JP3413191B2 - Semiconductor package manufacturing method and semiconductor package - Google Patents

Semiconductor package manufacturing method and semiconductor package

Info

Publication number
JP3413191B2
JP3413191B2 JP2002137361A JP2002137361A JP3413191B2 JP 3413191 B2 JP3413191 B2 JP 3413191B2 JP 2002137361 A JP2002137361 A JP 2002137361A JP 2002137361 A JP2002137361 A JP 2002137361A JP 3413191 B2 JP3413191 B2 JP 3413191B2
Authority
JP
Japan
Prior art keywords
wiring
semiconductor element
semiconductor
element mounting
copper foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002137361A
Other languages
Japanese (ja)
Other versions
JP2002334950A (en
Inventor
直樹 福富
良明 坪松
文男 井上
聡夫 山崎
洋人 大畑
伸介 萩原
矩之 田口
宏 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27518849&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3413191(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2002137361A priority Critical patent/JP3413191B2/en
Publication of JP2002334950A publication Critical patent/JP2002334950A/en
Application granted granted Critical
Publication of JP3413191B2 publication Critical patent/JP3413191B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor package substrate which can cope with the high integration degree of a semiconductor. SOLUTION: An insulation support in places, in which the external connecting terminals of interconnections are formed is removed; through-holes for the external connecting terminals are formed; a plurality of sets of interconnections are formed on one face of the insulating support; a semiconductor element is mounted, via a die bonding tape, on the insulating support on which the plurality of sets of interconnections are formed; semiconductor-element terminals and the interconnections are made to have continuity, the semiconductor element is resin-sealed; external connecting terminals which are made to have continuity to the interconnections are formed at the through holes for the external connecting terminals; and the semiconductor package substrate is separated into individual semiconductor packages.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】(技術分野)本発明は、半導体パッケ−ジ
の製造法及び半導体パッケ−ジに関する。
TECHNICAL FIELD The present invention relates to a method of manufacturing a semiconductor package and a semiconductor package.

【0002】(背景技術)半導体の集積度が向上するに
従い、入出力端子数が増加している。従って、多くの入
出力端子数を有する半導体パッケージが必要になった。
一般に、入出力端子はパッケージの周辺に一列配置する
タイプと、周辺だけでなく内部まで多列に配置するタイ
プがある。前者は、QFP(Quad Flat Package)が代表的で
ある。これを多端子化する場合は、端子ピッチを縮小す
ることが必要であるが、0.5mmピッチ以下の領域では、
配線板との接続に高度な技術が必要になる。後者のアレ
イタイプは比較的大きなピッチで端子配列が可能なた
め、多ピン化に適している。
2. Description of the Related Art As the degree of integration of semiconductors has improved, the number of input / output terminals has increased. Therefore, a semiconductor package having a large number of input / output terminals has been required.
Generally, there are two types of input / output terminals, one type being arranged in one row around the package and the other type being arranged not only in the periphery but also inside. The former is typically QFP (Quad Flat Package). When making this a multi-terminal, it is necessary to reduce the terminal pitch, but in the area of 0.5 mm pitch or less,
Advanced technology is required to connect to the wiring board. The latter array type is suitable for increasing the number of pins because the terminals can be arranged at a relatively large pitch.

【0003】従来、アレイタイプは接続ピンを有するPG
A (Pin Grid Array)が一般的であるが、配線板との接続
は挿入型となり、表面実装には適していない。このた
め、表面実装可能なBGA (Ball Grid Array)と称するパ
ッケージが開発されている。BGAの分類としては、(1)セ
ラミックタイプ、(2)プリント配線板タイプ及び(3)TAB
(tape automated bonding)を使ったテープタイプなど
がある。このうち、セラミックタイプについては、従来
のPGAに比べるとマザーボードとパッケージ間の距離が
短くなるために、マザーボードとパッケージ間の熱応力
差に起因するパッケージ反りが深刻な問題である。ま
た、プリント配線板タイプについても、基板の反り、耐
湿性、信頼性などに加えて基板厚さが厚いなどの問題が
あり、TAB技術を適用したテープBGAが提案されている。
Conventionally, the array type is a PG having connection pins
A (Pin Grid Array) is generally used, but the connection to the wiring board is an insertion type and is not suitable for surface mounting. Therefore, a package called BGA (Ball Grid Array) that can be surface-mounted has been developed. BGA classifications include (1) ceramic type, (2) printed wiring board type, and (3) TAB
There is a tape type that uses (tape automated bonding). Among them, the ceramic type has a shorter distance between the motherboard and the package than the conventional PGA, and thus the package warpage due to the difference in thermal stress between the motherboard and the package is a serious problem. Also, regarding the printed wiring board type, there are problems such as a warp of the substrate, moisture resistance, reliability, and the like, and the thickness of the substrate is large. Therefore, a tape BGA to which the TAB technology is applied has been proposed.

【0004】パッケージサイズの更なる小型化に対応す
るものとして、半導体チップとほぼ同等サイズの、いわ
ゆるチップサイズパッケージ(CSP; Chip Size Packag
e)が提案されている。これは、半導体チップの周辺部
でなく、実装領域内に外部配線基板との接続部を有する
パッケージである。
In order to cope with further miniaturization of the package size, a so-called chip size package (CSP; Chip Size Packag) having almost the same size as a semiconductor chip is provided.
e) is proposed. This is a package having a connection portion with an external wiring board in the mounting area, not in the peripheral portion of the semiconductor chip.

【0005】具体例としては、バンプ付きポリイミドフ
ィルムを半導体チップの表面に接着し、チップと金リー
ド線により電気的接続を図った後、エポキシ樹脂などを
ポッティングして封止したもの(NIKKEI MATERIALS & T
ECHNOLOGY 94. 4, No.140, p18-19)や、仮基板上に半
導体チップ及び外部配線基板との接続部に相当する位置
に金属バンプを形成し、半導体チップをフェースダウン
ボンディング後、仮基板上でトランスファーモールドし
たもの(Smallest Flip-Chip-Like Package CSP; The S
econd VLSI Packaging Workshop of Japan, p46-50, 19
94)などである。
As a specific example, a polyimide film with bumps is adhered to the surface of a semiconductor chip, electrical connection is made with the chip and a gold lead wire, and then epoxy resin or the like is potted and sealed (NIKKEI MATERIALS & T
ECHNOLOGY 94.4, No.140, p18-19), or metal bumps are formed on the temporary substrate at positions corresponding to the connection parts of the semiconductor chip and the external wiring board. Transfer mold above (Smallest Flip-Chip-Like Package CSP; The S
econd VLSI Packaging Workshop of Japan, p46-50, 19
94) and so on.

【0006】一方、前述のように、BGAやCSP分野でポリ
イミドテープをベースフィルムとして利用したパッケー
ジが検討されている。この場合、ポリイミドテープとし
ては、ポリイミドフィルム上に接着材層を介して銅箔を
ラミネートしたものが一般的であるが、耐熱性や耐湿性
などの観点から銅箔上に直接ポリイミド層を形成した、
いわゆる2層フレキ基材が好ましい。2層フレキ基材の
製造方法としては、銅箔上にポリイミドの前駆体であ
るポリアミック酸を塗布し後熱硬化させる方法、硬化
したポリイミドフィルム上に真空成膜法や無電解めっき
法などにより金属薄膜を形成する方法に大別されるが、
例えば、レーザ加工を適用して所望する部分(第2の接
続機能部に相当)のポリイミドを除去して銅箔に達する
凹部を設ける場合には、ポリイミドフィルムはできる限
り薄いことが好ましい。反面、2層フレキ基材をリード
フレーム状に加工してハンドリングする場合、ベースフ
ィルム厚さが薄いとハンドリング性やフレームとしての
剛直性に欠けるなどの問題がある。
On the other hand, as mentioned above, packages using a polyimide tape as a base film are being studied in the BGA and CSP fields. In this case, as the polyimide tape, it is common to laminate a copper foil on the polyimide film via an adhesive layer, but from the viewpoint of heat resistance and moisture resistance, the polyimide layer was formed directly on the copper foil. ,
So-called two-layer flexible substrates are preferred. The two-layer flexible substrate may be manufactured by coating a copper precursor with polyamic acid, which is a precursor of polyimide, and then thermally curing it, or by vacuum-depositing or electroless plating on the cured polyimide film. It is roughly divided into methods for forming thin films,
For example, when laser processing is applied to remove a desired portion of the polyimide (corresponding to the second connection function portion) to form a recess reaching the copper foil, the polyimide film is preferably as thin as possible. On the other hand, when a two-layer flexible base material is processed into a lead frame shape and handled, if the base film is thin, there is a problem such as lack of handleability and rigidity as a frame.

【0007】以上のように小型化高集積度化に対応でき
る半導体パッケージとして、種々の提案がされている
が、性能、特性、生産性等全てにわたって満足するよう
一層の改善が望まれている。
As described above, various proposals have been made as a semiconductor package which can be made compact and highly integrated, but further improvement is desired so as to satisfy all of performance, characteristics, productivity and the like.

【0008】本発明は、小型化、高集積度化に対応でき
る半導体パッケージを、生産性良くかつ安定的に製造す
るを可能とする半導体パッケージの製造法及び半導体パ
ッケージを提供するものである。
The present invention provides a method of manufacturing a semiconductor package and a semiconductor package which enable stable manufacture of a semiconductor package which can be made compact and highly integrated with high productivity.

【0009】(発明の開示)本願の第一の発明は、 1A.導電性仮支持体の片面に配線を形成する工程、 1B.配線が形成された導電性仮支持体に半導体素子を
搭載し、半導体素子端子と配線を導通する工程、 1C.半導体素子を樹脂封止する工程、 1D.導電性仮支持体を除去し配線を露出する工程、 1E.露出された配線の外部接続端子が形成される箇所
以外に絶縁層を形成する工程、 1F.配線の絶縁層が形成されていない箇所に外部接続
端子を形成する工程を含むことを特徴とする半導体パッ
ケージの製造法である。
DISCLOSURE OF THE INVENTION The first invention of the present application is 1A. Step of forming wiring on one surface of the temporary conductive support, 1B. A step of mounting a semiconductor element on a conductive temporary support on which wiring is formed and electrically connecting the semiconductor element terminal and the wiring, 1C. Step of resin-sealing semiconductor element, 1D. Removing the temporary conductive support and exposing the wiring, 1E. A step of forming an insulating layer on a portion of the exposed wiring other than the portion where the external connection terminal is formed, 1F. It is a method of manufacturing a semiconductor package, including a step of forming an external connection terminal in a portion of the wiring where the insulating layer is not formed.

【0010】本願の第二の発明は、 2A.導電性仮支持体の片面に配線を形成する工程、 2B.配線が形成された導電性仮支持体の配線が形成さ
れた面に絶縁性支持体を形成する工程、 2C.導電性仮支持体を除去し配線を絶縁性支持体に転
写する工程、 2D.配線の外部接続端子が形成される箇所の絶縁性支
持体を除去し外部接続端子用透孔を設ける工程、 2E.配線が転写された絶縁性支持体に半導体素子を搭
載し、半導体素子端子と配線を導通する工程、 2G.半導体素子を樹脂封止する工程、 2H.外部接続端子用透孔に配線と導通する外部接続端
子を形成する工程を含むことを特徴とする半導体パッケ
ージの製造法である。
The second invention of the present application is 2A. A step of forming wiring on one surface of the conductive temporary support, 2B. A step of forming an insulating support on the wiring-formed surface of the conductive temporary support on which the wiring is formed, 2C. Removing the temporary conductive support and transferring the wiring to the insulating support, 2D. A step of removing the insulating support at a portion where the external connection terminal of the wiring is formed and providing a through hole for the external connection terminal, 2E. A step of mounting a semiconductor element on an insulating support to which the wiring is transferred and electrically connecting the semiconductor element terminal and the wiring, 2G. Step of resin-sealing semiconductor element, 2H. A method of manufacturing a semiconductor package, including a step of forming an external connection terminal electrically connected to a wiring in a through hole for an external connection terminal.

【0011】第二の発明に於いて、2A〜2Hの順に進
めるのが好ましいが、2Dの工程を2Bの前に行うよう
にしても良い。例えば2Bの工程を外部接続端子用透孔
を予め設けた絶縁フィルム絶縁性支持体を配線が形成さ
れた導電性仮支持体の配線が形成された面に貼り合わす
ことにより行っても良い。
In the second invention, it is preferable to proceed in the order of 2A to 2H, but the step of 2D may be performed before the step of 2B. For example, the step 2B may be performed by bonding an insulating film insulating support having a through hole for an external connection terminal in advance to the wiring-formed surface of the conductive temporary support having the wiring.

【0012】本願の第三の発明は、 3A.導電性仮支持体の片面に配線を形成する工程、 3B.配線が形成された導電性仮支持体に半導体素子を
搭載し、半導体素子端子と配線を導通する工程、 3C.半導体素子を樹脂封止する工程、 3D.配線の外部接続端子が形成される箇所以外の導電
性仮支持体を除去し導電性仮支持体よりなる外部接続端
子を形成する工程、 3E.外部接続端子の箇所以外に絶縁層を形成する工
程、を含むことを特徴とする半導体パッケージの製造法
である。
The third invention of the present application is 3A. Step of forming wiring on one surface of the conductive temporary support, 3B. A step of mounting a semiconductor element on a conductive temporary support on which wiring is formed and electrically connecting the semiconductor element terminal and the wiring, 3C. Step of resin-sealing semiconductor element, 3D. A step of removing the conductive temporary support other than the portion where the external connection terminal of the wiring is formed to form the external connection terminal made of the conductive temporary support, 3E. A method of manufacturing a semiconductor package, which comprises the step of forming an insulating layer other than the location of the external connection terminal.

【0013】本願の第四の発明は、 4A.導電性仮支持体の片面に配線を形成する工程、 4B.配線が形成された導電性仮支持体に半導体素子を
搭載し、半導体素子端子と配線を導通する工程、 4C.半導体素子を樹脂封止する工程、 4D.導電性仮支持体の半導体素子搭載面と反対側の配
線の外部接続端子が形成される箇所に、導電性仮支持体
と除去条件が異なる金属パターンを形成する工程、 4E.金属パターンが形成された箇所以外の導電性仮支
持体を除去する工程を含むことを特徴とする半導体パッ
ケージの製造法である。
The fourth invention of the present application is 4A. Step of forming wiring on one surface of the conductive temporary support, 4B. A step of mounting a semiconductor element on a conductive temporary support on which wiring is formed and electrically connecting the semiconductor element terminal and the wiring, 4C. Step of resin-sealing semiconductor element, 4D. A step of forming a metal pattern whose removal condition is different from that of the temporary conductive support at a position where an external connection terminal of a wiring on the side opposite to the semiconductor element mounting surface of the temporary conductive support is formed, 4E. A method of manufacturing a semiconductor package, including a step of removing a conductive temporary support other than a portion where a metal pattern is formed.

【0014】金属パターンとしてははんだが好ましく、
又ニッケル続いて金の層を積ねたものでも良い。
Solder is preferable as the metal pattern,
It may also be a nickel layer followed by a gold layer.

【0015】本願の第五の発明は、 5A.絶縁性支持体の片面に複数組の配線を形成する工
程、 5B.配線の外部接続端子となる箇所の絶縁性支持体を
除去し外部接続端子用透孔を設ける工程 5C.複数組の配線が形成された絶縁性支持体に半導体
素子を搭載し、半導体素子端子と配線を導通する工程、 5D.半導体素子を樹脂封止する工程、 5E.外部接続端子用透孔に配線と導通する外部接続端
子を形成する工程、 5F.個々の半導体パッケ−ジに分離する工程を含むこ
とを特徴とする半導体パッケージの製造法である。
The fifth invention of the present application is 5A. Step of forming a plurality of sets of wiring on one surface of the insulating support, 5B. Step 5C of removing the insulating support at the portion of the wiring to be the external connection terminal and providing a through hole for the external connection terminal. A step of mounting a semiconductor element on an insulating support on which a plurality of sets of wiring are formed and electrically connecting the semiconductor element terminal and the wiring, 5D. Step of resin-sealing semiconductor element, 5E. Step of forming an external connection terminal that is electrically connected to the wiring in the through hole for the external connection terminal, 5F. A method of manufacturing a semiconductor package, characterized by including a step of separating the semiconductor package into individual semiconductor packages.

【0016】第五の発明に於いて、製造工程は、5A〜
5Fの順に進めるのが好ましいが、5A、5Bを逆にし
ても良い。すなわち外部接続端子用透孔を設けた絶縁性
支持体に、複数組の配線を形成するようにしても良い。
In the fifth aspect of the invention, the manufacturing process is from 5A to
It is preferable to proceed in order of 5F, but 5A and 5B may be reversed. That is, a plurality of sets of wiring may be formed on the insulating support provided with the through holes for external connection terminals.

【0017】本願の第六の発明は、 6A.導電性仮支持体の片面に複数組の配線を形成する
工程、 6B.導電性仮支持体に形成された複数組の配線を所定
の単位個数になるように導電性仮支持体を切断分離し、
配線が形成された分離導電性仮支持体をフレ−ムに固着
する工程、 6C.配線が形成された導電性仮支持体に半導体素子を
搭載し、半導体素子端子と配線を導通する工程、 6D.半導体素子を樹脂封止する工程、 6E.導電性仮支持体を除去し配線を露出する工程、 6F.露出された配線の外部接続端子が形成される箇所
以外に絶縁層を形成する工程、 6G.配線の絶縁層が形成されていない箇所に外部接続
端子を形成する工程 6H.個々の半導体パッケ−ジに分離する工程を含むこ
とを特徴とする半導体パッケージの製造法である。
The sixth invention of the present application is 6A. Step of forming a plurality of sets of wiring on one surface of the conductive temporary support, 6B. The conductive temporary support is cut and separated so that a plurality of sets of wirings formed on the conductive temporary support have a predetermined unit number,
Step of fixing the separated conductive temporary support on which the wiring is formed to the frame, 6C. A step of mounting a semiconductor element on a conductive temporary support on which wiring is formed and electrically connecting the semiconductor element terminal and the wiring, 6D. Step of resin-sealing semiconductor element, 6E. Step of removing the conductive temporary support and exposing the wiring, 6F. A step of forming an insulating layer on a portion of the exposed wiring other than a portion where an external connection terminal is formed, 6G. Step 6H. Forming External Connection Terminals at a Part where the Insulating Layer of the Wiring is not Formed A method of manufacturing a semiconductor package, characterized by including a step of separating the semiconductor package into individual semiconductor packages.

【0018】6Bの所定の単位個数は1個が好ましい
が、生産性を上げるため複数個であっても良い。
The predetermined unit number of 6B is preferably one, but may be more than one in order to improve productivity.

【0019】本願の第七の発明は、 7A.絶縁性支持体の片面に複数組の配線を形成する工
程、 7B.配線の外部接続端子となる箇所の絶縁性支持体を
除去し外部接続端子用透孔を設ける工程 7C.絶縁性支持体に形成された複数組の配線を所定の
単位個数になるように絶縁性支持体を切断分離し、配線
が形成された分離絶縁性支持体をフレ−ムに固着する工
程、 7D.配線が形成された絶縁性支持体に半導体素子を搭
載し、半導体素子端子と配線を導通する工程、 7E.半導体素子を樹脂封止する工程、 7F.外部接続端子用透孔に配線と導通する外部接続端
子を形成する工程、 7G.個々の半導体パッケ−ジに分離する工程を含むこ
とを特徴とする半導体パッケージの製造法である。
The seventh invention of the present application is 7A. Step of forming a plurality of sets of wiring on one surface of the insulating support, 7B. Step 7C of removing the insulating support at the portion of the wiring to be the external connection terminal and providing a through hole for the external connection terminal. 7D, step of cutting and separating the insulating support so that a plurality of sets of wirings formed on the insulating support have a predetermined unit number, and fixing the separated insulating support on which the wiring is formed to the frame . A step of mounting a semiconductor element on an insulating support on which wiring is formed and electrically connecting the semiconductor element terminal and the wiring, 7E. Step of resin-sealing semiconductor element, 7F. A step of forming an external connection terminal in conduction with the wiring in the through hole for the external connection terminal, 7G. A method of manufacturing a semiconductor package, characterized by including a step of separating the semiconductor package into individual semiconductor packages.

