JP3400842B2 - Method for producing cubic boron nitride - Google Patents

Method for producing cubic boron nitride

Info

Publication number
JP3400842B2
JP3400842B2 JP01950894A JP1950894A JP3400842B2 JP 3400842 B2 JP3400842 B2 JP 3400842B2 JP 01950894 A JP01950894 A JP 01950894A JP 1950894 A JP1950894 A JP 1950894A JP 3400842 B2 JP3400842 B2 JP 3400842B2
Authority
JP
Japan
Prior art keywords
boron nitride
parts
cubic boron
lithium
atomic ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01950894A
Other languages
Japanese (ja)
Other versions
JPH0768153A (en
Inventor
恒介 塩井
秀文 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP01950894A priority Critical patent/JP3400842B2/en
Priority to IE940533A priority patent/IE80824B1/en
Priority to DE4423987A priority patent/DE4423987C2/en
Priority to KR1019940016500A priority patent/KR100351712B1/en
Publication of JPH0768153A publication Critical patent/JPH0768153A/en
Priority to US08/475,604 priority patent/US5618509A/en
Priority to US08/919,363 priority patent/USRE36492E/en
Application granted granted Critical
Publication of JP3400842B2 publication Critical patent/JP3400842B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • B01J3/062Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies characterised by the composition of the materials to be processed
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/12Single-crystal growth directly from the solid state by pressure treatment during the growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/0645Boronitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/065Composition of the material produced
    • B01J2203/066Boronitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0675Structural or physico-chemical features of the materials processed
    • B01J2203/068Crystal growth

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は六方晶窒化ホウ素から立
方晶窒化ホウ素を合成する方法の改良に関する。
FIELD OF THE INVENTION The present invention relates to an improved method for synthesizing cubic boron nitride from hexagonal boron nitride.

【0002】[0002]

【従来の技術】立方晶窒化ホウ素は、ダイヤモンドに次
ぐ硬さと、それをしのぐ化学的安定性を持ち、研削・研
磨・切削材としての需要が増大している。立方晶窒化ホ
ウ素の製造方法は種々考案されているが、最も良く知ら
れ、工業的にも広く利用されているのは、溶媒(触媒)
の存在下で六方晶窒化ホウ素を約5.5GPa 、1600
℃程度の高温高圧下で立方晶窒化ホウ素に変換する方法
である。この場合、溶媒(触媒)としては、従来、アル
カリ金属、アルカリ土類金属の窒化物、ホウ窒化物がよ
くしられている。このうち、リチウム系の溶媒(触媒)
については良く調べられており、特に窒化リチウム、ホ
ウ窒化リチウムが有効な溶媒(触媒)とされている(例
えば、米国特許第3772428号参照)。
2. Description of the Related Art Cubic boron nitride has hardness second only to diamond and chemical stability surpassing that of diamond, and demand for grinding, polishing and cutting materials is increasing. Various methods for producing cubic boron nitride have been devised, but the best known and widely used industrially are solvents (catalysts).
Hexagonal boron nitride in the presence of about 5.5 GPa, 1600
It is a method of converting into cubic boron nitride at a high temperature and high pressure of about ℃. In this case, as a solvent (catalyst), conventionally, a nitride of an alkali metal or an alkaline earth metal, or a boronitride is often used. Of these, lithium-based solvents (catalysts)
Has been thoroughly investigated, and particularly lithium nitride and lithium boronitride are considered to be effective solvents (catalysts) (see, for example, US Pat. No. 3,772,428).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
溶媒(触媒)を用いた場合には、充分な收率が得られな
いため、上記の方法は未だ工業的に充分に満足できるも
のではない。ここで、本発明は、上記の事情に鑑み、六
方晶窒化ホウ素から立方晶窒化ホウ素を高い変換率で変
換する方法を提供することを目的とする。
However, when the above-mentioned solvent (catalyst) is used, a sufficient yield cannot be obtained, and therefore the above-mentioned method is not yet industrially sufficiently satisfactory. In view of the above-mentioned circumstances, it is an object of the present invention to provide a method for converting cubic boron nitride from hexagonal boron nitride at a high conversion rate.

【0004】[0004]

【課題を解決するための手段】上記目的を達成する本発
明は、周期律表Ia,IIa族元素のアミド、イミドから
選ばれる1種以上の化合物の存在において、または周期
律表Ia,IIa族元素のアミド、イミドから選ばれる1
種以上の化合物と周期律表Ia,IIa,III a,VIa,
VII a,VIII,IIb,III b族元素から選ばれる1種以
上の金属の両者の存在において、六方晶窒化ホウ素を、
立方晶窒化ホウ素の安定領域内の温度及び圧力条件下に
保持して、立方晶窒化ホウ素に変換することを特徴とす
る立方晶窒化ホウ素の製造方法にある。
Means for Solving the Problems The present invention which achieves the above-mentioned object is provided in the presence of one or more compounds selected from amides and imides of elements of the groups Ia and IIa of the periodic table or in the groups Ia and IIa of the periodic table. 1 selected from elemental amides and imides
More than one compound and periodic table Ia, IIa, IIIa, VIa,
In the presence of both of one or more metals selected from the group VIIa, VIII, IIb, IIIb elements, hexagonal boron nitride
There is provided a method for producing cubic boron nitride, which is characterized in that the cubic boron nitride is converted to cubic boron nitride while being maintained under a temperature and pressure condition within a stable region of cubic boron nitride.

【0005】出発原料である六方晶窒化ホウ素としては
市販の六方晶窒化ホウ素(hBN)粉末を使用できる。
酸化ホウ素などの形で混入する酸素不純物はhBNから
立方晶窒化ホウ素(cBN)への変換を遅らせることが
あり、酸素量の少ない原料が望ましい。粒度は特に限定
されないが、一般的には150メッシュ以下が好適であ
る。粒度が大きすぎると溶媒(触媒)との反応性が低下
する可能性があるからである。
Commercially available hexagonal boron nitride (hBN) powder can be used as the starting material, hexagonal boron nitride.
Oxygen impurities mixed in the form of boron oxide may delay the conversion of hBN to cubic boron nitride (cBN), and a raw material having a small amount of oxygen is desirable. The particle size is not particularly limited, but generally 150 mesh or less is suitable. This is because if the particle size is too large, the reactivity with the solvent (catalyst) may decrease.

【0006】本発明は、hBNからcBNへの変換を、
Ia,IIa族元素のアミド、イミドのうち少なくとも1
種の化合物の存在において、又はIa,IIa族元素のア
ミド、イミドのうち少なくとも1種の化合物とIa,II
a,III a,VIa,VII a,VIII,IIb,III b族元素
から選ばれる1種以上の金属の両者の存在において行う
ことを特徴とする。これらの化合物の又はそれと金属の
存在下で変換を行うことにより、従来法と比べて飛躍的
に変換率が向上することが見い出された。一般的にはh
BNがアルカリ金属、アルカリ土類金属又はその化合物
と反応してcBNへの反応を促進する溶媒又は触媒とし
て働くと考えられており、本発明のアミド、イミド化合
物又はそれと前記金属との併用においても同様に溶媒又
は触媒として働いていると考えられる。
[0006] The present invention, the conversion from hBN to cBN,
At least one of amides and imides of Group Ia and IIa elements
In the presence of one compound, or at least one compound selected from the group consisting of amides and imides of group Ia, IIa and Ia, II
a, IIIa, VIa, VIIa, VIII, IIb, IIIb Group 1 or more metals selected from the presence of both. It was found that the conversion rate is dramatically improved by carrying out the conversion in the presence of these compounds or in the presence of a metal with them. Generally h
It is considered that BN acts as a solvent or a catalyst that reacts with an alkali metal, an alkaline earth metal or a compound thereof to promote the reaction to cBN, and also in the amide or imide compound of the present invention or in combination with the metal. It is also believed to act as a solvent or catalyst.

【0007】なお、本発明において周期律表は長周期型
によるものであり、各族元素とは下記のものを指称す
る。 Ia:Li,Na,K,Rb,Cs,Fr IIa:Be,Mg,Ca,Sr,Ba,Ra III a:Sc,Y,ランタノイド元素(原子番号57〜
71)、アクチノイド元素(原子番号89〜103) VIa:Cr,Mo,W VII a:Mn,Tc,Re VIII:Fe,Co,Ni,Ru,Rh,Pd,Os,I
r,Pt IIb:Zn,Cd,Hg III b:B,Al,Ga,In,Tl Ia,IIa族元素のアミド、イミド(以下、単にアミ
ド、イミドと称する)も、Ia,IIa,III a,VIa,
VII a,VIII,IIb,III b族元素から選ばれる金属
も、原料hBNと同様に、酸素不純物が少ないものが好
ましく、また一般的には、150メッシュ以下の粉末を
用いる。
In the present invention, the periodic table is of long-period type, and the elements of each group are as follows. Ia: Li, Na, K, Rb, Cs, Fr IIa: Be, Mg, Ca, Sr, Ba, Ra III a: Sc, Y, lanthanoid element (atomic number 57 to
71), actinide elements (atomic numbers 89 to 103) VIa: Cr, Mo, W VIIa: Mn, Tc, Re VIII: Fe, Co, Ni, Ru, Rh, Pd, Os, I
r, Pt IIb: Zn, Cd, Hg III b: B, Al, Ga, In, Tl Ia, IIa group amide, imide (hereinafter, simply referred to as amide, imide), Ia, IIa, IIIa, VIa,
The metal selected from the group VIIa, VIII, IIb, and IIIb elements is preferably one having a small amount of oxygen impurities as in the case of the raw material hBN, and generally, a powder of 150 mesh or less is used.

【0008】用いるアミド、イミド又はアミド、イミド
と金属の量は、hBNを構成するホウ素原子数100部
に対し、添加物(アミド、イミド又はアミド、イミドと
金属)を構成する金属の原子数の総計が2部以上、より
好ましくは5〜50部とする。添加物の量が2部より少
ないと充分に高いcBNへの変換率が得られず、また5
部より少ないと充分な変換率を得るのに長時間を要す
る。一方、50部を越えても変換率は向上しないので、
不経済的であり、何れも好ましくない。
The amount of amide, imide or amide, and imide and metal used is such that the number of metal atoms constituting the additive (amide, imide or amide, imide and metal) is based on 100 parts of boron atoms constituting hBN. The total amount is 2 parts or more, and more preferably 5 to 50 parts. If the amount of the additive is less than 2 parts, a sufficiently high conversion rate to cBN cannot be obtained.
If the amount is less than the amount, it takes a long time to obtain a sufficient conversion rate. On the other hand, even if it exceeds 50 copies, the conversion rate will not improve, so
It is uneconomical and neither is preferable.

【0009】Ia,IIa族の元素のアミド、イミドから
選ばれる1種以上の化合物とIa,IIa,III a,VI
a,VII a,VIII,IIb,III b族元素から選ばれる1
種以上の金属とを併用する場合これらの間の比率は任意
に選択できるが、金属元素の原子比として95:5〜
5:95の間であることが好ましい。この範囲からはず
れると、上記の化合物と金属を同時に添加する事による
効果が充分に発現されず、結果的に充分に高い変換率を
得ることが難しくなるためである。
One or more compounds selected from amides and imides of the elements of group Ia and IIa and Ia, IIa, IIIa and VI
a, VII a, VIII, IIb, IIIb 1 element selected from
When used in combination with one or more metals, the ratio between them can be arbitrarily selected, but the atomic ratio of the metal elements is 95: 5 to 5: 5.
It is preferably between 5:95. If it deviates from this range, the effect of simultaneously adding the above-mentioned compound and metal will not be sufficiently exhibited, and as a result it will be difficult to obtain a sufficiently high conversion rate.

【0010】また、アミド、イミドと金属とを併用する
と、アミド、イミドのみを用いた場合と比較して、より
低い温度圧力下でも高い変換率でcBNを得ることがで
きる。上記の添加物と六方晶窒化ホウ素を共存させる態
様としては、これらの粉末を混合すれば良く、それが好
ましいが、反応容器中に六方晶窒化ホウ素層と添加物の
層を交互に積層するように配置しても良い。
When amide and imide are used in combination with a metal, cBN can be obtained at a high conversion rate under a lower temperature and pressure as compared with the case where only amide and imide are used. As a mode in which the above-mentioned additive and the hexagonal boron nitride coexist, it suffices to mix these powders, and it is preferable that the hexagonal boron nitride layer and the additive layer are alternately laminated in the reaction vessel. It may be placed in.

【0011】実際には、hBNとアミド、イミド又はア
ミド、イミドと金属を混合した後、あるいはそれぞれを
別々に、1〜2t/cm2 程度の圧力で成形してから、反
応容器に充填することが好ましい。原料粉末の取扱性が
向上すると共に、反応容器内での収縮量が減少するので
生産性が向上する効果があるからである。反応容器は原
料粉末(hBNと添加物)又はその成形体等をcBNの
安定領域の温度、圧力条件に保持することができる高温
高圧発生装置であればよい。この安定領域(温度、圧
力)はF. P. Bundy, R. H. Wentorf, J. Chem. Phys.3
8(5),1144−1149頁(1963年)に報告
されており、一般的には1100℃、3.8GPa を下限
とする温度、圧力が有効であるが、添加物(溶媒、触
媒)の種類、組合せによっても変化し、1100℃、
3.8GPa 以下でもcBNへ変換可能である。保持時間
は特に限定されず、所望の変換率が達成されるまでとす
るが、一般的には1秒〜6時間程度でよい。
In practice, after mixing hBN and amide, imide or amide, or imide and metal, or separately, molding at a pressure of about 1 to 2 t / cm 2 , and then filling the reaction vessel. Is preferred. This is because the handleability of the raw material powder is improved, and the amount of shrinkage in the reaction vessel is reduced, so that the productivity is improved. The reaction vessel may be any high-temperature and high-pressure generator capable of holding the raw material powder (hBN and additives) or a molded product thereof under the temperature and pressure conditions in the stable region of cBN. This stable region (temperature, pressure) is FP Bundy, RH Wentorf, J. Chem. Phys.
8 (5), pp. 1144-1149 (1963). Generally, a temperature and pressure with a lower limit of 1100 ° C. and 3.8 GPa are effective, but the additive (solvent, catalyst) Depending on the type and combination, 1100 ℃,
It is possible to convert to cBN even at 3.8 GPa or less. The holding time is not particularly limited and may be until the desired conversion rate is achieved, but it is generally about 1 second to 6 hours.

【0012】上記安定領域に保持することにより、hB
NはcBNへ変換され、温度圧力条件を極めて高くすれ
ば100%に近い変換率を得ることも可能であるが、一
般にはhBNとcBNの混合物からなる合成塊が得られ
る。合成塊は解砕し、cBNを単離する。単離方法は特
公昭49−27757号公報に記載されている方法を用
いることができ、例えば、合成塊を5mm以下、好ましく
は1mm以下に解砕した後、水酸化ナトリウムと少量の水
を加え、300℃程度に加熱すると、hBNが選択的に
溶解するので、これを冷却後、酸で、洗浄し、濾過する
とcBNが得られる。また、添加物として用いた金属が
残留している場合は、塩酸、硝酸等を用いて除去するこ
とができる。
By holding in the above stable region, hB
N is converted to cBN, and it is possible to obtain a conversion rate close to 100% by making the temperature and pressure conditions extremely high, but generally, a synthetic mass composed of a mixture of hBN and cBN is obtained. Crush the synthetic mass and isolate cBN. As the isolation method, the method described in JP-B-49-27757 can be used. For example, after crushing the synthetic mass to 5 mm or less, preferably 1 mm or less, sodium hydroxide and a small amount of water are added. When heated to about 300 ° C., hBN is selectively dissolved. Therefore, after cooling this, cBN is obtained by washing with acid and filtering. If the metal used as the additive remains, it can be removed using hydrochloric acid, nitric acid, or the like.

【0013】[0013]

【実施例】実施例1 不純物として酸素0.8重量%、アルカリ金属、アルカ
リ土類金属を除く金属不純物0.2重量%を含有する粒
度150メッシュ以下の六方晶窒化ホウ素が、同化合物
を構成するホウ素原子として100部に対し、リチウム
アミドをリチウムの原子比として20部添加し、混合し
た。これを1.5ton /cm2 の圧力で26mmφ×32mm
h の成形体とし、図1に示す反応容器内に収容した。
Example 1 A hexagonal boron nitride having a grain size of 150 mesh or less and containing 0.8% by weight of oxygen as impurities and 0.2% by weight of metal impurities other than alkali metals and alkaline earth metals constitutes the same compound. 20 parts of lithium amide as an atomic ratio of lithium was added to and mixed with 100 parts of boron atoms. 26mmφ × 32mm with pressure of 1.5 ton / cm 2
The molded body of h was housed in the reaction container shown in FIG.

【0014】図1に示す反応容器において、容器外壁1
は伝圧体としてのパイロフイライトによって円筒状に作
られ、その内側には黒鉛円筒体からなるヒーター2およ
び隔壁材としてパイロフイライト8が配設されている。
また容器の上下端にはそれぞれ通電用鋼製リング3およ
び通電用鋼板4が配設され、その内側には焼結アルミナ
板5および伝圧体としてのパイロフイライト6が配設さ
れ、そしてそのパイロフイライト6および隔壁材として
のパイロフイライト8によって取り囲まれる空間が反応
原料を収容する収容室7となっている。
In the reaction container shown in FIG. 1, the outer wall 1 of the container is used.
Is made into a cylindrical shape by pyrophyllite as a pressure transfer body, inside which a heater 2 made of a graphite cylinder and a pyrophyllite 8 as a partition material are arranged.
Further, a current-carrying steel ring 3 and a current-carrying steel plate 4 are respectively arranged on the upper and lower ends of the container, and a sintered alumina plate 5 and a pyrophyllite 6 as a pressure transmitting body are arranged on the inner side thereof. A space surrounded by the pyrophyllite 6 and the pyrophyllite 8 as a partition material is a storage chamber 7 for storing the reaction raw material.

【0015】この反応容器で、上記成形体を4.5GPa
、1400℃の条件で10分間処理した。この試料を
乳鉢で解砕し、X線粉末回折装置を用い、CuKα線に
対する立方晶窒化ホウ素(111)及び六方晶窒化ホウ
素(002)の回折線の強度比から立方晶窒化ホウ素へ
の変換率を求めたところ、84%であった。
In this reaction vessel, the above-mentioned molded body was subjected to 4.5 GPa.
It was treated at 1400 ° C. for 10 minutes. This sample was crushed in a mortar, and the conversion ratio from the intensity ratio of the diffraction lines of cubic boron nitride (111) and hexagonal boron nitride (002) to CuKα rays to cubic boron nitride was measured using an X-ray powder diffractometer. Was 84%.

【0016】乳鉢等で1mm以下程度に解砕した試料は、
水酸化ナトリウムと少量の水を加え、300℃に加熱し
た後、冷却し、蒸留水・塩酸等で洗浄・ろ過し、ろ別し
た残留物を乾燥することにより、立方晶窒化ホウ素を単
離(精製)することができる。実施例2 六方晶窒化ホウ素が、同化合物を構成するホウ素原子と
して100部に対し、マグネシウムアミドをマグネシウ
ムの原子比として20部添加し、実施例1と同様にして
立方晶窒化ホウ素を合成、評価したところ、立方晶窒化
ホウ素への変換率は88%であった。
Samples crushed to a size of 1 mm or less in a mortar, etc.
Cubic boron nitride was isolated by adding sodium hydroxide and a small amount of water, heating to 300 ° C., cooling, washing and filtering with distilled water, hydrochloric acid, etc., and drying the filtered residue. Purification). Example 2 Hexagonal boron nitride was added to 20 parts by weight of magnesium amide as an atomic ratio of magnesium with respect to 100 parts as boron atoms constituting the same compound, and cubic boron nitride was synthesized and evaluated in the same manner as in Example 1. As a result, the conversion rate to cubic boron nitride was 88%.

【0017】実施例3 六方晶窒化ホウ素が、同化合物を構成するホウ素原子と
して100部に対し、カルシウムアミドをカルシウムの
原子比として20部添加し、実施例1と同様にして立方
晶窒化ホウ素を合成、評価したところ、立方晶窒化ホウ
素への変換率は82%であった。
Example 3 Hexagonal boron nitride was added in an amount of 20 parts by weight of calcium amide as an atomic ratio of calcium to 100 parts by weight of boron atoms constituting the same compound, and cubic boron nitride was added in the same manner as in Example 1. When synthesized and evaluated, the conversion rate to cubic boron nitride was 82%.

【0018】実施例4 六方晶窒化ホウ素が、同化合物を構成するホウ素原子と
して100部に対し、リチウムイミドをリチウムの原子
比として20部添加し、実施例1と同様にして立方晶窒
化ホウ素を合成、評価したところ、立方晶窒化ホウ素へ
の変換率は83%であった。
Example 4 Hexagonal boron nitride was added in the same manner as in Example 1 except that 20 parts of lithium imide was added as an atomic ratio of lithium to 100 parts of boron atoms constituting the same compound. When synthesized and evaluated, the conversion rate to cubic boron nitride was 83%.

【0019】実施例5 六方晶窒化ホウ素が、同化合物を構成するホウ素原子と
して100部に対し、マグネシウムイミドをマグネシウ
ムの原子比として20部添加し、実施例1と同様にして
立方晶窒化ホウ素を合成、評価したところ、立方晶窒化
ホウ素への変換率は85%であった。
Example 5 Hexagonal boron nitride was added in an amount of 20 parts by weight of magnesium imide as an atomic ratio of magnesium to 100 parts by weight of boron atoms constituting the same compound, and cubic boron nitride was added in the same manner as in Example 1. When synthesized and evaluated, the conversion rate to cubic boron nitride was 85%.

【0020】実施例6 六方晶窒化ホウ素が、同化合物を構成するホウ素原子と
して100部に対し、カルシウムイミドをカルシウムの
原子比として20部添加し、実施例1と同様にして立方
晶窒化ホウ素を合成、評価したところ、立方晶窒化ホウ
素への変換率は85%であった。
Example 6 Hexagonal boron nitride was added in an amount of 20 parts by weight of calcium imide in an atomic ratio of calcium to 100 parts by weight of boron atoms constituting the same compound, and cubic boron nitride was added in the same manner as in Example 1. When synthesized and evaluated, the conversion rate to cubic boron nitride was 85%.

【0021】実施例7 六方晶窒化ホウ素が、同化合物を構成するホウ素原子と
して100部に対し、リチウムアミド及びマグネシウム
アミドをリチウム及びマグネシウムの原子比としてそれ
ぞれ10部ずつ添加し、実施例1と同様にして立方晶窒
化ホウ素を合成、評価したところ、立方晶窒化ホウ素へ
の変換率は93%であった。
Example 7 As in Example 1, hexagonal boron nitride was added in an amount of 10 parts each of lithium amide and magnesium amide as an atomic ratio of lithium and magnesium to 100 parts of boron atom constituting the same compound. When cubic boron nitride was synthesized and evaluated in the above manner, the conversion rate to cubic boron nitride was 93%.

【0022】比較例1 六方晶窒化ホウ素が、同化合物を構成するホウ素原子と
して100部に対し、窒化リチウムをリチウムの原子比
として20部添加し、実施例1と同様にして立方晶窒化
ホウ素を合成、評価したところ、立方晶窒化ホウ素への
変換率は7%であった。
Comparative Example 1 Hexagonal boron nitride was added in an amount of 20 parts by weight of lithium nitride in an atomic ratio of lithium to 100 parts by weight of boron atoms constituting the same compound, and cubic boron nitride was added in the same manner as in Example 1. When synthesized and evaluated, the conversion rate to cubic boron nitride was 7%.

【0023】比較例2 六方晶窒化ホウ素が、同化合物を構成するホウ素原子と
して100部に対し、ホウ窒化リチウムをリチウムの原
子比として20部添加し、実施例1と同様にして立方晶
窒化ホウ素を合成、評価したところ、立方晶窒化ホウ素
への変換率は14%であった。
Comparative Example 2 Hexagonal boron nitride was added in the same manner as in Example 1 except that 20 parts of lithium boronitride was added in an atomic ratio of lithium to 100 parts of boron atoms constituting the same compound. When was synthesized and evaluated, the conversion rate to cubic boron nitride was 14%.

【0024】比較例3 六方晶窒化ホウ素が、同化合物を構成するホウ素原子と
して100部に対し、Mgを原子比として20部添加
し、実施例1と同様にして立方晶窒化ホウ素を合成、評
価したところ、立方晶窒化ホウ素への変換率は54%で
あった。実施例8 不純物として酸素0.8重量%、金属不純物0.2重量
%を含有する六方晶窒化ホウ素を、同化合物を構成する
ホウ素原子として100部、リチウムアミドをリチウム
の原子比として10部、マグネシウムを原子比として1
0部秤取し混合した。これを1.5ton /cm2 の圧力で
26mmφ×32mmh の成形体とし、図1に示す反応容器
内に実施例1と同様に収容した。
Comparative Example 3 Hexagonal boron nitride was added to 20 parts by weight of Mg in an atomic ratio of 100 parts as boron atoms constituting the same compound, and cubic boron nitride was synthesized and evaluated in the same manner as in Example 1. As a result, the conversion rate to cubic boron nitride was 54%. Example 8 100 parts of hexagonal boron nitride containing 0.8% by weight of oxygen as impurities and 0.2% by weight of metal impurities as boron atoms constituting the same compound, and 10 parts of lithium amide as an atomic ratio of lithium, 1 as the atomic ratio of magnesium
0 part was weighed and mixed. This was molded into a compact of 26 mmφ × 32 mmh at a pressure of 1.5 ton / cm 2 and was housed in the reaction vessel shown in FIG. 1 in the same manner as in Example 1.

【0025】この反応容器で、上記成形体を4.0GPa
、1200℃の条件で10分間処理した。この試料を
乳鉢で解砕し、X線粉末回折装置により、CuKα線に
対する立方晶窒化ホウ素(111)及び六方晶窒化ホウ
素(002)の回折線の強度比を用いて立方晶窒化ホウ
素への変換率を求めたところ、96%であった。
In this reaction vessel, the above-mentioned molded body was placed at 4.0 GPa.
It was treated at 1200 ° C. for 10 minutes. This sample was crushed in a mortar and converted into cubic boron nitride by an X-ray powder diffractometer using the intensity ratio of the diffraction lines of cubic boron nitride (111) and hexagonal boron nitride (002) to CuKα rays. The rate was 96%.

【0026】実施例9 六方晶窒化ホウ素を、同化合物を構成するホウ素原子と
して100部、リチウムアミドをリチウムの原子比とし
て10部、リチウムを原子比として10部秤取し混合し
た。これを用いて実施例8と同様に立方晶窒化ホウ素を
合成、評価したところ、立方晶窒化ホウ素への変換率は
73%であった。
Example 9 100 parts of hexagonal boron nitride as a boron atom constituting the same compound, 10 parts of lithium amide as an atomic ratio of lithium and 10 parts of lithium as an atomic ratio were weighed and mixed. When cubic boron nitride was synthesized and evaluated using this in the same manner as in Example 8, the conversion rate to cubic boron nitride was 73%.

【0027】実施例10 六方晶窒化ホウ素を、同化合物を構成するホウ素原子と
して100部、リチウムアミドをリチウムの原子比とし
て10部、クロムを原子比として10部秤取し混合し
た。これを用いて実施例8と同様に立方晶窒化ホウ素を
合成、評価したところ、立方晶窒化ホウ素への変換率は
80%であった。
Example 10 100 parts of hexagonal boron nitride as a boron atom constituting the same compound, 10 parts of lithium amide as an atomic ratio of lithium and 10 parts of chromium as an atomic ratio were weighed and mixed. Using this, a cubic boron nitride was synthesized and evaluated in the same manner as in Example 8. As a result, the conversion rate to cubic boron nitride was 80%.

【0028】実施例11 六方晶窒化ホウ素を、同化合物を構成するホウ素原子と
して100部、リチウムアミドをリチウムの原子比とし
て10部、マンガンを原子比として10部秤取し混合し
た。これを用いて実施例8と同様に立方晶窒化ホウ素を
合成、評価したところ、立方晶窒化ホウ素への変換率は
81%であった。
Example 11 100 parts of hexagonal boron nitride as a boron atom constituting the same compound, 10 parts of lithium amide as an atomic ratio of lithium and 10 parts of manganese as an atomic ratio were weighed and mixed. When cubic boron nitride was synthesized and evaluated using this in the same manner as in Example 8, the conversion rate to cubic boron nitride was 81%.

【0029】実施例12 六方晶窒化ホウ素を、同化合物を構成するホウ素原子と
して100部、リチウムアミドをリチウムの原子比とし
て10部、鉄を原子比として10部秤取し混合した。こ
れを用いて実施例8と同様に立方晶窒化ホウ素を合成、
評価したところ、立方晶窒化ホウ素への変換率は79%
であった。
Example 12 100 parts of hexagonal boron nitride as a boron atom constituting the same compound, 10 parts of lithium amide as an atomic ratio of lithium and 10 parts of iron as an atomic ratio were weighed and mixed. Using this, a cubic boron nitride was synthesized in the same manner as in Example 8,
When evaluated, the conversion rate to cubic boron nitride is 79%.
Met.

【0030】実施例13 六方晶窒化ホウ素を、同化合物を構成するホウ素原子と
して100部、リチウムアミドをリチウムの原子比とし
て10部、コバルトを原子比として10部秤取し混合し
た。これを用いて実施例8と同様に立方晶窒化ホウ素を
合成、評価したところ、立方晶窒化ホウ素への変換率は
80%であった。
Example 13 100 parts of hexagonal boron nitride as a boron atom constituting the same compound, 10 parts of lithium amide as an atomic ratio of lithium, and 10 parts of cobalt as an atomic ratio were weighed and mixed. Using this, a cubic boron nitride was synthesized and evaluated in the same manner as in Example 8. As a result, the conversion rate to cubic boron nitride was 80%.

【0031】実施例14 六方晶窒化ホウ素を、同化合物を構成するホウ素原子と
して100部、リチウムアミドをリチウムの原子比とし
て10部、ニッケルを原子比として10部秤取し混合し
た。これを用いて実施例8と同様に立方晶窒化ホウ素を
合成、評価したところ、立方晶窒化ホウ素への変換率は
88%であった。
Example 14 100 parts of hexagonal boron nitride as a boron atom constituting the same compound, 10 parts of lithium amide as an atomic ratio of lithium and 10 parts of nickel as an atomic ratio were weighed and mixed. When cubic boron nitride was synthesized and evaluated using this in the same manner as in Example 8, the conversion rate to cubic boron nitride was 88%.

【0032】実施例15 六方晶窒化ホウ素を、同化合物を構成するホウ素原子と
して100部、リチウムアミドをリチウムの原子比とし
て10部、亜鉛を原子比として10部秤取し混合した。
これを用いて実施例8と同様に立方晶窒化ホウ素を合
成、評価したところ、立方晶窒化ホウ素への変換率は8
5%であった。
Example 15 100 parts of hexagonal boron nitride as a boron atom constituting the same compound, 10 parts of lithium amide as an atomic ratio of lithium and 10 parts of zinc as an atomic ratio were weighed and mixed.
Using this, a cubic boron nitride was synthesized and evaluated in the same manner as in Example 8. The conversion rate to cubic boron nitride was 8
It was 5%.

【0033】実施例16 六方晶窒化ホウ素を、同化合物を構成するホウ素原子と
して100部、リチウムアミドをリチウムの原子比とし
て10部、アルミニウムを原子比として10部秤取し混
合した。これを用いて実施例8と同様に立方晶窒化ホウ
素を合成、評価したところ、立方晶窒化ホウ素への変換
率は72%であった。
Example 16 100 parts of hexagonal boron nitride as a boron atom constituting the same compound, 10 parts of lithium amide as an atomic ratio of lithium, and 10 parts of aluminum as an atomic ratio were weighed and mixed. Using this, a cubic boron nitride was synthesized and evaluated in the same manner as in Example 8. As a result, the conversion rate to cubic boron nitride was 72%.

【0034】実施例17 六方晶窒化ホウ素を、同化合物を構成するホウ素原子と
して100部、リチウムアミドをリチウムの原子比とし
て10部、ランタンを原子比として10部秤取し混合し
た。これを用いて実施例8と同様に立方晶窒化ホウ素を
合成、評価したところ、立方晶窒化ホウ素への変換率は
76%であった。
Example 17 100 parts of hexagonal boron nitride as a boron atom constituting the same compound, 10 parts of lithium amide as an atomic ratio of lithium and 10 parts of lanthanum as an atomic ratio were weighed and mixed. When cubic boron nitride was synthesized and evaluated using this in the same manner as in Example 8, the conversion rate to cubic boron nitride was 76%.

【0035】実施例18 六方晶窒化ホウ素を、同化合物を構成するホウ素原子と
して100部、リチウムアミドをリチウムの原子比とし
て10部、セリウムを原子比として10部秤取し混合し
た。これを用いて実施例8と同様に立方晶窒化ホウ素を
合成、評価したところ、立方晶窒化ホウ素への変換率は
77%であった。
Example 18 100 parts of hexagonal boron nitride as a boron atom constituting the same compound, 10 parts of lithium amide as an atomic ratio of lithium, and 10 parts of cerium as an atomic ratio were weighed and mixed. Using this, a cubic boron nitride was synthesized and evaluated in the same manner as in Example 8. As a result, the conversion rate to cubic boron nitride was 77%.

【0036】実施例19 六方晶窒化ホウ素を、同化合物を構成するホウ素原子と
して100部、リチウムアミドをリチウムの原子比とし
て10部、プラセオジムを原子比として10部秤取し混
合した。これを用いて実施例8と同様に立方晶窒化ホウ
素を合成、評価したところ、立方晶窒化ホウ素への変換
率は78%であった。
Example 19 100 parts of hexagonal boron nitride as a boron atom constituting the same compound, 10 parts of lithium amide as an atomic ratio of lithium and 10 parts of praseodymium as an atomic ratio were weighed and mixed. When cubic boron nitride was synthesized and evaluated using this in the same manner as in Example 8, the conversion rate to cubic boron nitride was 78%.

【0037】実施例20 六方晶窒化ホウ素を、同化合物を構成するホウ素原子と
して100部、リチウムアミドをリチウムの原子比とし
て10部、ネオジムを原子比として10部秤取し混合し
た。これを用いて実施例8と同様に立方晶窒化ホウ素を
合成、評価したところ、立方晶窒化ホウ素への変換率は
77%であった。
Example 20 100 parts of hexagonal boron nitride as a boron atom constituting the same compound, 10 parts of lithium amide as an atomic ratio of lithium and 10 parts of neodymium as an atomic ratio were weighed and mixed. Using this, a cubic boron nitride was synthesized and evaluated in the same manner as in Example 8. As a result, the conversion rate to cubic boron nitride was 77%.

【0038】実施例21 六方晶窒化ホウ素を、同化合物を構成するホウ素原子と
して100部、リチウムアミドをリチウムの原子比とし
て10部、サマリウムを原子比として10部秤取し混合
した。これを用いて実施例8と同様に立方晶窒化ホウ素
を合成、評価したところ、立方晶窒化ホウ素への変換率
は76%であった。
Example 21 100 parts of hexagonal boron nitride as a boron atom constituting the same compound, 10 parts of lithium amide as an atomic ratio of lithium, and 10 parts of samarium as an atomic ratio were weighed and mixed. When cubic boron nitride was synthesized and evaluated using this in the same manner as in Example 8, the conversion rate to cubic boron nitride was 76%.

【0039】実施例22 六方晶窒化ホウ素を、同化合物を構成するホウ素原子と
して100部、リチウムアミドをリチウムの原子比とし
て10部、ガドリニウムを原子比として10部秤取し混
合した。これを用いて実施例8と同様に立方晶窒化ホウ
素を合成、評価したところ、立方晶窒化ホウ素への変換
率は76%であった。
Example 22 100 parts of hexagonal boron nitride as a boron atom constituting the same compound, 10 parts of lithium amide as an atomic ratio of lithium, and 10 parts of gadolinium as an atomic ratio were weighed and mixed. When cubic boron nitride was synthesized and evaluated using this in the same manner as in Example 8, the conversion rate to cubic boron nitride was 76%.

【0040】実施例23 六方晶窒化ホウ素を、同化合物を構成するホウ素原子と
して100部、リチウムアミドをリチウムの原子比とし
て10部、マグネシウムを原子比として10部、ニッケ
ルを原子比として5部秤取し混合した。これを用いて実
施例8と同様に立方晶窒化ホウ素を合成、評価したとこ
ろ、立方晶窒化ホウ素への変換率は95%であった。
Example 23 100 parts of hexagonal boron nitride as a boron atom constituting the same compound, 10 parts of lithium amide as an atomic ratio of lithium, 10 parts of magnesium as an atomic ratio, and 5 parts of nickel as an atomic ratio. It was taken and mixed. When cubic boron nitride was synthesized and evaluated using this in the same manner as in Example 8, the conversion rate to cubic boron nitride was 95%.

【0041】実施例24 六方晶窒化ホウ素を、同化合物を構成するホウ素原子と
して100部、リチウムアミドをリチウムの原子比とし
て10部、マグネシウムアミドをマグネシウムの原子比
として10部、マンガンを原子比として5部秤取し混合
した。これを用いて実施例8と同様に立方晶窒化ホウ素
を合成、評価したところ、立方晶窒化ホウ素への変換率
は86%であった。
Example 24 100 parts of hexagonal boron nitride as a boron atom constituting the same compound, 10 parts of lithium amide as an atomic ratio of lithium, 10 parts of magnesium amide as an atomic ratio of magnesium, and manganese as an atomic ratio. 5 parts were weighed and mixed. When cubic boron nitride was synthesized and evaluated using this in the same manner as in Example 8, the conversion rate to cubic boron nitride was 86%.

【0042】実施例25 六方晶窒化ホウ素を、同化合物を構成するホウ素原子と
して100部、リチウムイミドをリチウムの原子比とし
て10部、マグネシウムを原子比として10部秤取し混
合した。これを用いて実施例8と同様に立方晶窒化ホウ
素を合成、評価したところ、立方晶窒化ホウ素への変換
率は74%であった。
Example 25 100 parts of hexagonal boron nitride as a boron atom constituting the same compound, 10 parts of lithium imide as an atomic ratio of lithium, and 10 parts of magnesium as an atomic ratio were weighed and mixed. Using this, a cubic boron nitride was synthesized and evaluated in the same manner as in Example 8. As a result, the conversion rate to cubic boron nitride was 74%.

【0043】比較例4 六方晶窒化ホウ素を、同化合物を構成するホウ素原子と
して100部、窒化リチウムをリチウムの原子比として
10部秤取し混合した。これを用いて実施例8と同様に
立方晶窒化ホウ素を合成、評価したところ、立方晶窒化
ホウ素への変換率は0%であった。
Comparative Example 4 100 parts of hexagonal boron nitride as a boron atom constituting the same compound and 10 parts of lithium nitride as an atomic ratio of lithium were weighed and mixed. Using this, a cubic boron nitride was synthesized and evaluated in the same manner as in Example 8. As a result, the conversion rate to cubic boron nitride was 0%.

【0044】比較例5 六方晶窒化ホウ素を、同化合物を構成するホウ素原子と
して100部、ホウ窒化リチウムをリチウムの原子比と
して10部秤取し混合した。これを用いて実施例8と同
様に立方晶窒化ホウ素を合成、評価したところ、立方晶
窒化ホウ素への変換率は0%であった。
Comparative Example 5 100 parts of hexagonal boron nitride as a boron atom constituting the same compound and 10 parts of lithium boronitride as an atomic ratio of lithium were weighed out and mixed. Using this, a cubic boron nitride was synthesized and evaluated in the same manner as in Example 8. As a result, the conversion rate to cubic boron nitride was 0%.

【0045】比較例6 六方晶窒化ホウ素を、同化合物を構成するホウ素原子と
して100部、マグネシウムを原子比として10部秤取
し混合した。これを用いて実施例8と同様に立方晶窒化
ホウ素を合成、評価したところ、立方晶窒化ホウ素への
変換率は0%であった。
Comparative Example 6 100 parts of hexagonal boron nitride as a boron atom constituting the same compound and 10 parts of magnesium as an atomic ratio were weighed and mixed. Using this, a cubic boron nitride was synthesized and evaluated in the same manner as in Example 8. As a result, the conversion rate to cubic boron nitride was 0%.

【0046】[0046]

【発明の効果】本発明によれば、六方晶窒化ホウ素を原
料として立方晶窒化ホウ素を合成する方法において、そ
の変換率を顕著に向上させることができる。
According to the present invention, in the method for synthesizing cubic boron nitride using hexagonal boron nitride as a raw material, the conversion rate can be significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例においてhBNをcBNに変換するため
に用いる反応容器の断面を示す。
1 shows a cross section of a reaction vessel used to convert hBN to cBN in the examples.

【符号の説明】[Explanation of symbols]

1…容器外壁 2…ヒーター 6,8…パイロフイライト 7…収容室 1 ... Container outer wall 2 ... heater 6,8 ... Pyrophyllite 7 ... accommodation room

フロントページの続き (56)参考文献 特開 昭59−92974(JP,A) 特開 昭62−108716(JP,A) 特開 昭62−289230(JP,A) 特開 昭48−55900(JP,A) 特開 平4−126541(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 3/06 C04B 35/583 Continuation of front page (56) Reference JP-A-59-92974 (JP, A) JP-A-62-108716 (JP, A) JP-A-62-289230 (JP, A) JP-A-48-55900 (JP , A) JP-A-4-126541 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B01J 3/06 C04B 35/583

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 周期律表Ia,IIa族元素のアミド、イ
ミドから選ばれる1種以上の化合物の存在において六方
晶窒化ホウ素を、立方晶窒化ホウ素の安定領域内の温度
及び圧力条件下に保持して、立方晶窒化ホウ素に変換す
ることを特徴とする立方晶窒化ホウ素の製造方法。
1. Maintaining hexagonal boron nitride in the presence of one or more compounds selected from amides and imides of elements of groups Ia and IIa of the periodic table under temperature and pressure conditions within the stable region of cubic boron nitride. Then, a method for producing cubic boron nitride, which comprises converting to cubic boron nitride.
【請求項2】 周期律表Ia,IIa族元素のアミド、イ
ミドから選ばれる1種以上の化合物と周期律表Ia,II
a,III a,VIa,VII a,VIII,IIb,III b族元素
から選ばれる1種以上の金属の、両者の存在において六
方晶窒化ホウ素を、立方晶窒化ホウ素の安定領域内の温
度及び圧力条件下に保持して、立方晶窒化ホウ素に変換
することを特徴とする立方晶窒化ホウ素の製造方法。
2. A periodic table Ia, IIa and at least one compound selected from amides and imides of elements of group Ia and periodic table Ia, II.
a, IIIa, VIa, VIIa, VIII, IIb, IIIb elements, at least one metal selected from hexagonal boron nitride in the presence of both, the temperature and pressure in the stable region of cubic boron nitride A method for producing cubic boron nitride, which is characterized in that the cubic boron nitride is converted to cubic boron nitride while being held under the conditions.
JP01950894A 1993-07-09 1994-02-16 Method for producing cubic boron nitride Expired - Lifetime JP3400842B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP01950894A JP3400842B2 (en) 1993-07-09 1994-02-16 Method for producing cubic boron nitride
IE940533A IE80824B1 (en) 1993-07-09 1994-06-30 Method for producing cubic boron nitride
DE4423987A DE4423987C2 (en) 1993-07-09 1994-07-07 Process for the production of cubic boron nitride
KR1019940016500A KR100351712B1 (en) 1993-07-09 1994-07-08 Manufacturing method of cubic boron nitride
US08/475,604 US5618509A (en) 1993-07-09 1995-06-07 Method for producing cubic boron nitride
US08/919,363 USRE36492E (en) 1993-07-09 1997-08-28 Method for producing cubic boron nitride

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-170537 1993-07-09
JP17053793 1993-07-09
JP01950894A JP3400842B2 (en) 1993-07-09 1994-02-16 Method for producing cubic boron nitride

Publications (2)

Publication Number Publication Date
JPH0768153A JPH0768153A (en) 1995-03-14
JP3400842B2 true JP3400842B2 (en) 2003-04-28

Family

ID=26356341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01950894A Expired - Lifetime JP3400842B2 (en) 1993-07-09 1994-02-16 Method for producing cubic boron nitride

Country Status (4)

Country Link
JP (1) JP3400842B2 (en)
KR (1) KR100351712B1 (en)
DE (1) DE4423987C2 (en)
IE (1) IE80824B1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3565615B2 (en) * 1995-06-12 2004-09-15 昭和電工株式会社 Method for producing cubic boron nitride
JP3471167B2 (en) * 1996-05-21 2003-11-25 昭和電工株式会社 Method for producing cubic boron nitride
JP4183317B2 (en) * 1997-11-25 2008-11-19 昭和電工株式会社 Method for producing cubic boron nitride
KR100636415B1 (en) * 1997-11-25 2006-12-28 쇼와 덴코 가부시키가이샤 Manufacturing method of cubic boron nitride
JP4155473B2 (en) * 1998-02-27 2008-09-24 モーメンティブ・パフォーマンス・マテリアルズ・インク Method for producing high density boron nitride and high density agglomerated boron nitride particles
JP4202521B2 (en) * 1999-04-08 2008-12-24 昭和電工株式会社 Method for producing cubic boron nitride
JP4145533B2 (en) * 2002-02-28 2008-09-03 昭和電工株式会社 Method for producing cubic boron nitride
US7244406B2 (en) 2002-02-28 2007-07-17 Showa Denko K.K. Method for producing cubic boron nitride
DE102011009834B4 (en) 2011-01-31 2015-06-03 Georg Vogt Process for the preparation of cubic boron nitride
EP4122627A4 (en) * 2020-03-18 2023-05-03 Sumitomo Electric Hardmetal Corp. Compound sintered compact and tool using same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2947617A (en) * 1958-01-06 1960-08-02 Gen Electric Abrasive material and preparation thereof
NL302348A (en) * 1963-01-17
SU674372A1 (en) * 1977-07-05 1983-11-15 Всесоюзный Научно-Исследовательский Институт Абразивов И Шлифования Method for preparing cubical boron nitride

Also Published As

Publication number Publication date
KR100351712B1 (en) 2002-11-02
IE940533A1 (en) 1995-01-11
DE4423987C2 (en) 1996-09-05
JPH0768153A (en) 1995-03-14
KR960013987A (en) 1996-05-22
IE80824B1 (en) 1999-03-10
DE4423987A1 (en) 1995-01-12

Similar Documents

Publication Publication Date Title
US5618509A (en) Method for producing cubic boron nitride
JP3400842B2 (en) Method for producing cubic boron nitride
JPS5939362B2 (en) Boron nitride compound and its manufacturing method
US4680278A (en) Process for preparing aluminum nitride powder
JP3471167B2 (en) Method for producing cubic boron nitride
US4409193A (en) Process for preparing cubic boron nitride
JP3855671B2 (en) Method for producing cubic boron nitride
US6248303B1 (en) Method of producing cubic boron nitride
JP3565615B2 (en) Method for producing cubic boron nitride
US4406871A (en) Process for growing diamonds
JP4183317B2 (en) Method for producing cubic boron nitride
JP3563879B2 (en) Method for producing cubic boron nitride
JP4202520B2 (en) Method for producing cubic boron nitride
KR100636415B1 (en) Manufacturing method of cubic boron nitride
JP4202521B2 (en) Method for producing cubic boron nitride
JP2001019411A (en) Cubic boron nitride-base composite grain
JPS6225602B2 (en)
JPS5848483B2 (en) Synthesis method of cubic boron titanide
JPH0315486B2 (en)
JPH0342933B2 (en)
JPH0314495B2 (en)
JPS5973410A (en) Preparation of boron nitride of cubic system
JPH0355177B2 (en)
JPH0593B2 (en)
RU2078030C1 (en) Complex lithium-alkaline-earth metal boron nitride, method of its producing, catalyst for $$$-$$$-conversion in boron nitride and method of cubical boron nitride making with this catalyst

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130221

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140221

Year of fee payment: 11

EXPY Cancellation because of completion of term