armature and becomes an effective magnetic flux. However, when the rotor rotates and the positions of the field magnet and the armature salient pole change relatively, the flow of magnetic flux changes. FIG. 16 is a diagram modeling the flow of magnetic flux in the vicinity of the armature salient poles, which is composed of the armature salient poles 2 and the rotor 21. As for the positional relationship between the armature salient poles 2 and the field magnets 1, the armature salient poles 2 are located between the different poles of the field magnets 1. That is, as shown by the magnetic flux flow 10, the magnetic flux of the field magnet 1 is short-circuited at the armature salient poles 2, and there is almost no effective magnetic flux entering the inside of the armature. FIG. 17 is a relationship diagram between the rotation angle of the rotor and the effective magnetic flux amount, and is a diagram showing a change in the effective magnetic flux amount passing through the armature salient poles with the rotation angle of the field magnet. In the figure, the broken line theoretically indicates the effective magnetic flux amount passing through the armature salient poles, and the solid line indicates the effective magnetic flux amount passing inside the armature. That is, theoretically, the position state of the rotor 21 is as shown in FIG.
The effective magnetic flux amount passing through the armature when rotated from the position shown in 4 is that the armature salient pole 2 is not located between the poles of the field magnet until the rotation angle of the field magnet is θ (radian). To
It is possible to obtain a constant effective magnetic flux. Here, the rotation angle θ (radian) of the rotor 1 is the spread angle ψm of the field magnet.
(Radian) and the armature salient pole spread angle ψe (radian) are shown as half the difference. Further, when the rotation angle of the field magnet is within the range of θ to (π / 2p) (radian), the effective magnetic flux flowing into the armature due to the short circuit magnetic flux of the field magnet at the armature salient pole 2 is generated. The effective magnetic flux becomes zero when the armature salient poles 2 are gradually reduced and are located in the middle of the field magnets of different poles, that is, when the rotation angle becomes (π / 2p) (radian). Further, the amount of effective magnetic flux actually passing through the armature salient poles is smaller than the theoretical effective magnetic flux. That is, the magnetic flux flow 10 shown in FIG. 16 is bent because the magnetic permeability of the armature salient pole 2 is significantly higher than the magnetic permeability in the air, and the armature salient pole 2 is bent in the rotational direction of the rotor. It can be seen that a transverse magnetic flux is generated and a large magnetic flux is short-circuited. Therefore, it is understood that a larger short circuit than the theoretical short circuit is generated and the effective magnetic flux amount cannot be sufficiently obtained. In addition, by designing the spread angle of the armature to be smaller,
Short circuit in the armature salient pole of the magnetic flux of the field magnet is reduced,
Although it is clear that the amount of effective magnetic flux increases, the magnetic flux density in the gap portion between the armature salient poles and the field magnet increases, so that coking increases and stable driving cannot be ensured.

【0008】そこで本発明は従来技術の問題点を解決す
るもので、その目的とするところは、小型化、軽量化に
適した突極型集中巻線方式の電動機において、電機子突
極と界磁用磁石とのギャップ部分の磁束密度を上げるこ
となしに、電機子突極における界磁用磁石の短絡を減少
し高効率で高トルク化可能な電動機を提供することにあ
る。
Therefore, the present invention solves the problems of the prior art. The object of the present invention is to provide a salient pole type concentrated winding type electric motor suitable for downsizing and weight saving, and to reduce the contact between the armature salient pole and the armature salient pole. An object of the present invention is to provide an electric motor capable of reducing the short circuit of the field magnet in the armature salient poles and increasing the efficiency and torque without increasing the magnetic flux density in the gap with the magnet for magnet.

【0009】[0009]

【課題を解決するための手段】軟磁性材料のバルク材も
しくは積層鋼板よりなる電機子と界磁用磁石とを有する
突極型集中巻線方式の電動機において、界磁用磁石に対
向する電機子突極の側面エッジ部分に反磁性材料よりな
る部材を設けたことを特徴とする。
In a salient pole type concentrated winding type motor having an armature made of a bulk material of soft magnetic material or a laminated steel plate and a field magnet, the armature is opposed to the field magnet. It is characterized in that a member made of a diamagnetic material is provided on a side edge portion of the salient pole.

【0010】界磁用磁石に対向する電機子突極の側面エ
ッジ部分に設けられた反磁性材料よりなる部材と巻線固
定用部材とを兼ねたことを特徴とする。
The present invention is characterized in that it serves as both a member made of a diamagnetic material and a member for fixing the winding, which is provided on the side edge portion of the armature salient pole facing the field magnet.

【0011】軟磁性材料のバルク材もしくは積層鋼板よ
りなる電機子と界磁用磁石とを有する突極型集中巻線方
式の電動機において、前記電機子鉄心の界磁用磁石に対
向する方向の透磁率と回転子の回転する円周方向の透磁
率とに異方性をもたせたことを特徴とする。
In a salient pole concentrated winding type electric motor having an armature made of a bulk material of soft magnetic material or a laminated steel plate and a field magnet, a transparent member in a direction facing the field magnet of the armature core is provided. It is characterized in that the magnetic susceptibility and the magnetic permeability in the circumferential direction of rotation of the rotor have anisotropy.

【0012】電機子鉄心に軟磁性材料からなる積層鋼板
を用い、さらに前記積層鋼板の電機子突極部における積
層方向が回転子の回転する円周方向に積層されているこ
とを特徴とする。
A laminated steel sheet made of a soft magnetic material is used for the armature core, and the laminated steel sheets are laminated in the armature salient pole portion in the circumferential direction in which the rotor rotates.

【0013】軟磁性材料のバルク材もしくは積層鋼板よ
りなる電機子と界磁用磁石とを有する突極型集中巻線方
式の電動機において、電機子突極に界磁用磁石に対向す
る方向にスリット(溝)を設けたことを特徴とする。
In a salient pole type concentrated winding type electric motor having an armature made of a bulk material of soft magnetic material or laminated steel plates and a field magnet, a salient pole of the armature is slit in a direction facing the field magnet. It is characterized in that a (groove) is provided.

【0014】[0014]

【実施例】以下に本発明の実施例を図面に基づき説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】図1は本発明の実施例を示す電動機の正面
図であり、回転子21と電機子22から構成されてい
る。本実施例においては、界磁用磁石に対向する電機子
突極の側面エッジ部分に反磁性材料よりなる部材を設け
た例について詳細な説明をおこなう。また本実施例にお
いては界磁用磁石が電動機中心部に位置し、前記界磁用
磁石が回転する内転型DCブラシレスモータを例にとり
詳細な説明をおこなう。
FIG. 1 is a front view of an electric motor showing an embodiment of the present invention, which is composed of a rotor 21 and an armature 22. In this embodiment, a detailed description will be given of an example in which a member made of a diamagnetic material is provided at a side edge portion of an armature salient pole facing a field magnet. Further, in the present embodiment, a detailed description will be given by taking as an example an inversion type DC brushless motor in which the field magnet is located at the center of the electric motor and the field magnet rotates.

【0016】回転子21は軟磁性材料からなるコア4と
界磁用磁石1から構成される。本実施例では界磁用磁石
1が4極に着磁された例を示し、円周方向に沿って等分
間隔にてN極S極が交互に発生する。電機子22は軟磁
性材料のバルク材もしくは積層鋼板からなり、6本の電
機子突極2を有している。それぞれの電機子突極2には
電動機巻線3が集中巻線方式にて施されている。電動機
の駆動はロータ位置を検出する磁極検出装置(例えばホ
ール素子、図示せず)、もしくはセンサレス駆動により
回転子21の位置を検出し、適切な駆動相が励磁され、
それにより回転子21は所要の方向に回転する。
The rotor 21 is composed of a core 4 made of a soft magnetic material and a field magnet 1. In this embodiment, the field magnet 1 is magnetized to have four poles, and N poles and S poles are alternately generated at equal intervals along the circumferential direction. The armature 22 is made of a bulk material of soft magnetic material or a laminated steel plate, and has six armature salient poles 2. A motor winding 3 is applied to each armature salient pole 2 by a concentrated winding method. For driving the electric motor, a magnetic pole detection device (for example, a Hall element, not shown) that detects the rotor position, or the position of the rotor 21 is detected by sensorless driving, and an appropriate drive phase is excited.
As a result, the rotor 21 rotates in the required direction.

【0017】続いて反磁性材料からなる部材5の効果に
ついて詳細な説明をおこなう。反磁性材料とは磁化され
た方向とは反対方向に極性を帯びる物質であり、Au
(金)、Ag(銀)、P(リン)等が知られている。本
発明における電機子突極2には界磁用磁石1と対向する
面の側面エッジ部分にAg(銀)からなる反磁性材料部
材5が設けられている。図2に本実施例における電機子
突極付近の磁束の流れをモデル化した図を示す。図2は
電機子突極2と界磁用磁石1および磁束の流れを示す線
10からなる。図16に示した電機子突極2が界磁用磁
石1の異なる極の境界上もしくはその付近にあるとき、
磁束の流れは電機子突極2を通過して短絡しやすくな
る。しかしながら本発明による電機子突極の構造では、
銀(Ag)からなる反磁性材料部材5が磁化方向すなわ
ち磁束の短絡方向とは逆方向に磁性を帯びるために、磁
束の短絡が抑制される。よって短絡磁束は図2に示すよ
うに小さくなる。
Next, the effect of the member 5 made of a diamagnetic material will be described in detail. A diamagnetic material is a substance that is polarized in a direction opposite to the magnetized direction.
(Gold), Ag (silver), P (phosphorus), etc. are known. The armature salient pole 2 of the present invention is provided with a diamagnetic material member 5 made of Ag (silver) at the side edge portion of the surface facing the field magnet 1. FIG. 2 shows a modeled flow of magnetic flux near the armature salient poles in this embodiment. FIG. 2 comprises armature salient poles 2, field magnets 1 and lines 10 showing the flow of magnetic flux. When the armature salient pole 2 shown in FIG. 16 is on or near the boundary between different poles of the field magnet 1,
The flow of magnetic flux easily passes through the armature salient poles 2 to cause a short circuit. However, in the structure of the armature salient pole according to the present invention,
Since the diamagnetic material member 5 made of silver (Ag) has magnetism in the direction opposite to the magnetization direction, that is, the direction of the short circuit of the magnetic flux, the short circuit of the magnetic flux is suppressed. Therefore, the short circuit magnetic flux becomes small as shown in FIG.

【0018】図3は本実施例における回転子の回転角と
電機子に流れ込む有効磁束量の関係を示した図であり、
図中の実線が実際に電機子に流れ込む磁束量を示し、波
線は理論的に電機子に流れ込む有効磁束量を示してい
る。すなわち界磁用磁石1と対向する面の側面エッジ部
分に反磁性材料部材5を設けることにより、電機子突極
部2を短絡して無効となる磁束が減少して、理論状態に
近い形で有効磁束を得ることが可能であることがわか
る。よって本実施例における電動機は有効磁束を十分に
得ることが可能となる。
FIG. 3 is a diagram showing the relationship between the rotation angle of the rotor and the amount of effective magnetic flux flowing into the armature in this embodiment.
The solid line in the figure shows the amount of magnetic flux actually flowing into the armature, and the broken line theoretically shows the amount of effective magnetic flux flowing into the armature. That is, by providing the diamagnetic material member 5 on the side edge portion of the surface facing the field magnet 1, the magnetic flux that becomes ineffective by short-circuiting the armature salient pole portion 2 is reduced, and in a form close to the theoretical state. It is understood that it is possible to obtain an effective magnetic flux. Therefore, the electric motor in this embodiment can obtain a sufficient effective magnetic flux.

【0019】また本実施例においては反磁性材料にAg
(銀)を用いた例を示したが、それ以外の反磁性材料す
なわちAu(金)、P(リン)、超電導材料等でも同様
な効果が得られることは明かである。
In this embodiment, the diamagnetic material is Ag.
Although an example using (silver) is shown, it is clear that the same effect can be obtained with other diamagnetic materials such as Au (gold), P (phosphorus), and superconducting materials.

【0020】図4は本発明の第2の実施例を示す電動機
の正面図であり回転子21と電機子22から構成されて
いる。本実施例においては界磁用磁石に対向する電機子
突極の側面エッジ部分にAg(銀)からなる反磁性材料
よりなる部材を設け、さらに前記部材と巻線固定用部材
を兼ねた例について詳細な説明をおこなう。また本実施
例においては界磁用磁石がモータ中心部に位置し、前記
界磁用磁石が回転する内転型のDCブラシレスモータを
例にとり詳細な説明をおこなう。
FIG. 4 is a front view of an electric motor showing a second embodiment of the present invention, which is composed of a rotor 21 and an armature 22. In the present embodiment, an example in which a member made of a diamagnetic material made of Ag (silver) is provided on the side edge portion of the armature salient pole facing the field magnet, and the member also serves as the winding fixing member Give a detailed explanation. Further, in the present embodiment, a detailed description will be given by taking an inversion type DC brushless motor in which the field magnet is located at the center of the motor and the field magnet rotates.

【0021】回転子21は軟磁性材料からなるコア4と
界磁用磁石1から構成される。本実施例では4極に着磁
された例を示し、円周方向に沿って等分間隔にてN極S
極が交互に発生する。電機子22は軟磁性材料のバルク
材もしくは積層鋼板からなり、6本の電機子突極2を有
している。それぞれの電機子突極2には電動機巻線3が
集中巻線方式にて施されている。電動機の駆動はロータ
位置を検出する磁極検出装置(例えばホール素子、図示
せず)、もしくはセンサレス駆動により回転子21の位
置を検出し、適切な電動機巻線が励磁され、それにより
回転子21は所要の方向に回転する。
The rotor 21 is composed of a core 4 made of a soft magnetic material and a field magnet 1. In this embodiment, an example in which four poles are magnetized is shown, and the N pole S is evenly spaced along the circumferential direction.
The poles alternate. The armature 22 is made of a bulk material of soft magnetic material or a laminated steel plate, and has six armature salient poles 2. A motor winding 3 is applied to each armature salient pole 2 by a concentrated winding method. The drive of the electric motor detects the position of the rotor 21 by a magnetic pole detection device (for example, a Hall element, not shown) that detects the rotor position, or the sensorless drive, and the appropriate electric motor winding is excited, which causes the rotor 21 to move. Rotate in the desired direction.

【0022】続いて反磁性材料からなる部材5の効果に
ついて詳細な説明をおこなう。本発明における電機子突
極2にはAg(銀)からなる反磁性材料部材5が、隣合
う電機子突極の側面エッジ部分を渡すように設けられて
いる。よって前記反磁性材料5は電動機巻線3が巻線ス
ペースよりはみ出さないようにするための巻線固定部材
を兼ねることになる。図5に本実施例における電機子突
極付近の磁束の流れをモデル化した図を示す。図5は電
機子突極2と界磁用磁石1および磁束の流れを示す線6
からなる。図16に示したように電機子突極2が界磁用
磁石1の異なる極の境界上もしくはその付近にあると
き、磁束の流れは電機子突極2を通過して短絡しやすく
なる。しかしながら本発明による電機子突極の構造で
は、銀(Ag)からなる反磁性材料部材5が磁化方向す
なわち磁束の短絡方向とは逆方向に磁性を帯びるため
に、磁束の短絡が抑制される。よって短絡磁束は図2に
示すように小さくなる。
Next, the effect of the member 5 made of a diamagnetic material will be described in detail. The armature salient pole 2 in the present invention is provided with a diamagnetic material member 5 made of Ag (silver) so as to pass the side edge portions of the adjacent armature salient poles. Therefore, the diamagnetic material 5 also serves as a winding fixing member for preventing the motor winding 3 from protruding from the winding space. FIG. 5 shows a diagram modeling the flow of magnetic flux near the armature salient poles in this embodiment. FIG. 5 shows armature salient poles 2, field magnets 1 and lines 6 showing the flow of magnetic flux.
Consists of. As shown in FIG. 16, when the armature salient poles 2 are on or near the boundary between different poles of the field magnet 1, the flow of magnetic flux easily passes through the armature salient poles 2 and is easily short-circuited. However, in the structure of the armature salient pole according to the present invention, since the diamagnetic material member 5 made of silver (Ag) is magnetized in the direction opposite to the magnetization direction, that is, the direction in which the magnetic flux is short-circuited, the magnetic flux short-circuit is suppressed. Therefore, the short circuit magnetic flux becomes small as shown in FIG.

【0023】そこで回転子の回転角と電機子に流れ込む
有効磁束量の関係を示した図は実施例1に示した図と同
一となり図3に示す図となる。すなわち界磁用磁石1と
対向する面の側面エッジ部分に反磁性材料部材5を設け
ることにより、電機子突極部2を短絡して無効となる磁
束が減少して、理論状態に近い形で有効磁束を得ること
が可能であることがわかる。また本実施例においては反
磁性材料部材5は、電動機巻線が巻線スペースよりはみ
出さないようにするための固定部材を兼ねているため
に、電動機巻線が電動機巻線スペース内に確実に保持さ
れることがわかる。よって本実施例における電動機は有
効磁束を十分に得ることが可能であり、さらに電動機巻
線が確実に保持されることとなる。
Therefore, the diagram showing the relationship between the rotation angle of the rotor and the amount of effective magnetic flux flowing into the armature is the same as the diagram shown in the first embodiment and becomes the diagram shown in FIG. That is, by providing the diamagnetic material member 5 on the side edge portion of the surface facing the field magnet 1, the magnetic flux that becomes ineffective by short-circuiting the armature salient pole portion 2 is reduced, and in a form close to the theoretical state. It is understood that it is possible to obtain an effective magnetic flux. Further, in the present embodiment, the diamagnetic material member 5 also serves as a fixing member for preventing the electric motor winding from protruding from the winding space, so that the electric motor winding is surely placed in the electric motor winding space. You can see that it is retained. Therefore, the electric motor according to the present embodiment can obtain a sufficient effective magnetic flux, and the electric motor winding can be reliably held.

【0024】また本実施例においては反磁性材料にAg
(銀)を用いた例を示したが、それ以外の反磁性材料す
なわちAu(金)、P(リン)、超電導材料等でも同様
な効果が得られることは明かである。
In this embodiment, the diamagnetic material is Ag.
Although an example using (silver) is shown, it is clear that the same effect can be obtained with other diamagnetic materials such as Au (gold), P (phosphorus), and superconducting materials.

【0025】図6は本発明の第3の実施例を示す電動機
の正面図であり、回転子21と電機子22から構成され
ている。本実施例においては、電機子突極の材料に、電
機子の界磁用磁石に対向する方向の透磁率と回転子が回
転する円周方向の透磁率とに異方性をもたせた材料を用
いた例について詳細な説明をおこなう。また本実施例に
おいては界磁用磁石が電動機中心部に位置し、前記界磁
用磁石が回転する内転型のDCブラシレスモータを例に
とり詳細な説明をおこなう。
FIG. 6 is a front view of an electric motor showing a third embodiment of the present invention, which is composed of a rotor 21 and an armature 22. In the present embodiment, the material of the armature salient poles is a material having anisotropy in the magnetic permeability in the direction facing the field magnet of the armature and the magnetic permeability in the circumferential direction in which the rotor rotates. The example used will be described in detail. Further, in the present embodiment, a detailed description will be given by taking as an example an inversion type DC brushless motor in which the field magnet is located in the central portion of the electric motor and the field magnet rotates.

【0026】回転子21は軟磁性材料からなるコア4と
界磁用磁石1から構成される。本実施例では4極に着磁
された例を示し、円周方向に沿って等分間隔にてN極S
極が交互に発生する。電機子22は軟磁性材料からな
り、6本の電機子突極2を有している。それぞれの電機
子突極2には電動機巻線3が集中巻線方式にて施されて
いる。電動機の駆動はロータ位置を検出する磁極検出装
置(例えばホール素子、図示せず)、もしくはセンサレ
ス駆動により回転子21の位置を検出し、適切な駆動巻
線が励磁され、それにより回転子21は所要の方向に回
転する。
The rotor 21 is composed of a core 4 made of a soft magnetic material and a field magnet 1. In this embodiment, an example in which four poles are magnetized is shown, and the N pole S is evenly spaced along the circumferential direction.
The poles alternate. The armature 22 is made of a soft magnetic material and has six armature salient poles 2. A motor winding 3 is applied to each armature salient pole 2 by a concentrated winding method. The motor is driven by a magnetic pole detection device (for example, a Hall element, not shown) that detects the rotor position, or the position of the rotor 21 is detected by sensorless drive, and an appropriate drive winding is excited, which causes the rotor 21 to move. Rotate in the desired direction.

【0027】続いて電機子突極に異方性化した電機子鉄
芯、すなわち電機子突極の界磁用磁石に対向する方向の
透磁率と回転子が回転する円周方向の透磁率とを異方性
化した例について詳細な説明をおこなう。図7に本実施
例における電機子突極付近の磁束の流れをモデル化した
図を示す。図7は電機子突極2と界磁用磁石1および磁
束の流れを示す線6からなる。図16に示したように電
機子突極2が界磁用磁石1の異なる極の境界上もしくは
その付近にあるとき、磁束の流れは電機子突極2を通過
して短絡しやすくなる。しかしながら本実施例に示すよ
うに、電機子突極の透磁率を、界磁用マグネットに対向
する方向の透磁率と回転子の回転する円周方向の透磁率
とに異方性化した電機子を用いる、すなわち電機子突極
2の円周方向への透磁率を小さくすることにより、磁束
の流れは図7に示すように回転子の回転方向に流れにく
くなる。
Next, the anisotropy armature iron core of the armature salient poles, that is, the magnetic permeability in the direction facing the field magnets of the armature salient poles and the magnetic permeability in the circumferential direction in which the rotor rotates. A detailed description will be given of an example in which is anisotropic. FIG. 7 shows a diagram modeling the flow of magnetic flux near the armature salient poles in this embodiment. FIG. 7 is composed of armature salient poles 2, field magnets 1 and lines 6 showing the flow of magnetic flux. As shown in FIG. 16, when the armature salient poles 2 are on or near the boundary between different poles of the field magnet 1, the flow of magnetic flux easily passes through the armature salient poles 2 and is easily short-circuited. However, as shown in the present embodiment, the magnetic permeability of the armature salient poles is made anisotropic by the magnetic permeability in the direction facing the field magnet and the magnetic permeability in the circumferential direction in which the rotor rotates. Is used, that is, by reducing the magnetic permeability in the circumferential direction of the armature salient pole 2, it becomes difficult for the magnetic flux to flow in the rotational direction of the rotor as shown in FIG.

【0028】そこで回転子の回転角と電機子に流れ込む
有効磁束量の関係を示した図は実施例1に示した図と同
一となり図3に示す図となる。すなわち電機子突極の透
磁率を、界磁用磁石に対向する方向の透磁率と回転子が
回転する円周方向の透磁率とを異方性化することによ
り、電機子突極2を短絡して無効となる磁束が減少し
て、理論状態に近い形で有効磁束を得ることが可能であ
ることがわかる。
Therefore, the diagram showing the relationship between the rotation angle of the rotor and the amount of effective magnetic flux flowing into the armature is the same as the diagram shown in the first embodiment and becomes the diagram shown in FIG. That is, by making the magnetic permeability of the armature salient poles anisotropy between the magnetic permeability in the direction facing the field magnet and the magnetic permeability in the circumferential direction in which the rotor rotates, the armature salient poles 2 are short-circuited. Thus, it is understood that the ineffective magnetic flux is reduced and the effective magnetic flux can be obtained in a form close to the theoretical state.

【0029】また図8は本実施例に用いた磁気異方性材
料の構成例を示した図である。図8の電機子突極は鉄粉
7、エポキシ樹脂8、およびにガラス繊維層9から構成
されている。非磁性であるガラス繊維層が縦方向に構成
されているために、本材料は横方向に透磁率が小さくな
り異方性材料となる。よって前記異方性材料を用いるこ
とにより、電動機の有効磁束量の増大を図ることが可能
となる。
FIG. 8 is a diagram showing a structural example of the magnetic anisotropic material used in this embodiment. The armature salient pole shown in FIG. 8 is composed of iron powder 7, epoxy resin 8, and glass fiber layer 9. Since the non-magnetic glass fiber layer is formed in the vertical direction, this material has a small magnetic permeability in the horizontal direction and becomes an anisotropic material. Therefore, by using the anisotropic material, it is possible to increase the effective magnetic flux amount of the electric motor.

【0030】なお本実施例では鉄粉7、エポキシ樹脂
8、ガラス繊維層9から構成される例を示したが、これ
に限るものではなく、界磁用磁石に対向する方向の透磁
率と回転子の回転する円周方向の透磁率とに異方性のあ
る材料であれば同様な効果が得られることは言うまでも
ない。
In this embodiment, an example of the iron powder 7, the epoxy resin 8 and the glass fiber layer 9 is shown, but the present invention is not limited to this, and the magnetic permeability and the rotation in the direction facing the field magnet are not limited thereto. It goes without saying that the same effect can be obtained as long as the material has anisotropy in the magnetic permeability in the circumferential direction of rotation of the child.

【0031】図9は本発明の第4の実施例を示す電動機
の正面図であり、回転子21と電機子22から構成され
ている。本実施例においては、電機子鉄心に軟磁性材料
からなる積層鋼板を用い、さらに前記積層鋼板の電機子
突極部における積層方向が回転子の回転する円周方向に
積層した例について詳細な説明をおこなう。また本実施
例においては界磁用磁石が電動機中心部に位置し、前記
界磁用磁石が回転する内転型のDCブラシレスモータを
例にとり詳細な説明をおこなう。
FIG. 9 is a front view of an electric motor showing a fourth embodiment of the present invention, which is composed of a rotor 21 and an armature 22. In this embodiment, a laminated steel sheet made of a soft magnetic material is used for the armature core, and the laminated steel sheet is laminated in the circumferential direction in which the rotor is rotated in the armature salient pole portion. Perform. Further, in the present embodiment, a detailed description will be given by taking as an example an inversion type DC brushless motor in which the field magnet is located in the central portion of the electric motor and the field magnet rotates.

【0032】回転子21は軟磁性材料からなるコア4と
界磁用磁石1から構成される。本実施例では4極に着磁
された例を示し、円周方向に沿って等分間隔にてN極S
極が交互に発生する。電機子22は軟磁性材料からな
り、6本の電機子突極2を有している。それぞれの電機
子突極2には電動機巻線3が集中巻線方式にて施されて
いる。電動機の駆動はロータ位置を検出する磁極検出装
置(例えばホール素子、図示せず)、もしくはセンサレ
ス駆動により回転子21の位置を検出し、適切な駆動巻
線が励磁され、それにより回転子21は所要の方向に回
転する。
The rotor 21 is composed of a core 4 made of a soft magnetic material and a field magnet 1. In this embodiment, an example in which four poles are magnetized is shown, and the N pole S is evenly spaced along the circumferential direction.
The poles alternate. The armature 22 is made of a soft magnetic material and has six armature salient poles 2. A motor winding 3 is applied to each armature salient pole 2 by a concentrated winding method. The motor is driven by a magnetic pole detection device (for example, a Hall element, not shown) that detects the rotor position, or the position of the rotor 21 is detected by sensorless drive, and an appropriate drive winding is excited, which causes the rotor 21 to move. Rotate in the desired direction.

【0033】続いて電機子鉄心に軟磁性材料からなる積
層鋼板を用い、さらに前記積層鋼板の電機子突極部にお
ける積層方向が回転子の回転する円周方向に積層した効
果について詳細な説明をおこなう。図10は本発明の電
機子突極の構造図である。一般的によく知られている電
機子突極の積層構造は電動機の長手方向に積層されてい
るが、本発明の電機子突極は回転子の回転する円周方向
に積層されている。よって電機子突極における回転子の
回転する円周方向の透磁率は、界磁用磁石に対向する方
向の透磁率よりも小さくなり、異方性を持つことにな
る。また積層鋼板は図に示すようにU字型に成形されて
おり、組立の際にはU字型部材11を電機子突極の個数
分と同数組み合わせることにより簡易に電機子を構成す
ることが可能である。
Next, a detailed description will be given of the effect of using a laminated steel sheet made of a soft magnetic material for the armature core and further laminating the laminated steel sheets in the armature salient pole portion in the circumferential direction in which the rotor rotates. Do it. FIG. 10 is a structural diagram of the armature salient pole of the present invention. The generally well-known laminated structure of the armature salient poles is laminated in the longitudinal direction of the electric motor, but the armature salient poles of the present invention are laminated in the circumferential direction in which the rotor rotates. Therefore, the magnetic permeability in the circumferential direction of rotation of the rotor in the armature salient pole is smaller than the magnetic permeability in the direction facing the field magnet, and thus has anisotropy. Further, the laminated steel plates are formed in a U shape as shown in the figure, and at the time of assembly, an armature can be easily configured by combining the U-shaped members 11 in the same number as the number of armature salient poles. It is possible.

【0034】続いて図11に本実施例における電機子突
極付近の磁束の流れをモデル化した図を示す。図11は
電機子突極2と界磁用磁石1および磁束の流れを示す線
6からなる。図16に示したように電機子突極2が界磁
用磁石1の異なる極の境界上もしくはその付近にあると
き、磁束の流れは電機子突極2を通過して短絡しやすく
なる。しかしながら本実施例に示すように、電機子突極
部における回転子の回転する円周方向の透磁率が界磁用
磁石に対向する方向の透磁率と比較して小さいために、
磁束の流れは図11に示すように回転子の回転方向に流
れにくくなる。
Next, FIG. 11 shows a modeled flow of magnetic flux in the vicinity of the armature salient poles in this embodiment. FIG. 11 is composed of armature salient poles 2, field magnets 1 and lines 6 showing the flow of magnetic flux. As shown in FIG. 16, when the armature salient poles 2 are on or near the boundary between different poles of the field magnet 1, the flow of magnetic flux easily passes through the armature salient poles 2 and is easily short-circuited. However, as shown in the present embodiment, since the magnetic permeability in the circumferential direction of rotation of the rotor in the armature salient pole portion is smaller than the magnetic permeability in the direction facing the field magnet,
The flow of magnetic flux becomes difficult to flow in the rotation direction of the rotor as shown in FIG.

【0035】そこで回転子の回転角と電機子に流れ込む
有効磁束量の関係を示した図は実施例1に示した図と同
一となり図3に示す図となる。すなわち電機子突極部の
鋼板の積層方向を回転子の回転する円周方向に積層する
ことにより、電機子突極2を短絡して無効となる磁束が
減少して、理論状態に近い形で有効磁束を得ることが可
能であることがわかる。
Therefore, the diagram showing the relationship between the rotation angle of the rotor and the amount of effective magnetic flux flowing into the armature is the same as the diagram shown in the first embodiment and becomes the diagram shown in FIG. That is, by stacking the stacking directions of the steel plates of the armature salient poles in the circumferential direction in which the rotor rotates, the magnetic flux that becomes ineffective by short-circuiting the armature salient poles 2 is reduced, and in a form close to the theoretical state. It is understood that it is possible to obtain an effective magnetic flux.

【0036】図12は本発明の第5の実施例を示す電動
機の正面図であり、回転子21と電機子22から構成さ
れている。本実施例においては電機子突極に、界磁用磁
石に対向する方向にスリット(溝)を設けた例について
詳細な説明をおこなう。また本実施例においては界磁用
磁石が電動機中心部に位置し、前記界磁用磁石が回転す
る内転型のDCブラシレスモータを例にとり詳細な説明
をおこなう。
FIG. 12 is a front view of an electric motor according to the fifth embodiment of the present invention, which is composed of a rotor 21 and an armature 22. In the present embodiment, an example in which a slit (groove) is provided in the armature salient pole in a direction facing the field magnet will be described in detail. Further, in the present embodiment, a detailed description will be given by taking as an example an inversion type DC brushless motor in which the field magnet is located in the central portion of the electric motor and the field magnet rotates.

【0037】回転子21は軟磁性材料からなるコア4と
界磁用磁石1から構成される。本実施例では4極に着磁
された例を示し、円周方向に沿って等分間隔にてN極S
極が交互に発生する。電機子22は軟磁性材料のバルク
材もしくは積層鋼板からなり、6本の電機子突極2を有
している。それぞれの電機子突極2には電動機巻線3が
集中巻線方式にて施されている。電動機の駆動はロータ
位置を検出する磁極検出装置(例えばホール素子、図示
せず)、もしくはセンサレス駆動により回転子21の位
置を検出し、適切な駆動巻線が励磁され、それにより回
転子21は所要の方向に回転する。
The rotor 21 is composed of a core 4 made of a soft magnetic material and a field magnet 1. In this embodiment, an example in which four poles are magnetized is shown, and the N pole S is evenly spaced along the circumferential direction.
The poles alternate. The armature 22 is made of a bulk material of soft magnetic material or a laminated steel plate, and has six armature salient poles 2. A motor winding 3 is applied to each armature salient pole 2 by a concentrated winding method. The motor is driven by a magnetic pole detection device (for example, a Hall element, not shown) that detects the rotor position, or the position of the rotor 21 is detected by sensorless drive, and an appropriate drive winding is excited, which causes the rotor 21 to move. Rotate in the desired direction.

【0038】続いて電機子突極2にスリット(溝)10
を設けた効果について詳細な説明をおこなう。図13に
本実施例における電機子突極付近の磁束の流れをモデル
化した図を示す。図13は電機子突極2と界磁用磁石1
とスリット(溝)10および磁束の流れを示す線6から
なる。図16に示すように電機子突極2が界磁用磁石1
の異なる極の境界上もしくはその付近にあるとき、磁束
の流れは電機子突極2を通過して短絡しやすくなる。し
かしながら本発明による電機子突極の構造では図13に
示すように、電機子突極2にスリット(溝)10を設け
ることにより、回転子の回転する円周方向の透磁率が下
がり、磁束の流れは回転子の回転方向に流れにくくな
り、よって短絡磁束は少なくなる。
Subsequently, a slit (groove) 10 is formed on the armature salient pole 2.
The effect of the provision will be explained in detail. FIG. 13 shows a diagram modeling the flow of magnetic flux near the armature salient poles in the present embodiment. FIG. 13 shows an armature salient pole 2 and a field magnet 1.
And slits (grooves) 10 and lines 6 showing the flow of magnetic flux. As shown in FIG. 16, the armature salient poles 2 are the field magnets 1
When it is on or near the boundary of different poles, the magnetic flux flows easily through the armature salient poles 2 and is short-circuited. However, in the structure of the armature salient pole according to the present invention, as shown in FIG. 13, by providing the armature salient pole 2 with the slit (groove) 10, the magnetic permeability in the circumferential direction of rotation of the rotor is reduced, and the magnetic flux The flow is less likely to flow in the direction of rotation of the rotor, thus reducing the short circuit magnetic flux.

【0039】そこで回転子の回転角と電機子に流れ込む
有効磁束量の関係を示した図は実施例1に示した図と同
一となり図3に示す図となる。すなわち電機子突極2に
スリット(溝)を設けることにより、電機子突極部2を
短絡して無効磁束が減少して、理論状態に近い形で有効
磁束を得ることが可能であることがわかる。また本実施
例においては、電機子突極を異方性化するためにスリッ
ト(溝)を設けるという簡易な方式にて効果を得ること
ができる。
Therefore, the diagram showing the relationship between the rotation angle of the rotor and the amount of effective magnetic flux flowing into the armature is the same as the diagram shown in the first embodiment and becomes the diagram shown in FIG. That is, by providing a slit (groove) in the armature salient pole 2, it is possible to short-circuit the armature salient pole portion 2 to reduce the reactive magnetic flux, and obtain an effective magnetic flux in a form close to the theoretical state. Recognize. Further, in the present embodiment, the effect can be obtained by a simple method of providing slits (grooves) for making the armature salient poles anisotropic.

【0040】[0040]

【発明の効果】以上説明したように本発明の電動機は小
型化、軽量化に適した突極型集中巻線方式でありなが
ら、電機子突極部における磁束の短絡を減少させ、有効
磁束量を増大させることにより、高トルク型モータや高
効率モータに適した構造とすることが可能である。
As described above, the electric motor of the present invention is a salient pole type concentrated winding system suitable for downsizing and weight saving, but reduces short circuit of the magnetic flux in the armature salient pole portion to reduce the effective magnetic flux amount. It is possible to make the structure suitable for a high torque type motor and a high efficiency motor by increasing

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す電動機の正面図。FIG. 1 is a front view of an electric motor showing an embodiment of the present invention.

【図2】本実施例における電機子突極付近の磁束の流れ
をモデル化した図。
FIG. 2 is a diagram modeling a flow of magnetic flux in the vicinity of an armature salient pole in the present embodiment.

【図3】回転子の回転角と有効磁束量の関係図。FIG. 3 is a relationship diagram between a rotation angle of a rotor and an effective magnetic flux amount.

【図4】本発明の第2の実施例を示す電動機の正面図。FIG. 4 is a front view of an electric motor showing a second embodiment of the present invention.

【図5】本実施例における電機子突極付近の磁束の流れ
をモデル化した図。
FIG. 5 is a diagram modeling a flow of magnetic flux in the vicinity of an armature salient pole in the present embodiment.

【図6】本発明の第3の実施例を示す電動機の正面図。FIG. 6 is a front view of an electric motor showing a third embodiment of the present invention.

【図7】本実施例における電機子突極付近の磁束の流れ
をモデル化した図。
FIG. 7 is a diagram modeling a flow of magnetic flux in the vicinity of an armature salient pole in the present embodiment.

【図8】本実施例に用いた磁気異方性材料の構成例を示
した図。
FIG. 8 is a diagram showing a configuration example of a magnetic anisotropic material used in this example.

【図9】本発明の第4の実施例の電動機の正面図。FIG. 9 is a front view of an electric motor according to a fourth embodiment of the present invention.

【図10】本発明の電機子突極の構造図。FIG. 10 is a structural diagram of an armature salient pole of the present invention.

【図11】本実施例における電機子突極付近の磁束の流
れをモデル化した図。
FIG. 11 is a diagram modeling the flow of magnetic flux near the armature salient poles in the present embodiment.

【図12】本発明の第5の実施例の電動機の正面図。FIG. 12 is a front view of an electric motor according to a fifth embodiment of the present invention.

【図13】本実施例における電機子突極付近の磁束の流
れをモデル化した図。
FIG. 13 is a diagram modeling the flow of magnetic flux near the armature salient poles in the present embodiment.

【図14】従来の突極型集中巻線方式の電動機の上側半
分を示す正面図。
FIG. 14 is a front view showing the upper half of a conventional salient pole type concentrated winding type electric motor.

【図15】電機子突極付近の磁束の流れをモデル化した
図。
FIG. 15 is a diagram modeling a flow of magnetic flux near an armature salient pole.

【図16】電機子突極付近の磁束の流れをモデル化した
図。
FIG. 16 is a diagram modeling a magnetic flux flow in the vicinity of an armature salient pole.

【図17】回転子の回転角と有効磁束量の関係図。FIG. 17 is a relationship diagram between a rotation angle of a rotor and an effective magnetic flux amount.

【符号の説明】[Explanation of symbols]

1.界磁用磁石 2.電機子突極 3.電機子巻線 4.コア 5.反磁性材料よりなる部材 6.磁束の流れを示す線 7.鉄粉 8.エポキシ樹脂 9.ガラス繊維層 10.スリット 11.U字型部材 21.電機子 22.回転子 1. Field magnet 2. Armature salient pole 3. Armature winding 4. Core 5. Member made of diamagnetic material 6. Line showing flow of magnetic flux 7. Iron powder 8. Epoxy resin 9. Glass fiber layer 10. Slit 11. U-shaped member 21. Armature 22. Rotor

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 軟磁性材料のバルク材もしくは積層鋼板
よりなる電機子と界磁用磁石とを有する突極型集中巻線
方式の電動機において、界磁用磁石に対向する電機子突
極の側面エッジ部分に反磁性材料よりなる部材を設けた
ことを特徴とする電動機。
1. In a salient pole type concentrated winding type electric motor having an armature made of a bulk material of soft magnetic material or a laminated steel sheet and a field magnet, a side surface of the armature salient pole facing the field magnet. An electric motor characterized in that a member made of a diamagnetic material is provided at an edge portion.
【請求項2】 界磁用磁石に対向する電機子突極の側面
エッジ部分に設けられた反磁性材料よりなる部材と巻線
固定用部材とを兼ねたことを特徴とする請求項1記載の
電動機。
2. A member made of a diamagnetic material, which is provided at an edge portion of a side surface of an armature salient pole facing a field magnet, and also serves as a winding fixing member. Electric motor.
【請求項3】 軟磁性材料のバルク材もしくは積層鋼板
よりなる電機子と界磁用磁石とを有する突極型集中巻線
方式の電動機において、前記電機子鉄心の界磁用磁石に
対向する方向の透磁率と回転子の回転する円周方向の透
磁率とに異方性をもたせたことを特徴とする電動機。
3. A salient pole concentrated winding type motor having an armature made of a bulk material of soft magnetic material or a laminated steel plate and a field magnet, in a direction facing the field magnet of the armature core. An electric motor characterized by having anisotropy in the magnetic permeability of the rotor and the magnetic permeability in the circumferential direction of rotation of the rotor.
【請求項4】 電機子鉄心に軟磁性材料からなる積層鋼
板を用い、さらに前記積層鋼板の電機子突極部における
積層方向が回転子の回転する円周方向に積層されている
ことを特徴とする請求項3記載の電動機。
4. A laminated steel plate made of a soft magnetic material is used for the armature core, and the lamination direction of the laminated steel plates at the armature salient poles is laminated in the circumferential direction in which the rotor rotates. The electric motor according to claim 3.
【請求項5】 軟磁性材料のバルク材もしくは積層鋼板
よりなる電機子と界磁用磁石とを有する突極型集中巻線
方式の電動機において、電機子突極に界磁用磁石に対向
する方向にスリット(溝)を設けたことを特徴とする電
動機。
5. In a salient pole type concentrated winding type motor having an armature made of a bulk material of soft magnetic material or a laminated steel plate and a field magnet, a direction in which the armature salient pole faces the field magnet. An electric motor characterized in that a slit (groove) is provided in the.
JP5293498A 1993-11-24 1993-11-24 Motor Pending JPH07147745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5293498A JPH07147745A (en) 1993-11-24 1993-11-24 Motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5293498A JPH07147745A (en) 1993-11-24 1993-11-24 Motor

Publications (1)

Publication Number Publication Date
JPH07147745A true JPH07147745A (en) 1995-06-06

Family

ID=17795521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5293498A Pending JPH07147745A (en) 1993-11-24 1993-11-24 Motor

Country Status (1)

Country Link
JP (1) JPH07147745A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997045945A1 (en) * 1996-05-24 1997-12-04 Matsushita Electric Industrial Co., Ltd. Motor
US7358638B2 (en) 2004-02-04 2008-04-15 Sanyo Denki Co., Ltd. Method of determining pole arc ratio of interior permanent magnet rotary motor and interior permanent magnet rotary motor
JP2009268245A (en) * 2008-04-24 2009-11-12 Toshiba Corp Stator for rotary electric machine
US7629721B2 (en) * 2006-02-28 2009-12-08 Jtekt Corporation Stator of motor
EP2066009A3 (en) * 1999-06-29 2012-06-27 Sanyo Electric Co., Ltd. Brushless DC motor and refrigerant compressor employing the motor
KR20190026332A (en) * 2017-09-05 2019-03-13 현대자동차주식회사 Core light weight partition motor and production method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997045945A1 (en) * 1996-05-24 1997-12-04 Matsushita Electric Industrial Co., Ltd. Motor
US6104117A (en) * 1996-05-24 2000-08-15 Matsushita Electric Industrial Co., Ltd. Motor with reduced clogging torque incorporating stator salient poles and rotor magnetic poles
EP2066009A3 (en) * 1999-06-29 2012-06-27 Sanyo Electric Co., Ltd. Brushless DC motor and refrigerant compressor employing the motor
US7358638B2 (en) 2004-02-04 2008-04-15 Sanyo Denki Co., Ltd. Method of determining pole arc ratio of interior permanent magnet rotary motor and interior permanent magnet rotary motor
US7629721B2 (en) * 2006-02-28 2009-12-08 Jtekt Corporation Stator of motor
JP2009268245A (en) * 2008-04-24 2009-11-12 Toshiba Corp Stator for rotary electric machine
KR20190026332A (en) * 2017-09-05 2019-03-13 현대자동차주식회사 Core light weight partition motor and production method

Similar Documents

Publication Publication Date Title
US9083219B2 (en) Rotor and motor
CN102593983B (en) Rotating electrical machine
JP5889340B2 (en) Rotor of embedded permanent magnet electric motor, electric motor provided with the rotor, compressor provided with the electric motor, and air conditioner provided with the compressor
EP1014542A2 (en) Motor having a rotor with interior split-permanent-magnet
JP2010004671A (en) Permanent magnet type electric rotating machine
JP4788986B2 (en) Linear motor
CN110112878A (en) A kind of extremely tangential excitation vernier magneto of alternating
JP4574297B2 (en) Rotating electrical machine rotor
JPH07147745A (en) Motor
CN112436633B (en) Three-section type V-shaped series-parallel combined magnetic pole adjustable flux motor
US7358629B2 (en) Electromagnetic actuator
CN111030402B (en) Directional silicon steel sheet axial magnetic field motor
JP2000050543A (en) Permanent magnet embedded motor
WO2015076400A1 (en) Magnetic rotary device and magnetically-assisted motor utilizing same
JP4666726B2 (en) Permanent magnet motor rotor
JP4720024B2 (en) Permanent magnet synchronous motor
JP5197551B2 (en) Permanent magnet rotating electric machine
JP2002238192A (en) Compressor motor for mounting on vehicle
JPH11275789A (en) Rotor
JPH10257702A (en) High-performance buried magnet reluctance motor
JPS61263206A (en) Magnetizing method
JP2004248370A (en) Switched reluctance motor
JP6631102B2 (en) Rotating electric machine
JPH11275788A (en) Rotor
RU2138110C1 (en) Stator of permanent-magnet machine

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100719

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100719

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 9

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20110719

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250