【0020】製造工程は、7A〜7Gの順に進めるのが
好ましいが、第五の発明と同様7A、7Bを逆にしても
良い。
The manufacturing process is preferably carried out in the order of 7A to 7G, but 7A and 7B may be reversed as in the fifth invention.

【0021】本願の第八の発明は、1層の配線において
その配線の片面が半導体素子と接続する第1の接続機能
を持ち、その配線の反対側が外部の配線と接続する第2
の接続機能をもつように構成された配線を備えた半導体
パッケージの製造法であって、下記8A、8B、8C、
8Dの工程を含むことを特徴とする半導体パッケージの
製造法。 8A.耐熱性を有する金属箔付き絶縁基材の金属箔を複
数組の配線パターンに加工する工程。 8B.後工程で第2の接続機能部となる位置に、絶縁基
材側から配線パターンに達する凹部を設ける工程。 8C.配線パターン面及び配線パターンと隣接する絶縁
基材面上の所望する位置に、所定の部分を開孔させたフ
レーム基材を貼り合わせる工程。 8D.半導体素子を搭載し半導体素子端子と配線を導通
し半導体素子を樹脂封止する工程。
According to an eighth aspect of the present invention, in one layer of wiring, one side of the wiring has a first connection function of connecting to a semiconductor element, and the other side of the wiring connects to an external wiring.
A method of manufacturing a semiconductor package having wiring configured to have the following connection function, which includes the following 8A, 8B, 8C,
A method of manufacturing a semiconductor package, which comprises the step of 8D. 8A. Process of processing metal foil of insulating base material with heat resistant metal foil into multiple sets of wiring patterns. 8B. A step of providing a recess reaching the wiring pattern from the insulating base material side at a position which will be the second connection function section in a subsequent step. 8C. A step of laminating a frame base material having a predetermined portion opened at a desired position on the wiring pattern surface and an insulating base material surface adjacent to the wiring pattern. 8D. A step of mounting a semiconductor element, electrically connecting the semiconductor element terminal and wiring, and sealing the semiconductor element with resin.

【0022】第八の発明に於いて、工程は8A〜8Dの
順に進めるのが好ましいが、8Aと8Bを逆にしても良
い。すなわち、絶縁基板に金属箔に達する凹を設けた後
金属箔を配線パターンに加工するようにしても良い。
In the eighth invention, the steps are preferably carried out in the order of 8A to 8D, but 8A and 8B may be reversed. That is, the metal foil may be processed into a wiring pattern after forming a recess reaching the metal foil on the insulating substrate.

【0023】本願の第九の発明は、1層の配線において
その配線の片面が半導体素子と接続する第1の接続機能
を持ち、その配線の反対側が外部の配線と接続する第2
の接続機能をもつように構成された配線を備えた半導体
パッケージの製造法であって、下記9A、9B、9C、
9Dの工程を含むことを特徴とする半導体パッケージの
製造法。 9A.耐熱性を有する金属箔付き絶縁基材の金属箔を複
数組の配線パターンに加工する工程。 9B.後工程で第2の接続機能部となる位置に、絶縁基
材側から配線パターンに達する凹部を設ける工程。 9C.配線パターン面及び配線パターンと隣接する絶縁
基材面上の所望する位置に、所定の部分を開孔させた第
2絶縁基材を貼り合わせ絶縁支持体を構成する工程。 9D.絶縁支持体に形成された複数組の配線を所定の単
位個数になるように絶縁支持体を切断分離し、配線が形
成された分離絶縁支持体をフレームに固着する工程。 9E.半導体素子を搭載し半導体素子端子と配線を導通
し半導体素子樹脂封止する工程。
A ninth aspect of the present invention is a second-layer wiring in which one side of the one-layer wiring has a first connection function of connecting to a semiconductor element and the other side of the wiring connects to an external wiring.
A method for manufacturing a semiconductor package having wiring configured to have the following connection function, which includes the following 9A, 9B, 9C,
A method of manufacturing a semiconductor package, which comprises the step of 9D. 9A. Process of processing metal foil of insulating base material with heat resistant metal foil into multiple sets of wiring patterns. 9B. A step of providing a recess reaching the wiring pattern from the insulating base material side at a position which will be the second connection function section in a subsequent step. 9C. A step of laminating a second insulating base material having a predetermined portion opened at a desired position on the wiring pattern surface and an insulating base material surface adjacent to the wiring pattern to form an insulating support. 9D. A step of cutting and separating the insulating support so that a plurality of sets of wirings formed on the insulating support have a predetermined unit number, and fixing the separated insulating support on which the wiring is formed to the frame. 9E. A step of mounting a semiconductor element, electrically connecting the semiconductor element terminal and wiring, and sealing the semiconductor element resin.

【0024】第九の発明に於いて、工程は9A〜9Eの
順に進めるのが好ましいが、第八の発明と同様9Aと9
Bを逆にしても良い。
In the ninth invention, it is preferable that the steps proceed in the order of 9A to 9E, but as in the eighth invention, 9A and 9E.
B may be reversed.

【0025】本願の第十の発明は、 10A.支持体の片面に複数組の配線を形成する工程、 10B.配線が形成された支持体に複数個の半導体素子
を搭載し、半導体素子端子と配線とを導通させる工程、 10C.導通された複数組の半導体素子と配線とを一括
して樹脂封止する工程、 10D.支持体の所望する部分を除去して配線の所定部
分を露出させ、露出した配線と電気的に接続した外部接
続端子を形成する工程、 10E.個々の半導体パッケ−ジに分離する工程を含む
ことを特徴とする半導体パッケージの製造法である。
The tenth invention of the present application is: 10A. Forming a plurality of sets of wiring on one surface of the support, 10B. A step of mounting a plurality of semiconductor elements on a support on which wirings are formed and electrically connecting the semiconductor element terminals to the wirings; 10C. A step of resin-encapsulating a plurality of sets of conductive semiconductor elements and wiring together, 10D. Removing a desired portion of the support to expose a predetermined portion of the wiring and forming an external connection terminal electrically connected to the exposed wiring, 10E. A method of manufacturing a semiconductor package, characterized by including a step of separating the semiconductor package into individual semiconductor packages.

【0026】支持体として金属箔を使用し樹脂封止後に
支持体を除去することにより配線パターンを露出させる
ようにしても良い。
A metal foil may be used as the support, and the wiring pattern may be exposed by removing the support after resin sealing.

【0027】又、支持体が絶縁基材で、樹脂封止後に絶
縁基材の所定部分を除去して配線パターンに達する非貫
通凹部を形成するようにすることもできる。
Alternatively, the support may be an insulating base material, and a predetermined portion of the insulating base material may be removed after resin sealing to form a non-penetrating recess reaching the wiring pattern.

【0028】本願の第十一の発明は、複数個の半導体素
子実装基板部を備え、複数個の半導体素子実装基板部を
連結するための連結部を備え、位置合わせマーク部を備
えている半導体素子実装用フレームの製造法であって、
(a)導電性仮基板上に半導体素子実装部の配線を作製
する工程、(b)樹脂基材上に配線を転写する工程、
(c)導電性仮基板をエッチング除去する工程、を含
み、(c)の導電性仮基板の除去に際して、導電性仮基
板に一部を残し連結部の一部を構成するようにすること
を特徴とする半導体素子実装用フレームの製造法であ
る。
An eleventh invention of the present application is a semiconductor device comprising a plurality of semiconductor element mounting board portions, a connecting portion for connecting the plurality of semiconductor element mounting substrate portions, and an alignment mark portion. A method of manufacturing a frame for mounting an element,
(A) a step of producing wiring of a semiconductor element mounting portion on a conductive temporary substrate, (b) a step of transferring wiring to a resin base material,
(C) removing the conductive temporary substrate by etching, and when the conductive temporary substrate is removed in (c), a part of the conductive temporary substrate is left and a part of the connecting portion is formed. This is a method of manufacturing a characteristic semiconductor element mounting frame.

【0029】本発明では、半導体素子はLSIチップ、
ICチップ等通常の素子が使用できる。
In the present invention, the semiconductor element is an LSI chip,
Ordinary elements such as IC chips can be used.

【0030】半導体素子端子と配線とを同通する方法に
は、ワイヤボンディングだけでなく、バンプ、異方導電
性フィルム等通常の手段を用いることができる。
As a method of passing the semiconductor element terminal and the wiring together, not only wire bonding but also ordinary means such as bumps and anisotropic conductive films can be used.

【0031】本発明においては、半導体素子を樹脂封止
した後、封止樹脂硬化物を加熱処理することにより、そ
り、変形のない半導体パッケージを製造することができ
る。
In the present invention, after the semiconductor element is encapsulated with resin, the encapsulating resin cured product is heat-treated to produce a semiconductor package without warpage or deformation.

【0032】加熱処理は、封止樹脂硬化物のガラス転移
温度±20℃の温度が好ましい。この理由は、ガラス転
移温度±20℃の範囲で樹脂硬化物は最も塑性的な性質
が強く、残留歪みを解消し易いためである。加熱処理の
温度が、ガラス転移温度−20℃未満では樹脂硬化物は
ガラス状態の弾性体となり緩和の効果が少なくなる傾向
があり、ガラス転移温度+20℃を超えれば樹脂硬化物
はゴム弾性体となり同様に歪みを解消する効果がすきな
くなる傾向にある。
The heat treatment is preferably carried out at a glass transition temperature of the cured resin of the sealing resin ± 20 ° C. The reason for this is that in the range of glass transition temperature ± 20 ° C., the resin cured product has the strongest plastic property and the residual strain is easily eliminated. When the temperature of the heat treatment is less than the glass transition temperature of -20 ° C, the resin cured product tends to be an elastic body in a glass state and the relaxation effect tends to be small, and when the glass transition temperature + 20 ° C is exceeded, the resin cured product becomes a rubber elastic body. Similarly, the effect of eliminating the distortion tends to be lost.

【0033】封止樹脂硬化物のガラス転移温度±20℃
の温度で加熱処理をした後、5℃/分以下の降温速度で
室温まで冷却することにより、半導体パッケ−ジのそ
り、変形をより確実に防止することができる。
Glass transition temperature of cured resin of sealing resin ± 20 ° C.
After the heat treatment at the temperature of 5 ° C., the semiconductor package is more reliably prevented from warping and deforming by cooling to room temperature at a temperature decrease rate of 5 ° C./minute or less.

【0034】加熱処理及び/又は冷却の工程は、封止樹
脂硬化物の上下面を剛性平板で、封止樹脂硬化物のそ
り、変形を押さえる力で押圧した状態で行うのが好まし
い。
The heat treatment and / or cooling step is preferably carried out in a state where the upper and lower surfaces of the cured resin cured product are rigid flat plates and pressed with a force for suppressing warpage and deformation of the cured resin cured product.

【0035】本発明の半導体パッケージにおいては、配
線は1層の配線においてその配線の片面が半導体チップ
と接続する第1の接続機能を持ち、その配線の反対面が
外部の配線と接続する第2の接続機能をもつように構成
されている。
In the semiconductor package of the present invention, the wiring has the first connection function of connecting one side of the wiring to the semiconductor chip in the wiring of one layer, and the second side connecting the opposite side of the wiring to the external wiring. It is configured to have the connection function of.

【0036】外部の配線と接続する外部接続端子は、例
えばはんだバンプ、金バンプ等が好的に使用できる。
As the external connection terminals connected to the external wiring, for example, solder bumps, gold bumps and the like can be preferably used.

【0037】外部接続端子は、半導体素子端子が配線と
ワイヤボンディング等で導通される位置より内側に設け
るようにするのが高密度化の上で好ましい(ファンイン
タイプ)。このように外部接続端子の位置は、半導体素
子が搭載された下面に格子状に配置するのが高密度化の
上で好ましい。
It is preferable that the external connection terminal is provided inside the position where the semiconductor element terminal is electrically connected to the wiring by wire bonding or the like in view of high density (fan-in type). As described above, it is preferable that the external connection terminals are arranged in a grid pattern on the lower surface on which the semiconductor element is mounted in order to increase the density.

【0038】(発明を実施するための最良の形態)図1
により、本発明の第一の実施例について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION FIG. 1
The first embodiment of the present invention will be described.

【0039】厚さ0.035mmの電解銅箔1の片面に
厚さ0.001mmのニッケル層(図1では省略)をめ
っきする。次に、感光性ドライフィルムレジスト(日立
化成工業(株)製、商品名:フォテックHN340)を
ラミネートし、配線パターンを露光、現像し、めっきレ
ジストを形成する。続いて、硫酸銅浴にて電解銅めっき
を行う。さらに、ニッケルめっきを0.003mm、純
度99.9%以上の金めっきを0.0003mm以上の
厚さでめっきする。次に、めっきレジストを剥離し、配
線2を形成する(図1a)。このようにして、配線2を
形成した銅箔1にLSIチップ3を搭載する(図1
b)。LSIチップの接着には、半導体用銀ペースト4
を用いた。次にLSI端子部と配線2とをワイヤボンド
100により接続する(図1c)。このようにして形成
したものをトランスファモールド金型に装填し、半導体
封止用エポキシ樹脂(日立化成工業(株)製、商品名:
CL−7700)を用いて封止5した(図1d)。その
後、銅箔1のみをアルカリエッチャントで溶解除去し、
ニッケルを露出させた。ニッケル層を銅の溶解性の少な
いニッケル剥離液にて除去して、配線部を露出させた
(図1e)。続いて、ソルダレジスト6を塗布し、接続
用端子部を露出するようにパターンを形成した。この配
線露出部に、はんだボール7を配置し溶融させた(図1
f)。このはんだボール7を介して外部の配線と接続す
る。
A nickel layer (not shown in FIG. 1) having a thickness of 0.001 mm is plated on one surface of the electrolytic copper foil 1 having a thickness of 0.035 mm. Next, a photosensitive dry film resist (Hitachi Chemical Co., Ltd., trade name: Fotec HN340) is laminated, and the wiring pattern is exposed and developed to form a plating resist. Then, electrolytic copper plating is performed in a copper sulfate bath. Further, nickel plating is plated to a thickness of 0.003 mm and gold plating having a purity of 99.9% or more is plated to a thickness of 0.0003 mm or more. Next, the plating resist is peeled off to form the wiring 2 (FIG. 1a). In this way, the LSI chip 3 is mounted on the copper foil 1 on which the wiring 2 is formed (see FIG.
b). For bonding LSI chips, silver paste for semiconductors 4
Was used. Next, the LSI terminal portion and the wiring 2 are connected by a wire bond 100 (FIG. 1c). The thus-formed product is loaded into a transfer mold, and an epoxy resin for semiconductor encapsulation (manufactured by Hitachi Chemical Co., Ltd., trade name:
CL-7700) was used for sealing 5 (FIG. 1d). After that, only the copper foil 1 is dissolved and removed with an alkaline etchant,
The nickel was exposed. The nickel layer was removed with a nickel stripper having a low copper solubility to expose the wiring portion (FIG. 1e). Subsequently, solder resist 6 was applied, and a pattern was formed so as to expose the connecting terminal portion. Solder balls 7 were placed on the exposed wiring portions and melted (see FIG. 1).
f). The solder balls 7 are connected to external wiring.

【0040】図2により、本発明の第二の実施例につい
て説明する。
A second embodiment of the present invention will be described with reference to FIG.

【0041】図1の場合と同様の方法で、配線2を有す
る銅箔1を作成した(図2a)。LSIチップ3を搭載
する。LSIチップには、端子部に金バンプ8を形成
し、この金バンプ8と配線2の端子部とを加熱加圧して
接続する(図2b)。次に、LSIチップ下部に液状エ
ポキシ樹脂を充填し硬化9させる(図2c)。このよう
にして形成したものをトランスファモールド金型に装填
し、半導体封止用エポキシ樹脂(日立化成工業(株)
製、商品名:CL−7700)を用いて封止10した
(図2d)。その後、銅箔1のみをアルカリエッチャン
トで溶解除去し、ニッケルを露出させた。ニッケル層を
銅の溶解性の少ないニッケル剥離液にて除去して、配線
部を露出させた(図2e)。続いて、ソルダレジスト6
を塗布し、接続用端子部を露出するようにパターンを形
成した。この配線露出部に、はんだボール7を配置し溶
融させた(図2f)。このはんだボール7を介して外部
の配線と接続する。
A copper foil 1 having wirings 2 was prepared in the same manner as in FIG. 1 (FIG. 2a). The LSI chip 3 is mounted. Gold bumps 8 are formed on the terminals of the LSI chip, and the gold bumps 8 and the terminals of the wiring 2 are heated and pressed to be connected (FIG. 2b). Next, the lower part of the LSI chip is filled with liquid epoxy resin and cured 9 (FIG. 2c). An epoxy resin for semiconductor encapsulation (Hitachi Chemical Industry Co., Ltd.)
Sealing was performed using the product (trade name: CL-7700) (FIG. 2d). Then, only the copper foil 1 was dissolved and removed with an alkaline etchant to expose nickel. The nickel layer was removed with a nickel stripper having a low copper solubility to expose the wiring portion (FIG. 2e). Then, solder resist 6
Was applied to form a pattern so as to expose the connection terminal portion. Solder balls 7 were placed on the exposed portions of the wiring and melted (FIG. 2f). The solder balls 7 are connected to external wiring.

【0042】図3により、本発明の第三の実施例につい
て説明する。
A third embodiment of the present invention will be described with reference to FIG.

【0043】厚さ0.035mmの電解銅箔1の片面に
厚さ0.001mmのニッケル層(図3では省略)をめ
っきする。次に、感光性ドライフィルムレジスト(日立
化成工業(株)製、商品名:フォテックHN340)を
ラミネートし、配線パターンを露光、現像しめっきレジ
ストを形成する。続いて、硫酸銅浴にて電解銅めっきを
行い、第一の配線13を形成する。次にめっきレジスト
を剥離し、第一の配線13の表面を酸化処理、還元処理
を行う。新たな銅箔と接着樹脂としてポリイミド系接着
フィルム(日立化成工業(株)製、商品名:AS221
0)12を用いて配線13が内側となるように積層接着
する。(銅箔11に直径0.1mmの穴を通常のフォト
エッチング法により形成する。パネルめっき法により、
穴内と銅箔表面全体を銅めっきする。)銅箔をフォトエ
ッチング法で第二の配線11を形成する。LSI搭載部
の樹脂(ポリイミド系接着フィルム12)をエキシマレ
ーザにより除去し端子部を露出させる。該端子部に、ニ
ッケルめっきを0.003mm、純度99.9%以上の
金めっきを0.0003mm以上の厚さでめっきする
(図3a)。このようにして、2層配線を形成した銅箔
1にLSIチップを搭載する。LSIチップの接着に
は、半導体用銀ペーストを用いた(図3b)。次にLS
I端子部と配線13とをワイヤボンド100により接続
する(図3c)。このようにして形成したものをトラン
スファモールド金型に装填し、半導体封止用エポキシ樹
脂(日立化成工業(株)製、商品名:CL−7700)
を用いて封止5した。その後、銅箔1のみをアルカリエ
ッチャントで溶解除去し、ニッケルを露出させた。ニッ
ケル層を銅の溶解性の少ないニッケル剥離液にて除去し
て、配線部を露出させた(図3e)。続いて、ソルダレ
ジスト6を塗布し、接続用端子部を露出するようにパタ
ーンを形成した。該露出部に、はんだボール7を配置し
溶融させた(図3f)。このはんだボール7を介して外
部の配線と接続する。
A nickel layer (not shown in FIG. 3) having a thickness of 0.001 mm is plated on one surface of the electrolytic copper foil 1 having a thickness of 0.035 mm. Next, a photosensitive dry film resist (Hitachi Chemical Co., Ltd., trade name: Fotec HN340) is laminated, and the wiring pattern is exposed and developed to form a plating resist. Subsequently, electrolytic copper plating is performed in a copper sulfate bath to form the first wiring 13. Next, the plating resist is peeled off, and the surface of the first wiring 13 is subjected to oxidation treatment and reduction treatment. New copper foil and polyimide adhesive film as adhesive resin (Hitachi Chemical Co., Ltd., trade name: AS221
0) 12 is used for laminating and bonding so that the wiring 13 is on the inside. (A hole having a diameter of 0.1 mm is formed in the copper foil 11 by a normal photo-etching method.
Copper plating in the hole and the entire copper foil surface. 2) The second wiring 11 is formed on the copper foil by photoetching. The resin (polyimide adhesive film 12) on the LSI mounting portion is removed by an excimer laser to expose the terminal portion. The terminal portion is plated with nickel plating of 0.003 mm and gold plating of purity 99.9% or more to a thickness of 0.0003 mm or more (FIG. 3a). In this way, the LSI chip is mounted on the copper foil 1 on which the two-layer wiring is formed. A silver paste for semiconductors was used to bond the LSI chips (FIG. 3b). Then LS
The I terminal portion and the wiring 13 are connected by a wire bond 100 (FIG. 3c). The thus-formed product is loaded into a transfer mold die, and an epoxy resin for semiconductor encapsulation (manufactured by Hitachi Chemical Co., Ltd., trade name: CL-7700)
Was used for sealing 5. Then, only the copper foil 1 was dissolved and removed with an alkaline etchant to expose nickel. The nickel layer was removed with a nickel stripper having a low copper solubility to expose the wiring portion (FIG. 3e). Subsequently, solder resist 6 was applied, and a pattern was formed so as to expose the connecting terminal portion. Solder balls 7 were placed on the exposed portions and melted (FIG. 3f). The solder balls 7 are connected to external wiring.

【0044】図4により、本発明の第四の実施例につい
て説明する。
A fourth embodiment of the present invention will be described with reference to FIG.

【0045】厚さ0.1mmのSUS(ステンレス鋼)
板14に、感光性ドライフィルムレジスト(日立化成工
業(株)製、商品名:フォテックHN340)をラミネ
ートし、配線パターンを露光、現像し、めっきレジスト
を形成する。続いて、硫酸銅浴にて電解銅めっきを行
う。さらに、ニッケルめっきを0.003mm、純度9
9.9%以上の金めっきを0.0003mm以上の厚さ
でめっきする。次に、めっきレジストを剥離し、配線2
を形成する(図4a)。このようにして配線2を形成し
たSUS板14に半導体チップ103を搭載する(図4
b)。半導体チップの接着には半導体用銀ベースト4を
用いた。次に半導体端子部と配線2とをワイヤボンド1
00により接続する(図4c)。このようにして形成し
たものをトランスファモールド金型に装填し、半導体封
止用エポキシ樹脂(日立化成工業(株)製、商品名:C
L−7700)を用いて封止5した(図4d)。その
後、SUS板14を機械的に剥離除去し、配線部を露出
させた(図4e)。続いてソルダレジスト6を塗布し、
接続用端子部を露出するようにパターンを形成した。こ
の配線露出部にはんだボール7を配置し溶融させた(図
4f)。このはんだボール7を介して外部の配線と接続
する。
SUS (stainless steel) with a thickness of 0.1 mm
A photosensitive dry film resist (manufactured by Hitachi Chemical Co., Ltd., trade name: Fotec HN340) is laminated on the plate 14, and the wiring pattern is exposed and developed to form a plating resist. Then, electrolytic copper plating is performed in a copper sulfate bath. Furthermore, nickel plating 0.003mm, purity 9
Gold plating of 9.9% or more is plated with a thickness of 0.0003 mm or more. Next, the plating resist is peeled off, and the wiring 2
Are formed (FIG. 4a). The semiconductor chip 103 is mounted on the SUS plate 14 on which the wiring 2 is formed (FIG. 4).
b). A silver base 4 for semiconductor was used for bonding the semiconductor chips. Next, the semiconductor terminal portion and the wiring 2 are wire-bonded 1
00 to connect (Fig. 4c). The thus-formed product is loaded into a transfer mold, and an epoxy resin for semiconductor encapsulation (manufactured by Hitachi Chemical Co., Ltd., trade name: C
L-7700) was used for sealing 5 (Fig. 4d). After that, the SUS plate 14 was mechanically peeled and removed to expose the wiring portion (FIG. 4e). Then apply the solder resist 6,
A pattern was formed so that the connection terminal portion was exposed. Solder balls 7 were placed on the exposed portions of the wiring and melted (FIG. 4f). The solder balls 7 are connected to external wiring.

【0046】図5により、本発明の第五の実施例につい
て説明する。
A fifth embodiment of the present invention will be described with reference to FIG.

【0047】厚さ0.035mmの電解銅箔1に、感光
性ドライフィルムレジスト(日立化成工業(株)製、商
品名:フォテックHN340)をラミネートし、配線パ
ターンを露光、現像し、めっきレジストを形成する。続
いてニッケルのパターンめっき15を行った後、硫酸銅
浴にて電解銅めっきを行う。さらに、ニッケルめっきを
0.003mm、純度99.9%以上の金めっきを0.
0003mm以上の厚さでめっきする。次に、めっきレ
ジストを剥離し、配線2を形成する(図5a)。このよ
うにして配線2を形成した銅箔1に半導体チップ103
を搭載する(図5b)。半導体チップの接着には、半導
体用銀ベースト4を用いた。次に半導体端子部と配線2
とをワイヤボンド100により接続する(図5c)。こ
のようにして形成したものをトランスファモールド金型
に装填し、半導体封止用エポキシ樹脂(日立化成工業
(株)製、商品名:CL−7700)を用いて封止5し
た(図5d)。その後、銅箔1をアルカリエッチャンで
溶解除去し、ニッケルの配線部を露出させた(図5
e)。続いてソルダレジスト6を塗布し、接続用端子部
を露出するようにパターンを形成した。この配線露出部
にはんだボール7を配置し溶融させた(図5f)。この
はんだボール7を介して外部の配線と接続する。
A photosensitive dry film resist (Hitachi Chemical Co., Ltd., trade name: Photec HN340) was laminated on the electrolytic copper foil 1 having a thickness of 0.035 mm, and the wiring pattern was exposed and developed to form a plating resist. Form. Then, after nickel pattern plating 15 is performed, electrolytic copper plating is performed in a copper sulfate bath. Further, nickel plating is 0.003 mm, and gold plating having a purity of 99.9% or more is 0.13 mm.
Plate with a thickness of 0003 mm or more. Next, the plating resist is peeled off to form the wiring 2 (FIG. 5a). The semiconductor chip 103 is formed on the copper foil 1 on which the wiring 2 is formed in this manner.
(Fig. 5b). A silver base 4 for semiconductor was used for bonding the semiconductor chips. Next, semiconductor terminals and wiring 2
Are connected by wire bonds 100 (FIG. 5c). The thus-formed material was loaded into a transfer mold, and sealing 5 was performed using an epoxy resin for semiconductor encapsulation (Hitachi Chemical Co., Ltd., trade name: CL-7700) (FIG. 5d). Then, the copper foil 1 was dissolved and removed with an alkaline etchant to expose the nickel wiring portion (FIG. 5).
e). Subsequently, solder resist 6 was applied, and a pattern was formed so as to expose the connection terminal portion. Solder balls 7 were placed on the exposed portions of the wiring and melted (FIG. 5f). The solder balls 7 are connected to external wiring.

【0048】図6により、本発明の第六の実施例につい
て説明する。
A sixth embodiment of the present invention will be described with reference to FIG.

【0049】厚さ0.035mmの電解銅箔1に、感光
性ドライフィルムレジスト(日立化成工業(株)製、商
品名:フォテックHN340)をラミネートし、配線パ
ターンを露光、現像し、めっきレジストを形成する。続
いて純度99.9%以上の金めっきを0.0003m
m、ニッケルめっきを0.003mm以上の厚さでめっ
きする。さらに、硫酸銅浴にて電解銅めっきを行い、め
っきレジストを剥離し、配線2を形成する(図6a)。
このようにして配線2を形成した銅箔1の配線面にポリ
イミドフィルム16を接着し、レーザを用いて配線2の
接続用端子部を露出させ(図6b)、銅箔1をエッチン
グで除去する(図6c)。また、ポリイミドの代わり
に、感光性フィルムを用いることで、レーザを使用しな
いで接続用端子部を露出させることができる。続いて、
ポリイミドフィルム16の配線パターン面にLSIチッ
プ3を搭載する。LSIチップの接着には半導体用銀ペ
ースト4を用いた。次に半導体端子部と配線2とをワイ
ヤボンド100により接続する(図6d)。このように
して形成したものをトランスファモールド金型に装填
し、半導体封止用エポキシ樹脂(日立化成工業(株)
製、商品名:CL−7700)を用いて封止5する(図
6e)。その後、接続用端子部にはんだボール7を配置
し溶融させる(図6f)。このはんだボール7を介して
外部の配線と接続する。
A 0.035 mm thick electrolytic copper foil 1 was laminated with a photosensitive dry film resist (Hitachi Chemical Co., Ltd., trade name: Fotec HN340), and a wiring pattern was exposed and developed to form a plating resist. Form. Next, 0.0003 m of gold plating having a purity of 99.9% or more is applied.
m, nickel plating with a thickness of 0.003 mm or more. Further, electrolytic copper plating is performed in a copper sulfate bath to remove the plating resist and form the wiring 2 (FIG. 6a).
The polyimide film 16 is adhered to the wiring surface of the copper foil 1 on which the wiring 2 is formed in this manner, the connection terminal portion of the wiring 2 is exposed by using a laser (FIG. 6b), and the copper foil 1 is removed by etching. (Fig. 6c). Further, by using a photosensitive film instead of polyimide, the connection terminal portion can be exposed without using a laser. continue,
The LSI chip 3 is mounted on the wiring pattern surface of the polyimide film 16. The silver paste 4 for semiconductor was used for adhesion of the LSI chip. Next, the semiconductor terminal portion and the wiring 2 are connected by wire bonds 100 (FIG. 6d). An epoxy resin for semiconductor encapsulation (Hitachi Chemical Industry Co., Ltd.)
Sealing 5 is performed using the product (trade name: CL-7700) (FIG. 6e). After that, the solder balls 7 are placed on the connecting terminal portions and melted (FIG. 6f). The solder balls 7 are connected to external wiring.

【0050】図7により、本発明の第七の実施例につい
て説明する。
A seventh embodiment of the present invention will be described with reference to FIG.

【0051】厚さ0.035mmの電解銅箔1の片面に
厚さ0.001mmのニッケル層(図7では省略)をめ
っきする。次に、感光性ドライフィルムレジスト(日立
化成工業(株)製、商品名:フォテックHN340)を
ラミネートし、配線パターンを露光、現像し、めっきレ
ジストを形成する。続いて硫酸銅浴にて電解銅めっきを
行う。さらに、ニッケルめっきを0.003mm、純度
99.9%以上の金めっきを0.0003mm以上の厚
さでめっきする。次にめっきレジストを剥離し、配線2
を形成する(図7a)。このようにして配線2を形成し
た銅箔1にLSIチップ3を搭載する。LSIチップの
接着には半導体用銀ペースト4を用いた。次に、半導体
端子部と配線2とをワイヤボンド100により接続する
(図7b)。このようにして形成したものをトランスフ
ァモールド金型に装填し半導体封止用エポキシ樹脂(日
立化成工業(株)製、商品名:CL−7700)を用い
て封止5する(図7c)。その後、銅箔1のみをアルカ
リエッチャントで溶解除去し、ニッケルを露出させる。
ニッケル層を銅の溶解性の少ないニッケル剥離液にて除
去して配線部を露出させる(図7d)。続いて、接続用
端子部を開口させたポリイミドフィルム16を接着し
(図7e)、この配線露出部にはんだボール7を配置し
溶融させる(図7f)。このはんだボール7を介して外
部の配線と接続する。
A nickel layer (not shown in FIG. 7) having a thickness of 0.001 mm is plated on one surface of the electrolytic copper foil 1 having a thickness of 0.035 mm. Next, a photosensitive dry film resist (Hitachi Chemical Co., Ltd., trade name: Fotec HN340) is laminated, and the wiring pattern is exposed and developed to form a plating resist. Subsequently, electrolytic copper plating is performed in a copper sulfate bath. Further, nickel plating is plated to a thickness of 0.003 mm and gold plating having a purity of 99.9% or more is plated to a thickness of 0.0003 mm or more. Next, the plating resist is peeled off, and the wiring 2
Are formed (FIG. 7a). The LSI chip 3 is mounted on the copper foil 1 on which the wiring 2 is formed in this manner. The silver paste 4 for semiconductor was used for adhesion of the LSI chip. Next, the semiconductor terminal portion and the wiring 2 are connected by wire bonds 100 (FIG. 7b). The thus-formed product is loaded into a transfer mold and sealed 5 with an epoxy resin for semiconductor encapsulation (manufactured by Hitachi Chemical Co., Ltd., trade name: CL-7700) (FIG. 7c). Then, only the copper foil 1 is dissolved and removed with an alkaline etchant to expose nickel.
The nickel layer is removed with a nickel stripper having a low copper solubility to expose the wiring portion (FIG. 7d). Subsequently, the polyimide film 16 having the connection terminal portion opened is adhered (FIG. 7e), and the solder ball 7 is placed on the exposed wiring portion and melted (FIG. 7f). The solder balls 7 are connected to external wiring.

【0052】図8により、本発明の第八の実施例につい
て説明する。
An eighth embodiment of the present invention will be described with reference to FIG.

【0053】厚さ0.035mmの電解銅箔1に、感光
性ドライフィルムレジスト(日立化成工業(株)製、商
品名:フォテックHN340)をラミネートし、配線パ
ターンを露光、現像し、めっきレジストを形成する。続
いて純度99.9%以上の金めっきを0.0003m
m、ニッケルめっきを0.003mm以上の厚さでめっ
きする。さらに、硫酸銅浴にて電解銅めっきを行い、め
っきレジストを剥離し配線2を形成する(図8a)。こ
のようにして配線2を形成した銅箔1の配線面に液状封
止樹脂17をスクリーン印刷により塗布し、配線2の接
続用端子部を露出させるようにして絶縁層を形成する
(図8b)。液状封止樹脂を硬化させた後、銅箔1をエ
ッチングで除去する(図8c)。続いて、硬化させた液
状封止樹脂3の配線パターン面にLSIチップ3を搭載
する。LSIチップの接着には半導体用銀ペースト4を
用いた。次に半導体端子部と配線2とをワイヤボンド1
00により接続する(図8d)。このようにして形成し
たものをトランスファモールド金型に装填し、半導体封
止用エポキシ樹脂(日立化成工業(株)製、商品名:C
L−7700)を用いて封止5する(図8e)。その
後、配線2の接続用端子部にはんだボール7を配置し溶
融させる(図8f)。このはんだボール7を介して外部
の配線と接続する。
Photosensitive dry film resist (Hitachi Chemical Co., Ltd., trade name: Fotec HN340) was laminated on 0.035 mm thick electrolytic copper foil 1, and a wiring pattern was exposed and developed to form a plating resist. Form. Next, 0.0003 m of gold plating having a purity of 99.9% or more is applied.
m, nickel plating with a thickness of 0.003 mm or more. Further, electrolytic copper plating is performed in a copper sulfate bath to remove the plating resist and form the wiring 2 (FIG. 8a). The liquid sealing resin 17 is applied by screen printing to the wiring surface of the copper foil 1 on which the wiring 2 has been formed in this manner, and an insulating layer is formed so that the connection terminal portion of the wiring 2 is exposed (FIG. 8b). . After the liquid sealing resin is cured, the copper foil 1 is removed by etching (FIG. 8c). Subsequently, the LSI chip 3 is mounted on the wiring pattern surface of the cured liquid sealing resin 3. The silver paste 4 for semiconductor was used for adhesion of the LSI chip. Next, the semiconductor terminal portion and the wiring 2 are wire-bonded 1
00 to connect (FIG. 8d). The thus-formed product is loaded into a transfer mold, and an epoxy resin for semiconductor encapsulation (manufactured by Hitachi Chemical Co., Ltd., trade name: C
L-7700) is used for sealing 5 (FIG. 8e). Then, the solder balls 7 are placed on the connection terminals of the wiring 2 and melted (FIG. 8f). The solder balls 7 are connected to external wiring.

【0054】図9により、本発明の第九の実施例につい
て説明する。
A ninth embodiment of the present invention will be described with reference to FIG.

【0055】厚さ0.035mmの電解銅箔1の片面に
厚さ0.001mmのニッケル層(図9では省略)をめ
っきする。次に、感光性ドライフィルムレジスト(日立
化成工業(株)製、商品名:フォテックHN340)を
ラミネートし、配線パターンを露光、現像し、めっきレ
ジストを形成する。続いて硫酸銅浴にて電解銅めっきを
行う。さらに、ニッケルめっきを0.003mm、純度
99.9%以上の金めっきを0.0003mm以上の厚
さでめっきする。次にめっきレジストを剥離し、配線2
を形成する(図9a)。このようにして配線2を形成し
た銅箔1にLSIチップ3を搭載する。LSIチップ3
の接着には半導体用銀ペースト4を用いた。次に、半導
体端子部と配線2とをワイヤボンド100により接続す
る(図9b)。このようにして形成したものをトランス
ファモールド金型に装填し半導体封止用エポキシ樹脂
(日立化成工業(株)製、商品名:CL−7700)を
用いて封止5する(図9c)。その後、銅箔1のみをア
ルカリエッチャントで溶解除去し、ニッケルを露出させ
る。ニッケル層を銅の溶解性の少ないニッケル剥離液に
て除去して配線部を露出させる(図9d)。続いて、液
状封止樹脂17をスクリーン印刷により塗布し、配線2
の接続用端子部を露出させるようにして、液状封止樹脂
17の絶縁層を形成する(図9e)。この配線2の接続
用端子部にはんだボール7を配置し溶融させる(図9
f)。このはんだボール7を介して外部の配線と接続す
る。
A nickel layer (not shown in FIG. 9) having a thickness of 0.001 mm is plated on one surface of the electrolytic copper foil 1 having a thickness of 0.035 mm. Next, a photosensitive dry film resist (Hitachi Chemical Co., Ltd., trade name: Fotec HN340) is laminated, and the wiring pattern is exposed and developed to form a plating resist. Subsequently, electrolytic copper plating is performed in a copper sulfate bath. Further, nickel plating is plated to a thickness of 0.003 mm and gold plating having a purity of 99.9% or more is plated to a thickness of 0.0003 mm or more. Next, the plating resist is peeled off, and the wiring 2
Are formed (FIG. 9a). The LSI chip 3 is mounted on the copper foil 1 on which the wiring 2 is formed in this manner. LSI chip 3
The silver paste 4 for semiconductors was used for the adhesion. Next, the semiconductor terminal portion and the wiring 2 are connected by the wire bond 100 (FIG. 9b). The thus formed product is loaded into a transfer mold and sealed 5 with an epoxy resin for semiconductor encapsulation (manufactured by Hitachi Chemical Co., Ltd., trade name: CL-7700) (FIG. 9c). Then, only the copper foil 1 is dissolved and removed with an alkaline etchant to expose nickel. The nickel layer is removed with a nickel stripper having a low copper solubility to expose the wiring portion (FIG. 9d). Subsequently, the liquid sealing resin 17 is applied by screen printing to form the wiring 2
An insulating layer of the liquid encapsulating resin 17 is formed so as to expose the connecting terminal portion (1) (FIG. 9e). Solder balls 7 are placed on the connection terminals of the wiring 2 and melted (FIG. 9).
f). The solder balls 7 are connected to external wiring.

【0056】図10により、本発明の第十の実施例につ
いて説明する。
A tenth embodiment of the present invention will be described with reference to FIG.

【0057】厚さ0.035mmの電解銅箔1の片面に
厚さ0.001mmのニッケル層(図10では省略)を
めっきする。次に、感光性ドライフィルムレジスト(日
立化成工業(株)製、商品名:フォテックHN340)
をラミネートし、配線パターン及び位置合わせマークの
めっきレジストを露光、現像により形成する。続いて、
硫酸銅浴にて電解銅めっきを行う。さらに、ニッケルめ
っきを0.003mm、純度99.9%以上の金めっき
を0.0003mm以上の厚さでめっきする。次に、め
っきレジストを剥離し、配線2及び位置合わせマーク1
8を形成した後(図10a)、位置合わせマーク18の
部分だけをSUS板で挟みプレスすることで銅箔1の裏
面に位置合わせマークを浮かび上がらせる(図10
b)。このようにして配線2及び位置合わせマーク18
を形成した銅箔1にLSIチップ3を搭載する(図10
c)。LSIチップ3の接着には半導体用銀ペースト4
を用いた。次に、半導体端子部と配線2とをワイヤボン
ド100により接続する(図10d)。このようにして
形成したものをトランスファモールド金型に装填し、半
導体封止用エポキシ樹脂(日立化成工業(株)製、商品
名:CL−7700)を用いて封止5した(図10
e)。銅箔裏側に再び感光性ドライフィルムをラミネー
トし、位置合わせマーク18を利用してエッチングパタ
ーン形成する。その後、銅箔1及びニッケル層をエッチ
ングして、銅箔1によるバンプ7の形成及び配線部の露
出を行う(図10f)。続いて、ソルダレジスト8を塗
布し、バンプ7が露出するように絶縁層を形成した(図
10g)。このバンプ7を介して外部の配線と接続す
る。
A nickel layer (not shown in FIG. 10) having a thickness of 0.001 mm is plated on one surface of the electrolytic copper foil 1 having a thickness of 0.035 mm. Next, a photosensitive dry film resist (manufactured by Hitachi Chemical Co., Ltd., product name: Fotec HN340)
Is laminated, and a plating resist of a wiring pattern and an alignment mark is formed by exposure and development. continue,
Electrolytic copper plating is performed in a copper sulfate bath. Further, nickel plating is plated to a thickness of 0.003 mm and gold plating having a purity of 99.9% or more is plated to a thickness of 0.0003 mm or more. Next, the plating resist is peeled off, and the wiring 2 and the alignment mark 1
8 is formed (FIG. 10A), only the position of the alignment mark 18 is sandwiched between SUS plates and pressed to make the alignment mark appear on the back surface of the copper foil 1 (FIG. 10A).
b). In this way, the wiring 2 and the alignment mark 18
The LSI chip 3 is mounted on the copper foil 1 on which is formed (see FIG. 10).
c). For bonding the LSI chip 3, silver paste for semiconductors 4
Was used. Next, the semiconductor terminal portion and the wiring 2 are connected by wire bonds 100 (FIG. 10d). The thus-formed product was loaded into a transfer mold and sealed 5 with an epoxy resin for semiconductor encapsulation (manufactured by Hitachi Chemical Co., Ltd., trade name: CL-7700) (FIG. 10).
e). A photosensitive dry film is laminated again on the back side of the copper foil, and an etching pattern is formed using the alignment mark 18. After that, the copper foil 1 and the nickel layer are etched to form bumps 7 and expose the wiring portion by the copper foil 1 (FIG. 10f). Subsequently, a solder resist 8 was applied to form an insulating layer so that the bumps 7 were exposed (FIG. 10g). It connects with an external wiring through this bump 7.

【0058】図11により、本発明の第十一の実施例に
ついて説明する。
An eleventh embodiment of the present invention will be described with reference to FIG.

【0059】厚さ0.035mmの電解銅箔1に、感光
性ドライフィルムレジスト(日立化成工業(株)製、商
品名:フォテックHN340)をラミネートし、複数組
の配線パターンを露光、現像し、めっきレジストを形成
する。続いて、純度99.9%以上の金めっきを0.0
003mm、ニッケルめっきを0.003mm以上の厚
さでめっきする。さらに、硫酸銅浴にて電解銅めっきを
行い、レジストを剥離し、複数組の配線2を形成する
(図11a)。このようにして、複数組の配線2を形成
した銅箔1の配線面にポリイミドフィルム19を接着
し、レーザを用いて配線2の接続端子部を露出させ(図
11b)、銅箔1をエッチングで除去する(図11
c)。以上のように、1枚のポリイミドフィルム上に複
数組の配線2を形成した後、LSIチップ3を搭載す
る。LSIチップの接着には、半導体用ダイボンディン
グテープ4’を用いた。次に半導体端子部と配線2とを
ワイヤボンド100により接続する(図11d)。この
ようにして形成したものをトランスファモールド金型に
装填し、半導体封止用エポキシ樹脂(日立化成工業
(株)製、商品名:CL−7700)を用いて各々封止
5する(図11e)。その後、配線2の接続端子部には
んだボール7を配置し溶融させる(図11f)。このは
んだボール7を介して外部の配線と接続する。最後にポ
リイミドフィルムで連結されたパッケージを、金型で打
ち抜く(図11g)。
Photosensitive dry film resist (manufactured by Hitachi Chemical Co., Ltd., trade name: Fotec HN340) was laminated on electrolytic copper foil 1 having a thickness of 0.035 mm, and a plurality of wiring patterns were exposed and developed. Form a plating resist. Then, gold plating with a purity of 99.9% or more is 0.0
003 mm, nickel plating with a thickness of 0.003 mm or more. Further, electrolytic copper plating is performed in a copper sulfate bath to remove the resist and form a plurality of sets of wirings 2 (FIG. 11a). In this way, the polyimide film 19 is adhered to the wiring surface of the copper foil 1 on which a plurality of sets of wiring 2 are formed, the connection terminal portion of the wiring 2 is exposed by using a laser (FIG. 11b), and the copper foil 1 is etched. To remove (Fig. 11
c). As described above, after forming a plurality of sets of wirings 2 on one polyimide film, the LSI chip 3 is mounted. A semiconductor die bonding tape 4'was used for bonding the LSI chip. Next, the semiconductor terminal portion and the wiring 2 are connected by the wire bond 100 (FIG. 11d). The thus-formed product is loaded into a transfer mold and sealed 5 with an epoxy resin for semiconductor encapsulation (manufactured by Hitachi Chemical Co., Ltd., trade name: CL-7700) (FIG. 11e). . Then, the solder balls 7 are placed on the connection terminals of the wiring 2 and melted (FIG. 11f). The solder balls 7 are connected to external wiring. Finally, the package connected with the polyimide film is punched with a die (FIG. 11g).

【0060】図12により、本発明の第十二の実施例に
ついて説明する。
A twelfth embodiment of the present invention will be described with reference to FIG.

【0061】厚さ0.07mmの接着剤付きポリイミド
フィルム20を、金型で打ち抜き接続端子部となる部分
を開口させる(図12a)。次に、厚さ0.035mm
の銅箔21を接着後(図12b)、感光性ドライフィル
ムレジスト(日立化成工業(株)製、商品名:フォテッ
クHN340)をラミネートし、複数組の配線パターン
を露光、現像し、エッチングレジストを形成する。続い
て銅箔をエッチングし、レジストを剥離し、複数組の配
線2を形成する(図12c)。以上のように、1枚のポ
リイミドフィルム上に複数組の配線パターンを形成した
後、LSIチップ3を搭載する。LSIチップ3の接着
には、半導体用ダイボンディングテープ4’を用いた。
次に半導体端子部と配線2とをワイヤボンド100によ
り接続する(図12d)。このようにして形成したもの
をトランスファモールド金型に装填し、半導体封止用エ
ポキシ樹脂(日立化成工業(株)製、商品名:CL−7
700)を用いて各々封止5する(図12e)。その
後、配線の接続端子部にはんだボール7を配置し溶融さ
せる(図12f)。このはんだボール7を介して外部の
配線と接続する。最後にポリイミドフィルムで連結され
たパッケージを、金型で打ち抜く(図12g)。
A polyimide film 20 with an adhesive having a thickness of 0.07 mm is punched out with a mold to open a portion to be a connection terminal portion (FIG. 12a). Next, thickness 0.035mm
After adhering the copper foil 21 of FIG. 12B (FIG. 12b), a photosensitive dry film resist (Hitachi Chemical Co., Ltd., trade name: Fotec HN340) is laminated, and a plurality of sets of wiring patterns are exposed and developed to form an etching resist. Form. Subsequently, the copper foil is etched and the resist is peeled off to form a plurality of sets of wirings 2 (FIG. 12c). As described above, after forming a plurality of sets of wiring patterns on one polyimide film, the LSI chip 3 is mounted. A semiconductor die bonding tape 4 ′ was used for bonding the LSI chip 3.
Next, the semiconductor terminal portion and the wiring 2 are connected by the wire bond 100 (FIG. 12d). The thus-formed product was loaded into a transfer mold die, and an epoxy resin for semiconductor encapsulation (manufactured by Hitachi Chemical Co., Ltd., trade name: CL-7)
700) is used for each sealing 5 (FIG. 12e). Then, the solder balls 7 are placed on the connection terminal portions of the wiring and melted (FIG. 12f). The solder balls 7 are connected to external wiring. Finally, the package connected with the polyimide film is punched with a die (FIG. 12g).

【0062】図13〜15により、本発明の第十三の実
施例について説明する。
A thirteenth embodiment of the present invention will be described with reference to FIGS.

【0063】厚さ0.035mmの電解銅箔1の片面に
厚さ0.001mmのニッケル層(図13では省略)を
めっきする。感光性ドライフィルムレジスト(日立化成
工業(株)製、商品名:フォテックHN340)をラミ
ネートし、複数組の配線パターンのめっきレジストを露
光、現像により形成する。続いて、硫酸銅浴にて電解銅
めっきを行う。さらに、ニッケルめっきを0.003m
m、純度99.9%以上の金めっきを0.0003mm
以上の厚さでめっきし、めっきレジストを剥離し、配線
2を形成した(図13a)。次に、配線2を形成した銅
箔1を単位個数に分けた後、ポリイミド接着フィルムを
介して別に用意したステンレス製フレーム22(厚さ;
0.135mm)にはりつけた(図13b)。フレーム
としては、りん青銅等の銅合金、銅箔、ニッケル箔、ニ
ッケル合金箔等が使用できる。接着の方法としては他に
金属間の共晶を利用した接合、超音波を利用した接合等
を用いることも可能である。また、図14に示したよう
に銅箔1上の配線をあらかじめ検査し、配線良品23だ
けを撰択し、フレーム22にはりつけると良い。図14
において、1は電解銅箔、22はフレ−ム、24は配線
不良品、25は位置合わせ用穴である。また、この実施
例では、切り分けた銅箔上には配線1個となるようにし
たが、切り分けた銅箔上に複数組の配線があるようにし
ても良い。フレーム22と配線付き銅箔との張り合わせ
の位置関係として、例えば図15(a)、(b)に示し
たものなど種々可能である。図15はフレ−ム22の平
面図であり、26はフレ−ム開口部、27は配線付き銅
箔の搭載位置、28は箔固定用接着剤である。次に、L
SIチップ3を搭載し、半導体端子部と配線2とをワイ
ヤボンド100により接続する(図13c)。LSIチ
ップの搭載には半導体用ダイボンディングテープ4’を
用いた。ここで、ボンディングテープ4’の代わりにダ
イボンド用銀ペースト等を用いてもよい。また、半導体
チップの実装には、通常のワイヤーボンディング接続を
用いたが、フィリップチップ等、他の方法を用いてもよ
い。このようにして形成したものをトランスファモール
ド金型に装填し、半導体封止用エポキシ樹脂(日立化成
工業(株)製、商品名:CL−7700)を用いて封止
5した(図13d)。その後、銅箔1のみをアルカリエ
ッチャントで溶解除去し、ニッケルを露出させた。ニッ
ケル層を銅の溶解性の少ないニッケル剥離液にて除去し
て、配線部を露出させた。続いて、ソルダレジスト6を
塗布し、接続用端子部を露出するようにパターンを形成
した。この配線露出部に、はんだボール7を配置し溶融
させた(図13e)。この後で、切断機を用いて切断
し、フレーム22の不要な切片101を除いて、個々の
半導体パッケージに分割した(図13f)。このはんだ
ボール7を介して外部の配線と接続する。この例では、
板取りを上げて効率よく半導体パッケ−ジを製造するこ
とができる。
A 0.001 mm-thick nickel layer (not shown in FIG. 13) is plated on one side of the 0.035 mm-thick electrolytic copper foil 1. A photosensitive dry film resist (Hitachi Chemical Co., Ltd., trade name: Photec HN340) is laminated, and a plurality of sets of wiring pattern plating resists are formed by exposure and development. Then, electrolytic copper plating is performed in a copper sulfate bath. Furthermore, nickel plating 0.003m
m, gold plating with a purity of 99.9% or more 0.0003 mm
The plating was performed to the above thickness, the plating resist was peeled off, and the wiring 2 was formed (FIG. 13A). Next, after dividing the copper foil 1 on which the wiring 2 is formed into a unit number, a stainless steel frame 22 (thickness; prepared separately through a polyimide adhesive film)
0.135 mm) (Fig. 13b). As the frame, copper alloy such as phosphor bronze, copper foil, nickel foil, nickel alloy foil and the like can be used. As a bonding method, it is also possible to use bonding using a eutectic between metals, bonding using ultrasonic waves, or the like. Also, as shown in FIG. 14, it is preferable to inspect the wiring on the copper foil 1 in advance, select only good wiring 23, and attach it to the frame 22. 14
In FIG. 1, 1 is an electrolytic copper foil, 22 is a frame, 24 is a defective wiring product, and 25 is a positioning hole. Further, in this embodiment, one wiring is provided on the cut copper foil, but a plurality of sets of wiring may be provided on the cut copper foil. There are various possible positional relationships between the frame 22 and the copper foil with wiring, such as those shown in FIGS. 15 (a) and 15 (b). FIG. 15 is a plan view of the frame 22, 26 is a frame opening, 27 is a mounting position of the copper foil with wiring, and 28 is a foil fixing adhesive. Then L
The SI chip 3 is mounted, and the semiconductor terminal portion and the wiring 2 are connected by the wire bond 100 (FIG. 13c). A semiconductor die bonding tape 4'was used for mounting the LSI chip. Here, a silver paste for die bonding or the like may be used instead of the bonding tape 4 '. Further, although the normal wire bonding connection was used for mounting the semiconductor chip, another method such as a Philip chip may be used. The thus-formed product was loaded into a transfer mold and sealed 5 with an epoxy resin for semiconductor encapsulation (manufactured by Hitachi Chemical Co., Ltd., trade name: CL-7700) (FIG. 13d). Then, only the copper foil 1 was dissolved and removed with an alkaline etchant to expose nickel. The nickel layer was removed with a nickel stripper having a low copper solubility to expose the wiring portion. Subsequently, solder resist 6 was applied, and a pattern was formed so as to expose the connecting terminal portion. Solder balls 7 were placed on the exposed wirings and melted (FIG. 13e). After this, cutting was performed using a cutting machine, and the semiconductor chip was divided into individual semiconductor packages except the unnecessary section 101 of the frame 22 (Fig. 13f). The solder balls 7 are connected to external wiring. In this example,
A semiconductor package can be efficiently manufactured by raising the plate removal.

【0064】図16により、本発明の第十四の実施例に
ついて説明する。
A fourteenth embodiment of the present invention will be described with reference to FIG.

【0065】厚さ0.07mmの接着剤付きポリイミド
フィルム29を、金型で打ち抜き接続端子部となる部分
を開口させる。次に、厚さ0.035mmの銅箔を接着
後、感光性ドライフィルムレジスト(日立化成工業
(株)製、商品名:フォテックHN340)をラミネー
トし、複数組の配線パターンを露光、現像し、エッチン
グレジストを形成た。続いて銅箔をエッチングし、レジ
ストを剥離し、複数組の配線2を形成する(図16
a)。ここで、銅箔上にポリイミドを直接コ−ティング
した材料(例えば、日立化成工業(株)製、商品名50
001)を用いて、接続端子部および配線2を形成する
ようにしても良い。開口部の形成もドリル加工、エキシ
マレ−ザ等のレ−ザ加工、印刷等の方法を用いたり、ポ
リイミドに感光性を持たせた材料を使用し、露光・現像
により形成しても良い。ポリイミドの代わりに封止樹脂
等他の材料を使用しても良い。
A polyimide film 29 with an adhesive having a thickness of 0.07 mm is punched out with a mold to open a portion to be a connection terminal portion. Next, after adhering a copper foil having a thickness of 0.035 mm, a photosensitive dry film resist (Hitachi Chemical Co., Ltd., trade name: Fotec HN340) is laminated, and a plurality of sets of wiring patterns are exposed and developed. An etching resist was formed. Subsequently, the copper foil is etched, the resist is peeled off, and a plurality of sets of wirings 2 are formed (FIG. 16).
a). Here, a material obtained by directly coating polyimide on a copper foil (for example, Hitachi Chemical Co., Ltd., trade name 50
001) may be used to form the connection terminal portion and the wiring 2. The openings may be formed by a method such as drilling, laser processing such as an excimer laser, printing, or exposure / development using a photosensitive material of polyimide. Instead of polyimide, another material such as a sealing resin may be used.

【0066】以上のように、1枚のポリイミドフィルム
上に複数組の配線パターンを形成した後、配線付きフィ
ルムを単位個数に分けた、ポリイミド接着接着剤28を
介して別に用意したステンレス製フレーム22(厚さ;
0.135mm)にはりつけた(図16b)。次に、L
SIチップ3を搭載し、半導体端子部と配線2とをワイ
ヤボンド100により接続する(図16c)。LSIチ
ップの搭載には半導体用ダイボンディングテープ4´を
用いた。このようにして形成したものをトランスファモ
ールド金型に装填し、半導体封止用エポキシ樹脂(日立
化成工業(株)製、商品名:CL−7700)を用いて
封止5した(図16d)。続いて最初に設けた接続端子
部となるべき開口部にはんだボール7を配置し溶融させ
る(図16e)。このはんだボール7を介して外部の配
線と接続する。最後にフレームで連結されたパッケージ
を金型で打ち抜き、個々のパッケージに分割した(図1
6f)。
As described above, after a plurality of sets of wiring patterns are formed on one polyimide film, the film with wiring is divided into unit pieces, and the stainless steel frame 22 is prepared separately via the polyimide adhesive 28. (thickness;
0.135 mm) (Fig. 16b). Then L
The SI chip 3 is mounted, and the semiconductor terminal portion and the wiring 2 are connected by the wire bond 100 (FIG. 16c). A semiconductor die bonding tape 4'was used for mounting the LSI chip. The thus-formed product was loaded into a transfer mold and sealed 5 with an epoxy resin for semiconductor encapsulation (manufactured by Hitachi Chemical Co., Ltd., trade name: CL-7700) (FIG. 16d). Then, the solder balls 7 are placed in the openings to be the connection terminals, which are initially provided, and melted (FIG. 16e). The solder balls 7 are connected to external wiring. Finally, the packages connected by the frame were punched out with a die and divided into individual packages (Fig. 1).
6f).

【0067】図17により本発明の第十五の実施例につ
いて説明する。
A fifteenth embodiment of the present invention will be described with reference to FIG.

【0068】金属箔31上に絶縁基材32を直接形成し
た2層フレキシブル基材(図17a)の金属箔上に所定
のレジスト像を形成し、公知のエッチング法により所望
する複数組の配線パターン33を形成し、レジスト像を
剥離する(図17b)。金属箔としては、電解銅箔や圧
延銅箔あるいは銅合金箔などの単一箔の他、後工程で除
去可能なキャリヤ箔上に銅薄層を有する複合金属箔など
も適用可能である。具体的には、厚さ18μmの電解銅箔
の片面に厚さ0.2μm程度のニッケル-リンめっき層を形
成後、続けて厚さ5μm程度の銅薄層をめっきしたもの
などが適用できる。この場合、銅薄層上にポリイミド層
を形成した後、銅箔及びニッケル-リン層をエッチング
除去することにより、銅薄層が露出する。すなわち、本
願の発明においては銅薄層全てを露出させた後銅薄層を
配線加工しても良いし、キャリヤ箔(銅箔/ニッケル薄
層)をリードフレーム構造体の一部として利用しても良
い。一方、絶縁基材としては、プロセス耐熱性などの観
点からポリイミド材が一般的である。この場合、ポリイ
ミドと銅箔の熱膨張係数が異なるとはんだリフロー工程
において基材の反りが顕著になるため、ポリイミドとし
ては(化1)の繰り返し単位を有するポリイミドを70モ
ル%以上含んだポリイミドを適用することが好ましい。
A predetermined resist image is formed on the metal foil of the two-layer flexible substrate (FIG. 17a) in which the insulating substrate 32 is directly formed on the metal foil 31, and a desired plurality of sets of wiring patterns are formed by a known etching method. 33 is formed and the resist image is peeled off (FIG. 17b). As the metal foil, a single foil such as an electrolytic copper foil, a rolled copper foil, or a copper alloy foil, or a composite metal foil having a thin copper layer on a carrier foil that can be removed in a subsequent step can be applied. Specifically, an electrolytic copper foil having a thickness of 18 μm, on which a nickel-phosphorus plating layer having a thickness of about 0.2 μm is formed on one surface, and subsequently a copper thin layer having a thickness of about 5 μm is plated, can be used. In this case, after forming a polyimide layer on the copper thin layer, the copper foil and the nickel-phosphorus layer are removed by etching to expose the copper thin layer. That is, in the invention of the present application, wiring may be performed on the copper thin layer after exposing all the copper thin layers, or by using the carrier foil (copper foil / nickel thin layer) as a part of the lead frame structure. Is also good. On the other hand, as the insulating base material, a polyimide material is generally used from the viewpoint of process heat resistance and the like. In this case, if the coefficient of thermal expansion of the polyimide and the copper foil are different, the warpage of the base material becomes remarkable in the solder reflow process. Therefore, as the polyimide, a polyimide containing 70 mol% or more of the polyimide having the repeating unit of It is preferably applied.

【0069】[0069]

【化1】 次に、後工程で外部基板との接続部となる位置に銅箔に
達する凹部34を設ける(図17c)。凹部の加工方法
は特に限定するものではなく、エキシマレーザや炭酸ガ
スレーザ及びYAGレーザなどレーザ加工の他、ウエット
エッチング法などが適用可能である。
[Chemical 1] Next, a recess 34 reaching the copper foil is provided at a position to be a connection portion with an external substrate in a later step (FIG. 17c). The method of processing the recess is not particularly limited, and a wet etching method or the like can be applied in addition to laser processing such as excimer laser, carbon dioxide gas laser, and YAG laser.

【0070】次に、所定の部分(開孔部35)をパンチ
ング加工等で打ち抜いた接着材36付きフレーム基材3
7を配線パターン面に接着させる(図17d)。この場
合、フレーム基材は特に限定するものではなく、ポリイ
ミドフィルムや銅箔などの金属箔の適用が可能である。
ここで、仮に2層フレキシブル基材のポリイミド層厚さ
が25μmで、かつ、接着するフレーム基材がポリイミド
フィルムの場合、フレーム全体としての剛直性を確保す
るためにはフィルム厚さとして50〜70μm程度が必要に
なる。なお、フレーム基材層を形成する領域についても
特に限定するものではなく、半導体チップを搭載する部
分にフレーム基材層を設けることも可能である。具体的
には、チップ実装がワイヤボンディング方式の場合に
は、最小限ワイヤボンド用端子部38が露出していれば
他の領域全てにフレーム基材層を設けても良い。次に、
半導体チップ39を搭載し、金ワイヤ40で半導体チッ
プと配線パターン間を電気的に接続させる(図17
e)。一方、半導体チップ実装方式としてフェースダウ
ン方式を採用する場合には、配線パターンの所定位置
(半導体チップの外部接続用電極位置に対応)に金属パ
ンプ等を設け、金属バンプを介して半導体チップと波線
パターンとを電気的に接続させても良い。次に、トラン
スファーモールド用の金型にセットし、樹脂封止材41
で封止する(図17f)。この場合、樹脂封止材は特に
限定するものではなく、例えば、直径10〜20μm程度の
シリカを5〜80wt%の範囲で含有したエポキシ系樹脂など
が適用できる。次に、外部基板との接続部42を形成す
る。接続部42の形成方法としては、図17cの工程後
にあらかじめ電解めっき法によりポリイミドフィルム厚
さ以上のバンプを形成しておく方法や樹脂封止後にはん
だ印刷法によりはんだバンプを形成する方法などが適用
可能である。最後に、フレームからパッケージ部を切断
して所望するパッケージが得られる(図17g)。
Next, the frame base material 3 with the adhesive 36 in which a predetermined portion (opening portion 35) is punched out by punching or the like.
7 is adhered to the wiring pattern surface (FIG. 17d). In this case, the frame base material is not particularly limited, and a polyimide film or a metal foil such as a copper foil can be applied.
Here, if the polyimide layer thickness of the two-layer flexible base material is 25 μm and the frame base material to be bonded is a polyimide film, the film thickness is 50 to 70 μm in order to secure the rigidity of the entire frame. Degree is needed. The area where the frame base material layer is formed is not particularly limited, and the frame base material layer can be provided in the portion where the semiconductor chip is mounted. Specifically, when the chip mounting is a wire bonding method, the frame base material layer may be provided in all other regions as long as the minimum wire bond terminal portion 38 is exposed. next,
The semiconductor chip 39 is mounted, and the gold wire 40 electrically connects the semiconductor chip and the wiring pattern (FIG. 17).
e). On the other hand, when the face-down method is adopted as the semiconductor chip mounting method, a metal pump or the like is provided at a predetermined position of the wiring pattern (corresponding to the external connection electrode position of the semiconductor chip), and the semiconductor chip and the wavy line are connected via the metal bump. The pattern may be electrically connected. Next, the resin encapsulant 41 is set in a transfer mold.
And then seal (FIG. 17f). In this case, the resin sealing material is not particularly limited, and for example, an epoxy resin containing silica having a diameter of about 10 to 20 μm in the range of 5 to 80 wt% can be applied. Next, the connection portion 42 with the external substrate is formed. As the method of forming the connection portion 42, a method of previously forming bumps having a thickness of a polyimide film or more by electrolytic plating after the step of FIG. 17c or a method of forming solder bumps by solder printing after resin sealing is applied. It is possible. Finally, the package part is cut from the frame to obtain the desired package (FIG. 17g).

【0071】図17の第十五の実施例を更に具体的に説
明する。
The fifteenth embodiment of FIG. 17 will be described more specifically.

【0072】具体例1 厚さ12μmの電解銅箔を片面に有する2層フレキシブル
基材(日立化成工業(株)製、商品名:MCF 5000I)の
銅箔面上にドライフィルムレジスト(日立化成工業
(株)製、商品名:フォテックHK815)をラミネート
し、露光、現像により所望するレジストパターンを得
た。次に、塩化第二鉄溶液で銅箔をエッチング加工後、
レジストパターンを水酸化カリウム溶液で剥離すること
により所定の配線パターンを得た。次に、エキシマレー
ザ加工機(住友重機械工業(株)製、装置名:INDEX20
0)を用いて絶縁基材側から配線パターン裏面に達する
凹部(直径300μm)を所定の位置に所定の数だけ形成
した。エキシマレーザ加工条件は、エネルギー密度250m
J/cm2、縮小率3.0、発振周波数200Hz、照射パルス数30
0パルスである。次に50μm厚さのポリイミドフィルム
(宇部興産製、商品名:UPILEXS)の片面に厚さ10μm
のポリイミド系接着材(日立化成工業(株)製、商品
名:AS 2250)を有する接着シートを作製し、後工程で
のワイヤボンド端子部に相当する領域を含む所定領域を
パンチ加工により除去し、接着材を介してポリイミドフ
ィルムと配線パターン付き2層フレキ基材とを加熱圧着
させた。圧着条件は、圧力20kgf/cm2、温度180℃、加熱
加圧時間60分である。次に、無電解ニッケル、金めっき
法によりワイヤボンド用端子部にニッケル/金めっきを
施した。めっき厚さは、それぞれ、3μm、0.3μmであ
る。次に、半導体チップ搭載用ダイボンド材(日立化成
工業(株)製、商品名:HM-1)を用いて半導体チップを
搭載した。搭載条件は、プレス圧力5kgf/cm2、接着温
度380℃及び圧着時間5秒である。次に、ワイヤボンディ
ングにより半導体チップの外部電極部と配線パターンを
電気的に接続した。その後、リードフレーム状に金型加
工し、トランスファーモールド用金型にセットし、半導
体封止用エポキシ樹脂(日立化成工業(株)製、CL-770
0)を用いて185℃、90秒で封止した。続いて、前述の凹
部に所定量のはんだを印刷塗布し、赤外線リフロー炉に
よりはんだを溶融させて外部接続用バンプを形成した。
最後に、パッケージ部を金型で打ち抜き、所望するパッ
ケージを得た。
Concrete Example 1 A dry film resist (Hitachi Chemical Industry Co., Ltd.) on a copper foil surface of a two-layer flexible substrate (manufactured by Hitachi Chemical Co., Ltd., trade name: MCF 5000I) having a 12 μm thick electrolytic copper foil on one surface. (Trade name: Photec HK815, manufactured by Co., Ltd.) was laminated, and a desired resist pattern was obtained by exposure and development. Next, after etching the copper foil with ferric chloride solution,
A predetermined wiring pattern was obtained by peeling the resist pattern with a potassium hydroxide solution. Next, excimer laser processing machine (Sumitomo Heavy Industries, Ltd., device name: INDEX20
0) was used to form a predetermined number of recesses (diameter 300 μm) reaching the back surface of the wiring pattern from the insulating substrate side at predetermined positions. Excimer laser processing conditions are energy density 250m
J / cm2, reduction rate 3.0, oscillation frequency 200Hz, irradiation pulse number 30
There are 0 pulses. Next, a polyimide film with a thickness of 50 μm (Ube Industries, trade name: UPILEXS) has a thickness of 10 μm on one side.
An adhesive sheet having a polyimide-based adhesive (Hitachi Chemical Co., Ltd., trade name: AS 2250) is manufactured, and a predetermined area including an area corresponding to a wire bond terminal portion in a subsequent step is removed by punching. The polyimide film and the two-layer flexible base material with a wiring pattern were thermocompression bonded via an adhesive. The pressure bonding conditions are a pressure of 20 kgf / cm2, a temperature of 180 ° C, and a heating and pressing time of 60 minutes. Next, the terminal portion for wire bonding was nickel / gold plated by electroless nickel / gold plating. The plating thickness is 3 μm and 0.3 μm, respectively. Next, a semiconductor chip was mounted using a die bond material for mounting a semiconductor chip (manufactured by Hitachi Chemical Co., Ltd., trade name: HM-1). The mounting conditions are a press pressure of 5 kgf / cm2, an adhesion temperature of 380 ° C, and a pressure bonding time of 5 seconds. Next, the external electrode portion of the semiconductor chip and the wiring pattern were electrically connected by wire bonding. After that, mold into a lead frame shape, set in a mold for transfer molding, and epoxy resin for semiconductor encapsulation (CL-770 manufactured by Hitachi Chemical Co., Ltd.).
0) and sealed at 185 ° C. for 90 seconds. Then, a predetermined amount of solder was applied by printing onto the above-mentioned concave portion, and the solder was melted by an infrared reflow furnace to form bumps for external connection.
Finally, the package part was punched with a die to obtain a desired package.

【0073】図18により本発明の第十六の実施例につ
いて説明する。
A sixteenth embodiment of the present invention will be described with reference to FIG.

【0074】金属箔31上に絶縁基材32を直接形成し
た2層フレキシブル基材(図18a)の金属箔上に所定
のレジスト像を形成し、公知のエッチング法により所望
する複数組の配線パターン3を形成し、レジスト像を剥
離する(図18b)。金属箔としては、電解銅箔や圧延
銅箔あるいは銅合金箔などの単一箔の他、後工程で除去
可能なキャリヤ箔上に銅薄層を有する複合金属箔なども
適用可能である。具体的には、厚さ18μmの電解銅箔の
片面に厚さ0.2μm程度のニッケル-リンめっき層を形成
後、続けて厚さ5μm程度の銅薄層をめっきしたものな
どが適用できる。この場合、銅薄層上にポリイミド層を
形成した後、銅箔及びニッケル-リン層をエッチング除
去することにより、銅薄層が露出する。すなわち、本願
の発明においては銅薄層全てを露出させた後銅薄層を配
線加工しても良いし、キャリヤ箔(銅箔/ニッケル薄
層)をリードフレーム構造体の一部として利用しても良
い。一方、絶縁基材としては、プロセス耐熱性などの観
点からポリイミド材が一般的である。この場合、ポリイ
ミドと銅箔の熱膨張係数が異なるとはんだリフロー工程
において基材の反りが顕著になるため、ポリイミドとし
ては(化1)の繰り返し単位を有するポリイミドを70モ
ル%以上含んだポリイミドを適用することが好ましい。
A predetermined resist image is formed on a metal foil of a two-layer flexible base material (FIG. 18a) in which an insulating base material 32 is directly formed on the metal foil 31, and a desired plurality of sets of wiring patterns are formed by a known etching method. 3 is formed and the resist image is peeled off (FIG. 18b). As the metal foil, a single foil such as an electrolytic copper foil, a rolled copper foil, or a copper alloy foil, or a composite metal foil having a thin copper layer on a carrier foil that can be removed in a subsequent step can be applied. Specifically, an electrolytic copper foil having a thickness of 18 μm, on which a nickel-phosphorus plating layer having a thickness of about 0.2 μm is formed on one surface, and subsequently a copper thin layer having a thickness of about 5 μm is plated, can be used. In this case, after forming a polyimide layer on the copper thin layer, the copper foil and the nickel-phosphorus layer are removed by etching to expose the copper thin layer. That is, in the invention of the present application, wiring may be performed on the copper thin layer after exposing all the copper thin layers, or by using the carrier foil (copper foil / nickel thin layer) as a part of the lead frame structure. Is also good. On the other hand, as the insulating base material, a polyimide material is generally used from the viewpoint of process heat resistance and the like. In this case, if the coefficient of thermal expansion of the polyimide and the copper foil are different, the warpage of the base material becomes remarkable in the solder reflow process. Therefore, as the polyimide, a polyimide containing 70 mol% or more of the polyimide having the repeating unit of It is preferably applied.

【0075】次に、後工程で外部基板との接続部となる
位置に銅箔に達する凹部34を設ける(図18c)。凹
部の加工方法は特に限定するものではなく、エキシマレ
ーザや炭酸ガスレーザ及びYAGレーザなどレーザ加工の
他、ウエットエッチング法などが適用可能である。
Next, a recess 34 reaching the copper foil is provided at a position which will be a connection portion with an external substrate in a later step (FIG. 18c). The method of processing the recess is not particularly limited, and a wet etching method or the like can be applied in addition to laser processing such as excimer laser, carbon dioxide gas laser, and YAG laser.

【0076】次に、第2絶縁基体として所定の部分(開
孔部5)をパンチング加工等で打ち抜いた接着材36付
きフレーム基材37を配線パターン面に接着させる(図
18d)。ここで、仮に2層フレキシブル基材のポリイ
ミド層厚さが25μmであれば、後工程でフレームに固着
することを考慮すれば接着するポリイミドフィルムの厚
さとして50〜70μm程度が必要になる。なお、ポリイミ
ドを接着する領域についても特に限定するものではな
く、半導体チップを搭載する部分に設けることにより、
CSPのように半導体チップ下部に外部接続端子を形成
することも可能である。具体的には、チップ実装がワイ
ヤボンディング方式の場合には、最小限ワイヤボンド用
端子部38が露出していれば他の領域全てにポリイミド
フィルムを接着しても良い。このようにして得られた絶
縁基板を、個々の配線パターンに分離し(図18e)別
に用意した例えばSUSなどのフレーム43に固着する
(図18f)。次に、半導体チップ39を搭載し、金ワ
イヤ40で半導体チップと配線パターン間を電気的に接
続させる(図18g)。一方、半導体チップ実装方式と
してフェースダウン方式を採用する場合には、配線パタ
ーンの所定位置(半導体チップの外部接続用電極位置に
対応)に金属パンプ等を設け、金属バンプを介して半導
体チップと波線パターンとを電気的に接続させても良
い。次に、トランスファーモールド用の金型にセット
し、樹脂封止材41で封止する(図18h)。この場
合、樹脂封止材は特に限定するものではなく、例えば、
直径10〜20μm程度のシリカを5〜80wt%の範囲で含有し
たエポキシ系樹脂などが適用できる。次に、外部基板と
の接続部12を形成する。接続部12の形成方法として
は、図18cの工程後にあらかじめ電解めっき法により
ポリイミドフィルム厚さ以上のバンプを形成しておく方
法や樹脂封止後にはんだ印刷法によりはんだバンプを形
成する方法などが適用可能である。最後に、フレームか
らパッケージ部を切断して所望するパッケージが得られ
る(図18i)。
Next, a frame base material 37 with an adhesive 36, in which a predetermined portion (opening 5) is punched out by a punching process or the like as the second insulating substrate, is adhered to the wiring pattern surface (FIG. 18d). Here, if the thickness of the polyimide layer of the two-layer flexible base material is 25 μm, the thickness of the polyimide film to be adhered is required to be about 50 to 70 μm, considering that it will be fixed to the frame in a later step. Note that the area for bonding the polyimide is not particularly limited, and by providing the area where the semiconductor chip is mounted,
It is also possible to form an external connection terminal under the semiconductor chip like a CSP. Specifically, when the chip mounting is a wire bonding method, a polyimide film may be adhered to all other regions as long as the wire bonding terminal portion 38 is exposed at a minimum. The insulating substrate thus obtained is separated into individual wiring patterns (FIG. 18e) and fixed to a separately prepared frame 43 such as SUS (FIG. 18f). Next, the semiconductor chip 39 is mounted and the gold wire 40 electrically connects the semiconductor chip and the wiring pattern (FIG. 18g). On the other hand, when the face-down method is adopted as the semiconductor chip mounting method, a metal pump or the like is provided at a predetermined position of the wiring pattern (corresponding to the external connection electrode position of the semiconductor chip), and the semiconductor chip and the wavy line are connected via the metal bump. The pattern may be electrically connected. Next, it is set in a transfer mold and sealed with a resin sealing material 41 (FIG. 18h). In this case, the resin sealing material is not particularly limited, for example,
An epoxy resin containing silica having a diameter of about 10 to 20 μm in the range of 5 to 80 wt% can be applied. Next, the connection portion 12 with the external substrate is formed. As a method of forming the connection portion 12, a method of previously forming bumps having a thickness of a polyimide film or more by electrolytic plating after the step of FIG. 18c, a method of forming solder bumps by solder printing after resin sealing, or the like is applied. It is possible. Finally, the package part is cut from the frame to obtain the desired package (FIG. 18i).

【0077】図18の第十六の実施例を更に具体的に説
明する。
The sixteenth embodiment of FIG. 18 will be described more specifically.

【0078】具体例2 厚さ12μmの電解銅箔を片面に有する2層フレキシブル
基材(日立化成工業(株)製、商品名:MCF 5000I)の
銅箔面上にドライフィルムレジスト(日立化成工業
(株)製、商品名:フォテックHK815)をラミネート
し、露光、現像により所望するレジストパターンを得
た。次に、塩化第二鉄溶液で銅箔をエッチング加工後、
レジストパターンを水酸化カリウム溶液で剥離すること
により所定の配線パターンを得た。次に、エキシマレー
ザ加工機(住友重機械工業(株)製、装置名:INDEX20
0)を用いて絶縁基材側から配線パターン裏面に達する
凹部(直径300μm)を所定の位置に所定の数だけ形成
した。エキシマレーザ加工条件は、エネルギー密度250m
J/cm2、縮小率3.0、発振周波数200Hz、照射パルス数30
0パルスである。次に50μm厚さのポリイミドフィルム
(宇部興産製、商品名:UPILEXS)の片面に厚さ10μm
のポリイミド系接着材(日立化成工業(株)製、商品
名:AS 2250)を有する接着シートを作製し、後工程で
のワイヤボンド端子部に相当する領域を含む所定領域を
パンチ加工により除去し、接着材を介してポリイミドフ
ィルムと配線パターン付き2層フレキ基材とを加熱圧着
させた。圧着条件は、圧力20kgf/cm2、温度180℃、加
熱加圧時間60分である。次に、無電解ニッケル、金めっ
き法によりワイヤボンド用端子部にニッケル/金めっき
を施した。めっき厚さは、それぞれ、3μm、0.3μmで
ある。このようにして得られた基板を、個々の配線パタ
ーンに分離し、別に用意したSUSフレ−ムに固着し
た。次に、半導体チップ搭載用ダイボンド材(日立化成
工業(株)製、商品名:HM-1)を用いて半導体チップを
搭載した。搭載条件は、プレス圧力5kgf/cm2、接着温度
380℃及び圧着時間5秒である。次に、ワイヤボンディン
グにより半導体チップの外部電極部と配線パターンを電
気的に接続した。その後、リードフレーム状に金型加工
し、トランスファーモールド用金型にセットし、半導体
封止用エポキシ樹脂(日立化成工業(株)製、CL-770
0)を用いて185℃、90秒で封止した。続いて、前述の凹
部に所定量のはんだを印刷塗布し、赤外線リフロー炉に
よりはんだを溶融させて外部接続用バンプを形成した。
最後に、パッケージ部を金型で打ち抜き、所望するパッ
ケージを得た。
Example 2 A dry film resist (Hitachi Chemical Co., Ltd.) was formed on the copper foil surface of a two-layer flexible base material (manufactured by Hitachi Chemical Co., Ltd., trade name: MCF 5000I) having a 12 μm thick electrolytic copper foil on one surface. (Trade name: Photec HK815, manufactured by Co., Ltd.) was laminated, and a desired resist pattern was obtained by exposure and development. Next, after etching the copper foil with ferric chloride solution,
A predetermined wiring pattern was obtained by peeling the resist pattern with a potassium hydroxide solution. Next, excimer laser processing machine (Sumitomo Heavy Industries, Ltd., device name: INDEX20
0) was used to form a predetermined number of recesses (diameter 300 μm) reaching the back surface of the wiring pattern from the insulating substrate side at predetermined positions. Excimer laser processing conditions are energy density 250m
J / cm2, reduction rate 3.0, oscillation frequency 200Hz, irradiation pulse number 30
There are 0 pulses. Next, a polyimide film with a thickness of 50 μm (Ube Industries, trade name: UPILEXS) has a thickness of 10 μm on one side.
An adhesive sheet having a polyimide-based adhesive (Hitachi Chemical Co., Ltd., trade name: AS 2250) is manufactured, and a predetermined area including an area corresponding to a wire bond terminal portion in a subsequent step is removed by punching. The polyimide film and the two-layer flexible base material with a wiring pattern were thermocompression bonded via an adhesive. The pressure bonding conditions are a pressure of 20 kgf / cm 2, a temperature of 180 ° C., and a heating and pressing time of 60 minutes. Next, the terminal portion for wire bonding was nickel / gold plated by electroless nickel / gold plating. The plating thickness is 3 μm and 0.3 μm, respectively. The substrate thus obtained was separated into individual wiring patterns and fixed to a separately prepared SUS frame. Next, a semiconductor chip was mounted using a die bond material for mounting a semiconductor chip (manufactured by Hitachi Chemical Co., Ltd., trade name: HM-1). Mounting conditions are press pressure 5kgf / cm2, bonding temperature
The temperature is 380 ° C and the bonding time is 5 seconds. Next, the external electrode portion of the semiconductor chip and the wiring pattern were electrically connected by wire bonding. After that, mold into a lead frame shape, set in a mold for transfer molding, and epoxy resin for semiconductor encapsulation (CL-770 manufactured by Hitachi Chemical Co., Ltd.).
0) and sealed at 185 ° C. for 90 seconds. Then, a predetermined amount of solder was applied by printing onto the above-mentioned concave portion, and the solder was melted by an infrared reflow furnace to form bumps for external connection.
Finally, the package part was punched with a die to obtain a desired package.

【0079】図19、20、21により本発明の第十七
の実施例について説明する。
A seventeenth embodiment of the present invention will be described with reference to FIGS.

【0080】支持体51上に複数組の所定の配線パター
ン52を形成する(図19a)。支持体としては、電解
銅箔などの金属箔の他にポリイミドフィルムなどの絶縁
基材を適用できる。絶縁基材を適用する場合には2通り
の方法がある。第1の方法は、絶縁基材の所定部分に配
線パターンに達する非貫通凹部を形成し、配線パターン
の露出部に外部接続端子を形成する方法である。非貫通
凹部はエキシマレーザや炭酸ガスレーザなどを適用して
形成できる。第2の方法は、接着材付き絶縁基材にドリ
ル加工したものを予め形成しておき、電解銅箔などと積
層させた後、銅箔をエッチング加工する方法である。
A plurality of sets of predetermined wiring patterns 52 are formed on the support 51 (FIG. 19a). As the support, an insulating base material such as a polyimide film can be applied in addition to a metal foil such as an electrolytic copper foil. There are two methods for applying an insulating base material. The first method is a method of forming a non-penetrating recess reaching a wiring pattern on a predetermined portion of an insulating base material and forming an external connection terminal on an exposed portion of the wiring pattern. The non-penetrating recess can be formed by applying an excimer laser, a carbon dioxide gas laser, or the like. The second method is a method in which an insulating base material with an adhesive is drilled in advance, laminated with an electrolytic copper foil or the like, and then the copper foil is etched.

【0081】一方、金属箔を適用する場合には、まずフ
ォトレジストなどによりレジストパターンを形成後、金
属箔をカソードとして電気めっき法で配線パターンを形
成する。この場合、通常の電解銅箔や電解銅箔上に銅箔
と化学エッチング条件の異なる金属(ニッケル、金、は
んだ等)の薄層を設けたものなどが適用できる。また、
配線パターンとしては銅が好ましいが、前述のように電
解銅箔を支持体として適用する場合には、銅箔とエッチ
ング条件の異なる金属自体を配線パターンとして適用し
たり、あるいは、銅箔エッチング時のバリヤ層となるパ
ターン薄層をパターン銅めっき前に形成したりする必要
がある。
On the other hand, when a metal foil is applied, a resist pattern is first formed by photoresist or the like, and then a wiring pattern is formed by electroplating using the metal foil as a cathode. In this case, an ordinary electrolytic copper foil or an electrolytic copper foil provided with a thin layer of a metal (nickel, gold, solder, etc.) having different chemical etching conditions from the copper foil can be applied. Also,
Although copper is preferable as the wiring pattern, when the electrolytic copper foil is applied as the support as described above, the metal itself having different etching conditions from the copper foil is applied as the wiring pattern, or when the copper foil is etched. It is necessary to form a thin pattern layer to be a barrier layer before pattern copper plating.

【0082】次に、ダイボンド材53で半導体素子54
を搭載後、半導体素子端子と配線パターンとを電気的に
接続し(図19b)、トランスファーモールド法により
複数組の半導体素子と配線パターンとを一括して樹脂封
止材56で封止する(図19c)。樹脂封止材は特に限
定するものではなく、例えば、直径10〜20μm程度のシ
リカを5〜80wt%の範囲で含有したエポキシ樹脂のが適用
できる。なお、本発明は半導体素子の実装方式がフェー
スアップ方式の場合に限定されるものではなく、例え
ば、フェースダウン方式の場合にも適用可能である。具
体的には、配線パターン52上の所定位置にフェースダ
ウンボンド用のバンプをめっき法などにより形成した
後、半導体素子の外部接続部とバンプとを電気的に接続
させれば良い。
Next, the semiconductor element 54 is formed with the die bond material 53.
After mounting, the semiconductor element terminals and the wiring pattern are electrically connected (FIG. 19B), and a plurality of sets of semiconductor elements and the wiring pattern are collectively sealed with the resin sealing material 56 by the transfer molding method (FIG. 19B). 19c). The resin sealing material is not particularly limited, and for example, an epoxy resin containing silica having a diameter of 10 to 20 μm in a range of 5 to 80 wt% can be applied. The present invention is not limited to the case where the semiconductor element mounting method is the face-up method, and is applicable to the face-down method, for example. Specifically, after a bump for face-down bond is formed at a predetermined position on the wiring pattern 52 by a plating method or the like, the external connection portion of the semiconductor element and the bump may be electrically connected.

【0083】更に、図20や図21に示したように後工
程でパッケージを分割しやすいようにしておくことは有
効である。このうち、図20は複数個ある各パッケージ
部分の境界部分に溝59を形成するものである。溝の幅
や深さ等は、トランスファーモールド用金型の加工寸法
により制御可能である。また、図21は、あらかじめ各
パッケージ部に対応した部分をくり抜いた格子状中間板
60を使用してトランスファーモールドを行なうもので
ある。次に、支持体が金属箔の場合、化学エッチング法
などにより支持体を除去し、所定の位置に外部接続用端
子57を形成する(図19d)。支持体として絶縁基材
を適用する場合には、前述したようにレーザ等により所
定部分の絶縁基材のみを選択的に除去すれば良い。最後
に、一括封止した基板を単位部分58に切断分離する。
なお、配線パターン露出面に配線パターンを保護する目
的でソルダーレジスト層を形成しても良い。
Further, as shown in FIGS. 20 and 21, it is effective to make the package easy to divide in the subsequent process. Of these, FIG. 20 shows that a groove 59 is formed at a boundary portion between a plurality of package portions. The width and depth of the groove can be controlled by the processing dimensions of the transfer mold. Further, in FIG. 21, transfer molding is performed using a grid-like intermediate plate 60 in which parts corresponding to the respective package parts are previously cut out. Next, when the support is a metal foil, the support is removed by a chemical etching method or the like to form the external connection terminal 57 at a predetermined position (FIG. 19d). When an insulating base material is used as the support, only a predetermined portion of the insulating base material may be selectively removed by a laser or the like as described above. Finally, the collectively sealed substrate is cut and separated into unit parts 58.
A solder resist layer may be formed on the exposed surface of the wiring pattern for the purpose of protecting the wiring pattern.

【0084】第十七の実施例を具体的に説明する。The seventeenth embodiment will be specifically described.

【0085】具体例3 厚さ35μm、外形250mm角の電解銅箔のシャイニー面
に、感光性ドライフィルムレジスト(日立化成工業
(株)製、商品名:フォテックHN640)をラミネート
し、露光、現像により所望するレジストパターン(最少
ライン/スペース=50μm /50μm )を形成した。次に、
電気めっき法により、厚さ0.2μmのニッケル、30μm
の銅、5μmのニッケル及び1μmのソフト金で構成され
る同一の配線パターンを300個(4ブロック/250mm角、75
個/ブロック)形成した。次に、液温35℃、濃度3wt%の
水酸化カリウム溶液を用いてレジストパターンを剥離
し、85℃で15分間乾燥後、各ブロックに切断後、半導体
素子実装用ダイボンド材(日立化成工業(株)製、商品
名:HM-1)を用いて半導体素子を接着した。接着条件
は、プレス圧力5kg/cm2、温度380℃及び圧着時間5秒で
ある。次に、半導体素子の外部端子と金めっき端子部
(第2の接続部)をワイヤボンドにより電気的に接続し
た後、トランスファーモールド金型にセットし、半導体
封止用エポキシ樹脂(日立化成工業(株)製、商品名:
CL-7700)を用いて185℃、90秒で75個(1ブロックに相
当)の配線パターンを一括封止することにより、各配線
パターンを封止材中に転写した。次に、アルカリエッチ
ャント(メルテックス(株)製、商品名: Aプロセス)
を用いて電解銅箔の所望する部分をエッチング除去し
た。エッチング液の温度は40℃、スプレー圧力は1.2kgf
/ cm2である。次に、印刷法により外部接続端子部には
んだパターンを形成し、赤外線リフロー炉によりはんだ
を溶融させて外部接続用バンプを形成した。最後に、ダ
イヤモンドカッターにより、各パッケージ部に分離して
所望するパッケージを得た。
Specific Example 3 A photosensitive dry film resist (Hitachi Chemical Co., Ltd., trade name: Fotec HN640) was laminated on the shiny surface of an electrolytic copper foil having a thickness of 35 μm and an outer shape of 250 mm square, and exposed and developed. A desired resist pattern (minimum line / space = 50 μm / 50 μm) was formed. next,
By electroplating method, nickel with a thickness of 0.2 μm, 30 μm
300 identical wiring patterns (4 blocks / 250mm square, 75mm, made of copper, 5μm nickel and 1μm soft gold)
Pieces / block) formed. Next, the resist pattern was peeled off using a potassium hydroxide solution having a liquid temperature of 35 ° C. and a concentration of 3 wt%, dried at 85 ° C. for 15 minutes, cut into blocks, and then die-bonding materials for mounting semiconductor elements (Hitachi Chemical ( A semiconductor element was bonded using a trade name: HM-1) manufactured by K.K. The bonding conditions are a pressing pressure of 5 kg / cm 2, a temperature of 380 ° C. and a pressure bonding time of 5 seconds. Next, after electrically connecting the external terminal of the semiconductor element and the gold-plated terminal portion (second connection portion) by wire bonding, the semiconductor element is set in a transfer mold and epoxy resin for semiconductor encapsulation (Hitachi Chemical ( Product name:
CL-7700) was used to collectively seal 75 wiring patterns (corresponding to one block) at 185 ° C. for 90 seconds, so that each wiring pattern was transferred into the sealing material. Next, Alkaline etchant (Meltex Co., Ltd., trade name: A process)
The desired part of the electrolytic copper foil was removed by etching. Etching solution temperature is 40 ℃, spray pressure is 1.2kgf
/ cm2. Next, a solder pattern was formed on the external connection terminal portion by a printing method, and the solder was melted by an infrared reflow oven to form external connection bumps. Finally, a diamond cutter was used to separate each package into desired packages.

【0086】具体例4 厚さ35μm、外形250mm角の電解銅箔のシャイニー面
に、感光性ドライフィルムレジスト(日立化成工業
(株)製、商品名:フォテックHN640)をラミネート
し、露光、現像により所望するレジストパターン(最少
ライン/スペース=50μm /50μm )を形成した。次に、
電気めっき法により、厚さ0.2μmのニッケル、30μm
の銅、5μmのニッケル及び1μmのソフト金で構成され
る同一の配線パターンを300個(4ブロック/250mm角、75
個/ブロック)形成した。次に、液温35℃、濃度3wt%の
水酸化カリウム溶液を用いてレジストパターンを剥離
し、85℃で15分間乾燥後、各ブロックに切断後、半導体
素子実装用ダイボンド材(日立化成工業(株)製、商品
名:HM-1)を用いて半導体素子を接着した。接着条件
は、プレス圧力5kg/cm2、温度380℃及び圧着時間5秒で
ある。次に、半導体素子の外部端子と金めっき端子部
(第2の接続部)をワイヤボンドにより電気的に接続し
た。次に、パッケージ領域に相当する部分(15mm角)を
くり抜いた格子状ステンレス板を中間板としてトランス
ファーモールド金型にセットし、半導体封止用エポキシ
樹脂(日立化成工業(株)製、商品名:CL-7700)を用
いて185℃、90秒で75個(1ブロックに相当)の配線パ
ターンを一括封止することにより、各配線パターンを封
止材中に転写した。中間板の格子部分は、各パッケージ
が中間板から分離しやすいように12°のテーパがついて
いる。次に、アルカリエッチャント(メルテックス
(株)製、商品名: A プロセス)を用いて電解銅箔の
所望する部分をエッチング除去した。各パッケージ部
は、格子状中間板で保持されている。エッチング液の温
度は40℃、スプレー圧力は1.2kgf/ cm2である。最後
に、印刷法により外部接続端子部にはんだパターンを形
成し、赤外線リフロー炉によりはんだを溶融させて外部
接続用バンプを形成し、中間板から各パッケージ部に分
離して所望するパッケージを得た。
Specific Example 4 A photosensitive dry film resist (trade name: Photec HN640, manufactured by Hitachi Chemical Co., Ltd.) was laminated on the shiny surface of an electrolytic copper foil having a thickness of 35 μm and an outer shape of 250 mm square, and exposed and developed. A desired resist pattern (minimum line / space = 50 μm / 50 μm) was formed. next,
By electroplating method, nickel with a thickness of 0.2 μm, 30 μm
300 identical wiring patterns (4 blocks / 250mm square, 75mm, made of copper, 5μm nickel and 1μm soft gold)
Pieces / block) formed. Next, the resist pattern was peeled off using a potassium hydroxide solution having a liquid temperature of 35 ° C. and a concentration of 3 wt%, dried at 85 ° C. for 15 minutes, cut into blocks, and then die-bonding materials for mounting semiconductor elements (Hitachi Chemical ( A semiconductor element was bonded using a trade name: HM-1) manufactured by K.K. The bonding conditions are a pressing pressure of 5 kg / cm 2, a temperature of 380 ° C. and a pressure bonding time of 5 seconds. Next, the external terminal of the semiconductor element and the gold-plated terminal portion (second connecting portion) were electrically connected by wire bonding. Next, a grid-shaped stainless steel plate obtained by hollowing out a portion corresponding to the package area (15 mm square) was set as an intermediate plate in a transfer mold, and epoxy resin for semiconductor encapsulation (manufactured by Hitachi Chemical Co., Ltd., trade name: CL-7700) was used to collectively seal 75 wiring patterns (corresponding to one block) at 185 ° C. for 90 seconds, so that each wiring pattern was transferred into the sealing material. The grid portion of the intermediate plate is tapered by 12 ° so that each package can be easily separated from the intermediate plate. Next, a desired portion of the electrolytic copper foil was removed by etching using an alkaline etchant (manufactured by Meltex Co., Ltd., trade name: A process). Each package part is held by a grid-shaped intermediate plate. The temperature of the etching solution is 40 ° C. and the spray pressure is 1.2 kgf / cm 2. Finally, a solder pattern is formed on the external connection terminal portion by a printing method, the solder is melted by an infrared reflow furnace to form a bump for external connection, and a desired package is obtained by separating the intermediate plate into each package portion. .

【0087】図22により本発明の第十八の実施例につ
いて説明する。
An eighteenth embodiment of the present invention will be described with reference to FIG.

【0088】導電性の仮支持体61(図22a)上に複
数組の所定のレジストパターン62(図22b)を形成
する。次に、電気めっき法により仮支持体の露出部に配
線パターン63を形成する。この場合、仮支持体は特に
限定されるものではなく、例えば、通常の電解銅箔や電
解銅箔上に銅箔と化学エッチング条件の異なる金属(ニ
ッケル、金、はんだ等)の薄層を設けたものなどが適用
できる。また、配線パターンとしては銅が好ましいが、
前述のように電解銅箔を仮支持体として適用する場合に
は、銅箔とエッチング条件の異なる金属自体を配線パタ
ーンとして適用したり、あるいは、銅箔エッチング時の
バリヤ層となるパターン薄層をパターン銅めっき前に形
成したりする必要がある。仮支持体の厚さは、後工程で
のハンドリング性や半導体素子実装時の寸法安定性など
の点で支障がなければ特に限定されることはない。次
に、仮支持体をカソードとして金ワイヤボンド用のめっ
き(通常は、ニッケル/金)64を施した後、レジスト
パターンを除去する(図22c)。なお、本発明は半導
体素子の実装方式がフェースアップ方式の場合に限定さ
れるものではなく、例えば、フェースダウン方式の場合
にも適用可能である。具体的には、配線パターン63上
の所定位置にフェースダウンボンド用のバンプをめっき
法などにより形成した後、半導体素子の外部接続部とバ
ンプとを電気的に接続させれば良い。
A plurality of sets of predetermined resist patterns 62 (FIG. 22b) are formed on the conductive temporary support 61 (FIG. 22a). Next, the wiring pattern 63 is formed on the exposed portion of the temporary support by electroplating. In this case, the temporary support is not particularly limited, and for example, a normal electrolytic copper foil or a thin layer of a metal (nickel, gold, solder, etc.) having a different chemical etching condition from the copper foil is provided on the electrolytic copper foil. Applicable items are applicable. Copper is preferable as the wiring pattern,
When the electrolytic copper foil is applied as a temporary support as described above, a metal itself having a different etching condition from the copper foil is applied as a wiring pattern, or a pattern thin layer serving as a barrier layer during copper foil etching is used. It is necessary to form it before pattern copper plating. The thickness of the temporary support is not particularly limited as long as there is no problem in terms of handleability in a later process and dimensional stability when mounting a semiconductor element. Next, after plating with gold wire bonds (usually nickel / gold) 64 using the temporary support as a cathode, the resist pattern is removed (FIG. 22c). The present invention is not limited to the case where the semiconductor element mounting method is the face-up method, and is applicable to the face-down method, for example. Specifically, after a bump for face-down bond is formed at a predetermined position on the wiring pattern 63 by a plating method or the like, the external connection portion of the semiconductor element and the bump may be electrically connected.

【0089】次に、半導体素子65をダイボンド材66
などで接着し、半導体素子の外部接続端子と配線パター
ンとを電気的に接続する(図22d)。次に、トランス
ファーモールド用金型にセットし、樹脂封止材68で封
止する(図22e)。この場合、樹脂封止材は特に限定
するものではなく、例えば、直径10〜20μm程度のシリ
カを5〜80wt%の範囲で含有したエポキシ樹脂が適用でき
る。
Next, the semiconductor element 65 is bonded to the die bond material 66.
Then, the external connection terminals of the semiconductor element and the wiring pattern are electrically connected (FIG. 22d). Next, it is set in a transfer mold and sealed with a resin sealing material 68 (FIG. 22e). In this case, the resin sealing material is not particularly limited, and for example, an epoxy resin containing silica having a diameter of about 10 to 20 μm in the range of 5 to 80 wt% can be applied.

【0090】次に、外部接続端子に相当する箇所に所定
の金属パターン69を形成する(図22f)。この場
合、適用する金属としては、導電性仮支持体をエッチン
グ除去する条件下でエッチングされないものであれば良
く、例えば、はんだ、金、ニッケル/金などが適用可能
である。また、金属パターンの形成法としては、公知の
電気めっき法やはんだ印刷法などが適用できる。更に、
金属パターン69をはんだパターンを印刷法で形成する
場合、リフローすることによりハンダバンプ70を形成
することができる。この場合、パターン69の厚さを調
節することにより、リフロー後のはんだバンプ70の高
さを制御することができる。次に、金属パターンをエッ
チングレジストとして仮支持体の所定部分を除去し、配
線パターンを露出させる。
Next, a predetermined metal pattern 69 is formed at a portion corresponding to the external connection terminal (FIG. 22f). In this case, the metal to be applied may be any metal that is not etched under the condition for removing the conductive temporary support, and for example, solder, gold, nickel / gold, etc. can be applied. Further, as a method for forming the metal pattern, a known electroplating method, a solder printing method, or the like can be applied. Furthermore,
When the metal pattern 69 is formed by printing a solder pattern, the solder bump 70 can be formed by reflowing. In this case, the height of the solder bump 70 after the reflow can be controlled by adjusting the thickness of the pattern 69. Next, a predetermined portion of the temporary support is removed using the metal pattern as an etching resist to expose the wiring pattern.

【0091】最後に、金型加工、あるいは、ダイシング
加工など適用して各パッケージ71を分割する(図22
g)。なお、露出した配線パターンがニッケルなどの耐
腐食性金属で保護されていない場合には、外部接続端子
部以外の領域を公知のソルダーレジストなどで被覆して
も良い。また、はんだを金属パターンとして適用する場
合、リフロー工程は特に限定するものではなく、各パッ
ケージに分割する前でも後でも良いし、あるいは、外部
配線基板上に各パッケージを実装する際に行なっても良
い。
Finally, a die process or a dicing process is applied to divide each package 71 (FIG. 22).
g). When the exposed wiring pattern is not protected by a corrosion resistant metal such as nickel, the area other than the external connection terminal portion may be covered with a known solder resist or the like. When applying solder as a metal pattern, the reflow process is not particularly limited, and may be performed before or after dividing into each package, or when performing each package on an external wiring board. good.

【0092】第十八の実施例を具体的に説明する。The eighteenth embodiment will be specifically described.

【0093】具体例5 厚さ70μmの電解銅箔のシャイニー面に、感光性ドライ
フィルムレジスト(日立化成工業(株)製、商品名:フ
ォテックHN640)をラミネートし、露光、現像により所
望するレジストパターン(最少ライン/スペース=50μm
/50μm )を形成した。次に、電気めっき法により、厚
さ0.2μmのニッケル、30μmの銅、5μmのニッケル及
び1μmのソフト金で構成される配線パターンを形成し
た。次に、液温35℃、濃度3wt%の水酸化カリウム溶液を
用いてレジストパターンを剥離し、85℃で15分間乾燥
後、半導体素子実装用ダイボンド材(日立化成工業
(株)製、商品名:HM-1)を用いて半導体素子を接着し
た。接着条件は、プレス圧力5kg/cm2、温度380℃及び
圧着時間5秒である。次に、半導体素子の外部端子と金
めっき端子部(第2の接続部)をワイヤボンドにより電
気的に接続した後、トランスファーモールド金型にセッ
トし、半導体封止用エポキシ樹脂(日立化成工業(株)
製、商品名:CL-7700)を用いて185℃、90秒で封止する
ことにより、配線パターンを封止材中に転写した。次
に、電解銅箔上に感光性ドライフィルムレジスト(日立
化成工業(株)製、商品名:フォテックHN340)をラミ
ネートし、露光、現像により所望するレジストパターン
を形成後、電気めっき法により厚さ40μmのはんだパッ
ド(直径0.3mmφ、配置ピッチ1.0mm)を形成した。
次に、ドライフィルムレジストを剥離した後、アルカリ
エッチャント(メルテックス(株)製、商品名: A プ
ロセス)を用いて電解銅箔の所望する部分をエッチング
除去した。エッチング液の温度は40℃、スプレー圧力は
1.2kgf/cm2である。最後に、赤外線リフロー炉により
はんだを溶融させて外部接続用バンプを形成した。
Specific Example 5 A photosensitive dry film resist (Hitachi Chemical Co., Ltd., trade name: Photec HN640) was laminated on the shiny surface of an electrolytic copper foil having a thickness of 70 μm, and a desired resist pattern was obtained by exposure and development. (Minimum line / space = 50 μm
/ 50 μm) formed. Next, a wiring pattern made of nickel having a thickness of 0.2 μm, copper having a thickness of 30 μm, nickel having a thickness of 5 μm, and soft gold having a thickness of 1 μm was formed by electroplating. Next, the resist pattern was peeled off using a potassium hydroxide solution having a liquid temperature of 35 ° C. and a concentration of 3 wt%, and dried at 85 ° C. for 15 minutes, and then die-bonding material for semiconductor element mounting (Hitachi Chemical Co., Ltd., trade name : HM-1) was used to bond the semiconductor element. The bonding conditions are a pressing pressure of 5 kg / cm 2, a temperature of 380 ° C. and a pressure bonding time of 5 seconds. Next, after electrically connecting the external terminal of the semiconductor element and the gold-plated terminal portion (second connection portion) by wire bonding, the semiconductor element is set in a transfer mold and epoxy resin for semiconductor encapsulation (Hitachi Chemical ( stock)
(Trade name: CL-7700) manufactured by Mfg. Co., Ltd., and the wiring pattern was transferred into the encapsulating material by encapsulating at 185 ° C for 90 seconds. Next, a photosensitive dry film resist (Hitachi Chemical Co., Ltd., trade name: Fotec HN340) is laminated on the electrolytic copper foil, and a desired resist pattern is formed by exposure and development, and then the thickness is obtained by electroplating. A 40 μm solder pad (diameter 0.3 mmφ, arrangement pitch 1.0 mm) was formed.
Then, after removing the dry film resist, a desired portion of the electrolytic copper foil was removed by etching using an alkaline etchant (manufactured by Meltex Co., Ltd., trade name: A process). The etching solution temperature is 40 ° C and the spray pressure is
It is 1.2 kgf / cm2. Finally, the solder was melted in an infrared reflow furnace to form bumps for external connection.

【0094】図23、24、25により本発明の第十九
の実施例を説明する。
A nineteenth embodiment of the present invention will be described with reference to FIGS.

【0095】半導体実装用フレームの構成について図2
3を用いて説明する。89は半導体実装用基板であり絶
縁基材と配線によって構成される。基板部と連結部90
を介して、複数個連結されている。連結部90には、基
準位置用ピン穴91が形成される。ピン穴91の代わり
に画像認識で用いられる認識マーク等でも構わない。後
工程では、これらの基準位置をもとに位置が決められ
る。特に半導体を樹脂でモールドする際はキャビティ内
のピンをピン穴91にさして位置合わせを行うことなど
が行われる。
FIG. 2 shows the structure of the semiconductor mounting frame.
3 will be used for the explanation. A semiconductor mounting substrate 89 is composed of an insulating base material and wiring. Board part and connection part 90
A plurality of them are connected via. A reference position pin hole 91 is formed in the connecting portion 90. A recognition mark or the like used in image recognition may be used instead of the pin hole 91. In the subsequent process, the position is determined based on these reference positions. Particularly, when a semiconductor is molded with resin, a pin in the cavity is inserted into the pin hole 91 to perform alignment.

【0096】更に図24及び25を用いて説明する。導
電性仮基板である厚さ約0.070mmの電解銅箔81
の片面に厚さ0.001mmのニッケル層(図24、2
5では省略)を電解めっきで形成した。次に感光性ドラ
イフィルムレジスト(日立化成工業(株)製、商品名:
フォテックHN340)をラミネートし、露光、現像に
より複数組の配線パターンのめっきレジストを形成す
る。この時の露光量は70mJ/cm2である。さらに、公知
の硫酸銅浴にて電解銅めっきを行い、レジストを剥離
し、複数組の配線82を形成する(図24a、図25
a)。ここで、図25aに示したように連結部もにめっ
き銅82’を形成することも考えられ、これにより出来
上がりのフレームの剛性をさらに高めることも可能であ
る。図24a、図25aに示した構成は、銅/ニッケル
薄層/銅の3層からなる基材をあらかじめ用意し、片方
の銅箔を通常のエッチング工程で配線形成しても得られ
る。また、ここで得られた銅箔81/ニッケル薄層(図
示せず)/銅配線82(及び82’)の構成を銅箔/ニ
ッケル配線、ニッケル箔/銅配線等、ニッケル薄層のな
い2層構造にしてもよい。すなわち、金属種の撰択は本
実施例の種類に限られることはないが、後の工程で仮基
板の一部をエッチング除去(図24c、図25c)した
ときに、配線が撰択的に残るようにできることが好適な
撰択基準となる。また、導電性仮基板はフレームの連結
部の構成材となるため厚いほうが好ましいが、後でその
一部をエッチング除去する工程があるため、適当な厚さ
を撰択する必要がある。導電性仮基板の厚みとしては、
材質にもよるが、例えば銅箔を用いる場合、約0.03
〜0.3mm程度が好ましい。次に、複数組の配線82
を形成した銅箔81の配線面にポリイミド接着剤83を
接着した。ここで、ポリイミド接着剤83は、この材料
に限られることなく、例えば、エポキシ系接着フィル
ム、ポリイミドフィルムに接着剤を塗布したフィルム等
も利用可能である。次に、エキシマレーザを用いて外部
接続端子用穴84を形成した(図24b、図25b)。
後工程における工程簡略化のためには半導体を実装する
前に接続端子を設けておくことが好適である。また、こ
の穴84の形成法として他に、あらかじめドリルやパン
チ加工でフィルムに外部接続端子用穴84を形成してお
き、このフィルムを接着する方法を用いてもかまわな
い。さらにここで、この穴84に接続端子として用いる
半田等の金属(図24f、図25fの88に相当)を充
填させておいてもかまわないが、後の半導体実装工程、
樹脂封止工程では、金属突起が障害となることもあり、
後の工程で形成する方が好ましい。半導体素子実装基板
部の外部接続端子用穴(または端子)は半導体素子搭載
反対面にアレイ状に配置されるようにしるのが好まし
い。
Further description will be made with reference to FIGS. Electrolytic copper foil 81 having a thickness of about 0.070 mm, which is a conductive temporary substrate
0.001 mm thick nickel layer (Figs. 24, 2)
5 omitted) was formed by electrolytic plating. Next, photosensitive dry film resist (manufactured by Hitachi Chemical Co., Ltd., trade name:
Phototec HN340) is laminated and a plurality of sets of wiring pattern plating resists are formed by exposure and development. The exposure amount at this time is 70 mJ / cm 2. Further, electrolytic copper plating is performed in a known copper sulfate bath, the resist is peeled off, and a plurality of sets of wirings 82 are formed (FIGS. 24a and 25).
a). Here, as shown in FIG. 25a, it is conceivable to form plated copper 82 'also on the connecting portion, and it is possible to further increase the rigidity of the finished frame. The structure shown in FIGS. 24a and 25a can also be obtained by preparing a base material composed of three layers of copper / nickel thin layer / copper in advance and forming wiring on one copper foil by a normal etching process. Further, the composition of the copper foil 81 / nickel thin layer (not shown) / copper wiring 82 (and 82 ′) obtained here is 2 such as copper foil / nickel wiring, nickel foil / copper wiring, etc. without a nickel thin layer. You may make it a layered structure. That is, the selection of the metal type is not limited to the type of this embodiment, but when a part of the temporary substrate is removed by etching (FIGS. 24c and 25c) in a later step, the wiring is selectively selected. Being able to remain is the preferred selection criterion. Further, the conductive temporary substrate is preferably a thick film because it serves as a constituent material of the connecting portion of the frame, but it is necessary to select an appropriate thickness because there is a step of etching away a part of it. As the thickness of the conductive temporary substrate,
Depending on the material, when using copper foil, for example, about 0.03
It is preferably about 0.3 mm. Next, a plurality of sets of wiring 82
A polyimide adhesive 83 was adhered to the wiring surface of the copper foil 81 on which the above was formed. Here, the polyimide adhesive 83 is not limited to this material, and for example, an epoxy adhesive film, a film obtained by applying an adhesive to a polyimide film, or the like can be used. Next, an external connection terminal hole 84 was formed using an excimer laser (FIGS. 24b and 25b).
In order to simplify the process in the post process, it is preferable to provide the connection terminal before mounting the semiconductor. Further, as a method of forming the hole 84, a method of previously forming the hole 84 for external connection terminal in the film by drilling or punching and adhering the film may be used. Further, here, the hole 84 may be filled with metal such as solder (corresponding to 88 in FIGS. 24f and 25f) to be used as a connection terminal.
In the resin encapsulation process, the metal projections may become an obstacle,
It is preferably formed in a later step. It is preferable that the holes (or terminals) for external connection terminals of the semiconductor element mounting substrate are arranged in an array on the surface opposite to the semiconductor element mounting side.

【0097】次に、配線パターンが形成されている部分
の仮基板である電解銅箔の一部をエッチング除去した。
このエッチング液として、この実施例の構成の場合、ニ
ッケルに比べて銅の溶解速度が著しく高いエッチング
液、エッチング条件を撰択するのがよい。この実施例で
は、エッチング液としてアルカリエッチャント(メルテ
ックス(株)製、商品名: A プロセス)が、エッチン
グ条件としては例えば液温度を40℃、スプレー圧力を1.
2kgf/cm2とした。ここで示した液の種類、条件は一例
にすぎない。この工程によって基板部分のニッケル薄層
が露出される。このニッケル薄層だけをエッチングする
際には、銅よりニッケルの溶解速度が著しく高いエッチ
ング液、エッチング条件を撰択するのがよい。この実施
例では、ニッケルエッチャント(メルテックス(株)
製、商品名:メルストリップ N950)で選択的にエッチ
ング除去した。エッチング液の温度を40℃、スプレー圧
力を1.2kgf/cm2とした。ここで示した液の種類、条件
も一例にすぎない。このような工程を経て、連結部の仮
基板が残され、剛性のある半導体実装用フレームが得れ
れる(図24c、図25c)。この実施例ではこのフレ
ームの銅配線端子部分には無電解ニッケル−金めっきが
施される(図では省略)。これは、後工程でチップをワ
イヤーボンディングするために必要であり、このような
表面処理は必要に応じて施せばよい。
Next, a part of the electrolytic copper foil which is the temporary substrate in the portion where the wiring pattern is formed was removed by etching.
As the etching solution, in the case of the constitution of this embodiment, it is preferable to select an etching solution and an etching condition in which the dissolution rate of copper is significantly higher than that of nickel. In this example, an alkaline etchant (manufactured by Meltex Co., Ltd., trade name: A process) is used as the etching solution, and the etching conditions are, for example, a liquid temperature of 40 ° C. and a spray pressure of 1.
It was set to 2 kgf / cm2. The types and conditions of the liquids shown here are merely examples. This step exposes the thin nickel layer on the substrate portion. When only this nickel thin layer is etched, it is preferable to select an etching solution and etching conditions in which the dissolution rate of nickel is significantly higher than that of copper. In this example, a nickel etchant (Meltex Co., Ltd.)
Made by trade name: Melstrip N950). The temperature of the etching solution was 40 ° C. and the spray pressure was 1.2 kgf / cm 2. The types and conditions of the liquids shown here are merely examples. Through these steps, the temporary substrate of the connecting portion is left, and a rigid semiconductor mounting frame can be obtained (FIGS. 24c and 25c). In this embodiment, electroless nickel-gold plating is applied to the copper wiring terminal portion of this frame (not shown in the figure). This is necessary for wire-bonding the chip in a later step, and such surface treatment may be performed as necessary.

【0098】さらに半導体チップ85を搭載する。半導
体チップの接着には、半導体用ダイボンディングテープ
86(例えば、日立化成工業(株)製、商品名:HM-1)
を用いた。ここで、チップの下に配線がない場合には、
ダイボンド用銀ペーストを用いて接着してもよい。次に
半導体端子部と配線とをワイヤボンド100により接続
する(図24d、図25d)。半導体端子との接続は、
他の方法、例えば、フェイスダウンによるフィリップチ
ップ接続や異方導電性背着剤による接着でもよい。この
ようにして形成したものをトランスファモールド金型に
装填し、半導体封止用エポキシ樹脂(日立化成工業
(株)製、商品名:CL−7700)を用いて各々封止
87する(図24e、図25e)。その後、配線82の
接続端子部に設けた接続用穴にはんだボール88を配置
し溶融させて形成する(図24f、図25f)。このは
んだボール88はいわゆる外部接続端子となる。連結部
102によってつながっている複数個の半導体装置を金
型で打ち抜いて個々の半導体装置が得られる(図24
g、図25g)。
Further, the semiconductor chip 85 is mounted. For bonding semiconductor chips, die bonding tape 86 for semiconductors (for example, Hitachi Chemical Co., Ltd., trade name: HM-1)
Was used. Here, if there is no wiring under the chip,
You may adhere using the silver paste for die bonds. Next, the semiconductor terminal portion and the wiring are connected by the wire bond 100 (FIGS. 24d and 25d). The connection with the semiconductor terminal is
Other methods, for example, face-down Philip chip connection or anisotropic conductive backing adhesive may be used. The thus-formed product is loaded into a transfer mold and sealed 87 with an epoxy resin for semiconductor encapsulation (manufactured by Hitachi Chemical Co., Ltd., trade name: CL-7700) (FIG. 24e, Figure 25e). After that, the solder balls 88 are placed in the connection holes provided in the connection terminal portion of the wiring 82 and are melted (FIGS. 24f and 25f). The solder balls 88 serve as so-called external connection terminals. Individual semiconductor devices are obtained by punching a plurality of semiconductor devices connected by the connecting portion 102 with a die (FIG. 24).
g, Figure 25g).

【0099】この実施例では、半導体実装用フレーム及
び半導体装置製造法により、ポリイミドテープ等フィル
ム基板を用いたBGA、CSP等の半導体装置製造において、
十分な剛性を備えたフレームを得ることができ、これを
利用することによって半導体装置を精度良く効率良く作
製可能になる。
In this embodiment, in the manufacturing of semiconductor devices such as BGA and CSP using a film substrate such as a polyimide tape by the semiconductor mounting frame and the semiconductor device manufacturing method,
It is possible to obtain a frame having sufficient rigidity, and by using this, a semiconductor device can be manufactured accurately and efficiently.

【0100】本発明により、半導体チップの高集積度化
に対応することができる半導体パッケージを生産性良
く、かつ安定的に製造することができる。
According to the present invention, it is possible to stably manufacture a semiconductor package which can cope with high integration of semiconductor chips with high productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明の半導体パッケージの製造法の
一例を説明する断面図である。
FIG. 1 is a sectional view illustrating an example of a method for manufacturing a semiconductor package of the present invention.

【図2】図2は、本発明の半導体パッケージの製造法の
一例を説明する断面図である。
FIG. 2 is a cross-sectional view illustrating an example of a method of manufacturing a semiconductor package of the present invention.

【図3】図3は、本発明の半導体パッケージの製造法の
一例を説明する断面図である。
FIG. 3 is a cross-sectional view illustrating an example of a method for manufacturing a semiconductor package of the present invention.

【図4】図4は、本発明の半導体パッケージの製造法の
一例を説明する断面図である。
FIG. 4 is a cross-sectional view illustrating an example of a method for manufacturing a semiconductor package of the present invention.

【図5】図5は、本発明の半導体パッケージの製造法の
一例を説明する断面図である。
FIG. 5 is a cross-sectional view illustrating an example of a method for manufacturing a semiconductor package of the present invention.

【図6】図6は、本発明の半導体パッケージの製造法の
一例を説明する断面図である。
FIG. 6 is a cross-sectional view illustrating an example of a method of manufacturing a semiconductor package of the present invention.

【図7】図7は、本発明の半導体パッケージの製造法の
一例を説明する断面図である。
FIG. 7 is a cross-sectional view illustrating an example of a method for manufacturing a semiconductor package of the present invention.

【図8】図8は、本発明の半導体パッケージの製造法の
一例を説明する断面図である。
FIG. 8 is a cross-sectional view illustrating an example of a method for manufacturing a semiconductor package of the present invention.

【図9】図9は、本発明の半導体パッケージの製造法の
一例を説明する断面図である。
FIG. 9 is a cross-sectional view illustrating an example of a method for manufacturing a semiconductor package of the present invention.

【図10】図10は、本発明の半導体パッケージの製造
法の一例を説明する断面図である。
FIG. 10 is a cross-sectional view illustrating an example of a method for manufacturing a semiconductor package of the present invention.

【図11】図11は、本発明の半導体パッケージの製造
法の一例を説明する断面図である。
FIG. 11 is a cross-sectional view illustrating an example of a method for manufacturing a semiconductor package of the present invention.

【図12】図12は、本発明の半導体パッケージの製造
法の一例を説明する断面図である。
FIG. 12 is a cross-sectional view illustrating an example of a method for manufacturing a semiconductor package of the present invention.

【図13】図13は、本発明の半導体パッケージの製造
法の一例を説明する断面図である。
FIG. 13 is a cross-sectional view illustrating an example of a method for manufacturing a semiconductor package of the present invention.

【図14】図14は、本発明の半導体パッケージの製造
法の一例を説明する平面図である。
FIG. 14 is a plan view illustrating an example of a method for manufacturing a semiconductor package of the present invention.

【図15】図15は、本発明の半導体パッケージの製造
法の一例を説明する平面図である。
FIG. 15 is a plan view illustrating an example of a method for manufacturing a semiconductor package of the present invention.

【図16】図16は、本発明の半導体パッケージの製造
法の一例を説明する断面図である。
FIG. 16 is a cross-sectional view illustrating an example of a method for manufacturing a semiconductor package of the present invention.

【図17】図17は、本発明の半導体パッケージの製造
法の一例を説明する断面図である。
FIG. 17 is a cross-sectional view illustrating an example of a method for manufacturing a semiconductor package of the present invention.

【図18】図18は、本発明の半導体パッケージの製造
法の一例を説明する断面図である。
FIG. 18 is a cross-sectional view illustrating an example of a method for manufacturing a semiconductor package of the present invention.

【図19】図19は、本発明の半導体パッケージの製造
法の一例を説明する断面図である。
FIG. 19 is a cross-sectional view illustrating an example of a method for manufacturing a semiconductor package of the present invention.

【図20】図20は、本発明の半導体パッケージの製造
法の一例を説明する断面図である。
FIG. 20 is a cross-sectional view illustrating an example of a method for manufacturing a semiconductor package of the present invention.

【図21】図21は、本発明の半導体パッケージの製造
法の一例を説明する断面図である。
FIG. 21 is a cross-sectional view illustrating an example of a method for manufacturing a semiconductor package of the present invention.

【図22】図22は、本発明の半導体パッケージの製造
法の一例を説明する断面図である。
FIG. 22 is a cross-sectional view illustrating an example of a method for manufacturing a semiconductor package of the present invention.

【図23】図23は、本発明の半導体パッケージの製造
法の一例を説明する平面図である。
FIG. 23 is a plan view illustrating an example of a method for manufacturing a semiconductor package of the present invention.

【図24】図24は、本発明の半導体パッケージの製造
法の一例を説明する断面図である。
FIG. 24 is a cross-sectional view illustrating an example of a method for manufacturing a semiconductor package of the present invention.

【図25】図25は、本発明の半導体パッケージの製造
法の一例を説明する断面図である。
FIG. 25 is a cross-sectional view illustrating an example of a method for manufacturing a semiconductor package of the present invention.

───────────────────────────────────────────────────── フロントページの続き (31)優先権主張番号 特願平7−56202 (32)優先日 平成7年3月15日(1995.3.15) (33)優先権主張国 日本(JP) 早期審査対象出願 (72)発明者 大畑 洋人 茨城県つくば市花畑1−15−18 日立化 成紫峰寮B204号 (72)発明者 萩原 伸介 茨城県下館市玉戸1278−302 (72)発明者 田口 矩之 茨城県つくば市花畑1−15−18 日立化 成紫峰寮A504号 (72)発明者 野村 宏 栃木県小山市網戸227 (56)参考文献 特開 平4−277636(JP,A) 特開 平3−94459(JP,A) 特開 平3−94430(JP,A) 特開 昭59−208756(JP,A) 特開 平1−289273(JP,A) 特開 昭59−43554(JP,A) 特開 昭60−160624(JP,A) 特開 昭59−231825(JP,A) 特開 昭61−222151(JP,A) 特開 平2−153542(JP,A) 特開 平6−53383(JP,A) 特開 平4−72658(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 23/12 501 ─────────────────────────────────────────────────── ─── Continuation of the front page (31) Priority claim number Japanese Patent Application No. 7-56202 (32) Priority date March 15, 1995 (March 15, 1995) (33) Priority claim country Japan (JP) Applications subject to accelerated examination (72) Inventor Hiroto Ohata 1-15-18 Hanabata, Tsukuba-shi, Ibaraki Hitachi Chemical Shiho Dormitory B204 (72) Inventor Shinsuke Hagiwara 1278-302 Tamado, Shimodate-shi, Ibaraki (72) Inventor Noritsugu Taguchi No. 1-15-18 Hanabata, Tsukuba, Ibaraki Prefecture Inventor, Hitachi Chemical Shiho Dormitory A504 (72) Hiroshi Nomura 227 Ado, Oyama City, Tochigi Prefecture (56) Reference JP 4-277636 (JP, A) JP JP 3-94459 (JP, A) JP-A-3-94430 (JP, A) JP-A-59-208756 (JP, A) JP-A-1-289273 (JP, A) JP-A-59-43554 (JP, A) A) JP 60-160624 (JP, A) JP 59-231825 (JP, A) JP 61-222151 (JP, A) JP-A-2-153542 (JP, A) JP-A-6-53383 (JP, A) JP-A-4-72658 (JP, A) (58) Fields investigated (Int .Cl. 7 , DB name) H01L 23/12 501

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】それぞれ半導体素子を搭載するための、複
数個の半導体素子実装基板部と、 上記半導体素子実装基板部間を連結するための連結部
と、 位置合わせマーク部とを備え、上記半導体素子実装基板部は、 半導体素子搭載領域、 上記半導体素子搭載領域の外側の樹脂封止用半導体パッ
ケージ領域、及び 上記樹脂封止用半導体パッケージ領域
に設けられたワイヤボンディング端子と、上記半導体素
子搭載領域に設けられた外部接続端子とを含む配線を備
え、 上記連結部は導電層を有することを特徴とする半導体素
子実装用基板。
1. A for mounting a semiconductor element, respectively, comprising a plurality of semiconductor element mounting substrate portion, and a connecting portion for connecting the above semiconductor element mounting substrate portion, and a positioning mark section, the semiconductor The element mounting board portion is a semiconductor element mounting area, and a resin encapsulating semiconductor pad outside the semiconductor element mounting area.
Cage region and the semiconductor package region for resin sealing
The wire bonding terminal provided on the
Equipped with wiring including external connection terminals provided in the child mounting area
The semiconductor element mounting substrate, wherein the connecting portion has a conductive layer.
【請求項2】 上記導電層と上記配線とが同一材料からな
ることを特徴とする請求項1記載の半導体素子実装用基
板。
2. The conductive layer and the wiring are made of the same material.
The base for mounting a semiconductor element according to claim 1, wherein
Board.
【請求項3】上記配線の表面にニッケル/金めっきが施
されている請求項1又は2記載の半導体素子実装用基
板。
3. The substrate for mounting a semiconductor element according to claim 1, wherein the surface of the wiring is nickel / gold plated.
【請求項4】半導体素子を実装するための、それぞれ配
線を有する複数個の半導体素子実装基板部と、 該複数個の半導体素子実装基板部を連結するための、導
電層を有する連結部と、 位置合わせマーク部とを備え、上記半導体素子実装基板部は、半導体素子搭載領域と、
該半導体素子搭載領域の外側の樹脂封止用半導体パッケ
ージ領域とを備え る半導体素子実装用基板の製造方法で
あって、上記樹脂封止用半導体パッケージ領域に設けられたワイ
ヤボンディング端子と、上記半導体素子搭載領域に設け
られた外部接続端子とを含む配線と、上記連結 部の上記
導電層とを、 樹脂基材上に一括して形成する配線形成工
程を備えることを特徴とする半導体素子実装用基板の製
造方法。
4. A plurality of semiconductor element mounting board portions each having a wiring for mounting a semiconductor element, and a connecting portion having a conductive layer for connecting the plurality of semiconductor element mounting board portions, An alignment mark portion, the semiconductor element mounting substrate portion, a semiconductor element mounting region,
A semiconductor package for resin encapsulation outside the semiconductor element mounting area
A method of manufacturing a semiconductor element mounting substrate Ru and an over-di area, Wai provided in the semiconductor package regions for the resin sealing
Provided on the bonding terminal and the semiconductor element mounting area
Wiring including the external connection terminal, and the connection part
And a conductive layer, a manufacturing method of a substrate for mounting a semiconductor element, characterized in that it comprises a wiring forming step of forming lump sum on a resin substrate.
【請求項5】上記配線形成工程は、 上記配線と上記導電層とをめっきにより形成する工程を
有する請求項4記載の半導体素子搭載用基板の製造方
法。
5. The method of manufacturing a semiconductor element mounting substrate according to claim 4, wherein the wiring forming step includes a step of forming the wiring and the conductive layer by plating.
【請求項6】上記配線の表面にニッケル及び金めっきを
施す工程を、さらに有する請求項4又は5に記載の半導
体素子搭載用基板の製造方法。
6. The step of applying nickel and gold plating on the surface of the wiring, the method of manufacturing a semiconductor device mounting board according to claim 4 or 5, further comprising.
【請求項7】半導体素子搭載用基板の半導体素子搭載領
域に、ダイボンド材により半導体素子を搭載する工程、 上記半導体素子搭載用基板の配線と上記半導体素子の接
続端子とを電気的に接続する工程、 上記半導体素子を封止樹脂で封止する工程、及び上記半
導体素子搭載用基板の外部接続端子にはんだバンプを形
成する工程を有し、 上記半導体素子搭載用基板は、請求項1〜3のいずれか
に記載の半導体素子搭載用基板又は請求項4〜のいず
れかの製造方法で製造された半導体素子搭載用基板であ
ることを特徴とする半導体パッケージの製造方法。
7. A step of mounting a semiconductor element on a semiconductor element mounting region of a semiconductor element mounting substrate with a die bond material, and a step of electrically connecting wiring of the semiconductor element mounting substrate and a connection terminal of the semiconductor element. And a step of sealing the semiconductor element with a sealing resin, and a step of forming a solder bump on an external connection terminal of the semiconductor element mounting substrate, wherein the semiconductor element mounting substrate is the substrate of claim 1 or 2. A method for manufacturing a semiconductor package, which is the semiconductor element mounting substrate according to any one of claims 1 to 6 or the semiconductor element mounting substrate manufactured by the method according to claim 4.
【請求項8】上記ダイボンド材はダイボンディングテー
プであることを特徴とする請求項記載の半導体パッケ
ージの製造方法。
8. The method of manufacturing a semiconductor package according to claim 7 , wherein the die bond material is a die bonding tape.
JP2002137361A 1994-03-18 2002-05-13 Semiconductor package manufacturing method and semiconductor package Expired - Fee Related JP3413191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002137361A JP3413191B2 (en) 1994-03-18 2002-05-13 Semiconductor package manufacturing method and semiconductor package

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP4876094 1994-03-18
JP27346994 1994-11-08
JP768395 1995-01-20
JP6-273469 1995-03-15
JP6-48760 1995-03-15
JP7-7683 1995-03-15
JP7-56202 1995-03-15
JP5620295 1995-03-15
JP2002137361A JP3413191B2 (en) 1994-03-18 2002-05-13 Semiconductor package manufacturing method and semiconductor package

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001237791A Division JP3337467B2 (en) 1994-03-18 2001-08-06 Semiconductor package manufacturing method and semiconductor package

Publications (2)

Publication Number Publication Date
JP2002334950A JP2002334950A (en) 2002-11-22
JP3413191B2 true JP3413191B2 (en) 2003-06-03

Family

ID=27518849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002137361A Expired - Fee Related JP3413191B2 (en) 1994-03-18 2002-05-13 Semiconductor package manufacturing method and semiconductor package

Country Status (1)

Country Link
JP (1) JP3413191B2 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5943554A (en) * 1982-09-03 1984-03-10 Toshiba Corp Resin-sealed semiconductor device
JPS59208756A (en) * 1983-05-12 1984-11-27 Sony Corp Manufacture of semiconductor device package
JPS59231825A (en) * 1983-06-14 1984-12-26 Toshiba Corp Semiconductor device
JPS60160624A (en) * 1984-01-31 1985-08-22 Sharp Corp Dielectric isolation for semiconductor chip
JPS61222151A (en) * 1985-03-27 1986-10-02 Ibiden Co Ltd Manufacture of printed wiring substrate for mounting semiconductor
JPH01289273A (en) * 1988-05-17 1989-11-21 Matsushita Electric Ind Co Ltd Wiring board
JPH02153542A (en) * 1988-12-05 1990-06-13 Matsushita Electric Ind Co Ltd Manufacture of integrated circuit device
JP2840316B2 (en) * 1989-09-06 1998-12-24 新光電気工業株式会社 Semiconductor device and manufacturing method thereof
JP2840317B2 (en) * 1989-09-06 1998-12-24 新光電気工業株式会社 Semiconductor device and manufacturing method thereof
JP2737373B2 (en) * 1990-07-12 1998-04-08 富士通株式会社 Lead frame and integrated circuit manufacturing method
JP2962586B2 (en) * 1991-03-05 1999-10-12 新光電気工業株式会社 Semiconductor device, method of manufacturing the same, and joined body used therefor
JP2632762B2 (en) * 1992-07-29 1997-07-23 株式会社三井ハイテック Method of manufacturing substrate for mounting semiconductor element

Also Published As

Publication number Publication date
JP2002334950A (en) 2002-11-22

Similar Documents

Publication Publication Date Title
JP4862848B2 (en) Manufacturing method of semiconductor package
JP2916915B2 (en) Method of manufacturing ball grid array semiconductor package
JP4029910B2 (en) Manufacturing method of semiconductor package and semiconductor package
JP3352084B2 (en) Semiconductor element mounting substrate and semiconductor package
JP3337467B2 (en) Semiconductor package manufacturing method and semiconductor package
JP4140555B2 (en) Manufacturing method of semiconductor package
JP3413191B2 (en) Semiconductor package manufacturing method and semiconductor package
JP3606275B2 (en) Semiconductor package and manufacturing method thereof
JP3413413B2 (en) Semiconductor element mounting substrate and method of manufacturing the same
JP2005328057A (en) Manufacturing method of semiconductor package, and the semiconductor package
JP3685203B2 (en) Semiconductor device mounting substrate
JP3685205B2 (en) Semiconductor package and manufacturing method thereof
JP3352083B2 (en) Method for manufacturing semiconductor package and substrate for mounting semiconductor element
JP3685204B2 (en) Semiconductor device mounting substrate
JP3661822B2 (en) Chip support substrate for semiconductor packaging
JP4115553B2 (en) Manufacturing method of semiconductor package
JP3402416B2 (en) Manufacturing method of semiconductor package
JP2004247764A (en) Substrate for mounting semiconductor element
JP4115556B2 (en) Manufacturing method of semiconductor package

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090328

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100328

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 9

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees