JPH06101935A - Refrigerating cycle - Google Patents

Refrigerating cycle

Info

Publication number
JPH06101935A
JPH06101935A JP25278992A JP25278992A JPH06101935A JP H06101935 A JPH06101935 A JP H06101935A JP 25278992 A JP25278992 A JP 25278992A JP 25278992 A JP25278992 A JP 25278992A JP H06101935 A JPH06101935 A JP H06101935A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
flow divider
side flow
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25278992A
Other languages
Japanese (ja)
Inventor
Toshiya Ueno
壽也 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP25278992A priority Critical patent/JPH06101935A/en
Publication of JPH06101935A publication Critical patent/JPH06101935A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To obtain a refrigerating cycle free from impairing the heat exchanging efficiency of an evaporator by passing the refrigerant of liquid phase through nearly all capillary tubes of the evaporator. CONSTITUTION:In an evaporator 2 included in a refrigerating cycle, the refrigerant of gas-liquid phase is injected from a compressor and sent through a condenser, an expansion valve and an inlet pipe 4 into an inlet flow diverter 10, where the refrigerant is separated into an upper gas phase and a lower liquid phase. At that time, the refrigerant of the upper gas phase is sent through a bypass 6 connected between the upper part of the inlet flow diverter 10 and the upper part of an outlet flow diverter 11 and then through an outlet pipe 5 back into the compressor. Therefore, there is no possibility of the refrigerant of gas phase entering the capillary tubes 3 for conducting heat exchange with air and the refrigerant of liquid phase is allowed to flow into the capillary tubes 3 and after heating for evaporation is sent through the outlet flow diverter 11 and the outlet pipe 5 back into the compressor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,例えば空気調和機など
の冷凍サイクルに用いられる蒸発器の改良に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of an evaporator used in a refrigerating cycle such as an air conditioner.

【0002】[0002]

【従来の技術】近年,空気調和機などのコンパクト化の
傾向に伴い,上記空気調和機の冷凍サイクルに用いられ
る熱交換器として,高い熱交換効率を保持しつつしかも
コンパクトな熱交換器が要求されている。そこで,上記
熱交換器の一例となる従来の蒸発器2b を図4及び図5
に示す。この蒸発器2b では,銅等の金属を用いて螺旋
状に形成された複数の毛細管3(冷媒管)が上下方向に
並列に配備され,それぞれの両端が入側分流器10と出
側分流器11とに接続されている。これによって,所定
量の冷媒を通すための所定の総流路断面積を確保すると
共に,上記入側分流器10と出側分流器11との間の距
離を極力短くするように工夫されている。上記従来の蒸
発器2b によれば, 圧縮機から吐出され凝縮器及び膨張
弁(それぞれ図外)を経た気液二相状態の冷媒が,入側
分流器10下部の流入管4から入側分流器10内に流入
する。そして,この入側分流器10内に流入した冷媒
は,それぞれの冷媒管3を通過する際に外部の空気から
受熱して気化した後,出側分流器11で合流する。さら
に,合流後の冷媒は,出側分流器11上部の流出管5か
ら上記圧縮機に向けて流出する。尚,上記入側分流器1
0及び出側分流器11の内部では,図5に示すように,
入側分流器10又は出側分流器11への各毛細管3の接
続部の装入長さにバラツキ(最大値δ)が発生する。こ
のようなバラツキは蒸発器2b の組立工程上避けがた
く,しかも各毛細管3に分流される冷媒量のバランスに
大きく影響する。そこで,この蒸発器2b の入側分流器
10及び出側分流器11には,各毛細管3の装入長さの
バラツキの影響を解消する為に,挿入部材19がそれぞ
れ配備され,各毛細管3はそれぞれの先端が挿入部材1
9から各分流器内に突出しないように接続されている。
このように図5に示した構成の蒸発器2b は例えば特開
平3−31665号公報に開示されている。
2. Description of the Related Art In recent years, with the trend toward compact air conditioners and the like, there is a demand for a compact heat exchanger that maintains high heat exchange efficiency as a heat exchanger used in the refrigeration cycle of the air conditioner. Has been done. Therefore, a conventional evaporator 2 b, which is an example of the heat exchanger, is shown in FIGS.
Shown in. In this evaporator 2 b , a plurality of capillaries 3 (refrigerant pipes) formed in a spiral shape using a metal such as copper are arranged in parallel in the vertical direction, and both ends of each of the capillaries 3 are inlet side flow dividers 10 and outlet side flow dividers. It is connected to the container 11. As a result, a predetermined total flow passage cross-sectional area for passing a predetermined amount of refrigerant is secured, and the distance between the inlet side flow divider 10 and the outlet side flow divider 11 is designed to be as short as possible. . According to the above-mentioned conventional evaporator 2 b , the refrigerant in the gas-liquid two-phase state discharged from the compressor and passing through the condenser and the expansion valve (not shown) is introduced from the inlet pipe 4 below the inlet side flow divider 10 to the inlet side. It flows into the flow divider 10. The refrigerant flowing into the inlet-side flow divider 10 receives heat from the outside air and vaporizes when passing through the respective refrigerant pipes 3, and then joins in the outlet-side flow divider 11. Further, the combined refrigerant flows out from the outflow pipe 5 above the outlet flow divider 11 toward the compressor. In addition, the above-mentioned shunt 1
As shown in FIG. 5, inside 0 and the outlet side flow divider 11,
A variation (maximum value δ) occurs in the charging length of the connecting portion of each capillary tube 3 into the inlet side flow divider 10 or the outlet side flow divider 11. Such variations are unavoidable in the process of assembling the evaporator 2 b , and also have a great influence on the balance of the amount of refrigerant divided into the capillaries 3. Therefore, in order to eliminate the influence of the variation in the charging length of each capillary tube 3, the insertion member 19 is provided in each of the inlet flow distributor 10 and the outlet flow distributor 11 of the evaporator 2 b. 3 has insert member 1 at each tip
9 are connected so as not to project into the respective flow dividers.
Thus, the evaporator 2 b having the structure shown in FIG. 5 is disclosed in, for example, Japanese Patent Laid-Open No. 3-31665.

【0003】[0003]

【発明が解決しようとする課題】ところで,上記従来の
蒸発器2b では,上記流入管4から入側分流器10内に
気液二相状態で流入した冷媒は,重力の影響により上記
入側分流器10内で気相の冷媒と液相の冷媒とに上下に
分離する場合がある。このように分離した気相の冷媒
は,毛細管3外を流通する空気から受熱する熱量が液相
の冷媒と比べて潜熱分小さい為,当該蒸発器2b の熱交
換効率を損なうという問題があった。そこで,本発明の
目的は, 蒸発器のいずれの毛細管(冷媒管)にも気相の
みの冷媒を極力通すことなく,ほとんどすべての毛細管
に液相の冷媒を通すことにより蒸発器の熱交換効率を損
なうことのない冷凍サイクルを提供することである。
[0007] Incidentally, the above in the conventional evaporator 2 b, the refrigerant flowing in the gas-liquid two-phase state in the inlet side diverter 10 from the inflow pipe 4, the upper fill side under the influence of gravity In the flow divider 10, a gas-phase refrigerant and a liquid-phase refrigerant may be vertically separated. The thus separated gas-phase refrigerant has a problem that the amount of heat received from the air flowing outside the capillary tube 3 is smaller than that of the liquid-phase refrigerant by the latent heat, so that the heat exchange efficiency of the evaporator 2 b is impaired. It was Therefore, an object of the present invention is to pass the liquid-phase refrigerant through almost all capillaries without allowing the refrigerant in the vapor phase to pass through any of the capillaries (refrigerant tubes) of the evaporator as much as possible. It is to provide a refrigeration cycle that does not impair.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に,本発明が採用する主たる手段は,その要旨とすると
ころが,圧縮機から吐出され凝縮器及び冷媒膨張機構を
経た冷媒が流入する入側分流器と当該入側分流器からの
冷媒が流出する出側分流器とが,上下方向に並列に配備
された複数の冷媒管を介して接続され,上記冷媒管の周
囲を流通する空気により冷媒管内の冷媒を加熱する蒸発
器を備えた冷凍サイクルにおいて,上記入側分流器の上
部と上記出側分流器の上部とをバイパス管によって連通
させたことを特徴とする冷凍サイクルとして構成されて
いる。尚,上記入側分流器内に流入した冷媒のほとんど
が液相の冷媒である場合には,気相の冷媒のみならず液
相の冷媒も上記バイパス管を通って出側分流器の上部か
ら流出し,上記複数の冷媒管を流通しない場合がある。
これによって,蒸発器の熱交換効率が損なわれる。逆
に,多くの気相の冷媒を含む冷媒が入側分流器内に流入
した場合には,上記気相の冷媒の全量を上記バイパス管
から出側分流器の上部に流出しきれず,気相の冷媒が上
記複数の冷媒管を流通することとなり,同じく蒸発器の
熱交換効率を損なうという問題を生じることとなる。こ
のような問題を解決するために,本発明は,上記主たる
手段の構成に加えて,上記バイパス管に絞り弁を設け,
上記冷媒管の温度と上記出側分流器の温度との温度差に
基づいて上記絞り弁の弁開度を制御するようにした構成
を採用する。さらに,一般に冷凍サイクルの起動時に
は,蒸発器内部が急激に低圧となり,これによって蒸発
器内部の冷媒は大半が気相の冷媒となる。その為,上記
複数の冷媒管が,例えば管内径の極めて小さな毛細管で
ある場合,上記毛細管内に液封現象が生じる場合があ
り,これによって気相の冷媒が流れなくなることがあ
る。このような問題を解消すべく,本発明は,上記主た
る手段の構成または先に述べた構成に加えて,冷媒膨張
機構の運転初期時の弁開度を,定常運転時の弁開度より
も大きくするようにした冷凍サイクルを提供する。
In order to achieve the above-mentioned object, the main means adopted by the present invention is, in essence, that the refrigerant discharged from the compressor flows through the condenser and the refrigerant expansion mechanism. The side shunt and the outlet shunt from which the refrigerant flows out of the inlet shunt are connected via a plurality of refrigerant pipes arranged in parallel in the vertical direction, and the air flowing around the refrigerant tub is used. In a refrigeration cycle including an evaporator for heating a refrigerant in a refrigerant pipe, the refrigeration cycle is characterized in that an upper portion of the inlet side flow divider and an upper portion of the output side flow divider are connected by a bypass pipe. There is. When most of the refrigerant that has flowed into the inlet-side flow divider is a liquid-phase refrigerant, not only the vapor-phase refrigerant but also the liquid-phase refrigerant passes through the bypass pipe from the upper part of the outlet-side flow divider. It may flow out and may not flow through the plurality of refrigerant pipes.
This impairs the heat exchange efficiency of the evaporator. On the contrary, when a refrigerant containing a large amount of vapor-phase refrigerant flows into the inlet-side flow divider, the entire amount of the vapor-phase refrigerant cannot flow out from the bypass pipe to the upper portion of the outlet-side flow divider, so This refrigerant flows through the plurality of refrigerant tubes, which also causes a problem of impairing the heat exchange efficiency of the evaporator. In order to solve such a problem, in the present invention, in addition to the structure of the main means, a throttle valve is provided in the bypass pipe,
A configuration is adopted in which the valve opening of the throttle valve is controlled based on the temperature difference between the temperature of the refrigerant pipe and the temperature of the outlet flow divider. Further, generally, when the refrigeration cycle is started, the inside of the evaporator suddenly has a low pressure, and most of the refrigerant inside the evaporator becomes a gas-phase refrigerant. Therefore, when the plurality of refrigerant tubes are, for example, capillaries having an extremely small inner diameter, a liquid sealing phenomenon may occur in the capillaries, which may prevent the gas-phase refrigerant from flowing. In order to solve such a problem, the present invention has, in addition to the configuration of the main means or the configuration described above, the valve opening degree at the initial operation of the refrigerant expansion mechanism, as compared with the valve opening degree at the time of steady operation. Provide a refrigeration cycle that is designed to be large.

【0005】[0005]

【作用】本発明に係る冷凍サイクルにおいて,圧縮機か
ら吐出され凝縮器及び冷媒膨張機構を経た冷媒は蒸発器
の入側分流器に流入する。ここで,上記流入した冷媒
は,重力の作用により気相の冷媒と液相の冷媒とに上下
に分離する。そして,上記気相の冷媒はバイパス管を流
通して出側分流器の上部を経て蒸発器外に流出する。従
って入側分流器と出側分流器との間に配備された複数の
冷媒管には,上記気相の冷媒が流入することなく液相の
冷媒がそれぞれ流入し各冷媒管の周囲を流通する空気に
より加熱される。従って,上記気相の冷媒による蒸発器
の熱交換効率の低下を防止することができる。
In the refrigeration cycle according to the present invention, the refrigerant discharged from the compressor and passed through the condenser and the refrigerant expansion mechanism flows into the inlet side flow divider of the evaporator. Here, the inflowing refrigerant is vertically separated into a gas-phase refrigerant and a liquid-phase refrigerant by the action of gravity. Then, the vapor-phase refrigerant flows through the bypass pipe, passes through the upper part of the outlet flow divider, and flows out of the evaporator. Therefore, the refrigerant in the liquid phase does not flow into the plurality of refrigerant pipes provided between the inlet-side flow divider and the outlet-side flow divider, and flows around the respective refrigerant pipes. Heated by air. Therefore, it is possible to prevent the heat exchange efficiency of the evaporator from being lowered by the vapor phase refrigerant.

【0006】[0006]

【実施例】以下添付図面を参照して,本発明を具体化し
た実施例につき説明し,本発明の理解に供する。尚,以
下の実施例は,本発明を具体化した一例であって,本発
明の技術的範囲を限定する性格のものではない。ここ
に,図1は本発明の一実施例に係る冷凍サイクルを示す
概略構成図,図2は上記冷凍サイクルに配備された蒸発
器の外観を示す正面図,図3は上記冷凍サイクルに配備
される蒸発器の別例を示す正面図である。ただし,図4
及び図5に示した上記従来の冷凍サイクルの蒸発器2b
と共通する要素には同一の符号を使用すると共に,その
詳細な説明は省略する。本実施例に係る冷凍サイクル1
は,図1に示すように,高温高圧の気相の冷媒を吐出す
圧縮機13と,上記圧縮機13からの冷媒と送風機17
からの室外空気とを熱交換させることにより上記冷媒を
高温高圧の液相冷媒にする凝縮器14と,上記凝縮器1
4からの液相の冷媒を膨張させ低温低圧の気相冷媒にす
る膨張弁15(冷媒膨張機構の一例)と,上記液相冷媒
の一部が蒸発し気液二相流となった冷媒と送風機18か
らの室内空気との熱交換により上記冷媒を低温低圧の気
相の冷媒にする蒸発器2とを備えている。これらの圧縮
機13,凝縮器14,膨張弁15及び蒸発器2はそれぞ
れ冷媒管20を介して連結されている。上記冷凍サイク
ル1の蒸発器2は,図2に示すように,上記従来の蒸発
器2bと基本的構造をほぼ同様とし,この従来の蒸発器
b との特徴的な相違点は,複数の毛細管3の上方であ
って,上記膨張弁15からの気液二相状態の冷媒が流入
管4を経て流入する入側分流器10の上部と出側分流器
11の上部とが上記毛細管3よりも管内径が極めて大き
く,且つ管長が極めて短いバイパス管6によって連通さ
れたことである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying the present invention will be described below with reference to the accompanying drawings for the understanding of the present invention. The following embodiments are examples of embodying the present invention and are not intended to limit the technical scope of the present invention. 1 is a schematic configuration diagram showing a refrigeration cycle according to an embodiment of the present invention, FIG. 2 is a front view showing the appearance of an evaporator provided in the refrigeration cycle, and FIG. 3 is provided in the refrigeration cycle. It is a front view which shows another example of the evaporator. However, Figure 4
And the evaporator 2 b of the conventional refrigeration cycle shown in FIG.
The same reference numerals are used for the elements common to and the detailed description thereof is omitted. Refrigeration cycle 1 according to the present embodiment
As shown in FIG. 1, the compressor 13 discharges a high-temperature and high-pressure gas-phase refrigerant, and the refrigerant from the compressor 13 and a blower 17
A condenser 14 for converting the refrigerant into a high-temperature and high-pressure liquid-phase refrigerant by exchanging heat with the outdoor air from the condenser 1;
An expansion valve 15 (an example of a refrigerant expansion mechanism) that expands the liquid-phase refrigerant from 4 into a low-temperature low-pressure vapor-phase refrigerant, and a refrigerant that has become a gas-liquid two-phase flow by evaporating a part of the liquid-phase refrigerant. An evaporator 2 is provided which converts the refrigerant into a low-temperature low-pressure gas-phase refrigerant by heat exchange with room air from the blower 18. The compressor 13, the condenser 14, the expansion valve 15 and the evaporator 2 are connected to each other via a refrigerant pipe 20. Evaporator 2 of the refrigeration cycle 1, as shown in FIG. 2, the conventional evaporator 2 b and the basic structure is substantially the same, characteristic differences between the conventional evaporator 2 b has a plurality Above the capillary tube 3, and the upper part of the inlet side flow distributor 10 and the upper part of the output side flow distributor 11 into which the gas-liquid two-phase refrigerant from the expansion valve 15 flows in via the inflow pipe 4. The bypass pipe 6 has an extremely large inner diameter and a very short pipe length.

【0007】そこで,上記した構成の冷媒1の蒸発器2
によれば,流入管4から気液二相状態で入側分流器10
内に流入した冷媒は,重力の影響により,上記入側分流
器10内で気相と液相とに上下に分離する。そこで,入
側分流器10の上部の気相の冷媒は,毛細管3と比べて
圧力損失が極めて小さなバイパス管6を流通して出側分
流器11の上部に至り,更に流出管5から圧縮機13の
吸込側へ戻る。従って,上記気相の冷媒はいずれの毛細
管3にも流入することがなく,全ての毛細管3には液相
の冷媒がそれぞれ分流され,各毛細管3内の冷媒は室内
空気との熱交換により吸熱して気相状態に変化した後,
出側分流器11内で合流する。さらに,各毛細管3から
の冷媒は上記バイパス管6からの冷媒と合流した後,流
出管5から上記圧縮機13へ戻る。このように,すべて
の毛細管3には,気相の冷媒と比べて多量の熱量を受熱
することのできる液相の冷媒が流通するので,上記凝縮
器2の熱交換効率は損なわれることがなく,高い効率に
保持される。一般に,冷凍サイクル1の運転条件によ
り,上記したように気液二相状態で入側分流器10内に
流入した冷媒の乾き度は変化する。そして,例えば入側
分流器10内に流入した冷媒の乾き度が小さすぎる場合
には,入側分流器10内における気相の冷媒量が極めて
小さくなる。その為,気相の冷媒のみならず液相の冷媒
もバイパス管6を通って上記各毛細管3を迂回する。こ
れにより,上記蒸発器2の熱交換効率が悪化する。逆
に,入側分流器10内に流入した冷媒の乾き度が大きす
ぎる場合には,上記入側分流器10内における気相の冷
媒が極めて多くなり,これにより上記気相の冷媒が一部
の毛細管3に流入して上記蒸発器2の熱交換効率を損な
わせる。
Therefore, the evaporator 2 of the refrigerant 1 having the above-mentioned structure
According to the method, according to the inflow pipe 4, the inlet-side flow divider 10 in the gas-liquid two-phase state is provided.
The refrigerant flowing into the inside is vertically separated into a gas phase and a liquid phase in the inlet side flow divider 10 due to the influence of gravity. Therefore, the gas-phase refrigerant in the upper part of the inlet side flow distributor 10 flows through the bypass pipe 6 having a pressure loss extremely smaller than that of the capillary tube 3 to reach the upper part of the outlet side flow distributor 11, and further from the outlet pipe 5 to the compressor. Return to the suction side of 13. Therefore, the refrigerant in the gas phase does not flow into any of the capillaries 3, the refrigerant in the liquid phase is diverted to all the capillaries 3, and the refrigerant in each of the capillaries 3 absorbs heat by exchanging heat with indoor air. After changing to the gas phase,
Merge in the outlet flow divider 11. Further, the refrigerant from each capillary tube 3 merges with the refrigerant from the bypass tube 6, and then returns from the outflow tube 5 to the compressor 13. As described above, since the liquid-phase refrigerant capable of receiving a larger amount of heat than the vapor-phase refrigerant flows through all the capillaries 3, the heat exchange efficiency of the condenser 2 is not impaired. , Maintained in high efficiency. Generally, depending on the operating conditions of the refrigeration cycle 1, as described above, the dryness of the refrigerant flowing into the inlet side flow divider 10 in the gas-liquid two-phase state changes. Then, for example, when the degree of dryness of the refrigerant flowing into the inlet-side flow divider 10 is too low, the amount of vapor-phase refrigerant in the inlet-side flow divider 10 becomes extremely small. Therefore, not only the vapor-phase refrigerant but also the liquid-phase refrigerant passes through the bypass tubes 6 and bypasses the respective capillary tubes 3. As a result, the heat exchange efficiency of the evaporator 2 deteriorates. On the contrary, when the dryness of the refrigerant flowing into the inlet-side flow divider 10 is too large, the amount of the vapor-phase refrigerant in the inlet-side flow divider 10 becomes extremely large, which causes a part of the vapor-phase refrigerant. Flowing into the capillary tube 3 of the above and impairs the heat exchange efficiency of the evaporator 2.

【0008】そこで,上記したような不都合を解消する
為,図3に示すような蒸発器2a が採用される。この蒸
発器2a では,上記バイパス管6に設けられ当該バイパ
ス管6の冷媒流通量を操作する絞り弁7と,最上位の毛
細管3の出側分流器11側の表面に設けられ,上記毛細
管3の表面温度を検出する毛細管温度センサ8と,上記
出側分流器11の表面に設けられ,この出側分流器11
の表面温度を検出する出側分流器温度センサ9とが設け
られている。また,上記冷凍サイクル1を運転制御する
制御回路16(図1参照)が各温度センサにより検出さ
れた上記毛細管3の表面温度と出側分流器11の表面温
度との温度差に基づいて,上記絞り弁7の弁開度を制御
するように構成されている。具体的に言えば,室内空気
から冷媒に与えられる熱は,この冷媒が気相の場合には
顕熱として用いられ,液相の場合には潜熱及び顕熱とし
て用いられる。これによって,一定量の熱量が与えられ
た場合,気相の冷媒は著しく温度上昇する。これに対
し,液相の冷媒は上記潜熱の作用によってそれほど高温
にならない。そこで,上記毛細管温度センサ8及び出側
分流器温度センサ9により検出されたそれぞれの検出温
度の温度差が,予め設定された所定温度(最上位の毛細
管3にのみ気相の冷媒が流通した時の毛細管温度とこの
時の出側分流器温度との温度差)未満になるように,上
記温度差に基づいて制御回路16により絞り弁7の弁開
度が開閉制御される。従って,上記蒸発器2a によれ
ば,冷凍サイクル1の運転条件の変化により入側分流器
10に流入した気液二相状態の冷凍サイクルの乾き度が
変化した場合でも,いずれの毛細管3にも気相の冷媒を
流通させることがなく,すべての毛細管3に液相の冷媒
を流通させることができる。その結果,上記した運転条
件下でも,蒸発器2a の熱交換効率を損なうことがな
い。又,上記制御回路16は,冷凍サイクル1の運転初
期時における一定時間の間,膨張弁15の弁開度を定常
運転時の弁開度よりも大きくするように構成されてい
る。従って,上記制御回路16によれば,冷凍サイクル
1の運転初期時に膨張弁15から入側分流器10に流入
した冷媒のほとんどが液相の冷媒となる。その結果,圧
縮機13の起動により冷媒が急速に気化した蒸発器2
(2a )内に充分な量の液相の冷媒を送り込むことがで
きる。その結果,各毛細管3内が気相の冷媒に満たされ
ることがなく,これらの毛細管3内で冷媒の流れを止め
るような液封現象を生じることがなく,上記冷凍サイク
ル1の運転状態を迅速に定常運転の状態に移行させるこ
とができる。尚,上記各実施例の蒸発器2,2a では,
入側分流器10の上部と出側分流器11の上部とを連通
するバイパス管6が,すべての毛細管3の上方に配備さ
れたが,これに限定されるものではない。例えば上下方
向に並列に配備される毛細管3の数が多い場合には,最
上位の毛細管3よりもわずかながら下方に上記バイパス
管6を配備した場合にも,先に述べた各実施例とほぼ同
等の効果を奏することとなる。
Therefore, in order to eliminate the above-mentioned inconvenience, an evaporator 2a as shown in FIG. 3 is adopted. In this evaporator 2 a , a throttle valve 7 which is provided in the bypass pipe 6 for controlling the amount of refrigerant flowing through the bypass pipe 6 and a surface of the uppermost capillary 3 on the outlet flow distributor 11 side are provided with the capillaries. Capillary temperature sensor 8 for detecting the surface temperature of 3 and the output side flow divider 11 provided on the surface of the output side flow divider 11.
And an outlet-side shunt temperature sensor 9 for detecting the surface temperature of the. Further, based on the temperature difference between the surface temperature of the capillary tube 3 and the surface temperature of the outlet flow divider 11, the control circuit 16 (see FIG. 1) for controlling the operation of the refrigeration cycle 1 detects It is configured to control the valve opening of the throttle valve 7. Specifically, the heat given to the refrigerant from the indoor air is used as sensible heat when the refrigerant is in the gas phase, and is used as latent heat and sensible heat when the refrigerant is in the liquid phase. As a result, when a certain amount of heat is applied, the temperature of the vapor phase refrigerant rises significantly. On the other hand, the liquid-phase refrigerant does not reach such a high temperature due to the action of the latent heat. Therefore, the temperature difference between the respective temperatures detected by the capillary temperature sensor 8 and the outlet-side shunt temperature sensor 9 is a predetermined temperature (when the vapor phase refrigerant flows only in the uppermost capillary tube 3). Based on the temperature difference, the opening degree of the throttle valve 7 is controlled so as to be less than the temperature difference between the capillary temperature and the outlet flow divider temperature at this time. Therefore, according to the evaporator 2a , even when the dryness of the gas-liquid two-phase refrigeration cycle that has flowed into the inlet side flow divider 10 changes due to a change in the operating conditions of the refrigeration cycle 1, whichever capillary tube 3 Also, the liquid-phase refrigerant can be circulated in all the capillaries 3 without circulating the gas-phase refrigerant. As a result, the heat exchange efficiency of the evaporator 2a is not impaired even under the above-mentioned operating conditions. Further, the control circuit 16 is configured to make the valve opening degree of the expansion valve 15 larger than the valve opening degree during the steady operation for a certain time in the initial operation of the refrigeration cycle 1. Therefore, according to the control circuit 16, most of the refrigerant that has flowed from the expansion valve 15 into the inlet side flow divider 10 at the beginning of the operation of the refrigeration cycle 1 becomes a liquid-phase refrigerant. As a result, the evaporator 2 in which the refrigerant is rapidly vaporized by the activation of the compressor 13
A sufficient amount of liquid-phase refrigerant can be fed into ( 2a ). As a result, the inside of each of the capillaries 3 is not filled with the vapor-phase refrigerant, and the liquid sealing phenomenon that stops the flow of the refrigerant does not occur in these capillaries 3 and the operation state of the refrigeration cycle 1 is quickly performed. It is possible to shift to the state of steady operation. Incidentally, in the evaporators 2 and 2a of the above-mentioned respective embodiments,
The bypass pipe 6 which connects the upper part of the inlet-side flow divider 10 and the upper part of the outlet-side flow divider 11 is provided above all the capillaries 3, but the present invention is not limited to this. For example, when the number of the capillaries 3 arranged in parallel in the vertical direction is large, even when the above-mentioned bypass pipe 6 is arranged slightly below the uppermost capillaries 3, it is almost the same as each of the above-described embodiments. The same effect will be produced.

【0009】[0009]

【発明の効果】本発明は上記したように構成されてい
る。それにより,蒸発器のほとんどの冷媒管に液相の冷
媒を通すことができる。その結果,上記蒸発器の熱交換
効率を損なうことがない。そして,バイパス管に絞り弁
を設け,冷媒管の温度と出側分流器の温度との温度差に
基づいて上記絞り弁の弁開度を制御するようにした構成
の場合,冷凍サイクルの運転条件が変化しても,この運
転条件に応じて,ほとんどの冷媒管に液相の冷媒を通す
ことが可能となる。更に,冷媒膨張機構の運転初期時の
弁開度を定常運転時の弁開度よりも大きくするようにし
た構成の場合,運転初期時に急速に低圧となる蒸発器内
に液相の冷媒を多量に流入させることができる。その結
果,上記蒸発器を定常運転時の状態に迅速に移行させる
ことができる。
The present invention is constructed as described above. This allows the liquid-phase refrigerant to pass through most of the refrigerant tubes of the evaporator. As a result, the heat exchange efficiency of the evaporator is not impaired. In the case where the throttle valve is provided in the bypass pipe and the valve opening of the throttle valve is controlled based on the temperature difference between the temperature of the refrigerant pipe and the temperature of the outlet flow divider, the operating conditions of the refrigeration cycle are Even if the temperature changes, it is possible to pass the liquid-phase refrigerant through most of the refrigerant tubes according to this operating condition. Furthermore, in the case of a configuration in which the valve opening at the beginning of operation of the refrigerant expansion mechanism is made larger than the valve opening at the time of steady operation, a large amount of liquid-phase refrigerant is stored in the evaporator, which rapidly becomes a low pressure at the beginning of operation. Can be flowed into. As a result, it is possible to quickly shift the evaporator to the normal operation state.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係る冷凍サイクルを示す
概略構成図。
FIG. 1 is a schematic configuration diagram showing a refrigeration cycle according to an embodiment of the present invention.

【図2】 上記冷凍サイクルに配備された蒸発器の外観
を示す正面図。
FIG. 2 is a front view showing an appearance of an evaporator provided in the refrigeration cycle.

【図3】 上記冷凍サイクルに配備される蒸発器の別例
を示す正面図。
FIG. 3 is a front view showing another example of the evaporator provided in the refrigeration cycle.

【図4】 本発明の背景の一例となる従来の冷凍サイク
ルに配備された蒸発器の外観を示す正面図。
FIG. 4 is a front view showing the external appearance of an evaporator provided in a conventional refrigeration cycle, which is an example of the background of the present invention.

【図5】 図 4の蒸発器の内部を示す正断面図。5 is a front sectional view showing the inside of the evaporator shown in FIG.

【符号の説明】[Explanation of symbols]

1…冷凍サイクル 2,2a ,2b …蒸発器 3…毛細管(冷媒管) 6…バイパス管 7…絞り弁 8…毛細管温度センサ 9…出側分流器温度センサ 10…入側分流器 11…出側分流器 13…圧縮機 14…凝縮器 15…膨張弁(冷媒膨張機構) 16…制御回路1 ... Refrigeration cycle 2, 2 a , 2 b ... Evaporator 3 ... Capillary pipe (refrigerant pipe) 6 ... Bypass pipe 7 ... Throttle valve 8 ... Capillary temperature sensor 9 ... Outflow shunt temperature sensor 10 ... Inflow shunt 11 ... Outflow side flow divider 13 ... Compressor 14 ... Condenser 15 ... Expansion valve (refrigerant expansion mechanism) 16 ... Control circuit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機から吐出され凝縮器及び冷媒膨張
機構を経た冷媒が流入する入側分流器と当該入側分流器
からの冷媒が流出する出側分流器とが,上下方向に並列
に配備された複数の冷媒管を介して接続され,上記冷媒
管の周囲を流通する空気により冷媒管内の冷媒を加熱す
る蒸発器を備えた冷凍サイクルにおいて,上記入側分流
器の上部と上記出側分流器の上部とをバイパス管によっ
て連通させたことを特徴とする冷凍サイクル。
1. An inlet-side flow divider into which a refrigerant discharged from a compressor and passed through a condenser and a refrigerant expansion mechanism flows, and an outlet-side flow divider from which a refrigerant flows out of the inlet-side flow divider are arranged in parallel in a vertical direction. In a refrigeration cycle equipped with an evaporator that is connected through a plurality of deployed refrigerant pipes and that heats the refrigerant in the refrigerant pipes by the air that flows around the refrigerant pipes, in the upper part of the inlet side flow divider and the outlet side. A refrigeration cycle characterized in that the upper part of the flow divider is connected by a bypass pipe.
【請求項2】 上記バイパス管に絞り弁を設け,上記冷
媒管の温度と上記出側分流器の温度との温度差に基づい
て上記絞り弁の弁開度を制御するようにした請求項1に
記載の冷凍サイクル。
2. A throttle valve is provided in the bypass pipe, and the valve opening of the throttle valve is controlled based on the temperature difference between the temperature of the refrigerant pipe and the temperature of the outlet flow divider. Refrigeration cycle described in.
【請求項3】 上記冷媒膨張機構の運転初期時の弁開度
を,定常運転時の弁開度よりも大きくするようにした請
求項1若しくは2に記載の冷凍サイクル。
3. The refrigeration cycle according to claim 1, wherein the valve opening degree of the refrigerant expansion mechanism at the initial operation is larger than the valve opening degree at the time of steady operation.
JP25278992A 1992-09-22 1992-09-22 Refrigerating cycle Pending JPH06101935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25278992A JPH06101935A (en) 1992-09-22 1992-09-22 Refrigerating cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25278992A JPH06101935A (en) 1992-09-22 1992-09-22 Refrigerating cycle

Publications (1)

Publication Number Publication Date
JPH06101935A true JPH06101935A (en) 1994-04-12

Family

ID=17242283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25278992A Pending JPH06101935A (en) 1992-09-22 1992-09-22 Refrigerating cycle

Country Status (1)

Country Link
JP (1) JPH06101935A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5806585A (en) * 1995-02-27 1998-09-15 Mitsubishi Denki Kabushiki Kaisha Heat exchanger, refrigeration system, air conditioner, and method and apparatus for fabricating heat exchanger
KR100483065B1 (en) * 2002-10-07 2005-04-15 위니아만도 주식회사 Unity of condenser and capillary tube for air-conditioner
KR101478115B1 (en) * 2013-06-03 2015-01-02 포스코에너지 주식회사 Waste heat recovery system of a fuel cell utilizing an absorption heat pump
JP2015010816A (en) * 2013-07-02 2015-01-19 三菱電機株式会社 Refrigerant circuit and air conditioning equipment
JP2020112274A (en) * 2019-01-08 2020-07-27 パナソニックIpマネジメント株式会社 Heat exchanger

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5806585A (en) * 1995-02-27 1998-09-15 Mitsubishi Denki Kabushiki Kaisha Heat exchanger, refrigeration system, air conditioner, and method and apparatus for fabricating heat exchanger
EP1106952A2 (en) 1995-02-27 2001-06-13 Mitsubishi Denki Kabushiki Kaisha Heat exchanger, refrigeration system, air conditioner, and method and apparatus for fabricating heat exchanger
EP1106952A3 (en) * 1995-02-27 2001-07-25 Mitsubishi Denki Kabushiki Kaisha Heat exchanger, refrigeration system, air conditioner, and method and apparatus for fabricating heat exchanger
KR100483065B1 (en) * 2002-10-07 2005-04-15 위니아만도 주식회사 Unity of condenser and capillary tube for air-conditioner
KR101478115B1 (en) * 2013-06-03 2015-01-02 포스코에너지 주식회사 Waste heat recovery system of a fuel cell utilizing an absorption heat pump
JP2015010816A (en) * 2013-07-02 2015-01-19 三菱電機株式会社 Refrigerant circuit and air conditioning equipment
JP2020112274A (en) * 2019-01-08 2020-07-27 パナソニックIpマネジメント株式会社 Heat exchanger

Similar Documents

Publication Publication Date Title
US3938349A (en) Refrigerating apparatus with superheat control
US4551983A (en) Refrigeration apparatus
US5165250A (en) Air conditioning system with thermal storage cycle control
CN114322106B (en) Air conditioning system
US11466908B2 (en) Outdoor heat exchanger and air conditioner having the same
CN106482375A (en) Air conditioner
EP0162720B1 (en) Heat pump with capillary tube-type expansion device
WO2013065233A1 (en) Refrigeration cycle apparatus and air conditioner provided with same
US4516408A (en) Refrigeration system for refrigerant heating type air conditioning apparatus
JP4462436B2 (en) Refrigeration equipment
JPH09126595A (en) Multi-chamber air conditioner
JPH06101935A (en) Refrigerating cycle
KR20200059578A (en) Supercooling heat exchanger and air conditioning system including the same
JP2004232924A (en) Refrigeration cycle device
JPH10259959A (en) Heating device using refrigeration cycle
US20240027077A1 (en) Hybrid multi-air conditioning system and method for controlling a hybrid multi-air conditioning system
JPH0849929A (en) Multiroom air-conditioning heat pump system
JPH03164661A (en) Air conditioner
US20240133602A1 (en) Air conditioner
JPS611963A (en) Method of controlling refrigerant for heat pump type air conditioner
JP2002286315A (en) Refrigerant circuit for air conditioner
JPS6343660B2 (en)
JPH0375475A (en) Refrigerator
JP2004148966A (en) Refrigeration cycle apparatus
JPH10205914A (en) Separated type heat pump