JP3416963B2 - Gas-liquid separator - Google Patents

Gas-liquid separator

Info

Publication number
JP3416963B2
JP3416963B2 JP25309992A JP25309992A JP3416963B2 JP 3416963 B2 JP3416963 B2 JP 3416963B2 JP 25309992 A JP25309992 A JP 25309992A JP 25309992 A JP25309992 A JP 25309992A JP 3416963 B2 JP3416963 B2 JP 3416963B2
Authority
JP
Japan
Prior art keywords
gas
liquid
refrigerant
float
separation chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25309992A
Other languages
Japanese (ja)
Other versions
JPH06109345A (en
Inventor
晃一 安尾
克宏 川端
浩幸 山下
毅 蛭子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP25309992A priority Critical patent/JP3416963B2/en
Publication of JPH06109345A publication Critical patent/JPH06109345A/en
Application granted granted Critical
Publication of JP3416963B2 publication Critical patent/JP3416963B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本願発明はヒートポンプ式の冷凍
サイクルに適用可能な気液分離器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas-liquid separator applicable to a heat pump type refrigeration cycle.

【0002】[0002]

【従来の技術】一般に大容量の熱交換器や複数本の細径
管(例えば、直径9.5mm以下)を伝熱管として用いた熱交
換器をヒートポンプ式冷凍冷凍サイクルに用いる場合に
は、熱交換器の管内を流れる冷媒の圧力損失による冷媒
温度の低下を防止する観点から、特に蒸発器などにおい
ては伝熱管を複数本使用する多パス式とし、1パス当た
りの冷媒循環量を減少させて圧力損失の増大を抑えるこ
とが試みられている。ところが、蒸発器の入口側におい
ては膨張後の冷媒が気液二相状態となっていることか
ら、気液比率の正確な制御が不能で冷媒を蒸発器の各パ
スに対して均一に分配することが難しい。このため各パ
ス毎の冷媒循環量の不均一により本来有している熱交換
器の能力を十分に活用できないという問題があった。
2. Description of the Related Art Generally, when a heat exchanger having a large capacity heat exchanger or a plurality of small diameter tubes (for example, a diameter of 9.5 mm or less) is used as a heat transfer tube in a heat pump type refrigeration cycle, heat exchange From the viewpoint of preventing the temperature of the refrigerant from decreasing due to the pressure loss of the refrigerant flowing in the tube of the heat exchanger, especially in the evaporator, etc. Attempts have been made to suppress the increase in loss. However, since the refrigerant after expansion is in a gas-liquid two-phase state on the inlet side of the evaporator, it is impossible to accurately control the gas-liquid ratio and the refrigerant is evenly distributed to each path of the evaporator. Difficult to do. For this reason, there is a problem that the inherent capacity of the heat exchanger cannot be fully utilized due to the non-uniform refrigerant circulation amount in each pass.

【0003】このような問題を解決する手段の一つとし
て、例えば図12に示すように多パス分配が必要となる
蒸発器4の冷媒入口側に気液分離器20を設け、該気液
分離器20において気液二相状態の冷媒をガス冷媒と液
冷媒とに分離させ、熱交換に対する貢献度の小さいガス
冷媒はこれを蒸発器4をバイパスするバイパス管路18
から蒸発器4の下流側に迂回させ、該蒸発器4には液冷
媒のみを単相で各パスに分配させることで気液比率を考
慮することなく冷媒の均一分配を実現することが考えら
れている。
As one of means for solving such a problem, for example, as shown in FIG. 12, a gas-liquid separator 20 is provided on the refrigerant inlet side of the evaporator 4 which requires multi-pass distribution, and the gas-liquid separation is performed. In the container 20, the refrigerant in a gas-liquid two-phase state is separated into a gas refrigerant and a liquid refrigerant, and the gas refrigerant having a small contribution to heat exchange bypasses the evaporator 4 by the bypass line 18.
It is conceivable that a uniform distribution of the refrigerant is realized without considering the gas-liquid ratio by diverting the liquid refrigerant to the downstream side of the evaporator 4 and distributing only the liquid refrigerant to each path in a single phase in the evaporator 4. ing.

【0004】[0004]

【発明が解決しようとする課題】従って、そのような構
成では、上記気液分離器で可能な限り確実にガス冷媒と
液冷媒とを分離することが必要となる。
Therefore, in such a structure, it is necessary to separate the gas refrigerant and the liquid refrigerant as reliably as possible with the gas-liquid separator.

【0005】ところが、従来の気液分離器20の構造
は、例えば図13に示すように、圧縮機の容量やチャー
ジ量に応じた大きさの気液分離室を有する筺体の上部に
上記ガス冷媒のバイパス管路18を、また同底部に蒸発
器4への供給用の第3の冷媒循環管路13を各々設け、
2相冷媒導入口14を上部側壁側から導入し、ガス冷媒
と液冷媒とを比重差により上下方向に分離するようにな
っているだけである。
However, the structure of the conventional gas-liquid separator 20 is, for example, as shown in FIG. 13, the above-mentioned gas refrigerant is provided in the upper part of a casing having a gas-liquid separation chamber having a size corresponding to the capacity and charge amount of the compressor. And a third refrigerant circulation line 13 for supplying to the evaporator 4 are provided at the bottom of the bypass line 18.
Only the two-phase refrigerant inlet port 14 is introduced from the upper side wall side, and the gas refrigerant and the liquid refrigerant are separated vertically due to the difference in specific gravity.

【0006】その結果、例えば図14に示すように気液
分離室内の液面位が高くなりすぎると、取出口側に液冷
媒が混入し、また図15に示すように同液面位が低くな
りすぎると、液冷媒取出口側にガス冷媒が混入してしま
うといった不具合を生じ、確実な気液分離性能を発揮し
得ない欠点がある。
As a result, for example, when the liquid level in the gas-liquid separation chamber becomes too high as shown in FIG. 14, liquid refrigerant mixes into the outlet side, and as shown in FIG. 15, the liquid level becomes low. If it becomes too much, there arises a problem that a gas refrigerant is mixed into the liquid refrigerant outlet side, and there is a drawback that a reliable gas-liquid separation performance cannot be exhibited.

【0007】また、上記のようなバイパス管路を気液分
離器に設けたものを、そのままヒートポンプ冷凍サイク
ルに適用した場合には、冷房運転時と暖房運転時とで冷
媒が逆方向に流れ、冷房運転時に蒸発器として機能して
いた熱交換器が暖房運転時には凝縮器として機能するこ
とから、暖房運転時には該熱交換器に流入するガス冷媒
が上記バイパス管路を通過していしまい上記熱交換器に
流入する冷媒量が著しく減少して熱交換能力が極端に低
下することとなる。
When the gas-liquid separator provided with the above bypass pipe is directly applied to the heat pump refrigeration cycle, the refrigerant flows in opposite directions during the cooling operation and the heating operation. Since the heat exchanger functioning as the evaporator during the cooling operation functions as the condenser during the heating operation, the gas refrigerant flowing into the heat exchanger during the heating operation passes through the bypass pipe line and the heat exchange. The amount of refrigerant flowing into the vessel is remarkably reduced, and the heat exchange capacity is extremely reduced.

【0008】[0008]

【課題を解決するための手段】本願の請求項1,2記載
の発明は、それぞれ上記の問題を解決することを目的と
してなされたもので、各々次のように構成されている。
The inventions described in claims 1 and 2 of the present application were made for the purpose of solving the above problems, and are respectively configured as follows.

【0009】(1) 請求項1記載の発明の気液分離器の
構成 請求項1記載の発明の気液分離器は、2相冷媒導入口1
4と、該2相冷媒導入口14を介して気液2相冷媒が壁
面方向に導入される気液分離室と、該気液分離室の上部
に設けられたガス冷媒流出口18と、上記気液分離室の
底部に設けられた液冷媒流出口13とを備えてなる気液
分離器において、上記ガス冷媒流出口18と液冷媒流出
口13とを上記気液分離室内において内側フロート室内
にフロート47を上下移動自在に収納した中空のフロー
トパイプ51で一体に連結するとともに該フロートパイ
プ51の上下両端部に当該フロートパイプ51内のフロ
ート室と上記気液分離室とを相互に連通させる開孔部4
9,49・・、50,50・・を形成し、上記ガス冷媒流
出口18を該フロートパイプ51上端部側の開口部4
9,49・・を介して上記気液分離室上部に連通せしめ
る一方、上記液冷媒流出口13を該フロートパイプ51
下端部側の開口部50,50・・を介して上記気液分離
室下部に連通せしめ、上記気液分離室内の液面位の変化
に応じて上記フロート室内のフロート47を上下に移動
させ、上記気液分離室内の液面位が第1の基準液面レベ
ル以下の時は上記液冷媒流出口13側の開口部50,5
0・・を閉塞する一方、同気液分離室内の液面位が上記
第1の基準液面レベルを越えた時は上記液冷媒流出口1
3側の開口部を開放し、また上記気液分離室内の液面位
が上記第1の基準液面レベルよりも高い第2の基準液面
レベル以下の時は上記ガス冷媒流出口18側の開口部4
9,49・・を開放する一方、同気液分離室内の液面位
が上記第2の基準液面レベルを越えた時は上記ガス冷媒
流出口18側の開口部49,49・・を閉塞するように
したことを特徴とするものである。
(1) Structure of Gas-Liquid Separator of Invention of Claim 1 The gas-liquid separator of invention of Claim 1 is a two-phase refrigerant inlet port 1.
4, a gas-liquid separation chamber into which the gas-liquid two-phase refrigerant is introduced in the wall surface direction through the two-phase refrigerant introduction port 14, a gas refrigerant outlet port 18 provided at the upper portion of the gas-liquid separation chamber, In a gas-liquid separator comprising a liquid-refrigerant outlet 13 provided at the bottom of the gas-liquid separation chamber, the gas-refrigerant outlet 18 and the liquid-refrigerant outlet 13 are provided inside the gas-liquid separation chamber inside the float chamber. The float 47 is integrally connected by a hollow float pipe 51 that is vertically movably housed, and the upper and lower ends of the float pipe 51 are opened so that the float chamber in the float pipe 51 and the gas-liquid separation chamber communicate with each other. Hole 4
, 49, ..., 50, 50 .. are formed, and the gas refrigerant outlet port 18 is connected to the opening 4 on the upper end side of the float pipe 51.
The liquid refrigerant outlet port 13 is connected to the upper portion of the gas-liquid separation chamber via 9,49 ...
The lower end side openings 50, 50 are connected to the lower part of the gas-liquid separation chamber through the openings 50, 50, and the float 47 in the float chamber is moved up and down according to the change in the liquid level in the gas-liquid separation chamber. When the liquid level in the gas-liquid separation chamber is equal to or lower than the first reference liquid level, the openings 50, 5 on the liquid refrigerant outlet 13 side.
When the liquid level in the gas-liquid separation chamber exceeds the first reference liquid level while closing 0 ...
The opening on the side of 3 is opened, and when the liquid level in the gas-liquid separation chamber is equal to or lower than the second reference liquid level higher than the first reference liquid level, the gas refrigerant outlet 18 side Opening 4
., While the liquid level in the gas-liquid separation chamber exceeds the second reference liquid level, the openings 49, 49, ... on the gas refrigerant outlet 18 side are closed. It is characterized by doing so.

【0010】(2) 請求項2記載の発明の気液分離器の
構成 請求項2記載の発明の気液分離器は、上記請求項1記載
の発明の構成を前提とし、同構成において、さらに上記
ガス冷媒流出口18部にガス冷媒の流出を許容する一
方、同ガス冷媒の流入を禁止する所定の重量の球体弁4
8を設けたことを特徴とするものである。
(2) Structure of the gas-liquid separator of the invention described in claim 2 The gas-liquid separator of the invention described in claim 2 is based on the structure of the invention described in claim 1, and in the structure, The spherical valve 4 having a predetermined weight that allows the outflow of the gas refrigerant to the gas refrigerant outlet port 18 and prohibits the inflow of the gas refrigerant.
8 is provided.

【0011】[0011]

【作用】本願の請求項1,2各項記載の発明の気液分離
器は、各々以上のように構成されている結果、当該各構
成に対応して、それぞれ次のように作用する。
The gas-liquid separators of the inventions described in claims 1 and 2 of the present application are configured as described above, and as a result, they operate as follows corresponding to each configuration.

【0012】(1) 請求項1記載の発明の気液分離器の
作用 すなわち、請求項1記載の発明の気液分離器では、2相
冷媒導入口14と、該2相冷媒導入口14を介して気液
2相冷媒が壁面方向に導入される気液分離室と、該気液
分離室の上部に設けられたガス冷媒流出口18と、上記
気液分離室の底部に設けられた液冷媒流出口13とを備
えてガス冷媒を分離する作用を果たす気液分離器におい
て、先ず上記ガス冷媒流出口18と液冷媒流出口13と
を上記気液分離室内において内側フロート室内にフロー
ト47を上下移動自在に収納した中空のフロートパイプ
51で一体に連結するとともに該フロートパイプ51の
上下両端部に当該フロートパイプ51内のフロート室と
上記気液分離室とを相互に連通させる開孔部49,49
・・、50,50・・を形成し、上記ガス冷媒流出口1
8を該フロートパイプ51上端部側の開口部49,49
・・を介して上記気液分離室上部に連通せしめる一方、
上記液冷媒流出口13を該フロートパイプ51下端部側
の開口部50,50・・を介して上記気液分離室下部に
連通せしめ、上記気液分離室内の液面位の変化に応じて
上記フロート室内のフロート47を上下に移動させ、上
記気液分離室内の液面位が第1の基準液面レベル以下の
時は上記液冷媒流出口13側の開口部50,50・・を
閉塞する一方、同気液分離室内の液面位が上記第1の基
準液面レベルを越えた時は上記液冷媒流出口13側の開
口部50,50・・を開放し、また上記気液分離室内の
液面位が上記第1の基準液面レベルよりも高い第2の基
準液面レベル以下の時は上記ガス冷媒流出口18側の開
口部49,49・・を開放する一方、同気液分離室内の
液面位が上記第2の基準液面レベルを越えた時は上記ガ
ス冷媒流出口18側の開口部を閉塞するようになってい
る。
(1) Operation of the gas-liquid separator of the invention described in claim 1, that is, in the gas-liquid separator of the invention described in claim 1, the two-phase refrigerant inlet port 14 and the two-phase refrigerant inlet port 14 are A gas-liquid separation chamber into which a gas-liquid two-phase refrigerant is introduced in the direction of the wall surface, a gas refrigerant outlet port 18 provided at the top of the gas-liquid separation chamber, and a liquid provided at the bottom of the gas-liquid separation chamber. In the gas-liquid separator that includes the refrigerant outlet port 13 and functions to separate the gas refrigerant, first, the gas refrigerant outlet port 18 and the liquid refrigerant outlet port 13 are provided with a float 47 in the inner float chamber in the gas-liquid separation chamber. A hollow float pipe 51 that is vertically movably accommodated is integrally connected to each other, and an opening portion 49 is provided at both upper and lower ends of the float pipe 51 for communicating the float chamber in the float pipe 51 with the gas-liquid separation chamber. , 49
.., 50, 50 ..
8 is an opening 49, 49 on the upper end side of the float pipe 51
.. While communicating with the upper part of the gas-liquid separation chamber via
The liquid refrigerant outlet port 13 is communicated with the lower portion of the gas-liquid separation chamber through the openings 50, 50 on the lower end side of the float pipe 51, and the liquid refrigerant outlet port 13 is connected to the liquid level in the gas-liquid separation chamber according to a change in the liquid level. The float 47 in the float chamber is moved up and down, and when the liquid level in the gas-liquid separation chamber is equal to or lower than the first reference liquid level, the openings 50, 50, ... on the liquid refrigerant outlet 13 side are closed. On the other hand, when the liquid level in the gas-liquid separation chamber exceeds the first reference liquid level, the openings 50, 50 ... On the liquid refrigerant outlet 13 side are opened, and the gas-liquid separation chamber is opened. When the liquid level of the gas refrigerant is lower than the second reference liquid level higher than the first reference liquid level, the openings 49, 49 ... When the liquid level in the separation chamber exceeds the second reference liquid level, the gas refrigerant outlet 18 is opened. It is designed to block the mouth.

【0013】したがって、該構成を実施例に対応させ
て、その作用を説明すると、今例えば上記図12のヒー
トポンプサイクルの冷房運転が開始された場合には、先
ず図7に示すように上記第4の冷媒循環管路14を介し
て矢印旋回方向に気液2相状態の冷媒流が順次導入され
るようになり、その重量差(比重差)により液冷媒が下層
部に溜って行く一方、ガス冷媒が上層部に溜るようにな
り、ガス冷媒と液冷媒は上下2層に確実に分離される。
Therefore, the operation will be described by making the structure correspond to the embodiment. For example, when the cooling operation of the heat pump cycle of FIG. 12 is started, first, as shown in FIG. 7, the fourth operation is performed. The refrigerant flow in the gas-liquid two-phase state is sequentially introduced through the refrigerant circulation pipeline 14 in the direction of the arrow, and the liquid refrigerant accumulates in the lower layer portion due to the weight difference (specific gravity difference) of the gas flow. The refrigerant collects in the upper layer portion, and the gas refrigerant and the liquid refrigerant are reliably separated into upper and lower two layers.

【0014】しかし、上記冷房運転を開始してから所定
時間が経過するまでは、同図7に示すように、未だ液冷
媒の液面位も低いので、上記フロートパイプ51内のフ
ロート47はフロート室下端まで下降していて、その本
体部により上記フロートパイプ51下端側の開孔50,
50・・・を閉塞している。従って、上記室内熱交換器
(蒸発器)4側第3の冷媒循環管路13には未だ液冷媒が
供給されない。一方、上記フロートパイプ51上端側の
開孔49,49・・・は開放されているので、上記分離
されたガス冷媒は当該開孔49,49・・・を介して上
記ガス冷媒流出口であるバイパス管路18側に流れて行
く。
However, since the liquid level of the liquid refrigerant is still low as shown in FIG. 7 until a predetermined time elapses after the start of the cooling operation, the float 47 in the float pipe 51 is floated. It is descending to the lower end of the chamber, and the main body portion of the float pipe 51 has an opening 50 on the lower end side,
50 ... is blocked. Therefore, the indoor heat exchanger
(Evaporator) Liquid refrigerant is not yet supplied to the third refrigerant circulation line 13 on the fourth side. On the other hand, since the openings 49, 49 ... On the upper end side of the float pipe 51 are open, the separated gas refrigerant is the gas refrigerant outlet through the openings 49, 49. It flows to the bypass line 18 side.

【0015】次に、上記運転の開始から所定の時間が経
過して、例えば図8に示すようになった定常状態では液
冷媒の液面位が同図示のように略気液分離室の中間位置
に達し、フロート47はフロートパイプ51のの上端側
開孔49,49・・・と下端側開孔50,50・・・との
中間に位置するようになっているので、上記気液分離室
内部の液冷媒は下端側開孔50,50・・・を介して室
内熱交換器(蒸発器)側の液冷媒流出口である第3の冷媒
循環管路13側に圧力差に応じて流出して行くようにな
る一方、上部側のガス冷媒は同フロートパイプ51の上
端側開孔49,49・・・を介してフロート室に入り十
分な圧力差により上記ボール48を十分に浮上させるこ
とにより上記バイパス管路18側に効率良く流出して行
く。このようにして、連続的な気液分離が行われ、上述
した多パス式の室内熱交換器(蒸発器)4側では、各パス
に均一な液冷媒の分配が行われて本来の良好な熱交換性
能が発揮される。
Next, after a lapse of a predetermined time from the start of the above operation, in a steady state as shown in FIG. 8, for example, the liquid level of the liquid refrigerant is substantially in the middle of the gas-liquid separation chamber as shown in FIG. Since the float 47 reaches the position, the float 47 is positioned between the upper end side openings 49, 49 ... And the lower end side openings 50, 50 ... Of the float pipe 51. The liquid refrigerant in the indoor space passes through the lower end side openings 50, 50 ... To the third refrigerant circulation pipe line 13 side which is the liquid refrigerant outlet port on the indoor heat exchanger (evaporator) side in accordance with the pressure difference. While flowing out, the upper gas refrigerant enters the float chamber through the upper openings 49, 49 ... Of the float pipe 51 and sufficiently floats the balls 48 due to a sufficient pressure difference. As a result, it efficiently flows out to the bypass pipe line 18 side. In this way, continuous gas-liquid separation is performed, and on the side of the multi-pass type indoor heat exchanger (evaporator) 4 described above, uniform distribution of the liquid refrigerant is performed in each pass, and the original good condition is achieved. Heat exchange performance is demonstrated.

【0016】他方、さらに上記冷房運転停止時などにお
いて、例えば図9に示すように、液面位が上昇しすぎる
と、上記フロート47もフロートパイプ51内のフロー
ト室上端まで上昇して、その本体部が上記フロートパイ
プ51上端側の開孔49,49・・・を閉塞する。この
結果、気液分離室内上層側ガス冷媒のバイパス管路18
側への流出は停止され、気液分離室内の内圧が高くな
り、液冷媒の流出速度が上昇して速やかに液面位が下が
り、やがて再びガス冷媒の流出が始まるようになる。こ
のようにして、本実施例では、負荷変動により冷媒流量
や乾き度が変化したような場合でも、常に液面位の変動
を一定の範囲内に抑制することができ、常に良好な熱交
換性能を維持し得るようになる。
On the other hand, if the liquid level rises too much, for example, when the cooling operation is stopped, as shown in FIG. 9, the float 47 also rises to the upper end of the float chamber in the float pipe 51, and its main body. A part closes the openings 49, 49 ... On the upper end side of the float pipe 51. As a result, the bypass line 18 for the upper-layer gas refrigerant in the gas-liquid separation chamber
The outflow to the side is stopped, the internal pressure in the gas-liquid separation chamber rises, the outflow speed of the liquid refrigerant increases, the liquid level immediately drops, and eventually the outflow of the gas refrigerant starts again. In this way, in the present embodiment, even when the refrigerant flow rate and the dryness are changed by the load change, it is possible to always suppress the fluctuation of the liquid level within a certain range, and always obtain a good heat exchange performance. Will be able to maintain.

【0017】(2) 請求項2記載の発明の気液分離器の
作用 すなわち、請求項2記載の発明の気液分離器では、その
基本構成に基く上記請求項1記載の発明と同様の作用に
加えて、上記ガス冷媒流出口18部にガス冷媒の流出を
許容する一方、同ガス冷媒の流入を禁止する所定の重量
の球体弁48を設けていることから、例えば図10に示
すように暖房運転に切替えられた時には、液冷媒が逆方
に流れる一方、ガス冷媒流出口である上記バイパス管路
18側のガス冷媒が上記フロートパイプ51側に流入し
ようとするが、本実施例では上述のように上記ガス冷媒
流出口であるバイパス管路18の基端部に逆止弁機能を
果たす球体弁(ボール)48が設けられているために、該
場合には例えば同図に示すように該球体弁(ボール)48
が当該バイパス管路18の基端部を閉塞し、液冷媒だけ
がスムーズに液冷媒流出口である第3の冷媒循環管路1
3から第4の冷媒循環管路14側に流れるようになる。
(2) Operation of the gas-liquid separator of the invention described in claim 2, that is, the gas-liquid separator of the invention described in claim 2 has the same operation as that of the invention described in claim 1 based on its basic structure. In addition to the above, since the gas refrigerant outlet port 18 is provided with a spherical valve 48 having a predetermined weight that allows the gas refrigerant to flow out but prohibits the gas refrigerant from flowing in, as shown in FIG. 10, for example. When the heating operation is switched to, the liquid refrigerant flows in the opposite direction, while the gas refrigerant on the side of the bypass conduit 18 which is the gas refrigerant outlet tries to flow into the float pipe 51 side. As described above, since the spherical valve (ball) 48 that fulfills the check valve function is provided at the base end portion of the bypass pipeline 18 that is the gas refrigerant outlet port, in that case, for example, as shown in FIG. The spherical valve (ball) 48
Closes the proximal end portion of the bypass pipeline 18, and only the liquid coolant smoothly serves as the third refrigerant circulation pipeline 1 which is the liquid coolant outlet.
It flows from 3 to the 4th refrigerant circulation pipeline 14 side.

【0018】[0018]

【発明の効果】従って、本願発明によると、コンパクト
な構成でありながら2相冷媒の気液分離を効率的、且つ
安定的に行うことができるようになるとともに、低圧力
損失条件下においても暖房時など的確な逆止弁作用が得
られるようになり、ヒートポンプ式冷凍サイクルにも十
分に適用可能な気液分離器を提供することができる。
Therefore, according to the present invention, the gas-liquid separation of the two-phase refrigerant can be efficiently and stably carried out in spite of the compact structure, and the heating is performed even under the condition of low pressure loss. An appropriate check valve action can be obtained at any time, and a gas-liquid separator that can be sufficiently applied to a heat pump type refrigeration cycle can be provided.

【0019】[0019]

【実施例】(基本となる冷凍システム) 先ず、図12には、後述する本願発明の各実施例に係る
気液分離器が適用されるヒートポンプ式空気調和装置の
冷凍システムの一例が示されている。
Embodiment (Basic Refrigeration System) First, FIG. 12 shows an example of a refrigeration system for a heat pump type air conditioner to which a gas-liquid separator according to each embodiment of the present invention described later is applied. There is.

【0020】この空気調和装置は、圧縮機1と四路切換
弁2と後述の室内熱交換器4と本願発明の要部である気
液分離器20と膨張弁5と室外熱交換器6とアキューム
レータ7とを順次第1〜第7の冷媒循環管路11〜17
で各々接続して全体としての冷媒循環系を構成し、上記
四路切換弁2の切換操作によって暖房運転(この場合の
冷媒の流れを実線矢印で示す)と冷房運転(この場合の冷
媒の流れを破線矢印で示す)とを任意に選択するように
なっている。
This air conditioner includes a compressor 1, a four-way switching valve 2, an indoor heat exchanger 4 which will be described later, a gas-liquid separator 20 which is a main part of the present invention, an expansion valve 5, and an outdoor heat exchanger 6. The accumulator 7 and the first to seventh refrigerant circulation pipelines 11 to 17 are sequentially arranged.
To form a refrigerant circulation system as a whole, and a heating operation (the refrigerant flow in this case is shown by a solid arrow) and a cooling operation (the refrigerant flow in this case) are performed by the switching operation of the four-way switching valve 2. Is indicated by a dashed arrow) and are arbitrarily selected.

【0021】上記室内熱交換器4は、例えば上述した多
パス式の熱交換器で構成され、冷房運転時において冷媒
の入口となる側には分配器8を、暖房運転時に冷媒入口
となる側にヘッダー9をそれぞれ備えている。
The indoor heat exchanger 4 is constituted by, for example, the above-mentioned multi-pass heat exchanger, and the distributor 8 is provided on the side which becomes the refrigerant inlet during the cooling operation and the side which becomes the refrigerant inlet during the heating operation. And a header 9 respectively.

【0022】上記気液分離器20は、その内室の上部を
気相部、底部を液相部とした円筒状の密閉容器よりなる
気液分離器筺体に、その他端が上記室内熱交換器4の分
配器8に接続された第3の冷媒循環管路13の一端と、
その他端が上記膨張弁5を介して上記室外熱交換器6に
接続された第4の冷媒循環管路14の一端と、その他端
が上記室内熱交換器4のヘッダー9と四路切換弁2とを
接続する第2の冷媒循環管路12の途中に接続されたバ
イパス管路18の一端をそれぞれ取り付けている。
The gas-liquid separator 20 is a gas-liquid separator housing consisting of a cylindrical closed container having an upper part of the inner chamber as a gas phase part and a bottom part as a liquid phase part, and the other end thereof is the indoor heat exchanger. 4, one end of the third refrigerant circulation line 13 connected to the distributor 8;
The other end has one end of the fourth refrigerant circulation pipe 14 connected to the outdoor heat exchanger 6 via the expansion valve 5, and the other end has the header 9 of the indoor heat exchanger 4 and the four-way switching valve 2 One ends of the bypass pipelines 18 connected to the middle of the second refrigerant circulation pipeline 12 that connects the and are respectively attached.

【0023】そして、これらの各管路13,14,18の
うち、上記第3の冷媒循環管路13の一端は上記液相部
の底部に開口している。また、上記第4の循環管路14
の一端は、上記気液分離器筺体内の上方部位置において
側方に向けて開口せしめられている。
Of these conduits 13, 14 and 18, one end of the third refrigerant circulation conduit 13 is open at the bottom of the liquid phase portion. In addition, the fourth circulation line 14
One end of is opened laterally at an upper position inside the gas-liquid separator housing.

【0024】さらに、上記バイパス管路18は、上方か
ら筺体内下方に向けて取り付けられている。
Further, the bypass conduit 18 is attached from the upper side toward the lower side of the housing.

【0025】次に、このように構成された上記空気調和
装置全体の作動を説明する。 A:冷房運転時 冷房運転時には、上記室内熱交換器4は蒸発器として、
また室外熱交換器6は凝縮器として、それぞれ機能し、
冷媒は図12に破線矢印で示す方向に循環する。即ち、
圧縮機1から吐出される高温高圧のガス冷媒Fgは、第
1の冷媒循環管路11及び第5の冷媒循環管路15を介
して室外熱交換器6に流入し、該室外熱交換器6におい
て凝縮されて液冷媒Flとなる。そして、この液冷媒Fl
は、膨張弁5において減圧され、気液二相冷媒Fglとな
って第4の冷媒循環管路14から上記気液分離器20内
に流入する。
Next, the operation of the above-described air conditioner as a whole will be described. A: During cooling operation During the cooling operation, the indoor heat exchanger 4 serves as an evaporator.
The outdoor heat exchanger 6 also functions as a condenser,
The refrigerant circulates in the direction indicated by the dashed arrow in FIG. That is,
The high-temperature high-pressure gas refrigerant Fg discharged from the compressor 1 flows into the outdoor heat exchanger 6 via the first refrigerant circulation conduit 11 and the fifth refrigerant circulation conduit 15, and the outdoor heat exchanger 6 Is condensed into liquid refrigerant Fl. And this liquid refrigerant Fl
Is decompressed in the expansion valve 5, becomes a gas-liquid two-phase refrigerant Fgl, and flows into the gas-liquid separator 20 from the fourth refrigerant circulation line 14.

【0026】気液分離器20においては、図2に示すよ
うに、気液二相冷媒Fglが第4の冷媒循環管路14の導
入開口から側方へ向けて流入する。
In the gas-liquid separator 20, as shown in FIG. 2, the gas-liquid two-phase refrigerant Fgl flows laterally from the introduction opening of the fourth refrigerant circulation conduit 14.

【0027】そして、該気液二相冷媒Fglは、その導入
時の流路面積の急拡大に伴う流速の低下によりスムーズ
に気液分離される。そして、分離された液冷媒は底部の
液相部に溜り、ここから循環管路13を介して上記室内
熱交換器4の分配器8側に流出せしめられる。これに対
して、分離されたガス冷媒Fgは、バイパス管路18を
介して上記室内熱交換器4をバイパスしてその下流側に
流出される。
The gas-liquid two-phase refrigerant Fgl is smoothly gas-liquid separated due to a decrease in the flow velocity due to the rapid expansion of the flow passage area at the time of introduction. Then, the separated liquid refrigerant accumulates in the liquid phase portion at the bottom and is made to flow from there to the distributor 8 side of the indoor heat exchanger 4 via the circulation pipe line 13. On the other hand, the separated gas refrigerant Fg bypasses the indoor heat exchanger 4 via the bypass pipe 18 and flows out to the downstream side thereof.

【0028】従って、室内熱交換器4においては、分配
器8に液冷媒Flのみが単相状態で導入されることか
ら、例えば、冷媒が気液二相状態で導入される場合に比
して、各パスへの冷媒の均一分配が実現され、この結
果、該室内熱交換器4においては、熱交換にほとんど貢
献しないガス冷媒Fgが流れず、室内熱交換器4におけ
る冷媒の圧力損失も小さいことも手伝って、より高い熱
交換性能が確保される。
Therefore, in the indoor heat exchanger 4, since only the liquid refrigerant Fl is introduced into the distributor 8 in the single-phase state, for example, compared with the case where the refrigerant is introduced in the gas-liquid two-phase state. The uniform distribution of the refrigerant to each path is realized, and as a result, in the indoor heat exchanger 4, the gas refrigerant Fg that hardly contributes to heat exchange does not flow, and the pressure loss of the refrigerant in the indoor heat exchanger 4 is also small. This helps to ensure higher heat exchange performance.

【0029】即ち、このようなヒートポンプシステムに
おいては、気液分離器20を配置することにより、冷房
運転時においては高水準の気液分離作用と室内熱交換器
4の各パスへの冷媒の均一分配とが同時に実現されるこ
とになる。
That is, in such a heat pump system, by arranging the gas-liquid separator 20, a high-level gas-liquid separation action and uniform refrigerant to each path of the indoor heat exchanger 4 during cooling operation. Distribution will be realized at the same time.

【0030】B:暖房運転時 一方、暖房運転時には、上記室内熱交換器4が凝縮器と
して、また室外熱交換器6が蒸発器として、それぞれ機
能する。従って、上記室内熱交換器4には第4の冷媒循
環管路12からガス冷媒Fgが導入されることになる。
この場合、上記バイパス管路18が開放状態にあるとガ
ス冷媒Fgが抵抗の少ないバイパス管路18を流れ、室
内熱交換器4側にはほとんど流れず、熱交換作用がほと
んど行なわれないことになる。ところが、本願発明の実
施例のものにおいては、後述するように、かかる場合に
は、循環管路13から気液分離器20内に流入し第4の
冷媒循環管路14から流出する液冷媒Flの流動圧によ
り所定の構造の逆止弁が下動して閉弁する。従って、バ
イパス管路18に導入されるガス冷媒Fgの圧力にかか
わらず上記バイパス管路18は閉塞せしめられる。従っ
て、圧縮機1から送られるガス冷媒Fgはその全量が室
内熱交換器4を流れ、良好な熱交換作用が実現され、高
性能の暖房運転が可能となるようになっている。
B: During heating operation On the other hand, during heating operation, the indoor heat exchanger 4 functions as a condenser, and the outdoor heat exchanger 6 functions as an evaporator. Therefore, the gas refrigerant Fg is introduced into the indoor heat exchanger 4 from the fourth refrigerant circulation line 12.
In this case, when the bypass pipe line 18 is in the open state, the gas refrigerant Fg flows through the bypass pipe line 18 having a low resistance, hardly flows to the indoor heat exchanger 4 side, and the heat exchange action is hardly performed. Become. However, in the case of the embodiment of the present invention, as will be described later, in such a case, the liquid refrigerant Fl that flows into the gas-liquid separator 20 from the circulation pipeline 13 and flows out from the fourth refrigerant circulation pipeline 14 in this case. The check valve having a predetermined structure moves downward due to the fluid pressure of (3) and closes. Therefore, the bypass pipeline 18 is blocked regardless of the pressure of the gas refrigerant Fg introduced into the bypass pipeline 18. Therefore, the entire amount of the gas refrigerant Fg sent from the compressor 1 flows through the indoor heat exchanger 4, a good heat exchange action is realized, and high-performance heating operation is enabled.

【0031】(1) 第1実施例 先にも述べたように、多パス分配が必要となる室内熱交
換器(蒸発器)の冷媒入口に気液分離器を設けてガス冷媒
と液冷媒とを確実に分離し、熱交換寄与度の小さいガス
冷媒は同室内熱交換器(蒸発器)をバイパスさせる一方、
熱交換寄与度の高い液冷媒を単相で各パスに分配するよ
うにすると、圧損が低くなるという多パス方式の利点に
加えて、各パスへの均一分配が可能となり、単純なヘッ
ダー構造でも足りるようになる。
(1) First Embodiment As described above, a gas-liquid separator is provided at the refrigerant inlet of an indoor heat exchanger (evaporator) which requires multi-pass distribution, and a gas refrigerant and a liquid refrigerant are provided. The gas refrigerant with a small heat exchange contribution bypasses the indoor heat exchanger (evaporator),
Distributing liquid refrigerant with high heat exchange contribution to each path in a single phase has the advantage of the multi-pass method that pressure loss is low, and even distribution to each path is possible, even with a simple header structure. It will be enough.

【0032】従って、該構成では、上記気液分離器で可
能な限り確実にガス冷媒と液冷媒とを分離することが必
要となる。
Therefore, in this structure, it is necessary to separate the gas refrigerant and the liquid refrigerant as reliably as possible by the gas-liquid separator.

【0033】ところが、従来の気液分離器の構造は、例
えば図13に示すように、圧縮機の容量やチャージ量に
応じた大きさの気液分離室を有する筺体61の上部にガ
ス冷媒の取出口(圧縮機吸込口)62を、また同底部に液
冷媒の取出口63を各々設け、蒸発器からの2相冷媒導
入口64を上部側壁側から導入し、ガス冷媒と液冷媒と
を上下方向に分離するようになっているだけであった。
However, in the structure of the conventional gas-liquid separator, for example, as shown in FIG. 13, a gas refrigerant is provided above the housing 61 having a gas-liquid separation chamber having a size corresponding to the capacity and charge amount of the compressor. An outlet (compressor suction port) 62 is provided, and a liquid refrigerant outlet port 63 is provided at the bottom thereof, and a two-phase refrigerant inlet port 64 from the evaporator is introduced from the upper side wall side to separate the gas refrigerant and the liquid refrigerant. It was only designed to separate vertically.

【0034】その結果、例えば図14に示すように気液
分離室内の液面位が高くなりすぎると、ガス冷媒の取出
口62側に液冷媒が混入し、また図15に示すように同
液面位が低くなりすぎると、液冷媒取出口63側にガス
冷媒が混入してしまう不具合を生じ、確実な気液分離性
能を発揮し得ない欠点があった。
As a result, for example, when the liquid level in the gas-liquid separation chamber becomes too high as shown in FIG. 14, the liquid refrigerant mixes into the gas refrigerant outlet port 62 side, and as shown in FIG. If the surface position becomes too low, there is a problem that gas refrigerant mixes into the liquid refrigerant outlet port 63 side, and there is a drawback that reliable gas-liquid separation performance cannot be exhibited.

【0035】本実施例は、このような問題を解決するた
めに提案されたもので、例えば図1〜図5に示すように
ガス冷媒取出口および液冷媒取出口の各々にフロート弁
を設けて構成されている。
This embodiment has been proposed to solve such a problem. For example, as shown in FIGS. 1 to 5, a float valve is provided at each of the gas refrigerant outlet and the liquid refrigerant outlet. It is configured.

【0036】すなわち、先ず図1において、符号21は
内部に所定の広さの気液分離室を形成した気液分離器筺
体であり、該筺体21の上部には上述したガス冷媒をバ
イパスさせるためのバイパス管路18の基端部が、また
下部には液冷媒を上述した室内熱交換器4の分配器8に
供給するための第3の冷媒循環管路13が、さらに側部
上方には気液2相冷媒を導入する第4の冷媒循環管路1
4の先端部が各々接続されている。
That is, first, in FIG. 1, reference numeral 21 is a gas-liquid separator housing in which a gas-liquid separation chamber of a predetermined size is formed, and the above-mentioned gas refrigerant is bypassed in the upper part of the housing 21. Of the bypass pipe line 18 of the above, and the third refrigerant circulation pipe line 13 for supplying the liquid refrigerant to the distributor 8 of the indoor heat exchanger 4 described above at the lower part, and further on the upper side part thereof. Fourth refrigerant circulation line 1 for introducing a gas-liquid two-phase refrigerant
4 are connected to each other.

【0037】そして、第4の冷媒循環管路14からは、
冷房運転時において上記膨張弁5を介した気液2相状態
の冷媒流が旋回方向に向けて導入され、その重量差を利
用してガス冷媒と液冷媒とが図示のように上下2層に分
離される。
From the fourth refrigerant circulation line 14,
During the cooling operation, the refrigerant flow in the gas-liquid two-phase state is introduced through the expansion valve 5 in the swirling direction, and the difference in weight is used to separate the gas refrigerant and the liquid refrigerant into upper and lower two layers as shown in the figure. To be separated.

【0038】また、ガス冷媒をバイパスさせるための上
記図12のバイパス管路18の基端部と上記室内熱交換
器4の分配器8に液冷媒を供給するための第3の冷媒循
環管路13の基端部は、各々所定長さ気液分離室内に突
出されており、該突出部18a,13a内には球形のフロ
ート29,26に対し連結ロッド30,27を介して連結
された弁体31,27が摺動自在に遊嵌された構造とな
っており、その側壁部には気液分離室側への開孔32,
25が形成されている。そして、上記バイパス管路18
基端部および第3の冷媒循環管路13の基端部内の各弁
体収納室と気液分離室とが上記開孔32,25を介して
フロート位置、換言すると、液冷媒の液面位置に応じた
弁体31,27の位置に応じて連通せしめられるように
なっている。
Further, a third refrigerant circulation conduit for supplying the liquid refrigerant to the base end of the bypass conduit 18 of FIG. 12 for bypassing the gas refrigerant and the distributor 8 of the indoor heat exchanger 4. The base ends of 13 are each projected into the gas-liquid separation chamber of a predetermined length, and the valve connected to the spherical floats 29 and 26 through the connecting rods 30 and 27 in the projections 18a and 13a. The structure is such that the bodies 31 and 27 are slidably loosely fitted, and the side walls thereof have openings 32, which open to the gas-liquid separation chamber side.
25 are formed. Then, the bypass line 18
The valve body storage chamber and the gas-liquid separation chamber in the base end portion and the base end portion of the third refrigerant circulation conduit 13 are floated through the openings 32 and 25, in other words, the liquid surface position of the liquid refrigerant. The valve bodies 31 and 27 can be communicated with each other depending on the positions of the valve bodies 31 and 27.

【0039】したがって、今例えば上記10のヒートポ
ンプサイクルの冷房運転が開始されたすると、先ず図2
に示すように上記第4の冷媒循環管路14を介して図示
のように気液2相状態の冷媒流が順次導入されるように
なり、その重量差(比重差)により液冷媒が下層部に溜っ
て行く一方、ガス冷媒が上層部に留るようになり、ガス
冷媒と液冷媒は上下2層に確実に分離される。
Therefore, when the cooling operation of the above 10 heat pump cycles is started, for example, first, as shown in FIG.
As shown in FIG. 5, the refrigerant flow in the gas-liquid two-phase state is sequentially introduced through the fourth refrigerant circulation pipe 14 as shown in the figure, and the liquid refrigerant is lower in the lower layer portion due to its weight difference (specific gravity difference). Meanwhile, the gas refrigerant stays in the upper layer portion, and the gas refrigerant and the liquid refrigerant are reliably separated into upper and lower two layers.

【0040】しかし、上記冷房運転を開始してから所定
時間が経過するまでは、同図2に示すように、未だ液冷
媒の液面位も低いので、上記上下各フロート29,26
および弁体31,27は最下端位置まで下降していて、
先ず上方側フロート29の弁体は上記開孔部32を開放
している一方、下方側フロート26は、弁体27により
上記第3の冷媒循環管路13側の開孔25を閉塞してい
る。従って、上記室内熱交換器(蒸発器)4側第3の冷媒
循環管路13には未だ液冷媒が供給されない。しかし、
上記のようにバイパス管路18側の開孔部32は開放さ
れているので、上記分離されたガス冷媒は当該開孔32
を介して上記バイパス管路18側に流れて行く。
However, as shown in FIG. 2, the liquid level of the liquid refrigerant is still low from the start of the cooling operation until a predetermined time elapses.
And the valve bodies 31 and 27 are lowered to the lowest position,
First, the valve body of the upper side float 29 opens the opening 32, while the lower side float 26 closes the opening 25 on the side of the third refrigerant circulation pipeline 13 by the valve body 27. . Therefore, the liquid refrigerant is not yet supplied to the third refrigerant circulation conduit 13 on the indoor heat exchanger (evaporator) 4 side. But,
As described above, since the opening portion 32 on the side of the bypass pipe line 18 is open, the separated gas refrigerant is stored in the opening 32.
Through the bypass pipe line 18 side.

【0041】次に、上記運転の開始から所定の時間が経
過して、例えば図3に示すようになった定常状態では液
冷媒の液面位が同図示のように略気液分離室の中間位置
に達し、下方側フロート26は最上端に位置するように
なるので、上記気液分離室内の低部の液冷媒は第3の冷
媒循環管路13の開孔25を介して同室内熱交換器(蒸
発器)側第3の冷媒循環管路13側に圧力差に応じて流
出して行くようになる一方、上部側のガス冷媒はバイパ
ス管路18側開孔32を介して十分な圧力差により上記
バイパス管路18側に効率良く流出して行く。このよう
にして、連続的な気液分離が行われ、上述した多パス式
の室内熱交換器(蒸発器)4側では、各パスに均一な液冷
媒の分配が行われて本来の良好な熱交換性能が発揮され
る。
Next, after a lapse of a predetermined time from the start of the above operation, in a steady state as shown in FIG. 3, for example, the liquid level of the liquid refrigerant is substantially in the middle of the gas-liquid separation chamber as shown in FIG. Since the lower float 26 reaches the position and the lower side float 26 comes to be located at the uppermost end, the liquid refrigerant in the lower part of the gas-liquid separation chamber is heat-exchanged through the opening 25 of the third refrigerant circulation pipeline 13 in the same room. On the other hand, the gas refrigerant on the upper side (the evaporator side) flows out to the third refrigerant circulation line 13 side in accordance with the pressure difference, while the upper side gas refrigerant flows through the opening 32 on the bypass line 18 side to a sufficient pressure. Due to the difference, it efficiently flows out to the bypass pipe 18 side. In this way, continuous gas-liquid separation is performed, and on the side of the multi-pass type indoor heat exchanger (evaporator) 4 described above, uniform distribution of the liquid refrigerant is performed in each pass, and the original good condition is achieved. Heat exchange performance is demonstrated.

【0042】他方、さらに上記冷房運転中の負荷変動や
システム自体の圧力変化などによって、例えば図4に示
すように、液面位が上昇しすぎると、上記上方側フロー
ト29もフロート作動範囲の最上端位置まで上昇して、
その弁体31部が上記バイパス管路18側の開孔32を
閉塞する。この結果、気液分離室内上層側ガス冷媒のバ
イパス管路18側への流出は停止され、気液分離室内の
内圧が高くなり、液冷媒の流出速度が上昇して速やかに
液面位が下がり、やがて再びガス冷媒の流出が始まるよ
うになる。このようにして、本実施例では、負荷変動に
より冷媒流量や乾き度が変化したような場合でも、常に
液面位の変動を一定の範囲内に抑制することができ、常
に良好な熱交換性能を維持し得るようになる。
On the other hand, if the liquid level rises too much as shown in FIG. 4 due to load fluctuations during the cooling operation or pressure changes in the system itself, the upper float 29 will also reach the maximum operating range of the float. Ascend to the top position,
The valve body 31 part closes the opening 32 on the side of the bypass conduit 18. As a result, the outflow of the upper-layer gas refrigerant in the gas-liquid separation chamber to the bypass pipe line 18 side is stopped, the internal pressure in the gas-liquid separation chamber increases, the outflow rate of the liquid refrigerant increases, and the liquid level rapidly decreases. Then, the outflow of the gas refrigerant will start again. In this way, in the present embodiment, even when the refrigerant flow rate and the dryness are changed by the load change, it is possible to always suppress the fluctuation of the liquid level within a certain range, and always obtain a good heat exchange performance. Will be able to maintain.

【0043】また、一方暖房運転に切替えられた時に
は、液冷媒が逆方向に流れる一方、上記バイパス管路1
8側のガス冷媒が上記気液分離室側に流入しようとする
が、本実施例では該状態では上述のように上方側フロー
ト29が上昇位置にありバイパス管路18の基端部位置
で逆止弁機能を果たすために、該場合には例えば図5に
示すように、その弁体31が当該バイパス管路18の基
端部開孔32を閉塞し、液冷媒だけがスムーズに第3の
冷媒循環管路13から第4の冷媒循環管路14側に流れ
るようになる。
When the operation mode is switched to the one-side heating operation, the liquid refrigerant flows in the opposite direction, while the bypass line 1
Although the gas refrigerant on the 8th side tries to flow into the gas-liquid separation chamber side, in this embodiment, in this state, the upper float 29 is in the raised position and reverses at the base end position of the bypass conduit 18 as described above. In order to perform the valve stop function, in this case, for example, as shown in FIG. 5, the valve body 31 closes the base end opening 32 of the bypass pipeline 18, and only the liquid refrigerant smoothly flows into the third opening. The refrigerant flows from the refrigerant circulation pipeline 13 to the fourth refrigerant circulation pipeline 14 side.

【0044】(2) 第2実施例 次に、図6〜図11は、本願発明の第2実施例に係る気
液分離器の構成および作用を示している。
(2) Second Embodiment Next, FIGS. 6 to 11 show the construction and operation of a gas-liquid separator according to a second embodiment of the present invention.

【0045】本実施例の気液分離器は、上記図12の多
パス型の室内熱交換器4を備えたヒートポンプサイクル
に適するように、冷房運転時の液面制御機能および暖房
運転時のガス冷媒逆流防止機能を備えて構成されてい
る。
The gas-liquid separator of this embodiment is suitable for a heat pump cycle equipped with the multi-pass type indoor heat exchanger 4 shown in FIG. 12, so that the liquid level control function during the cooling operation and the gas during the heating operation are performed. It is configured to have a refrigerant backflow prevention function.

【0046】先ず図6は、同気液分離器20の構造を示
すもので、41は上下方向に延びて上記ヒートポンプサ
イクルの循環管路14上に配設された円筒体状の気液分
離器筺体であり、該気液分離器筺体41内の上下に所定
の長さを有する気液分離室内には、その側壁上方部に位
置して上記図12の第4の冷媒循環管路14の先端部が
連結開口せしめられている一方、上下垂直方向に液面制
御部40を形成するフロートパイプ51が貫通せしめら
れている。
First, FIG. 6 shows the structure of the gas-liquid separator 20. The gas-liquid separator 41 extends vertically and is arranged on the circulation line 14 of the heat pump cycle. In the gas-liquid separation chamber which is a casing and has a predetermined length in the vertical direction inside the gas-liquid separator casing 41, the tip of the fourth refrigerant circulation conduit 14 of FIG. While the parts are connected and opened, a float pipe 51 forming the liquid level control part 40 is penetrated in the vertical direction in the vertical direction.

【0047】そして、上記第4の冷媒循環管路14から
は、冷房運転時において上記膨張弁5を介した気液2相
状態の冷媒流が旋回方向に向けて導入され、その重量差
を利用してガス冷媒と液冷媒とが図示のように上下2層
に分離される。
From the fourth refrigerant circulation line 14, the refrigerant flow in the gas-liquid two-phase state is introduced in the swirling direction through the expansion valve 5 during the cooling operation, and the weight difference is utilized. Then, the gas refrigerant and the liquid refrigerant are separated into upper and lower two layers as shown.

【0048】また、上記フロートパイプ51は、ガス冷
媒をバイパスさせるための上記図12のバイパス管路1
8の基端部と上記室内熱交換器4の分配器8に液冷媒を
供給するための第3の冷媒循環管路13の基端部とを相
互に連通一体化させる構造となっており、その上下両端
部は細径部46a,46bに形成されている。そして、そ
の内部には、上下両端部が円錐形状の弁体部47b,47
aとなった所定長さの円柱体形状のフロート47が上記
気液分離室内の液冷媒の液面位の変化に応じて上下移動
自在に嵌挿されている。さらに該フロートパイプ51の
上下両端部には、各々複数の開孔49,49・・および
50,50・・が形成されており、同フロートパイプ5
1内のフロート室とフロートパイプ51外の気液分離室
とがフロート位置、換言すると、液冷媒の液面位置に応
じて連通せしめられるようになっている。
Further, the float pipe 51 is the bypass line 1 of FIG. 12 for bypassing the gas refrigerant.
The base end of 8 and the base end of the third refrigerant circulation conduit 13 for supplying the liquid refrigerant to the distributor 8 of the indoor heat exchanger 4 are structured to communicate with each other and to be integrated. Both upper and lower ends thereof are formed into small diameter portions 46a and 46b. Then, inside the valve body parts 47b, 47, the upper and lower ends of which are conical.
A cylindrical float 47 having a predetermined length, which is a, is inserted so as to be vertically movable according to the change in the liquid level of the liquid refrigerant in the gas-liquid separation chamber. Further, a plurality of openings 49, 49 ... And 50, 50 ... Are formed in the upper and lower ends of the float pipe 51, respectively.
The float chamber in 1 and the gas-liquid separation chamber outside the float pipe 51 are made to communicate with each other in accordance with the float position, in other words, the liquid surface position of the liquid refrigerant.

【0049】他方、上記フロートパイプ51の上記上端
側細径部46a上端側のバイパス管路18基端部内には
逆止弁を形成する球体弁てあるボール48が遊嵌されて
おり、該ボール48は所定位置上方側の上昇位置規制用
凸部45によって上昇位置が規制されている。該ボール
48の比重は、上記ガス冷媒の比重よりも若干重い比重
に設定されている。また、上記フロート47の比重は、
ガス冷媒と液冷媒の比重の中間の比重に設定されてい
る。
On the other hand, a ball 48, which is a spherical valve forming a check valve, is loosely fitted in the base end portion of the bypass pipe line 18 on the upper end side of the upper end side small diameter portion 46a of the float pipe 51. The ascending position of 48 is restricted by the ascending position restricting projection 45 on the upper side of the predetermined position. The specific gravity of the balls 48 is set to be slightly heavier than the specific gravity of the gas refrigerant. The specific gravity of the float 47 is
The specific gravity is set to an intermediate value between the specific gravities of the gas refrigerant and the liquid refrigerant.

【0050】したがって、今例えば上記図12のヒート
ポンプサイクルの冷房運転が開始されたすると、先ず図
7に示すように、上記第4の冷媒循環管路14を介して
矢印旋回方向に気液2相状態の冷媒流が順次導入される
ようになり、その重量差(比重差)により液冷媒が下層部
に溜って行く一方、ガス冷媒が上層部に留るようにな
り、ガス冷媒と液冷媒は上下2層に確実に分離される。
Therefore, when the cooling operation of the heat pump cycle shown in FIG. 12 is started, for example, as shown in FIG. 7, first, as shown in FIG. The refrigerant flow in the state is gradually introduced, while the liquid refrigerant accumulates in the lower layer portion due to the weight difference (specific gravity difference), while the gas refrigerant remains in the upper layer portion, the gas refrigerant and the liquid refrigerant are The upper and lower layers are securely separated.

【0051】しかし、上記冷房運転を開始してから所定
時間が経過するまでは、同図7に示すように、未だ液冷
媒の液面位も低いので、上記フロートパイプ51内のフ
ロート47はフロート室下端まで下降していて、その本
体部により上記フロートパイプ51下端側の開孔50,
50・・・を閉塞している。従って、上記室内熱交換器
(蒸発器)4側第3の冷媒循環管路13には未だ液冷媒が
供給されない。一方、上記フロートパイプ51上端側の
開孔部49,49・・・は開放されているので、上記分
離されたガス冷媒は当該開孔49,49・・・を介して
上記バイパス管路18側に流れて行く。
However, as shown in FIG. 7, since the liquid level of the liquid refrigerant is still low until the predetermined time elapses after the start of the cooling operation, the float 47 in the float pipe 51 is floated. It is descending to the lower end of the chamber, and the main body portion of the float pipe 51 has an opening 50 on the lower end side,
50 ... is blocked. Therefore, the indoor heat exchanger
(Evaporator) Liquid refrigerant is not yet supplied to the third refrigerant circulation line 13 on the fourth side. On the other hand, since the openings 49, 49 ... On the upper end side of the float pipe 51 are open, the separated gas refrigerant is passed through the openings 49, 49. Flow to.

【0052】次に、上記運転の開始から所定の時間が経
過して、例えば図8に示すようになった定常状態では液
冷媒の液面位が同図示のように略気液分離室の中間位置
に達し、フロート47はフロートパイプ51のの上端側
開孔49,49・・・と下端側開孔50,50・・・との
中間に位置するようになるので、上記気液分離室内低部
の液冷媒は下端側開孔50,50・・・を介して室内熱
交換器(蒸発器)4側第3の冷媒循環管路13側に圧力差
に応じて流出して行くようになる一方、上部側のガス冷
媒は同フロートパイプ51の上端側開孔49,49・・
・を介してフロート室に入り十分な圧力差により上記ボ
ール48を十分に浮上させることにより上記バイパス管
路18側に効率良く流出して行く。このようにして、連
続的な気液分離が行われ、上述した多パス式の室内熱交
換器(蒸発器)4側では、各パスに均一な液冷媒の分配が
行われて本来の良好な熱交換性能が発揮される。
Next, after a lapse of a predetermined time from the start of the above operation, in a steady state as shown in FIG. 8, the liquid level of the liquid refrigerant is substantially in the middle of the gas-liquid separation chamber as shown in FIG. Since the float 47 reaches the position, the float 47 comes to be located between the upper end openings 49, 49 ... And the lower end openings 50, 50 ... Of the float pipe 51. The liquid refrigerant in the portion comes to flow out to the indoor heat exchanger (evaporator) 4 side to the third refrigerant circulation pipeline 13 side through the lower end side openings 50, 50 ... In accordance with the pressure difference. On the other hand, the gas refrigerant on the upper side is the upper end openings 49, 49 ... Of the float pipe 51.
The ball 48 is sufficiently levitated by a sufficient pressure difference to flow into the float chamber through the, and efficiently flows out to the bypass conduit 18 side. In this way, continuous gas-liquid separation is performed, and on the side of the multi-pass type indoor heat exchanger (evaporator) 4 described above, uniform distribution of the liquid refrigerant is performed in each pass, and the original good condition is achieved. Heat exchange performance is demonstrated.

【0053】他方、さらに負荷変動等により冷媒流量が
増大した冷房運転時などにおいて、例えば図9に示すよ
うに、液面位が上昇しすぎると、上記フロート47もフ
ロートパイプ51内のフロート室上端まで上昇して、そ
の本体部が上記フロートパイプ51上端側の開孔49,
49・・・を閉塞する。この結果、気液分離室内上層側
ガス冷媒のバイパス管路18側への流出は停止され、気
液分離室内の内圧が高くなり、液冷媒の流出速度が上昇
して速やかに液面位が下がり、やがて再びガス冷媒の流
出が始まるようになる。このようにして、本実施例で
は、負荷変動により冷媒流量や乾き度が変化したような
場合でも、常に液面位の変動を一定の範囲内に抑制する
ことができ、常に良好な熱交換性能を維持し得るように
なる。
On the other hand, when the liquid level rises too much, for example, as shown in FIG. 9, during the cooling operation in which the refrigerant flow rate further increases due to load fluctuations and the like, the float 47 also causes the upper end of the float chamber in the float pipe 51 to rise. Up to the opening 49 on the upper end side of the float pipe 51.
Block 49 ... As a result, the outflow of the upper-layer gas refrigerant in the gas-liquid separation chamber to the bypass pipe line 18 side is stopped, the internal pressure in the gas-liquid separation chamber increases, the outflow rate of the liquid refrigerant increases, and the liquid level rapidly decreases. Then, the outflow of the gas refrigerant will start again. In this way, in the present embodiment, even when the refrigerant flow rate and the dryness are changed by the load change, it is possible to always suppress the fluctuation of the liquid level within a certain range, and always obtain a good heat exchange performance. Will be able to maintain.

【0054】また、一方暖房運転に切替えられた時に
は、液冷媒が逆方に流れる一方、上記バイパス管路18
側のガス冷媒が上記フロートパイプ51側に流入しよう
とするが、本実施例ではバイパス管路18の基端部で逆
止弁機能を果たすボール48が設けられているために、
該場合には例えば図10に示すように、球体弁であるボ
ール48が当該バイパス管路18の基端部を閉塞し、液
冷媒だけがスムーズに第3の冷媒循環管路13から第4
の冷媒循環管路14側に流れるようになる。
On the other hand, when the heating operation is switched to the one-way heating mode, the liquid refrigerant flows in the opposite direction, while the bypass pipe line 18 is used.
Although the gas refrigerant on the side tries to flow into the float pipe 51 side, in the present embodiment, since the ball 48 that performs the check valve function is provided at the base end portion of the bypass pipe line 18,
In this case, for example, as shown in FIG. 10, the ball 48, which is a spherical valve, closes the base end portion of the bypass pipe line 18, and only the liquid refrigerant smoothly flows from the third refrigerant circulation line 13 to the fourth line.
The refrigerant will flow to the side of the refrigerant circulation pipeline 14.

【0055】なお、上記液面位は、例えば図10の仮想
線に示すように、2相冷媒の導入口位置よりも高くなる
と、液面が波立って気泡が発生するなど、気液分離性能
が低下するので、少なくとも同液面位は2相冷媒の導入
口部より低く維持されるように設計される。
If the liquid level becomes higher than the position of the inlet of the two-phase refrigerant, as shown by the phantom line in FIG. 10, for example, the liquid level becomes wavy and bubbles are generated. Therefore, at least the liquid level is designed to be kept lower than the inlet of the two-phase refrigerant.

【0056】上記液面位変動は、上記2相冷媒導入口部
の取付け高さとフロートパイプ部およびフロート等の長
さ、気液分離室の容積などを最適な条件関係で設計する
ことにより、可及的に液面変動を小さくすることが可能
であるので、上記構成の気液分離器では相当なコンパク
ト化が可能である。
The fluctuation of the liquid level can be achieved by designing the mounting height of the two-phase refrigerant inlet, the length of the float pipe and the float, the volume of the gas-liquid separation chamber, etc. in an optimum condition relationship. Since it is possible to reduce the liquid level fluctuation as much as possible, the gas-liquid separator having the above configuration can be made considerably compact.

【0057】ところで、上記気液分離室内に導入される
気液2相状態の冷媒は、相当の噴出速度を有している。
By the way, the gas-liquid two-phase state refrigerant introduced into the gas-liquid separation chamber has a considerable ejection speed.

【0058】したがって、例えば上記図6〜図10のよ
うに側方から旋回状に2相冷媒を噴出した場合には、上
述の如く衝撃による飛散度は低いが、一方、その旋回力
のために、液冷媒中に気柱を生じ、液冷媒の出口へガス
冷媒が混入する問題がある。
Therefore, for example, when the two-phase refrigerant is jetted from the side in a swirling manner as shown in FIGS. 6 to 10, the scattering degree due to impact is low as described above, but on the other hand, due to the swirling force. However, there is a problem that an air column is generated in the liquid refrigerant and the gas refrigerant is mixed into the outlet of the liquid refrigerant.

【0059】そこで、該問題に対する対策として、例え
ば図11に示すように液面部に透孔61,61・・を形
成したドーナツ状の渦消し板60を浮設する。
Therefore, as a countermeasure against the problem, for example, as shown in FIG. 11, a donut-shaped swirl-eliminating plate 60 having through holes 61, 61, ... Formed in the liquid surface is floated.

【0060】このようにすると、上記のような気柱は発
生せず、液面が安定して気液分離性能が向上する。
By doing so, the above air column is not generated, the liquid surface is stabilized, and the gas-liquid separation performance is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本願発明の第1実施例に係る気液分離
器の構成を示す断面図である。
FIG. 1 is a sectional view showing a configuration of a gas-liquid separator according to a first embodiment of the present invention.

【図2】図2は、同気液分離器の冷房運転開始時(低液
面時)の作用を説明する断面図である。
FIG. 2 is a cross-sectional view for explaining the operation of the gas-liquid separator when the cooling operation is started (when the liquid level is low).

【図3】図3は、同気液分離器の定常冷房運転時(通常
液面時)の作用を説明する断面図である。
FIG. 3 is a cross-sectional view for explaining the action of the gas-liquid separator during steady cooling operation (normal liquid level).

【図4】図4は、同気液分離器の冷媒流量が増大した冷
房運転時(高液面時)の作用を説明する断面図である。
FIG. 4 is a cross-sectional view illustrating an operation during cooling operation (high liquid level) in which the refrigerant flow rate of the gas-liquid separator is increased.

【図5】図5は、同気液分離器の暖房運転時の作用を説
明する断面図である。
FIG. 5 is a cross-sectional view illustrating an operation of the gas-liquid separator during heating operation.

【図6】図6は、本願発明の第2実施例に係る気液分離
器の構成を示す断面図である。
FIG. 6 is a sectional view showing the structure of a gas-liquid separator according to a second embodiment of the present invention.

【図7】図7は、同気液分離器の冷房運転開始時(低液
面時)の作用を示す断面図である。
FIG. 7 is a cross-sectional view showing the action of the gas-liquid separator at the start of cooling operation (at low liquid level).

【図8】図8は、同気液分離器の定常冷房運転時(通常
液面時)の作用を示す断面図である。
FIG. 8 is a cross-sectional view showing the operation of the gas-liquid separator during steady cooling operation (normal liquid level).

【図9】図9は、同気液分離器の冷媒流量が増大した冷
房運転時(高液面時)の作用を示す断面図である。
FIG. 9 is a cross-sectional view showing the action during cooling operation (high liquid level) in which the refrigerant flow rate of the gas-liquid separator is increased.

【図10】図10は、同気液分離器の暖房運転時の作用
を説明する断面図である。
FIG. 10 is a cross-sectional view illustrating an operation of the gas-liquid separator during heating operation.

【図11】図11は、同気液分離器に渦消し板を組合せ
た場合の液面安定化作用を説明する断面図である。
FIG. 11 is a cross-sectional view for explaining the liquid level stabilizing action in the case where the vortex shedding plate is combined with the gas-liquid separator.

【図12】図12は、気液分離器を備えた多パス式ヒー
トポンプ空気調和装置の基本冷凍サイクル図である。
FIG. 12 is a basic refrigeration cycle diagram of a multi-pass heat pump air conditioner including a gas-liquid separator.

【図13】図13は、従来の気液分離器の構成を示す断
面図である。
FIG. 13 is a cross-sectional view showing a configuration of a conventional gas-liquid separator.

【図14】図14は、同従来の気液分離器の高液面時の
問題となる作用を示す断面図である。
FIG. 14 is a cross-sectional view showing the problematic operation of the conventional gas-liquid separator when the liquid level is high.

【図15】図15は、同従来の気液分離器の低液面時の
問題となる作用を示す説明図である。
FIG. 15 is an explanatory view showing a problematic action when the liquid level of the conventional gas-liquid separator is low.

【符号の説明】[Explanation of symbols]

13は第3の冷媒循環管路、14は第4の冷媒循環管
路、18はバイパス管路、20は気液分離器、21は気
液分離器筺体、25は開孔、26は下方側フロート、2
7は下方側弁体、29は上方側フロート、31は上方側
弁体、32は開孔、40は液面制御部、41は気液分離
器筺体、46aは上端側細径部、46bは下端側細径部、
47はフロート、48はボール、49,50は開孔、5
1はフロートパイプである。
Reference numeral 13 is a third refrigerant circulation pipeline, 14 is a fourth refrigerant circulation pipeline, 18 is a bypass pipeline, 20 is a gas-liquid separator, 21 is a gas-liquid separator housing, 25 is an opening, and 26 is a lower side. Float 2
7 is a lower valve body, 29 is an upper float body, 31 is an upper valve body, 32 is an opening, 40 is a liquid level control part, 41 is a gas-liquid separator housing, 46a is an upper end side small diameter part, 46b is Small diameter part at the lower end,
47 is a float, 48 is a ball, 49 and 50 are holes, 5
1 is a float pipe.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 蛭子 毅 大阪府堺市金岡町1304番地 ダイキン工 業株式会社堺製作所 金岡工場内 (56)参考文献 特開 平3−91663(JP,A) 特開 昭61−191836(JP,A) 特開 平2−169970(JP,A) 特開 昭61−153358(JP,A) 特開 昭57−174669(JP,A) 特開 昭60−222677(JP,A) 実開 昭58−169454(JP,U) 実開 昭56−10262(JP,U) 実開 昭60−77982(JP,U) (58)調査した分野(Int.Cl.7,DB名) F25B 43/00 F25B 1/00 101 F25B 13/00 F25B 39/00 F25B 39/02 F25B 39/04 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor, Takeshi Ebisu, No. 1304, Kanaoka-cho, Sakai City, Osaka Prefecture Daikin Industrial Co., Ltd., Kanaoka Plant, Sakai Manufacturing Co., Ltd. (56) Reference JP-A-3-91663 (JP, A) JP 61-191836 (JP, A) JP 2-169970 (JP, A) JP 61-153358 (JP, A) JP 57-174669 (JP, A) JP 60-222677 (JP , A) Actual development Sho 58-169454 (JP, U) Actual development Sho 56-10262 (JP, U) Actual development Sho 60-77982 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB) (Name) F25B 43/00 F25B 1/00 101 F25B 13/00 F25B 39/00 F25B 39/02 F25B 39/04

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 2相冷媒導入口と、該2相冷媒導入口を
介して気液2相冷媒が壁面方向に導入される気液分離室
と、該気液分離室の上部に設けられたガス冷媒流出口
と、上記気液分離室の底部に設けられた液冷媒流出口と
を備えてなる気液分離器において、上記ガス冷媒流出口
と液冷媒流出口とを上記気液分離室内において内側フロ
ート室内にフロートを上下移動自在に収納した中空のフ
ロートパイプで一体に連結するとともに該フロートパイ
プの上下両端部に当該フロートパイプ内のフロート室と
上記気液分離室とを相互に連通させる開孔部を形成し、
上記ガス冷媒流出口を該フロートパイプ上端部側の開口
部を介して上記気液分離室上部に連通せしめる一方、上
記液冷媒流出口を該フロートパイプ下端部側の開口部を
介して上記気液分離室下部に連通せしめ、上記気液分離
室内の液面位の変化に応じて上記フロート室内のフロー
トを上下に移動させ、上記気液分離室内の液面位が第1
の基準液面レベル以下の時は上記液冷媒流出口側の開口
部を閉塞する一方、同気液分離室内の液面位が上記第1
の基準液面レベルを越えた時は上記液冷媒流出口側の開
口部を開放し、また上記気液分離室内の液面位が上記第
1の基準液面レベルよりも高い第2の基準液面レベル以
下の時は上記ガス冷媒流出口側の開口部を開放する一
方、同気液分離室内の液面位が上記第2の基準液面レベ
ルを越えた時は上記ガス冷媒流出口側の開口部を閉塞す
るするようにしたことを特徴とする気液分離器。
1. A two-phase refrigerant introduction port, a gas-liquid separation chamber into which a gas-liquid two-phase refrigerant is introduced in the wall surface direction through the two-phase refrigerant introduction port, and a gas-liquid separation chamber provided above the gas-liquid separation chamber. In a gas-liquid separator comprising a gas refrigerant outlet and a liquid refrigerant outlet provided at the bottom of the gas-liquid separation chamber, the gas refrigerant outlet and the liquid refrigerant outlet in the gas-liquid separation chamber The float is housed in the inner float chamber so as to be movable up and down, and is integrally connected by a hollow float pipe, and the upper and lower ends of the float pipe are opened so that the float chamber in the float pipe and the gas-liquid separation chamber communicate with each other. Forming a hole,
The gas refrigerant outlet is connected to the upper part of the gas-liquid separation chamber through the opening on the upper end side of the float pipe, while the liquid refrigerant outlet is opened through the opening on the lower end side of the float pipe. The float in the float chamber is moved up and down according to the change in the liquid level in the gas-liquid separation chamber so that the liquid level in the gas-liquid separation chamber is the first.
When the liquid level is below the reference liquid level, the opening on the liquid refrigerant outlet side is closed, while the liquid level in the gas-liquid separation chamber is the first level.
When the liquid level exceeds the reference liquid level of No. 2, the opening on the liquid refrigerant outlet side is opened, and the liquid level in the gas-liquid separation chamber is higher than the first reference liquid level. When the liquid level is below the surface level, the opening on the gas refrigerant outlet side is opened, and when the liquid level in the gas-liquid separation chamber exceeds the second reference liquid level, the gas refrigerant outlet side is opened. A gas-liquid separator characterized in that the opening is closed.
【請求項2】 上記ガス冷媒流出口部にガス冷媒の流出
を許容する一方、同ガス冷媒の流入を禁止する所定の重
量の球体弁を設けたことを特徴とする請求項1記載の気
液分離器。
2. The gas-liquid according to claim 1, wherein a spherical valve having a predetermined weight is provided at the gas refrigerant outlet port to permit the outflow of the gas refrigerant while prohibiting the inflow of the gas refrigerant. Separator.
JP25309992A 1992-09-22 1992-09-22 Gas-liquid separator Expired - Fee Related JP3416963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25309992A JP3416963B2 (en) 1992-09-22 1992-09-22 Gas-liquid separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25309992A JP3416963B2 (en) 1992-09-22 1992-09-22 Gas-liquid separator

Publications (2)

Publication Number Publication Date
JPH06109345A JPH06109345A (en) 1994-04-19
JP3416963B2 true JP3416963B2 (en) 2003-06-16

Family

ID=17246479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25309992A Expired - Fee Related JP3416963B2 (en) 1992-09-22 1992-09-22 Gas-liquid separator

Country Status (1)

Country Link
JP (1) JP3416963B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101111731A (en) * 2005-02-02 2008-01-23 开利公司 Liquid-vapor separator for a minichannel heat exchanger
KR100954431B1 (en) * 2007-11-06 2010-04-27 (주)퓨얼셀 파워 Gas-Liquid Separator for Fuel Cell System
KR101450547B1 (en) * 2007-12-26 2014-10-14 엘지전자 주식회사 Air conditioning system
EP2313732A4 (en) * 2008-06-10 2014-03-12 Carrier Corp Integrated flow separator and pump-down volume device for use in a heat exchanger
JP6247278B2 (en) * 2013-02-26 2017-12-13 ナブテスコオートモーティブ株式会社 Oil separator and air system
US10429109B2 (en) 2013-07-02 2019-10-01 Mitsubishi Electric Corporation Refrigerant circuit and air-conditioning apparatus
JP2015014413A (en) * 2013-07-04 2015-01-22 ダイキン工業株式会社 Gas liquid separator and refrigerating device
JP6225069B2 (en) * 2014-05-07 2017-11-01 Cpmホールディング株式会社 Fluid agitation device in heat pump system
CN105115201A (en) * 2015-07-30 2015-12-02 珠海格力电器股份有限公司 Vapor-liquid separating device
CN106642827B (en) * 2015-11-04 2019-05-31 麦克维尔空调制冷(武汉)有限公司 Economizer and heat-exchange system comprising the economizer
KR20180095768A (en) 2017-02-18 2018-08-28 도요이엔에스 주식회사 Fluid stirring device in heat pump system
KR101780167B1 (en) 2017-03-20 2017-09-19 주식회사 지세븐홀딩스 Liquefaction promoting device by fluid stirring installed on piping route of heat pump system
JP6424936B1 (en) * 2017-10-04 2018-11-21 日本電気株式会社 Gas-liquid separation device, rear door, cooling device, and gas-liquid separation method
KR102152499B1 (en) * 2018-04-10 2020-09-04 노홍조 Liquid refrigerant separating type heat pump

Also Published As

Publication number Publication date
JPH06109345A (en) 1994-04-19

Similar Documents

Publication Publication Date Title
JP3416963B2 (en) Gas-liquid separator
JP4356214B2 (en) Oil separator and outdoor unit
US4562700A (en) Refrigeration system
US7131292B2 (en) Gas-liquid separator
KR20010092335A (en) Ejector cycle system with critical refrigerant pressure
JPH0953861A (en) Capacity controller for refrigerating cycle
US4715196A (en) Oil returning mechanism of evaporator for air conditioner
AU767852B2 (en) Suction line heat exchanger storage tank for transcritical cycles
JP3158722B2 (en) Gas-liquid separation type heat exchanger
CN102057244A (en) Integrated flow separator and pump-down volume device for use in a heat exchanger
US11199347B2 (en) Oil separation device and refrigeration cycle apparatus
JP3955361B2 (en) Air conditioner
CN112611135A (en) Gas-liquid separator and heat pump system
CN212157751U (en) Gas-liquid separator and air conditioning system
JPH085169A (en) Air conditioner
KR101085493B1 (en) Compressor Distributing Apparatus And Refrigerator
CN216844913U (en) Air conditioner
CN211716931U (en) Gas-liquid separator and water chilling unit
JPH0658653A (en) Gas liquid separator
CN111503952A (en) Bidirectional space-variable spiral vertical flash evaporator and heat pump system with same
KR100280005B1 (en) Oil separator
CN212253252U (en) Bidirectional space-variable spiral vertical flash evaporator and heat pump system with same
CA1129221A (en) Motor cooling system for refrigeration machine
CN207500082U (en) Compressor and air conditioning system with same
CN219141179U (en) Oil separator and air conditioning unit equipped with same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100411

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100411

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees