JP3158722B2 - Gas-liquid separation type heat exchanger - Google Patents

Gas-liquid separation type heat exchanger

Info

Publication number
JP3158722B2
JP3158722B2 JP26377192A JP26377192A JP3158722B2 JP 3158722 B2 JP3158722 B2 JP 3158722B2 JP 26377192 A JP26377192 A JP 26377192A JP 26377192 A JP26377192 A JP 26377192A JP 3158722 B2 JP3158722 B2 JP 3158722B2
Authority
JP
Japan
Prior art keywords
gas
refrigerant
liquid
heat exchanger
liquid separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26377192A
Other languages
Japanese (ja)
Other versions
JPH06117728A (en
Inventor
浩幸 山下
克宏 川端
晃一 安尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP26377192A priority Critical patent/JP3158722B2/en
Publication of JPH06117728A publication Critical patent/JPH06117728A/en
Application granted granted Critical
Publication of JP3158722B2 publication Critical patent/JP3158722B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本願発明は、ヒートポンプ式の冷
凍サイクルに適用可能な気液分離型熱交換器に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas-liquid separation type heat exchanger applicable to a heat pump type refrigeration cycle.

【0002】[0002]

【従来の技術】一般に大容量の熱交換器や複数本の細径
管(例えば、直径9.5mm以下)を伝熱管に用いた熱交換器
をヒートポンプ式冷凍サイクルに用いる場合には、熱交
換器の管内を流れる冷媒の圧力損失による冷媒温度の低
下を防止する観点から、特に蒸発器などにおいては伝熱
管を複数本使用する多パス式とし、1パス当たりの冷媒
循環量を減少させて圧力損失の増大を抑えることが試み
られている。ところが、蒸発器の入口側においては膨張
後の冷媒が気液二相状態となっていることから、気液比
率の制御が不能で冷媒を蒸発器の各パスに対して均一に
分配することが難しい。
2. Description of the Related Art Generally, when a heat exchanger using a large-capacity heat exchanger or a plurality of small-diameter tubes (for example, a diameter of 9.5 mm or less) as a heat transfer tube is used for a heat pump refrigeration cycle, the heat exchanger is used. From the viewpoint of preventing a decrease in the refrigerant temperature due to the pressure loss of the refrigerant flowing through the inside of the pipe, a multi-pass type using a plurality of heat transfer tubes, particularly in an evaporator, is used to reduce the refrigerant circulation amount per pass to reduce the pressure loss. Attempts have been made to reduce the increase. However, since the refrigerant after expansion is in a gas-liquid two-phase state on the inlet side of the evaporator, it is impossible to control the gas-liquid ratio, and the refrigerant can be uniformly distributed to each path of the evaporator. difficult.

【0003】このため、各パス毎の冷媒循環量の不均一
により本来有している熱交換器の能力を十分に活用でき
ないという問題があった。
[0003] For this reason, there is a problem in that the inherent capacity of the heat exchanger cannot be fully utilized due to the non-uniformity of the refrigerant circulation amount in each pass.

【0004】このような問題を解決する手段の一つとし
て、例えば図3に示すように多パス分配が必要となる蒸
発器4の冷媒入口8上流側に気液分離器20を設け、該
気液分離器20において気液二相状態の冷媒をガス冷媒
と液冷媒とに分離させ、熱交換に対する貢献度の小さい
ガス冷媒はこれを蒸発器4をバイパスするバイパス管路
18から蒸発器4の下流側に迂回させ、当該蒸発器4に
は液冷媒のみを単相状態で各パスに分配させることで、
気液比率を考慮することなく冷媒の均一な分配を実現す
るようにすることが考えられている。
As one means for solving such a problem, for example, as shown in FIG. 3, a gas-liquid separator 20 is provided upstream of the refrigerant inlet 8 of the evaporator 4 which requires multi-pass distribution. In the liquid separator 20, the refrigerant in the gas-liquid two-phase state is separated into a gas refrigerant and a liquid refrigerant, and the gas refrigerant having a small contribution to the heat exchange passes through the bypass line 18 that bypasses the evaporator 4 to the evaporator 4. By diverting to the downstream side, only the liquid refrigerant is distributed to each path in the evaporator 4 in a single-phase state,
It has been considered to achieve uniform distribution of the refrigerant without considering the gas-liquid ratio.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記構成で
は、図3から明らかなように、膨張弁5から室内熱交換
器(蒸発器)4までの冷媒循環管路14上に独立した気液
分離器20が存在するようになるとともに、蒸発器4に
別途バイパス配管18を並設しなければならないことに
なって、メッシュフィン本来の特徴を活かしたコンパク
ト化が図りにくくなる欠点が生じる。
However, in the above configuration, as is apparent from FIG. 3, an independent gas-liquid separation is provided on the refrigerant circulation line 14 from the expansion valve 5 to the indoor heat exchanger (evaporator) 4. In addition to the presence of the vessel 20, the bypass pipe 18 must be separately provided in parallel with the evaporator 4, resulting in a drawback that it is difficult to achieve compactness by utilizing the inherent characteristics of the mesh fin.

【0006】[0006]

【課題を解決するための手段】本願の請求項1および2
記載の発明の気液分離型熱交換器は、上記の問題を解決
し、システムのコンパクト化を可能にすることを目的と
してなされたもので、各々次のように構成されている。
Means for Solving the Problems Claims 1 and 2 of the present application
The gas-liquid separation type heat exchanger of the invention described above has been made for the purpose of solving the above-mentioned problems and enabling the system to be compact, and has the following structures.

【0007】(1) 請求項1記載の発明の気液分離型熱
交換器の構成 該請求項1記載の発明の気液分離型熱交換器は、例えば
図1および図2に示すように、上下方向に離設した入口
ヘッダー52と出口ヘッダー53間を複数本の伝熱細管
54,54・・・で連結する一方、上記複数本の伝熱細
管54,54・・・部にメッシュフィン56,56・・・
を設けてなる多パス型熱交換器において、上記下方側入
口ヘッダー52の開口部と上記上方側出口ヘッダーの開
口部とを所定の長さの気液分離筒42で連結するととも
に該気液分離筒42の上部に気液2相冷媒の供給管14
を接続したことを特徴とするものである。
(1) Structure of the gas-liquid separation type heat exchanger according to the first aspect of the invention The gas-liquid separation type heat exchanger according to the first aspect of the present invention has a structure as shown in FIGS. The plurality of heat transfer tubes 54, 54... Are connected between the inlet header 52 and the outlet header 53 which are vertically separated from each other, and the mesh fins 56 are connected to the plurality of heat transfer tubes 54, 54. , 56 ...
In the multi-pass heat exchanger provided with the above, the opening of the lower inlet header 52 and the opening of the upper outlet header are connected by a gas-liquid separation cylinder 42 having a predetermined length, and the gas-liquid separation is performed. A gas-liquid two-phase refrigerant supply pipe 14 is provided above the cylinder 42.
Are connected.

【0008】(2) 請求項2記載の発明の気液分離型熱
交換器の構成 該請求項2記載の発明の気液分離型熱交換器は、上記請
求項1記載の発明の多パス型熱交換器が、ヒートポンプ
式空気調和装置の熱交換器4として構成されていること
を特徴とするものである。
(2) Configuration of the gas-liquid separation type heat exchanger according to the second aspect of the invention The gas-liquid separation type heat exchanger according to the second aspect of the invention is the multi-pass type heat exchanger according to the first aspect of the invention. The heat exchanger is configured as a heat exchanger 4 of a heat pump type air conditioner.

【0009】[0009]

【作用】本願の請求項1および2記載の発明の気液分離
型熱交換器は、上記のように構成されている結果、それ
ぞれ次のような作用を奏する。
The gas-liquid separation type heat exchanger according to the first and second aspects of the present invention has the following functions as a result of being configured as described above.

【0010】(1) 請求項1記載の発明の気液分離型熱
交換器の作用 請求項1記載の発明の気液分離型熱交換器の構成では、
上下方向に離設した入口ヘッダー52と出口ヘッダー5
3間を複数本の伝熱細管54,54・・・で連結する一
方、上記複数本の伝熱細管54,54・・・部にメッシ
ュフィン56,56・・・を設けてなる多パス型熱交換
器において、上記下方側入口ヘッダー52の開口部と上
記上方側出口ヘッダー53の開口部とを所定の長さの気
液分離筒42で連結するとともに該気液分離筒42の上
部に気液2相冷媒の供給管14を接続しており、該気液
二相冷媒供給管を介して導入された気液二相冷媒を当該
気液分離筒42内でガス冷媒と液冷媒との上下2層に分
離し、ガス冷媒を上記出口ヘッダー53の一部を介して
バイパスさせるとともに液冷媒のみを上記入口ヘッダー
52を介して上記伝熱細管54,54・・・に供給分配
するようになっている。
(1) Operation of the gas-liquid separation type heat exchanger according to the first aspect of the present invention:
Inlet header 52 and outlet header 5 which are vertically separated
3 are connected by a plurality of heat transfer thin tubes 54, 54,..., While a mesh fin 56, 56,. In the heat exchanger, the opening of the lower-side inlet header 52 and the opening of the upper-side outlet header 53 are connected by a gas-liquid separation tube 42 having a predetermined length. A liquid-liquid two-phase refrigerant supply pipe 14 is connected, and the gas-liquid two-phase refrigerant introduced through the gas-liquid two-phase refrigerant supply pipe is moved up and down between the gas refrigerant and the liquid refrigerant in the gas-liquid separation tube 42. Are separated into two layers, the gas refrigerant is bypassed through a part of the outlet header 53, and only the liquid refrigerant is supplied and distributed to the heat transfer tubes 54, 54... Via the inlet header 52. ing.

【0011】したがって、各伝熱細管54,54・・・
に分配供給される冷媒は、ガス冷媒との比率を問題にし
なくても良い液冷媒のみとなり、圧損も少なく均一に分
配できるようになる。
Therefore, each of the heat transfer tubes 54, 54.
The refrigerant to be distributed to and supplied to the liquid refrigerant is only the liquid refrigerant which does not have to make the ratio of the refrigerant to the gas refrigerant, and can be uniformly distributed with little pressure loss.

【0012】その結果、熱交換部の熱交換能力を十分に
発揮させることができ、熱交換性能も向上する。
As a result, the heat exchange capacity of the heat exchange section can be sufficiently exhibited, and the heat exchange performance is also improved.

【0013】(2) 請求項2記載の発明の気液分離型熱
交換器の作用 請求項2記載の発明の気液分離型熱交換器の構成では、
上記請求項1記載の発明の多パス型熱交換器が、図3に
例示したようなヒートポンプ式空気調和装置の熱交換器
4として構成されている。
(2) Operation of the gas-liquid separation type heat exchanger according to the second aspect of the invention In the configuration of the gas-liquid separation type heat exchanger according to the second aspect,
The multi-pass type heat exchanger according to the first aspect of the present invention is configured as a heat exchanger 4 of a heat pump type air conditioner as illustrated in FIG.

【0014】したがって、例えば冷房運転時において、
圧縮機から吐出される高温高圧のガス冷媒は、先ず凝縮
器に流入し、該凝縮器において凝縮されて液冷媒とな
る。そして、この液冷媒が、膨張弁において減圧膨張さ
れ、気液二相冷媒となって上記蒸発器4の気液分離筒4
2内に流入する。
Therefore, for example, during cooling operation,
The high-temperature and high-pressure gas refrigerant discharged from the compressor first flows into the condenser, where it is condensed into a liquid refrigerant. Then, the liquid refrigerant is decompressed and expanded by the expansion valve to become a gas-liquid two-phase refrigerant, and the gas-liquid separation cylinder 4 of the evaporator 4 is used.
2 flows into.

【0015】気液分離筒42においては、気液二相冷媒
が、その冷媒の流動圧を受けて拡散状態で流入する。こ
のため、該気液二相冷媒は、流路面積の急拡大に伴う流
速の低下によりスムーズに気液分離される。そして、分
離された冷媒は一旦気液分離筒42の低部に溜り、ここ
から蒸発器4の分配器部である入口ヘッダー部53側に
流出せしめられる。これに対して、分離されたガス冷媒
は、バイパス管路としての出口ヘッダー部52一端を介
して上記蒸発器4の伝熱管部をバイパスしてその下流側
に速やかに流出される。
In the gas-liquid separation cylinder 42, the gas-liquid two-phase refrigerant flows in a diffusion state under the flow pressure of the refrigerant. For this reason, the gas-liquid two-phase refrigerant is smoothly gas-liquid separated due to a decrease in flow velocity due to a sudden increase in the flow path area. Then, the separated refrigerant temporarily accumulates in the lower part of the gas-liquid separation cylinder 42 and flows out from the refrigerant to the inlet header 53 side, which is the distributor of the evaporator 4. On the other hand, the separated gas refrigerant bypasses the heat transfer tube portion of the evaporator 4 via one end of the outlet header portion 52 as a bypass pipe line, and quickly flows out downstream thereof.

【0016】従って、該熱交換器(この場合は蒸発器)4
においては、分配器としての機能を果たす入口ヘッダー
部53に液冷媒のみが単相状態で導入されることから、
例えば、冷媒が気液二相状態で導入される場合に比し
て、はるかに効果的な各パスへの冷媒の均一分配が実現
され、圧損も低下する。この結果、該熱交換器において
は、熱交換にほとんど貢献しないガス冷媒が流れず各パ
ス部での冷媒の圧力損失も小さいことも手伝って、より
高い熱交換性能が確保される。
Accordingly, the heat exchanger (in this case, an evaporator) 4
In, since only the liquid refrigerant is introduced in a single-phase state into the inlet header 53 that functions as a distributor,
For example, compared to a case where the refrigerant is introduced in a gas-liquid two-phase state, a much more effective distribution of the refrigerant to each path is realized, and the pressure loss is also reduced. As a result, in the heat exchanger, a gas refrigerant that hardly contributes to the heat exchange does not flow and the pressure loss of the refrigerant in each path is also small, so that higher heat exchange performance is secured.

【0017】[0017]

【発明の効果】したがって、本願発明の気液分離型熱交
換器によると、均一な液冷媒の供給による熱交換性能向
上効果を実現し得て、しかも気液分離筒が蒸発器自体に
一体に組込まれるようになるとともにバイパス管が不要
となるので、システム自体をコンパクト化することが可
能となる。
Therefore, according to the gas-liquid separation type heat exchanger of the present invention, the effect of improving the heat exchange performance by supplying a uniform liquid refrigerant can be realized, and the gas-liquid separation cylinder is integrated with the evaporator itself. The system itself can be reduced in size because it becomes incorporated and the bypass pipe is not required.

【0018】[0018]

【実施例】【Example】

(1) 第1実施例 先ず図1は、本願発明の第1実施例に係る気液分離型メ
ッシュフィン熱交換器の構成を示している。
(1) First Embodiment First, FIG. 1 shows a configuration of a gas-liquid separation type mesh fin heat exchanger according to a first embodiment of the present invention.

【0019】本実施例の気液分離型熱交換器は、例えば
多パス方式のメッシュフィン型熱交換器(蒸発器)の入口
ヘッダー部側と出口ヘッダー部側間に、液冷媒とガス冷
媒とを相互に分離する気液分離筒(器)を組込んだことを
特徴とするものである。
The gas-liquid separation type heat exchanger of the present embodiment comprises a liquid refrigerant and a gas refrigerant, for example, between an inlet header side and an outlet header side of a multi-pass type mesh fin heat exchanger (evaporator). And a gas-liquid separation cylinder (vessel) for separating oil from each other.

【0020】すなわち、図1において、先ず符号52は
当該メッシュフィン型室内熱交換器(蒸発器)のガス冷媒
出口ヘッダー、また53は液冷媒入口ヘッダーであり、
該出口ヘッダー52および入口ヘッダー53の一端は上
下方向に立設された気液分離筒42の上下に各々連通し
て接続一体化されている。
That is, in FIG. 1, reference numeral 52 denotes a gas refrigerant outlet header of the mesh fin type indoor heat exchanger (evaporator), and 53 denotes a liquid refrigerant inlet header.
One end of the outlet header 52 and one end of the inlet header 53 are connected to and integrated with the upper and lower sides of a gas-liquid separation tube 42 which is vertically provided.

【0021】これら出口ヘッダー52および入口ヘッダ
ー53間には、それらの長手方向に所定の間隔を置いて
複数の伝熱細管54,54・・が相互に平行に連結され
ており、該伝熱細管54,54・・・に対して前後方向
に複数枚のメッシュフィン56,56・・・が取付けら
れている。また、上記出口ヘッダー52の長手方向中間
部には圧縮機1側へのガス冷媒循環管路12が接続され
ている。さらに、上記出口ヘッダー52の上記気液分離
筒42との接続部付近には、逆流防止用の絞り43が設
けられている。
Between the outlet header 52 and the inlet header 53, a plurality of heat transfer thin tubes 54, 54,... Are connected in parallel at a predetermined interval in the longitudinal direction thereof. A plurality of mesh fins 56, 56,... Further, a gas refrigerant circulation pipe 12 to the compressor 1 side is connected to a longitudinally intermediate portion of the outlet header 52. Further, a throttle 43 for preventing backflow is provided near a connection portion of the outlet header 52 with the gas-liquid separation tube 42.

【0022】そして、上記気液分離筒42内には、上方
側から上記膨張弁5を介した冷媒循環管路14の先端部
14aが挿入接続され、矢印方向に気液二相状態の冷媒
流が導入されるようになっている。
A distal end portion 14a of the refrigerant circulation pipe 14 is inserted into the gas-liquid separation cylinder 42 from above through the expansion valve 5, and the refrigerant flow in the gas-liquid two-phase state is shown in the direction of the arrow. Is being introduced.

【0023】したがって、上記気液分離筒42内に導入
された気液二相冷媒は、その重量差により当該分流筒2
2内で図示の如く上下2層に分離され、上層側ガス冷媒
は上記絞り43を介して出口ヘッダー52を通り、ショ
ートサーキットして循環管路12から圧縮機吸入側に速
やかに戻される。つまり、室内熱交換器(蒸発器)4をバ
イパスすることになる。
Therefore, the gas-liquid two-phase refrigerant introduced into the gas-liquid separation tube 42 is separated by the weight difference between the two-phase refrigerant.
As shown in the figure, the upper-layer gas refrigerant is separated into two upper and lower layers as shown in the drawing, passes through the outlet header 52 via the throttle 43, is short-circuited, and is quickly returned from the circulation line 12 to the compressor suction side. That is, the indoor heat exchanger (evaporator) 4 is bypassed.

【0024】他方、下層側液冷媒は、入口ヘッダー53
を介して複数本の伝熱細管54,54・・・に均一に分
配され、メッシュフィン56,56・・・を介して空気
流と効果的に熱交換されて蒸発しガス冷媒となった後、
出口ヘッダー52を介して上記冷媒循環管路12に供給
される。
On the other hand, the lower-layer liquid refrigerant is supplied to the inlet header 53.
Are uniformly distributed to a plurality of heat transfer tubes 54, 54... Through a mesh fin 56, 56. ,
The refrigerant is supplied to the refrigerant circulation pipe 12 through an outlet header 52.

【0025】このように、本実施例の構成では、薄形化
の可能な上記メッシュフィン型室内熱交換器を例えば蒸
発器として使用する場合、その入口ヘッダー53上流部
分の気液分離筒42に気液分離器としての機能を持た
せ、該部分で分離されたガス冷媒を出口ヘッダー52を
図2のバイパス管路18として利用してバイパスさせる
とともに、液冷媒のみを下方側入口ヘッダー53から各
伝熱細管54,54・・・に分配するようにしているか
ら、圧力損失も小さく各伝熱細管54,54・・・部に
均一に液冷媒のみを分配し得るようになり、熱交換能力
も向上する。又図3のようなバイパス管路18が不要と
なり、ヘッダー部の構造も簡単で済むようになる。従っ
て、システムのコンパクト化が可能となる。
As described above, in the configuration of this embodiment, when the above-mentioned mesh fin type indoor heat exchanger capable of being made thinner is used as, for example, an evaporator, the gas-liquid separation cylinder 42 upstream of the inlet header 53 is provided. A gas-liquid separator is provided, and the gas refrigerant separated at this portion is bypassed using the outlet header 52 as the bypass line 18 in FIG. Since the heat is distributed to the heat transfer tubes 54, 54, the pressure loss is small and only the liquid refrigerant can be uniformly distributed to the heat transfer tubes 54, 54,. Also improve. In addition, the bypass pipe 18 as shown in FIG. 3 is not required, and the structure of the header section can be simplified. Therefore, the system can be made compact.

【0026】(2) 第2実施例 次に、図2は、本願発明の第2実施例に係る気液分離型
メッシュフィン熱交換器の構成および作用を示してい
る。
(2) Second Embodiment Next, FIG. 2 shows the structure and operation of a gas-liquid separation type mesh fin heat exchanger according to a second embodiment of the present invention.

【0027】本実施例の気液分離型メッシュフィン熱交
換器は、特に上記した図3のようなヒートポンプサイク
ルに適するように、冷房運転時の液面制御機能および暖
房運転時のガス冷媒逆流防止機能を備えて構成されてお
り、例えば多パス方式のメッシュフィン型熱交換器(蒸
発器)の入口ヘッダー部側と出口ヘッダー部側間に、内
部にフロート機構を備えて液冷媒とガス冷媒とを相互に
分離する気液分離筒(器)を組込んだことを特徴とするも
のである。
The gas-liquid separation type mesh fin heat exchanger of this embodiment is particularly suitable for the heat pump cycle as shown in FIG. 3 described above, and has a liquid level control function during a cooling operation and a gas refrigerant backflow prevention during a heating operation. For example, a multi-pass mesh fin type heat exchanger (evaporator) between the inlet header side and the outlet header side, with a float mechanism inside, the liquid refrigerant and the gas refrigerant And a gas-liquid separation cylinder (vessel) for separating oil from each other.

【0028】すなわち、図2において、先ず符号52は
当該メッシュフィン型室内熱交換器(蒸発器)のガス冷媒
出口ヘッダー、また53は液冷媒入口ヘッダーであり、
該出口ヘッダー52および入口ヘッダー53の一端は上
下方向に立設された気液分離筒42の上下に各々連通し
て接続一体化されている。
That is, in FIG. 2, reference numeral 52 denotes a gas refrigerant outlet header of the mesh fin type indoor heat exchanger (evaporator), and 53 denotes a liquid refrigerant inlet header.
One end of the outlet header 52 and one end of the inlet header 53 are connected to and integrated with the upper and lower sides of a gas-liquid separation tube 42 which is vertically provided.

【0029】これら出口ヘッダー52および入口ヘッダ
ー53間には、それらの長手方向に所定の間隔を置いて
複数の伝熱細管54,54・・が相互に平行に連結され
ており、該伝熱細管54,54・・・に対して前後方向
に複数枚のメッシュフィン56,56・・・が取付けら
れている。また、上記出口ヘッダー52の長手方向中間
部には圧縮機1側へのガス冷媒循環管路12が接続され
ている。
Between the outlet header 52 and the inlet header 53, a plurality of heat transfer thin tubes 54, 54,... Are connected in parallel at a predetermined interval in their longitudinal direction. A plurality of mesh fins 56, 56,... Further, a gas refrigerant circulation pipe 12 to the compressor 1 side is connected to a longitudinally intermediate portion of the outlet header 52.

【0030】そして、上記気液分離筒42内には、上方
側から上記膨張弁5を介した冷媒循環管路14が接続さ
れ、矢印方向に気液二相状態の冷媒流が導入されるよう
になっている。
The refrigerant circulation pipe line 14 is connected to the gas-liquid separation cylinder 42 from above through the expansion valve 5 so that a gas-liquid two-phase refrigerant flow is introduced in the direction of the arrow. It has become.

【0031】一方、該気液分離器筒42内の上下に所定
の長さを有する気液分離室内には、上下垂直方向に液面
制御部40を形成するフロートパイプ51が貫通せしめ
られている。
On the other hand, a float pipe 51 forming a liquid level controller 40 is vertically penetrated into a gas-liquid separation chamber having a predetermined length vertically in the gas-liquid separator cylinder 42. .

【0032】そして、上記第4の冷媒循環管路14から
は、冷房運転時において上記膨張弁5を介した気液2相
状態の冷媒流が下方に向けて導入され、その重量差を利
用してガス冷媒と液冷媒とが図示のように上下2層に分
離される。
During the cooling operation, a gas-liquid two-phase refrigerant flow is introduced downward through the expansion valve 5 from the fourth refrigerant circulation line 14, and the difference in weight is utilized. As a result, the gas refrigerant and the liquid refrigerant are separated into two upper and lower layers as shown.

【0033】上記フロートパイプ51は、上記出口ヘッ
ダー52のガス冷媒をバイパスさせるためのバイパス管
路部52BPの基端部52aと上記入口ヘッダー53の
基端部53aとをコ字状に相互に連通一体化させる構造
となっており、その上下両端部は細径部46a,46bに
形成されている。そして、その内部には、上下両端部が
円錐形状の弁体部47b,47aとなった所定長さの円柱
体形状のフロート47が上記気液分離室内の液冷媒の液
面位の変化に応じて上下移動自在に嵌挿されている。さ
らに該フロートパイプ51の上下両端部には、各々複数
の開孔49,49・・および50,50・・が形成されて
おり、同フロートパイプ51内のフロート室とフロート
パイプ51外の気液分離室とがフロート位置、換言する
と、液冷媒の液面位置に応じて連通せしめられるように
なっている。
The float pipe 51 communicates a base end 52a of a bypass conduit 52BP for bypassing the gas refrigerant of the outlet header 52 with a base end 53a of the inlet header 53 in a U-shape. The upper and lower ends are formed in small-diameter portions 46a and 46b. Inside thereof, a column-shaped float 47 having a predetermined length with upper and lower ends formed as conical valve bodies 47b and 47a is provided in accordance with a change in the liquid level of the liquid refrigerant in the gas-liquid separation chamber. It is inserted movably up and down. Further, a plurality of openings 49, 49,..., 50, 50,... Are respectively formed at the upper and lower ends of the float pipe 51, and the float chamber in the float pipe 51 and the gas-liquid outside the float pipe 51 are formed. The separation chamber communicates with the float position, in other words, in accordance with the liquid surface position of the liquid refrigerant.

【0034】他方、上記フロートパイプ51の上記上端
側細径部46a上端側内には逆止弁を形成する球体弁で
あるボール48が遊嵌されており、該ボール48は所定
位置上方側の上昇位置規制用凸部45によって上昇位置
が規制されている。該ボール48の比重は、上記ガス冷
媒の比重よりも若干重い比重に設定されている。また、
上記フロート47の比重は、ガス冷媒と液冷媒の比重の
中間の比重に設定されている。
On the other hand, a ball 48, which is a spherical valve forming a check valve, is loosely fitted in the upper end side of the upper end side small diameter portion 46a of the float pipe 51, and the ball 48 is positioned above a predetermined position. The ascending position is regulated by the ascending position regulating projection 45. The specific gravity of the ball 48 is set to be slightly higher than the specific gravity of the gas refrigerant. Also,
The specific gravity of the float 47 is set to an intermediate specific gravity between the gas refrigerant and the liquid refrigerant.

【0035】したがって、今例えばヒートポンプサイク
ルの冷房運転が開始されたすると、先ず図に示すよう
に、上記第4の冷媒循環管路14を介して矢印方向に気
液2相状態の冷媒流が順次導入されるようになり、その
重量差(比重差)により液冷媒が下層部に溜って行く一
方、ガス冷媒が上層部に留るようになり、ガス冷媒と液
冷媒は上下2層に確実に分離される。
Therefore, when the cooling operation of, for example, a heat pump cycle is started, first, as shown in the drawing, the refrigerant flow in the gas-liquid two-phase state is sequentially passed through the fourth refrigerant circulation line 14 in the direction of the arrow. As a result, the liquid refrigerant accumulates in the lower layer due to the weight difference (specific gravity difference), while the gas refrigerant comes to stay in the upper layer, and the gas refrigerant and the liquid refrigerant are surely in the upper and lower two layers. Separated.

【0036】しかし、上記冷房運転を開始してから所定
時間が経過するまでは、未だ液冷媒の液面位も低いの
で、上記フロートパイプ51内のフロート47はフロー
ト室下端まで下降していて、その本体部により上記フロ
ートパイプ51下端側の開孔50,50・・・を閉塞す
る。従って、上記入口ヘッダー53には未だ液冷媒が供
給されない。一方、上記フロートパイプ51上端側の開
孔部49,49・・・は開放されているので、上記分離
されたガス冷媒は当該開孔49,49・・・を介して出
口ヘッダー52の上記バイパス管路部52BP側には流
れて行きバイパスされる。
However, since the liquid level of the liquid refrigerant is still low until a predetermined time has elapsed since the start of the cooling operation, the float 47 in the float pipe 51 has descended to the lower end of the float chamber. The main body closes the openings 50, 50,... On the lower end side of the float pipe 51. Therefore, no liquid refrigerant is supplied to the inlet header 53 yet. On the other hand, since the openings 49, 49... On the upper end side of the float pipe 51 are open, the separated gas refrigerant passes through the openings 49, 49. It flows to the pipeline 52BP side and is bypassed.

【0037】次に、上記運転の開始から所定の時間が経
過して、例えば図に示すようになった定常状態では液冷
媒の液面位が同図示のように略気液分離室の中間位置に
達し、フロート47はフロートパイプ51のの上端側開
孔49,49・・・と下端側開孔50,50・・・との中
間に位置するようになるので、上記気液分離室内低部の
液冷媒は下端側開孔50,50・・・を介して上記入口
ヘッダー53側に圧力差に応じて流出して行くようにな
る一方、上部側のガス冷媒は同フロートパイプ51の上
端側開孔49,49・・・を介してフロート室に入り十
分な圧力差により上記ボール48を十分に浮上させるこ
とにより上記バイパス管路18側に効率良く流出して行
く。このようにして、連続的な気液分離が行われ、上述
した各伝熱細管54,54・・(パス)に均一な液冷媒の
分配が行われて本来の良好な熱交換性能が発揮される。
Next, after a predetermined time has elapsed from the start of the above operation, for example, in a steady state as shown in the figure, the liquid level of the liquid refrigerant is substantially at the intermediate position of the gas-liquid separation chamber as shown in the figure. , And the float 47 is located in the middle of the upper end side openings 49, 49 ... and the lower end side openings 50, 50 ... of the float pipe 51. .. Flows through the lower end side openings 50, 50... To the inlet header 53 side according to the pressure difference, while the upper side gas refrigerant flows toward the upper end side of the float pipe 51. The ball 48 is sufficiently floated by a sufficient pressure difference into the float chamber through the openings 49, 49,... To efficiently flow out to the bypass pipe line 18 side. In this manner, continuous gas-liquid separation is performed, and uniform distribution of the liquid refrigerant is performed to each of the heat transfer thin tubes 54, 54,... (Path), and the original good heat exchange performance is exhibited. You.

【0038】他方、さらに負荷変動等により冷媒流量が
増大した冷房運転時などにおいて、液面位が上昇しすぎ
ると、上記フロート47もフロートパイプ51内のフロ
ート室上端まで上昇して、その本体部が上記フロートパ
イプ51上端側の開孔49,49・・・を閉塞する。こ
の結果、気液分離室内上層側ガス冷媒の上記バイパス管
路部52BP側への流出は停止され、気液分離室内の内
圧が高くなり、液冷媒の流出速度が上昇して速やかに液
面位が下がり、やがて再びガス冷媒の流出が始まるよう
になる。このようにして、本実施例では、負荷変動によ
り冷媒流量や乾き度が変化したような場合でも、常に液
面位の変動を一定の範囲内に抑制することができ、常に
良好な熱交換性能を維持し得るようになる。
On the other hand, if the liquid level rises too much during a cooling operation in which the flow rate of the refrigerant is further increased due to a load change or the like, the float 47 also rises to the upper end of the float chamber in the float pipe 51, and Closes the openings 49, 49... On the upper end side of the float pipe 51. As a result, the gas refrigerant in the upper layer side of the gas-liquid separation chamber is stopped from flowing out to the bypass pipe section 52BP side, the internal pressure in the gas-liquid separation chamber increases, the outflow speed of the liquid refrigerant increases, and the liquid level quickly rises. And the outflow of the gas refrigerant starts again. In this manner, in the present embodiment, even when the refrigerant flow rate or the dryness changes due to the load fluctuation, the fluctuation in the liquid level can always be suppressed within a certain range, and the good heat exchange performance can always be obtained. Can be maintained.

【0039】また、一方暖房運転に切替えられた時に
は、液冷媒が上記と逆方向に流れる一方、上記バイパス
管路部52BP側のガス冷媒が上記フロートパイプ51
側に流入しようとするが、本実施例では上記バイパス管
路部52BPの基端部で逆止弁機能を果たすボール48
が設けられているために、該場合には、球体弁であるボ
ール48が当該バイパス管路部52BPの基端部を閉塞
し、液冷媒だけがスムーズに上記各伝熱細管54,54
・・に分配され、入口ヘッダー53、フロートパイプ5
1から第4の冷媒循環管路14側に流れるようになる。
On the other hand, when the operation is switched to the heating operation, the liquid refrigerant flows in the opposite direction to the above, while the gas refrigerant on the side of the bypass pipe section 52BP is supplied to the float pipe 51.
In this embodiment, the ball 48 which performs a check valve function at the base end of the bypass pipe 52BP is used.
In this case, the ball 48, which is a spherical valve, closes the base end of the bypass conduit 52BP, and only the liquid refrigerant smoothly flows through the heat transfer thin tubes 54, 54.
..Distributed into inlet header 53, float pipe 5
The first refrigerant flows to the fourth refrigerant circulation pipe 14 side.

【0040】このように、本実施例の構成でも上記第1
実施例同様に、薄形化の可能な上記メッシュフィン型室
内熱交換器を例えば蒸発器として使用する場合、その入
口ヘッダー53上流部分の気液分離筒42に気液分離器
としての機能を持たせ、該部分で分離されたガス冷媒を
出口ヘッダー52を図2のバイパス管路18として利用
してバイパスさせるとともに、液冷媒のみを下方側入口
ヘッダー53から各伝熱細管54,54・・・に分配す
るようにしているから、圧力損失も小さく各伝熱細管5
4,54・・・部に均一に液冷媒のみを分配し得るよう
になり、熱交換能力も向上する。又図3のようなバイパ
ス管路18が不要となり、ヘッダー部の構造も簡単で済
むようになる。従って、システムのコンパクト化が可能
となる。
As described above, even in the configuration of this embodiment, the first
Similarly to the embodiment, when the above-mentioned mesh fin type indoor heat exchanger capable of being thinned is used as, for example, an evaporator, the gas-liquid separation cylinder 42 upstream of the inlet header 53 has a function as a gas-liquid separator. The gas refrigerant separated in this portion is bypassed by using the outlet header 52 as the bypass pipe 18 in FIG. 2, and only the liquid refrigerant flows from the lower inlet header 53 to each of the heat transfer thin tubes 54, 54. Pressure loss is small and each heat transfer thin tube 5
Only the liquid refrigerant can be uniformly distributed to the 4,54... Portions, and the heat exchange capacity is also improved. In addition, the bypass pipe 18 as shown in FIG. 3 is not required, and the structure of the header section can be simplified. Therefore, the system can be made compact.

【0041】さらに、本実施例によると、上記の如くコ
ンパクトな構成となりながら2相冷媒の気液分離を効率
的、且つ安定的に行うことができるようになるととも
に、特に低圧力損失条件下においても暖房時など的確な
逆止弁作用が得られるようになり、ヒートポンプ式冷凍
サイクルにも十分に適用可能にすることができる。
Further, according to the present embodiment, the gas-liquid separation of the two-phase refrigerant can be performed efficiently and stably while having a compact structure as described above, and particularly under the condition of low pressure loss. In this case, an accurate check valve action can be obtained, for example, during heating, and can be sufficiently applied to a heat pump refrigeration cycle.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本願発明の第1実施例に係る気液分離
型メッシュフィン熱交換器の構成を示す正面図である。
FIG. 1 is a front view showing a configuration of a gas-liquid separation type mesh fin heat exchanger according to a first embodiment of the present invention.

【図2】図2は、本願発明の第2実施例に係る気液分離
型メッシュフィン熱交換器の構成を示す正面図である。
FIG. 2 is a front view showing a configuration of a gas-liquid separation type mesh fin heat exchanger according to a second embodiment of the present invention.

【図3】図3は、従来の一般的な空気調和機のヒートポ
ンプ式冷凍システムの構成を示す冷凍回路図である。
FIG. 3 is a refrigeration circuit diagram showing a configuration of a conventional general heat pump refrigeration system for an air conditioner.

【符号の説明】[Explanation of symbols]

11は室内熱交換器、12,14は冷媒循環管路、42
は気液分離筒、52は入口ヘッダー、53は出口ヘッダ
ー、54は伝熱細管、56はメッシュフィンである。
11 is an indoor heat exchanger, 12 and 14 are refrigerant circulation pipelines, 42
Is a gas-liquid separation tube, 52 is an inlet header, 53 is an outlet header, 54 is a heat transfer thin tube, and 56 is a mesh fin.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−89902(JP,A) 特開 平3−91663(JP,A) 特開 昭63−189794(JP,A) 特開 昭62−56782(JP,A) 特開 平1−121688(JP,A) 特開 平4−84097(JP,A) 特開 平1−121689(JP,A) 実開 昭56−45750(JP,U) 実開 昭57−196957(JP,U) 実公 昭51−20917(JP,Y2) (58)調査した分野(Int.Cl.7,DB名) F25B 39/00 F25B 43/00 F28D 15/02 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-3-89902 (JP, A) JP-A-3-91663 (JP, A) JP-A-63-189794 (JP, A) JP-A-62-1987 56782 (JP, A) JP-A-1-121688 (JP, A) JP-A-4-84097 (JP, A) JP-A-1-121689 (JP, A) Japanese Utility Model Application No. Sho 56-45750 (JP, U) Japanese Utility Model Showa 57-196957 (JP, U) Japanese Utility Model Showa 51-20917 (JP, Y2) (58) Fields investigated (Int. Cl. 7 , DB name) F25B 39/00 F25B 43/00 F28D 15/02

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 上下方向に離設した入口ヘッダー(52)
と出口ヘッダー(53)間を複数本の伝熱細管(54),(5
4)・・・で連結する一方、上記複数本の伝熱細管(5
4),(54)・・・部にメッシュフィン(56),(56)・
・・を設けてなる多パス型熱交換器において、上記下方
側入口ヘッダー(52)の開口部と上記上方側出口ヘッダ
ーの開口部とを所定の長さの気液分離筒(42)で連結す
るとともに該気液分離筒(42)の上部に気液2相冷媒の
供給管(14)を接続したことを特徴とする気液分離型熱
交換器。
An inlet header (52) which is vertically separated from each other.
And a plurality of heat transfer tubes (54), (5)
4), while the plurality of heat transfer thin tubes (5
4), (54) ... mesh fins (56), (56)
In the multi-pass heat exchanger provided with the above, the opening of the lower inlet header (52) and the opening of the upper outlet header are connected by a gas-liquid separation cylinder (42) of a predetermined length. And a gas-liquid two-phase refrigerant supply pipe (14) connected to the upper part of the gas-liquid separation cylinder (42).
【請求項2】 上記多パス型熱交換器が、ヒートポンプ
式空気調和装置の熱交換器であることを特徴とする請求
項1記載の気液分離型熱交換器。
2. The gas-liquid separation type heat exchanger according to claim 1, wherein the multi-pass type heat exchanger is a heat exchanger of a heat pump type air conditioner.
JP26377192A 1992-10-01 1992-10-01 Gas-liquid separation type heat exchanger Expired - Fee Related JP3158722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26377192A JP3158722B2 (en) 1992-10-01 1992-10-01 Gas-liquid separation type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26377192A JP3158722B2 (en) 1992-10-01 1992-10-01 Gas-liquid separation type heat exchanger

Publications (2)

Publication Number Publication Date
JPH06117728A JPH06117728A (en) 1994-04-28
JP3158722B2 true JP3158722B2 (en) 2001-04-23

Family

ID=17394060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26377192A Expired - Fee Related JP3158722B2 (en) 1992-10-01 1992-10-01 Gas-liquid separation type heat exchanger

Country Status (1)

Country Link
JP (1) JP3158722B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5806585A (en) * 1995-02-27 1998-09-15 Mitsubishi Denki Kabushiki Kaisha Heat exchanger, refrigeration system, air conditioner, and method and apparatus for fabricating heat exchanger
JP2005134009A (en) * 2003-10-29 2005-05-26 Mitsubishi Electric Corp Refrigerant distributor
US7044200B2 (en) * 2004-02-26 2006-05-16 Carrier Corporation Two-phase refrigerant distribution system for multiple pass evaporator coils
US20100126213A1 (en) * 2007-06-15 2010-05-27 Tsinghua University Liquid-Vapor Separating Method and a Liquid-Vapor Separating Type Evaporator
SE531701C2 (en) 2007-11-05 2009-07-14 Alfa Laval Corp Ab Liquid separator for a vaporization system
WO2009152015A2 (en) * 2008-06-10 2009-12-17 Carrier Corporation Integrated flow separator and pump-down volume device for use in a heat exchanger
JP2010019457A (en) * 2008-07-09 2010-01-28 Sanden Corp Refrigerating circuit
KR101502590B1 (en) * 2014-06-17 2015-03-16 (주) 지산에너텍 Heat exchange system
ES2733236T3 (en) 2014-08-19 2019-11-28 Carrier Corp Microchannel heat exchanger with low refrigerant charge
CN104315763B (en) * 2014-09-26 2016-04-20 烟台冰轮股份有限公司 A kind of liquids recovery apparatus for straight swollen full liquid cooling blower fan
CN105258411B (en) * 2015-10-12 2018-02-13 杭州三花微通道换热器有限公司 Gas-liquid separation pipe and heat exchanger for heat exchanger
CN106895611A (en) * 2015-12-18 2017-06-27 清华大学 A kind of distribution method of dry evaporator and refrigerant
DE102017109313B4 (en) * 2017-05-02 2021-09-16 Hanon Systems Device for heat transfer for a refrigerant circuit of an air conditioning system of a motor vehicle and air conditioning system with the device
FR3066586B1 (en) * 2017-05-19 2019-05-03 Valeo Systemes Thermiques HEAT EXCHANGER FOR A REFRIGERANT FLUID CIRCUIT
EP3663678A4 (en) * 2017-08-03 2020-08-05 Mitsubishi Electric Corporation Refrigerant distributor, heat exchanger, and refrigeration cycle device
CN109813153A (en) * 2019-02-18 2019-05-28 江苏科技大学 A kind of dry pipe shell type heat exchanger improving refrigerant feed liquid distribution

Also Published As

Publication number Publication date
JPH06117728A (en) 1994-04-28

Similar Documents

Publication Publication Date Title
JP3158722B2 (en) Gas-liquid separation type heat exchanger
CN100416180C (en) Vapor compression cycle having ejector
US6467303B2 (en) Hot discharge gas desuperheater
US6389818B2 (en) Method and apparatus for increasing the efficiency of a refrigeration system
CN101329115B (en) Evaporator having ejector
US4563879A (en) Heat pump with capillary tube-type expansion device
JP3416963B2 (en) Gas-liquid separator
EP0249472A2 (en) Refrigeration system with hot gas pre-cooler
US5493875A (en) Vehicle air conditioning system utilizing refrigerant recirculation within the evaporatorccumulator circuit
WO2005019737A2 (en) Multizone air-conditioning system with a single frequency compressor
JP2003279195A (en) Refrigerating cycle device, and condenser
JP2002228282A (en) Refrigerating device
JP2004232924A (en) Refrigeration cycle device
US20060005571A1 (en) Refrigerant system with reheat function provided by auxiliary heat exchanger
CN211716931U (en) Gas-liquid separator and water chilling unit
JP3140908B2 (en) Refrigerant circulation system
US4237698A (en) Motor cooling system for refrigeration machine
JPH10196984A (en) Air conditioner
WO2022228345A1 (en) Heat pump system
CN219141179U (en) Oil separator and air conditioning unit equipped with same
JP2000234818A (en) Refrigerant supercooling mechanism of air conditioner
JPH10259959A (en) Heating device using refrigeration cycle
JPH06101935A (en) Refrigerating cycle
JPS6240135Y2 (en)
JP2522982B2 (en) Air-cooled absorption refrigerator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090216

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090216

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees