JP3398282B2 - High frequency semiconductor device - Google Patents

High frequency semiconductor device

Info

Publication number
JP3398282B2
JP3398282B2 JP16953496A JP16953496A JP3398282B2 JP 3398282 B2 JP3398282 B2 JP 3398282B2 JP 16953496 A JP16953496 A JP 16953496A JP 16953496 A JP16953496 A JP 16953496A JP 3398282 B2 JP3398282 B2 JP 3398282B2
Authority
JP
Japan
Prior art keywords
frequency
transmission line
semiconductor device
filter circuit
insulating substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16953496A
Other languages
Japanese (ja)
Other versions
JPH1022415A (en
Inventor
謙治 北澤
慎一 郡山
幹男 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP16953496A priority Critical patent/JP3398282B2/en
Priority to US08/884,223 priority patent/US5952709A/en
Publication of JPH1022415A publication Critical patent/JPH1022415A/en
Application granted granted Critical
Publication of JP3398282B2 publication Critical patent/JP3398282B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Microwave Amplifiers (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、マイクロ波帯から
ミリ波帯領域の高周波用として用いられる半導体装置に
関し、特に、高周波信号の特性を劣化させることなく半
導体素子や回路部品に信号を伝送することが出来る半導
体装置、さらには特定周波数の信号のみを伝送すること
が出来るフィルタ回路を内蔵した高周波用半導体装置に
関する。 【0002】 【従来技術】従来、マイクロ波やミリ波の信号を取り扱
う半導体装置では、図7(a)に示すように、誘電体か
らなる絶縁基板20と蓋体21により形成されたキャビ
ティ22内に半導体素子(IC)23を搭載して気密に
封止している。そして、信号等の入出力は、絶縁基板2
0表面にストリップ線路等の高周波用伝送線路24を形
成し、この伝送線路24とIC23とをワイヤボンディ
ングやリボン等によって接続されている。また、他の方
法として図7(b)に示すように、絶縁基板20の底面
に高周波用伝送線路24を形成し、この伝送線路24と
IC23とをスルーホール25を通じて接続したものも
提案されている。さらに、図7(c)に示すように、半
導体装置の底面に形成した伝送線路24を半導体装置の
側面を経由して表面の伝送線路に接続して信号等を伝送
するものも提案されている。(特開昭61−16893
9号)。 【0003】また、最近では、内部回路(MMIC)を
保護するための入力フィルターや内部回路(MMIC)
から発生されるノイズを遮断するための出力フィルター
が要求されつつあるが、このような場合には、半導体装
置の外部にバンドパスフィルタを別途設けたり、あるい
は、図7(a)〜(c)半導体装置の絶縁基板20のキ
ャビティ外の伝送線路24の一部、例えば側壁内に形成
することも提案されている(特開平7−273273
号)。 【0004】 【発明が解決しようとする課題】しかしながら、図7
(a)、(c)に示されるように、IC搭載面に伝送線
路24を形成し、伝送線路24が蓋体21を通過する場
合、側壁通過部で信号線路がマイクロストリップ線路か
らストリップ線路へと変換されるため、信号線路幅を狭
くする必要がある。その結果、この変換部で反射損、放
射損が発生しやすいため高周波信号の特性劣化が起こり
やすくなるという問題がある。また、IC搭載面の側面
に伝送線路を形成する関係上、半導体装置自体が必然的
に大きくなるため回路基板の小型化が困難であった。 【0005】図7(b)は、この問題に対して、スルー
ホール25を用いて底面の伝送線路と電気的に接続し
て、外部回路基板に面実装を可能としたものである。し
かし、この図7(b)の構造においては、伝送する信号
の使用周波数が10GHz以上になるとスルーホール2
5での透過損失が急激に大きくなるために、マイクロ波
帯からミリ波帯領域の信号を特性劣化なく伝送すること
が困難であった。 【0006】また、特定周波数のみを通過させる機能を
具備する半導体装置において、図7(a)の外部にフィ
ルタを設けた装置では、装置全体の小型化には寄与でき
ず、さらにバンドパスフィルタ回路を伝送線路の一部に
形成した装置でも、伝送線路形成面の面積が大きくな
り、特に、絶縁基板の側壁に形成する場合は絶縁基板の
側壁は非常に小さいために線路を印刷することが難し
く、且つ共振線路間がショートする等の危険性があっ
た。 【0007】従って、本発明は、マイクロ波からミリ波
帯領域でも使用可能で信号の特性劣化が非常に小さい高
周波用半導体装置を提供すること、さらには、フィルタ
を内蔵した小型化が可能な高周波用半導体装置を提供す
ることを目的とするものである。 【0008】 【課題を解決するための手段】本発明者等は、マイクロ
波やミリ波等の高周波用としての半導体装置において、
信号の特性の劣化なく、かつ特定周波数の信号のみを通
過させることができるフィルタを具備する半導体装置の
構造について検討を重ねた結果、複数の誘電体材料を積
層した絶縁基板と蓋体により形成されるキャビティ内部
に半導体素子が搭載された半導体装置において、前記キ
ャビティ内部の前記絶縁基板の表面に、前記半導体素子
と電気的に接続された第1の高周波用伝送線路を形成
し、前記絶縁基板の底面に第2の高周波用伝送線路と形
成し、且つ絶縁基板内に特定周波数の信号のみを通過さ
せるためのフィルター回路を備え、前記第1の高周波用
伝送線路と前記第2の高周波伝送線路とを前記フィルタ
ー回路を介して電磁結合させることにより、伝送信号の
損失なく、特定信号のみを伝送することが可能となるこ
とを見いだした。さらに、本発明では、上記の構成に加
え、前記フィルター回路を高誘電率誘電体層間に配設す
ることにより、フィルター回路自身を小型化することが
可能となり高周波用半導体装置に内蔵することができ、
かつ高周波信号の透過特性を向上することができること
を見いだしたものである。 【0009】即ち、本発明の高周波用半導体装置は、複
数の誘電体層を積層してなる絶縁基板と、蓋体により形
成されるキャビティ内部に半導体素子が搭載され、前記
キャビティ内部の前記絶縁基板の表面に、前記半導体素
子と電気的に接続された第1の高周波用伝送線路と、前
記絶縁基板の底面に形成された第2の高周波用伝送線路
と、絶縁基板内に特定周波数の信号のみを通過させるた
めのフィルター回路を備え、前記第1の高周波用伝送線
路と前記第2の高周波伝送線路とが前記フィルター回路
を介して電磁結合された半導体装置であって、前記フィ
ルター回路は、第1の接地層に形成されたスロット孔を
介して前記第1の高周波用伝送線路と電磁結合され、且
つ第2の接地層に形成されたスロット孔を介して第2の
高周波用伝送線路と電磁結合されており、前記第1およ
び第2の高周波用伝送線路は、低誘電率誘電体層表面に
形成され、前記フィルター回路は、高誘電率誘電体層間
に配設されたことを特徴とする。 【0010】 【0011】本発明の上記の構成によれば、誘電率の異
なる複数の誘電体材料を積層した絶縁基板と蓋体により
形成されるキャビティ内部においてIC素子と電気的に
接続された第1の高周波用伝送線路と、前記絶縁基板の
底面に第2の高周波用伝送線路とを、前記フィルタ−回
路を介して対峙する位置に形成して電磁結合させること
により、伝送線路が蓋体の側壁を通過することなく結合
できるために、側壁通過部において信号線路がマイクロ
ストリップ線路からストリップ線路へと変換されるため
の反射損、放射損の発生がなく、またスルーホールやビ
アホール等による透過損失の影響を受けることがないた
め、高周波信号を伝送損失を抑制し、かつ必要な周波数
の信号を通過伝送することができる。 【0012】しかも、前記第1および第2の高周波用伝
送線路を低誘電率誘電体層表面に形成し、上記フィルタ
ー回路を高誘電率の誘電体材料からなる絶縁層間に配設
することにより、同一の誘電体材料から形成する場合よ
りもさらにフィルター回路を小型化することができ、か
つ高周波信号の透過特性を高めることができる。 【0013】 【発明の実施の形態】本発明の高周波用半導体装置の一
例を図1に示した。図1によれば、高周波用半導体装置
1は、複数の誘電体層を積層した絶縁基板2と蓋体3に
よりキャビティ4が形成されており、そのキャビティ4
内には、IC等の半導体素子5が搭載されている。絶縁
基板2を構成する誘電体材料としては、ガラスセラミッ
クス、セラミック金属複合材料、ガラス有機樹脂系複合
材料等が好適に使用される。 【0014】一方、蓋体3は、キャビティからの電磁波
が外部に漏洩するのを防止できる材料から構成すること
が望ましく、セラミックス、セラミック金属複合材料、
ガラスセラミックス等が使用できるが、これらの材料中
に電磁波を吸収させることのできるカーボン等の電磁波
吸収物質を少量分散させたり、蓋体の表面にこれらの電
磁波吸収物質を塗布することもできる。また、電磁波の
漏洩を防止するため、蓋体3で封止する際のAu−S
n、Au−Siなどのシール部を後述するアース層を壁
内のスルーホールや壁外のメタライズ層等に接続して同
電位とすることが望ましい。 【0015】本発明によれば、上記の半導体装置におい
て、半導体素子5に信号を伝送する線路として、マイク
ロストリップ線路、ストリップ線路、グランド付コプレ
ーナ線路のうちから選ばれる1種の高周波用伝送線路
が、キャビティ4内の絶縁基板における絶縁基板の表面
に形成されている。図1の半導体装置によれば、伝送線
路はマイクロストリップ線路として形成されている。 【0016】図1によれば、絶縁基板は、複数の誘電体
層によって構成されている。キャビティ4内の絶縁基板
2の表面には、ストリップ線路6が形成され、また絶縁
基板2の底面には、ストリップ線路7が形成されてい
る。そして、絶縁基板2内には、フィルター回路8が形
成されている。そして、ストリップ線路6の端部は、導
体層からなる接地層9に形成されたスロット孔10を挟
んでフィルター回路8の端部を対峙され、かかる構造に
おいて、ストリップ線路6はフィルター回路8と電磁結
合される。一方、ストリップ線路7の端部は、導体層か
らなる接地層11に形成されたスロット孔12を挟んで
フィルター回路8の端部と対峙され、かかる構造におい
て、ストリップ線路7はフィルター回路8と電磁結合さ
れる。なお、ストリップ線路6は接地層9とともにマイ
クロストリップ線路13を形成し、また、ストリップ線
路7は、接地層11とともにマイクロストリップ線路1
4を形成する。 【0017】このスロット孔10を介して形成されたス
トリップ線路6とフィルター回路8の端部は、図2の斜
視図から明らかなように、接地層9に形成されたスロッ
ト孔10を挟んで、それぞれの線路の端部が平面的に必
要な伝送信号周波数の約1/2波長相当長さで重なるよ
うに位置に形成されることが望ましく、スロット孔10
の形状は、長辺と短辺とからなる長方形の孔であり、こ
の孔の形状によって使用周波数の特定と周波数の帯域幅
を特定することができる。そのためスロット孔の長辺は
伝送信号周波数の1/2波長相当長さにするのが望まし
く、スロット孔の短辺は1/5波長相当長さから1/5
0波長相当長さに設定すると、帯域幅は3GHz〜20
GHzに制御することが出来る。さらに信号の透過特性
を改善するには、スロット孔の特性インピ−ダンスが小
さくなることが望ましいことから、スロット孔の短辺は
1/10波長相当長さ以下にすることが特に望ましい。 【0018】図1の半導体装置において、フィルター回
路8は、図3に示すように、伝送信号周波数の1/2波
長相当長さの同一形状の導体路15が等間隔で同一平面
上に多段に配列した平面型ストリップ共振線路によって
形成されている。なお、このストリップ共振線路はその
周囲に電磁波が漏洩しないように、フィルター回路8の
周囲にアース帯16形成され、このアース帯16は、ビ
アホール17にてアース層9およびアース層11と電気
的に接続されている。 【0019】また、フィルター回路8の構造としては、
図1のように同一平面に形成したものに限定されず、例
えば、図4に示すように、導体路18を複数の平面に多
段に形成してもよい。この場合、導体路18の末端での
スロット孔10またはスロット孔12を介して高周波伝
送線路6、7との結合において、導体路18Aの接地層
9との間隔X1 を、接地層11との間隔X2 よりも狭く
することによって、間隔X1 と間隔X2 とが同一である
図1に比較して、導体路18Aと伝送線路6とをより効
率的に電磁結合させ、特定周波数の信号の通過特性を向
上させることができる。また、図3によれば、導体路1
8Bと伝送線路7との関係も上記と同様である。 【0020】また、本発明の高周波用半導体装置によれ
ば、高周波伝送線路6、7が形成された誘電体層2Aと
2Cを高周波での伝送特性を良くする目的から低誘電率
からなる誘電体材料から形成し、また、フィルタ−回路
8が配設された誘電体層2Bを誘電体層2A,2Cより
も誘電率の大きい誘電体材料により形成することにより
フィルター回路8をより小型化して半導体装置内に収納
させることができる。この場合、誘電体層2A,2C
は、同一の誘電体材料であればよく、具体的には、誘電
率が7以下、特に6以下であり、誘電体層2Bは、誘電
率9以上、特に12以上であることが望ましい。 【0021】なお、半導体装置1を外部回路基板(図示
せず)に実装する場合には、従来より底面に形成された
ストリップ線路7の一部に接続端子を形成し、この接続
端子を介して外部電気回路基板と半田により接続するの
が一般的であるが、かかる方法では、接続端子部でイン
ピーダンス不整合が生じて反射損が生じやすいという問
題がある。そのため、半導体装置1の底面に形成された
ストリップ線路7の一部を外部回路基板表面の導体回路
に対して直接半田等を用いて接続することが望ましい。
外部回路基板へのさらに他の接続方法としては、半田接
続部においてもインピーダンス不整合が生じる場合があ
るため、前記ストリップ線路7と外部回路基板上の伝送
線路を重ねて接触させることで実装し、線路以外の部分
で半田固定することが望ましい。 【0022】なお、IC素子5は、ストリップ線路6の
上に半田や金バンプ等により直接載置されることによ
り、伝送損失なく接続することができるが、ストリップ
線路6とIC素子5との接続方法としては、これに限ら
れるものではなく、例えば、金リボンや数本のワイヤボ
ンディングにより接続したり、ポリイミド等の基板にC
u等の導体を形成した導体板等により接続することもで
きる。 【0023】本発明の図1の高周波用半導体装置におい
て、誘電体層2A,2Cを誘電率5.6、誘電損失1
5.0×10-4(測定周波数13.2GHz)のガラス
セラミックスからなる誘電体材料により構成し、誘電体
層2Bを誘電率14.6、誘電損失3.5×10-4(測
定周波数9.2GHz)のガラスセラミックスからなる
誘電体材料により構成し、各線路を導体に銅を用いて半
導体装置を作製した。比較のために誘電率5.6、誘電
損失15.0×10-4(測定周波数13.2GHz)の
誘電体材料のみで半導体装置を作製した。半導体装置の
入出力部における伝送特性をネットワークアナライザー
により測定した。図5(a)(b)にその結果を示す。
図5の結果によれば、S21の特性が改善されることが
わかる。 【0024】また、フィルター回路8が図4のような構
造からなる場合において、誘電体層2A、2Cおよび誘
電体層2Bを前記と同様に2種類の誘電体層により構成
するとともに、フィルター回路8の導体路18Aの接地
層9側の誘電体層厚みX1 を200μmとして、接地層
11側の誘電体層厚みX2 を200μm、250μm、
300μm、400μmに変え、その時の伝送特性の変
化を図6に示した。図6の結果によれば、接地層11側
の誘電体層厚みX2 が大きくなるほど透過特性は向上し
ており、特に、X2 /X1 が1.5以上、特に2以上で
良いことがわかる。 【0025】 【発明の効果】以上詳述した通り、本発明の高周波用半
導体装置によれば、誘電体層にフィルター回路を有し、
このフィルター回路が絶縁基板の表面と裏面に形成され
た高周波用伝送線路と電磁結合した半導体装置におい
て、フィルター回路形成部の誘電体層をその他の誘電体
層よりも高誘電率化することにより、フィルター回路自
体を小型化することができ、しかも透過特性を向上する
ことができる。これにより、特定周波数の信号のみを入
出力するとともに、半導体装置の小型化を図ることがで
き、しかも優れたフィルター特性を実現することができ
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device used for high frequencies in a microwave band to a millimeter wave band, and in particular, without deteriorating the characteristics of a high frequency signal. The present invention relates to a semiconductor device capable of transmitting a signal to a semiconductor element or a circuit component, and further relates to a high-frequency semiconductor device having a built-in filter circuit capable of transmitting only a signal of a specific frequency. 2. Description of the Related Art Conventionally, in a semiconductor device for handling microwave or millimeter wave signals, as shown in FIG. 7A, a cavity 22 formed by an insulating substrate 20 made of a dielectric and a lid 21 is used. A semiconductor element (IC) 23 is mounted on the device and hermetically sealed. The input and output of signals and the like are performed on the insulating substrate 2.
A high-frequency transmission line 24, such as a strip line, is formed on the surface 0, and the transmission line 24 and the IC 23 are connected by wire bonding, a ribbon, or the like. As another method, as shown in FIG. 7 (b), a high-frequency transmission line 24 is formed on the bottom surface of the insulating substrate 20, and the transmission line 24 and the IC 23 are connected through a through hole 25. I have. Further, as shown in FIG. 7C, there has been proposed a device in which a transmission line 24 formed on the bottom surface of a semiconductor device is connected to a transmission line on the front surface via a side surface of the semiconductor device to transmit a signal or the like. . (Japanese Patent Laid-Open No. 61-16893)
No. 9). Recently, an input filter or an internal circuit (MMIC) for protecting the internal circuit (MMIC) has been used.
In such a case, an output filter for blocking noise generated from the semiconductor device is required. In such a case, a band-pass filter is separately provided outside the semiconductor device, or FIGS. 7A to 7C are used. It has also been proposed to form a part of the transmission line 24 outside the cavity of the insulating substrate 20 of the semiconductor device, for example, in the side wall (Japanese Patent Laid-Open No. 7-273273).
issue). [0004] However, FIG.
As shown in (a) and (c), when the transmission line 24 is formed on the IC mounting surface, and the transmission line 24 passes through the lid 21, the signal line is changed from the microstrip line to the strip line at the side wall passing portion. Therefore, it is necessary to reduce the width of the signal line. As a result, reflection loss and radiation loss are apt to occur in the conversion unit, so that there is a problem that the characteristics of the high-frequency signal are likely to deteriorate. In addition, since the transmission line is formed on the side surface of the IC mounting surface, the semiconductor device itself is inevitably large, so that it is difficult to reduce the size of the circuit board. [0005] FIG. 7 (b) solves this problem by using a through-hole 25 to electrically connect to a transmission line on the bottom surface, thereby enabling surface mounting on an external circuit board. However, in the structure of FIG. 7B, when the operating frequency of the signal to be transmitted becomes 10 GHz or more, the through hole 2
5, the transmission loss in the range from microwave band to millimeter wave band is difficult to transmit without characteristic deterioration. Further, in a semiconductor device having a function of passing only a specific frequency, a device provided with a filter outside of FIG. 7A cannot contribute to downsizing of the whole device, and furthermore, a band-pass filter circuit Even in a device in which the transmission line is formed on a part of the transmission line, the area of the transmission line formation surface becomes large, and especially when the device is formed on the side wall of the insulating substrate, the side wall of the insulating substrate is very small, so it is difficult to print the line. In addition, there is a danger that the resonance lines are short-circuited. Accordingly, the present invention provides a high-frequency semiconductor device that can be used in the microwave to millimeter-wave band and has very little deterioration in signal characteristics. It is an object to provide a semiconductor device for use. Means for Solving the Problems The present inventors have developed a semiconductor device for high frequency use such as microwaves and millimeter waves.
As a result of repeated studies on the structure of a semiconductor device having a filter capable of passing only a signal of a specific frequency without deterioration of signal characteristics, the structure was formed by an insulating substrate and a lid in which a plurality of dielectric materials were laminated. A first high-frequency transmission line electrically connected to the semiconductor element is formed on a surface of the insulating substrate inside the cavity, the semiconductor device having a semiconductor element mounted inside the cavity. A second high-frequency transmission line is formed on the bottom surface, and a filter circuit for passing only a signal of a specific frequency is provided in the insulating substrate, wherein the first high-frequency transmission line and the second high-frequency transmission line are provided. Has been found to be able to transmit only a specific signal without loss of a transmission signal by electromagnetically coupling through the filter circuit. Further, in the present invention, in addition to the above configuration, by disposing the filter circuit between the high dielectric constant dielectric layers, the filter circuit itself can be reduced in size and can be built in a high-frequency semiconductor device. ,
In addition, it has been found that the transmission characteristics of a high-frequency signal can be improved. That is, the high-frequency semiconductor device of the present invention has an insulating substrate formed by laminating a plurality of dielectric layers, a semiconductor element mounted in a cavity formed by a lid, and the insulating substrate in the cavity. A first high-frequency transmission line electrically connected to the semiconductor element, a second high-frequency transmission line formed on the bottom surface of the insulating substrate, and only a signal of a specific frequency within the insulating substrate. comprising a filter circuit for passing, a semiconductor device which is electromagnetically coupled with said first high frequency transmission line and said second high-frequency transmission line through said filter circuit, said Fi
The filter circuit is provided with a slot hole formed in the first ground layer.
Electromagnetically coupled to the first high-frequency transmission line via
Through a slot hole formed in the second ground layer.
The first and second high-frequency transmission lines are electromagnetically coupled to a high-frequency transmission line, the first and second high-frequency transmission lines are formed on a surface of a low-k dielectric layer, and the filter circuit is disposed between the high-k dielectric layers. It is characterized by having. [0010] According to the above configuration of the present invention, the IC element is electrically connected to the IC element inside the cavity formed by the insulating substrate and the lid on which a plurality of dielectric materials having different dielectric constants are laminated. The first transmission line for high frequency and the second transmission line for high frequency on the bottom surface of the insulating substrate are formed at positions facing each other via the filter circuit and are electromagnetically coupled to each other so that the transmission line is formed on the cover. Since coupling can be performed without passing through the side wall, there is no reflection loss and radiation loss due to conversion of the signal line from the microstrip line to the strip line at the side wall passing portion, and transmission loss due to through holes and via holes. Therefore, the transmission loss of the high-frequency signal can be suppressed, and the signal of the required frequency can be transmitted through. Further, the first and second high-frequency transmission lines are formed on the surface of a low dielectric constant dielectric layer, and the filter circuit is disposed between insulating layers made of a high dielectric constant dielectric material. The size of the filter circuit can be further reduced as compared with the case where the filter circuit is formed from the same dielectric material, and the transmission characteristic of a high-frequency signal can be improved. FIG. 1 shows an example of a high-frequency semiconductor device according to the present invention. According to FIG. 1, a high-frequency semiconductor device 1 has a cavity 4 formed by an insulating substrate 2 in which a plurality of dielectric layers are stacked and a lid 3.
Inside, a semiconductor element 5 such as an IC is mounted. As the dielectric material constituting the insulating substrate 2, glass ceramics, a ceramic metal composite material, a glass organic resin composite material, or the like is suitably used. On the other hand, the lid 3 is preferably made of a material capable of preventing the electromagnetic wave from the cavity from leaking to the outside.
Glass ceramics and the like can be used, but it is also possible to disperse a small amount of an electromagnetic wave absorbing substance such as carbon capable of absorbing electromagnetic waves in these materials, or to apply these electromagnetic wave absorbing substances to the surface of the lid. Further, in order to prevent leakage of electromagnetic waves, Au-S when sealing with the lid 3 is used.
It is desirable that the sealing portion of n, Au-Si or the like be connected to a through hole in the wall, a metallized layer outside the wall, or the like so as to have the same potential. According to the present invention, in the above-described semiconductor device, one type of high-frequency transmission line selected from a microstrip line, a strip line, and a coplanar line with ground is used as a line for transmitting a signal to the semiconductor element 5. Are formed on the surface of the insulating substrate in the insulating substrate in the cavity 4. According to the semiconductor device of FIG. 1, the transmission line is formed as a microstrip line. According to FIG. 1, the insulating substrate is constituted by a plurality of dielectric layers. A strip line 6 is formed on the surface of the insulating substrate 2 in the cavity 4, and a strip line 7 is formed on the bottom surface of the insulating substrate 2. Further, a filter circuit 8 is formed in the insulating substrate 2. The end of the strip line 6 is opposed to the end of the filter circuit 8 with a slot hole 10 formed in the ground layer 9 made of a conductor layer interposed therebetween. Be combined. On the other hand, the end of the strip line 7 is opposed to the end of the filter circuit 8 with a slot hole 12 formed in the ground layer 11 made of a conductor layer interposed therebetween. Be combined. The strip line 6 forms the microstrip line 13 together with the ground layer 9, and the strip line 7 forms the microstrip line 1 together with the ground layer 11.
4 is formed. As is apparent from the perspective view of FIG. 2, the strip line 6 formed through the slot 10 and the end of the filter circuit 8 sandwich the slot 10 formed in the ground layer 9. It is preferable that the ends of the respective lines are formed so as to overlap each other at a length corresponding to about 波長 wavelength of a required transmission signal frequency in a plane.
Is a rectangular hole having a long side and a short side, and the shape of the hole can specify the used frequency and the bandwidth of the frequency. Therefore, the long side of the slot hole is desirably set to a length corresponding to 1 / wavelength of the transmission signal frequency, and the short side of the slot hole is set to 1 / of the length corresponding to 1 / wavelength.
When set to a length corresponding to 0 wavelength, the bandwidth is 3 GHz to 20 GHz.
GHz can be controlled. In order to further improve the signal transmission characteristics, it is desirable to reduce the characteristic impedance of the slot hole. Therefore, it is particularly desirable that the short side of the slot hole is not more than 1/10 wavelength equivalent length. In the semiconductor device of FIG. 1, as shown in FIG. 3, a filter circuit 8 includes conductor paths 15 of the same shape having a length corresponding to a half wavelength of the transmission signal frequency arranged at equal intervals in multiple stages on the same plane. It is formed by the arranged planar strip resonance lines. The strip resonance line is formed with an earth band 16 around the filter circuit 8 so that electromagnetic waves do not leak around the strip resonance line, and the earth band 16 is electrically connected to the earth layers 9 and 11 via holes 17. It is connected. The structure of the filter circuit 8 is as follows.
The conductor paths 18 are not limited to those formed on the same plane as shown in FIG. 1, and may be formed in multiple stages on a plurality of planes as shown in FIG. 4, for example. In this case, in coupling with the high-frequency transmission lines 6 and 7 through the slot hole 10 or the slot hole 12 at the end of the conductor path 18, the distance X 1 between the conductor path 18 A and the ground layer 9 is set to be equal to the ground layer 11. by narrower than the interval X 2, as compared to FIG. 1 and the interval X 1 and spacing X 2 are the same, is more efficient electromagnetically coupling the conductor 18A and the transmission line 6, the specific frequency of the signal Can be improved. Further, according to FIG.
The relationship between 8B and the transmission line 7 is the same as above. Further, according to the high frequency semiconductor device of the present invention, the dielectric layers 2A and 2C on which the high frequency transmission lines 6 and 7 are formed are made of a dielectric material having a low dielectric constant for the purpose of improving high frequency transmission characteristics. The filter circuit 8 is made smaller from a semiconductor material by forming the dielectric layer 2B on which the filter circuit 8 is disposed from a dielectric material having a higher dielectric constant than the dielectric layers 2A and 2C. It can be stored in the device. In this case, the dielectric layers 2A, 2C
May be the same dielectric material. Specifically, the dielectric constant is 7 or less, particularly 6 or less, and the dielectric layer 2B desirably has a dielectric constant of 9 or more, particularly 12 or more. When the semiconductor device 1 is mounted on an external circuit board (not shown), a connection terminal is formed on a part of the strip line 7 formed on the bottom surface, and the connection terminal is formed through the connection terminal. It is common to connect to an external electric circuit board by soldering. However, in this method, there is a problem that impedance mismatch occurs at a connection terminal portion and reflection loss easily occurs. Therefore, it is desirable that a part of the strip line 7 formed on the bottom surface of the semiconductor device 1 be directly connected to the conductor circuit on the surface of the external circuit board by using solder or the like.
As still another connection method to the external circuit board, since impedance mismatch may occur even at the solder connection part, the strip line 7 and the transmission line on the external circuit board are mounted by overlapping and contacting each other, It is desirable to fix the solder at a portion other than the line. The IC element 5 can be connected without any transmission loss by being directly mounted on the strip line 6 by means of solder, gold bumps or the like, but the connection between the strip line 6 and the IC element 5 can be achieved. The method is not limited to this. For example, connection is made by gold ribbon or several wire bonding, or C
The connection can also be made by a conductor plate or the like on which a conductor such as u is formed. In the high-frequency semiconductor device of FIG. 1 of the present invention, the dielectric layers 2A and 2C have a dielectric constant of 5.6 and a dielectric loss of 1
The dielectric layer 2B is made of a dielectric material of 5.0 × 10 −4 (measuring frequency 13.2 GHz) made of glass ceramics, and has a dielectric constant of 14.6 and a dielectric loss of 3.5 × 10 −4 (measuring frequency 9 (2 GHz) made of a dielectric material made of glass ceramics, and a semiconductor device was manufactured using copper as a conductor for each line. For comparison, a semiconductor device was manufactured using only a dielectric material having a dielectric constant of 5.6 and a dielectric loss of 15.0 × 10 −4 (measuring frequency 13.2 GHz). Transmission characteristics at the input / output unit of the semiconductor device were measured by a network analyzer. 5 (a) and 5 (b) show the results.
According to the results of FIG. 5, it is understood that the characteristics of S21 are improved. When the filter circuit 8 has the structure shown in FIG. 4, the dielectric layers 2A and 2C and the dielectric layer 2B are composed of two kinds of dielectric layers in the same manner as described above. the dielectric layer thickness X 1 of the ground layer 9 side of the conductor paths 18A as 200 [mu] m of, 200 [mu] m the dielectric layer thickness X 2 of the ground layer 11 side, 250 [mu] m,
FIG. 6 shows the change of the transmission characteristics at the time of changing to 300 μm and 400 μm. According to the results of FIG. 6, the transmission characteristics are improved as the thickness X 2 of the dielectric layer on the ground layer 11 side is increased, and it is particularly preferable that X 2 / X 1 is 1.5 or more, especially 2 or more. Understand. As described above in detail, according to the high frequency semiconductor device of the present invention, the dielectric layer has a filter circuit,
In a semiconductor device in which this filter circuit is electromagnetically coupled with a high-frequency transmission line formed on the front and back surfaces of the insulating substrate, the dielectric layer of the filter circuit forming portion has a higher dielectric constant than other dielectric layers, The size of the filter circuit itself can be reduced, and the transmission characteristics can be improved. Thus, not only can a signal of a specific frequency be input / output, the size of the semiconductor device can be reduced, and excellent filter characteristics can be realized.

【図面の簡単な説明】 【図1】本発明の高周波用半導体装置の一例を示す概略
配置図である。 【図2】図1の高周波用半導体装置における電磁結合の
構造を説明するための斜視図である。 【図3】図1の高周波用半導体装置におけるフィルター
回路の構造を説明するための概略図である。 【図4】フィルター回路の他の構造を説明するための概
略図である。 【図5】図1の半導体装置における伝送特性を示す図で
あり、(a)は本発明、(b)は比較例である。 【図6】図4におけるフィルター回路におけるX1 、X
2 を変化させた時の透過特性を示す図である。 【図7】従来の高周波用半導体装置の構造を説明するた
めの概略配置図である。 【符号の説明】 1 高周波用半導体装置 2 絶縁基板 2A,2B,2C 誘電体層 3 蓋体 4 キャビティ 5 半導体素子 6,7 ストリップ線路 8 フィルター回路 9,11 接地層 10,12 スロット孔 13,14 マイクロストリップ線路 15,18,18A,18B 導体路 16 アース帯 17 ビアホール
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic layout diagram showing an example of a high-frequency semiconductor device according to the present invention. FIG. 2 is a perspective view for explaining a structure of electromagnetic coupling in the high-frequency semiconductor device of FIG. 1; FIG. 3 is a schematic diagram for explaining a structure of a filter circuit in the high-frequency semiconductor device of FIG. 1; FIG. 4 is a schematic diagram for explaining another structure of the filter circuit. 5A and 5B are diagrams showing transmission characteristics of the semiconductor device of FIG. 1, wherein FIG. 5A is the present invention and FIG. 5B is a comparative example. FIG. 6 shows X 1 , X in the filter circuit in FIG.
FIG. 6 is a diagram showing transmission characteristics when 2 is changed. FIG. 7 is a schematic layout diagram for explaining the structure of a conventional high-frequency semiconductor device. DESCRIPTION OF SYMBOLS 1 High frequency semiconductor device 2 Insulating substrates 2A, 2B, 2C Dielectric layer 3 Lid 4 Cavity 5 Semiconductor element 6, 7 Strip line 8 Filter circuit 9, 11 Ground layer 10, 12 Slot hole 13, 14 Microstrip line 15, 18, 18A, 18B Conductor path 16 Earth band 17 Via hole

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 23/12 - 23/15 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01L 23/12-23/15

Claims (1)

(57)【特許請求の範囲】 【請求項1】複数の誘電体層を積層してなる絶縁基板
と、蓋体により形成されるキャビティ内部に半導体素子
が搭載され、前記キャビティ内部の前記絶縁基板の表面
に、前記半導体素子と電気的に接続された第1の高周波
用伝送線路と、前記絶縁基板の底面に形成された第2の
高周波用伝送線路と、絶縁基板内に特定周波数の信号の
みを通過させるためのフィルター回路を備え、前記第1
の高周波用伝送線路と前記第2の高周波伝送線路とが前
記フィルター回路を介して電磁結合された半導体装置で
あって、前記フィルター回路は、第1の接地層に形成さ
れたスロット孔を介して前記第1の高周波用伝送線路と
電磁結合され、且つ第2の接地層に形成されたスロット
孔を介して第2の高周波用伝送線路と電磁結合されてお
り、前記第1および第2の高周波用伝送線路は、低誘電
率誘電体層表面に形成され、前記フィルター回路は、高
誘電率誘電体層間に配設されたことを特徴とする高周波
用半導体装置。
(57) Claims 1. An insulating substrate formed by laminating a plurality of dielectric layers, and a semiconductor element mounted in a cavity formed by a lid, wherein the insulating substrate in the cavity is provided. A first high-frequency transmission line electrically connected to the semiconductor element, a second high-frequency transmission line formed on the bottom surface of the insulating substrate, and only a signal of a specific frequency within the insulating substrate. A filter circuit for passing the first
A high-frequency transmission line and the second high-frequency transmission line are electromagnetically coupled via the filter circuit , wherein the filter circuit is formed on a first ground layer.
And the first high-frequency transmission line through the slotted hole.
Slot electromagnetically coupled and formed in the second ground layer
Electromagnetically coupled to the second high-frequency transmission line through the hole.
Ri, said first and second high-frequency transmission line is formed in the low k dielectric layer surface, wherein the filter circuit, high frequency semiconductor, characterized in that disposed in the high-k dielectric layers apparatus.
JP16953496A 1995-12-28 1996-06-28 High frequency semiconductor device Expired - Fee Related JP3398282B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP16953496A JP3398282B2 (en) 1996-06-28 1996-06-28 High frequency semiconductor device
US08/884,223 US5952709A (en) 1995-12-28 1997-06-27 High-frequency semiconductor device and mounted structure thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16953496A JP3398282B2 (en) 1996-06-28 1996-06-28 High frequency semiconductor device

Publications (2)

Publication Number Publication Date
JPH1022415A JPH1022415A (en) 1998-01-23
JP3398282B2 true JP3398282B2 (en) 2003-04-21

Family

ID=15888285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16953496A Expired - Fee Related JP3398282B2 (en) 1995-12-28 1996-06-28 High frequency semiconductor device

Country Status (1)

Country Link
JP (1) JP3398282B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11150404A (en) * 1997-11-17 1999-06-02 Nec Corp Semiconductor mounting parts and mounting method therefor
JP3704440B2 (en) * 1999-04-28 2005-10-12 京セラ株式会社 High frequency wiring board connection structure
JP2000340749A (en) * 1999-05-27 2000-12-08 Tdk Corp High-frequency ic component and manufacture thereof
JP2004063664A (en) 2002-07-26 2004-02-26 Murata Mfg Co Ltd Multilayer ceramic substrate with cavity
KR101055561B1 (en) 2009-07-29 2011-08-08 삼성전기주식회사 Printed Circuit Board with Cavity and Manufacturing Method Thereof
JP6515558B2 (en) * 2015-02-04 2019-05-22 富士通株式会社 Multilayer waveguide, wireless communication module, and wireless communication system

Also Published As

Publication number Publication date
JPH1022415A (en) 1998-01-23

Similar Documents

Publication Publication Date Title
US7498907B2 (en) Transmission line substrate and semiconductor package
US6307450B2 (en) Millimeter wave module and radio apparatus
US6794961B2 (en) High frequency circuit module
JP3457802B2 (en) High frequency semiconductor device
JPH10303640A (en) Antenna system
JPH08139504A (en) Waveguide and plane line converter
US6778041B2 (en) Millimeter wave module and radio apparatus
JP3537626B2 (en) High frequency package
JP3398282B2 (en) High frequency semiconductor device
US6549105B2 (en) Millimeter wave module and radio apparatus
JP3217677B2 (en) High frequency semiconductor device
JP3305589B2 (en) Mounting structure of high frequency semiconductor device
JP3556470B2 (en) High frequency module
JP3704440B2 (en) High frequency wiring board connection structure
JP7077137B2 (en) Transmission lines and connectors
JP3071761B2 (en) Mounting structure of high frequency semiconductor device
JP3181036B2 (en) Mounting structure of high frequency package
JP3610238B2 (en) High frequency package
JP2004297465A (en) Package for high frequency
JP3112253B2 (en) High frequency semiconductor device
JP3145670B2 (en) Mounting structure of high frequency semiconductor package
JPH06232608A (en) Composite microwave circuit module
ISHITSUKA et al. A new multilayer ceramic-frame package for high-frequency mmic modules
JP4162819B2 (en) High frequency circuit equipment
JP2001189405A (en) High-frequency input/output terminal and package housing high-frequency semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100214

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100214

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees