JP3395952B2 - Voltage detector for assembled batteries for electric vehicles - Google Patents

Voltage detector for assembled batteries for electric vehicles

Info

Publication number
JP3395952B2
JP3395952B2 JP32452997A JP32452997A JP3395952B2 JP 3395952 B2 JP3395952 B2 JP 3395952B2 JP 32452997 A JP32452997 A JP 32452997A JP 32452997 A JP32452997 A JP 32452997A JP 3395952 B2 JP3395952 B2 JP 3395952B2
Authority
JP
Japan
Prior art keywords
voltage
battery
module
voltage detection
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32452997A
Other languages
Japanese (ja)
Other versions
JPH11160367A (en
Inventor
工 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP32452997A priority Critical patent/JP3395952B2/en
Priority to US09/195,555 priority patent/US6313637B1/en
Publication of JPH11160367A publication Critical patent/JPH11160367A/en
Application granted granted Critical
Publication of JP3395952B2 publication Critical patent/JP3395952B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Battery Mounting, Suspending (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Dc-Dc Converters (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、組み電池の電圧検
出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an assembled battery voltage detecting device.

【0002】[0002]

【従来の技術】特開平8−140204号公報は、組み
電池を構成する複数の電池モジュ−ルのモジュ−ル電圧
を個別に検出するモジュ−ル電圧検出回路部の出力電圧
をフォトカプラ素子を通じて低圧の信号処理回路部に送
信する組み電池の電圧検出装置を提案している。
2. Description of the Related Art Japanese Unexamined Patent Publication No. 8-140204 discloses an output voltage of a module voltage detection circuit section for individually detecting module voltages of a plurality of battery modules constituting an assembled battery through a photo coupler element. A voltage detector for an assembled battery that transmits to a low-voltage signal processing circuit unit is proposed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述し
た従来の組み電池の電圧検出装置では、各モジュ−ル電
圧検出回路部は、それぞれの電池モジュ−ルから個別に
回路作動用電力を個別に給電される個別給電方式か、又
は、組み電池全体から共通して回路作動用電力を給電さ
れる総電圧給電方式のどちらかを採用することになる
が、電気自動車の走行電力蓄電用の主バッテリに用いる
場合、この主バッテリは走行及び充電の状況に応じて電
圧が大きく変動するので、どちらの方式を採用するにし
ても低容量時における作動信頼性の低下が懸念された。
However, in the above-mentioned conventional voltage detecting device for the assembled battery, each module voltage detecting circuit section individually supplies the circuit operating power from each battery module. Either the individual power supply method that is used or the total voltage power supply method that is commonly supplied with circuit operating power from the entire assembled battery is adopted. When used, this main battery has a large voltage fluctuation depending on the running and charging conditions, and therefore, whichever method is adopted, there was a concern that the operation reliability would be reduced when the capacity is low.

【0004】また、各電池モジュ−ルの容量の正確な測
定にはその充放電電流が0の時の端子電圧すなわち開放
端子電圧の検出が有効であるが、電池モジュ−ル自身が
モジュ−ル電圧検出回路部に回路作動用電力を給電する
前者の給電方式の場合に放電電流が0とならないので正
確な開放端子電圧を計測することができず、開放端子電
圧の高精度の計測が容易ではないという不具合があっ
た。
For accurate measurement of the capacity of each battery module, it is effective to detect the terminal voltage when the charge / discharge current is 0, that is, the open terminal voltage. However, the battery module itself is a module. In the former power supply method of supplying power for circuit operation to the voltage detection circuit section, the discharge current does not become 0, so the open circuit voltage cannot be measured accurately, and it is not easy to measure the open circuit voltage with high accuracy. There was a problem that it was not there.

【0005】更に、後者の給電方式の場合には、それぞ
れのモジュ−ル電圧検出回路部へその回路作動用電力を
主バッテリすなわち組み電池全体から給電するので電力
消費が大きいという問題があり、前者の場合には、各モ
ジュ−ル電圧検出回路部の電力消費のばらつきが各電池
モジュ−ルの容量ばらつきと、それによる電池の劣化の
不平等を生じさせるという問題があった。
Further, in the case of the latter power feeding system, there is a problem that the power consumption is large because the circuit operating power is supplied to each module voltage detection circuit section from the main battery, that is, the whole assembled battery. In this case, there is a problem in that variations in the power consumption of the module voltage detection circuit units cause variations in the capacities of the battery modules and inequalities in the deterioration of the batteries due to the variations.

【0006】本発明は上記問題点に鑑みなされたもので
あり、開放モジュ−ル電圧がより高精度に検出でき、高
圧の組み電池の無用な寿命短縮を回避でき、更に、走行
電力蓄電状態の大きな変動にもかかわらずモジュ−ル電
圧の安定な検出を行うことができる電気自動車用組み電
池の電圧検出装置を提供することをその解決すべき課題
としている。
The present invention has been made in view of the above problems, and it is possible to detect an open module voltage with higher accuracy, avoid unnecessary shortening of the life of a high-voltage assembled battery, and further, to reduce running power storage state. It is an object to be solved to provide a voltage detecting device for an assembled battery for an electric vehicle, which can stably detect a module voltage despite a large fluctuation.

【0007】[0007]

【課題を解決するための手段】請求項1に記載した本発
明の組み電池の電圧検出装置によれば、たとえば300
Vといった高圧の走行電力蓄電用の主バッテリは多数の
電池モジュ−ルに分割され、各電池モジュ−ルのモジュ
−ル電圧はモジュ−ル電圧検出回路部で検出されて、信
号処理回路部に伝送される。
According to the voltage detecting device for an assembled battery of the present invention described in claim 1, for example, 300
The main battery for storing high-voltage running power such as V is divided into a large number of battery modules, and the module voltage of each battery module is detected by the module voltage detection circuit section, and then the signal processing circuit section. Is transmitted.

【0008】本構成では特に、それぞれ異なるとともに
高電位を処理するモジュ−ル電圧検出回路部の回路作動
用電力を主バッテリではなく補機バッテリから入出力絶
縁用のトランスを内蔵するDC−DCコンバータを介し
給電することをその特徴としている。このようにすれ
ば、主バッテリと補機バッテリとの間の電気絶縁分離を
確保しつつ、モジュ−ル電圧をより高精度に検出でき、
高圧の組み電池の無用な寿命短縮を回避でき、更に、走
行電力蓄電状態の大きな変動にもかかわらずモジュ−ル
電圧の安定な検出を行うことができる。
In this configuration, in particular, the circuit operating electric power of the module voltage detecting circuit section which processes different and high potentials is not input / output from the auxiliary battery but the main battery.
Via a DC-DC converter with a built-in edge transformer
The feature is that the power is supplied by the power supply. This will provide electrical isolation between the main battery and the auxiliary battery.
While ensuring, Modulation - can be detected Le voltage more accurately,
Unnecessary shortening of the life of the high-voltage assembled battery can be avoided, and moreover, stable detection of the module voltage can be performed in spite of a large change in the running power storage state.

【0009】また、モジュ−ル電圧検出のために、この
モジュ−ル電圧を発生する各電池モジュ−ルの蓄電量を
消耗させることがないので、高精度のモジュ−ル電圧、
総電圧及びそれに基づく容量推定が可能となり、更にモ
ジュ−ル電圧検出回路部の回路作動用電力分は電池モジ
ュ−ルの放電電流を減らせるので、特に負荷電流が0か
または小さい場合において、正確な開放モジュ−ル電圧
を計測することができ、それにより高精度の容量推定が
可能となる。ちなみに、開放端子電圧と容量とは密接な
相関関係をもつ。また、組み電池の蓄電量が大きく低下
する長距離走行後でも組み電池から給電されていないの
で、その電圧低下又は容量不足の影響を受けることがな
く、特に高精度のモジュ−ル電圧検出を必要とするこの
組み電池の蓄電量低下時においても安定にモジュ−ル電
圧検出を行うことができる。
Further, because the module voltage is not consumed, the amount of electricity stored in each battery module that generates this module voltage is not consumed.
It becomes possible to estimate the total voltage and the capacity based on the total voltage, and the circuit operating power of the module voltage detection circuit section can reduce the discharge current of the battery module, so that it is accurate especially when the load current is 0 or small. The open module voltage can be measured, which enables highly accurate capacity estimation. Incidentally, there is a close correlation between the open terminal voltage and the capacitance. In addition, since the battery pack is not supplied with power even after long-distance running where the amount of electricity stored in the battery pack significantly decreases, it is not affected by the voltage drop or capacity shortage, and particularly high-precision module voltage detection is required. Thus, the module voltage can be stably detected even when the storage amount of the battery pack is reduced.

【0010】また更に、モジュ−ル電圧検出回路部の回
路作動用電力のばらつきにより各電池モジュ−ルの消耗
の程度がばらついて、電池モジュ−ルの劣化が不平等と
なることもない。請求項2記載の構成によれば請求項1
記載の電気自動車用組み電池の電圧検出装置において更
に、前記モジュ−ル電圧検出回路部は、互いに隣接する
複数の前記電池モジュールのモジュール電圧をそれぞれ
検出する複数の差動型電圧検出回路をそれぞれ含む電圧
検出ブロックを複数有し、前記入出力絶縁型のDC−D
Cコンバ−タは、前記各電圧検出ブロックごとに個別に
設けられ、前記各入出力絶縁型DC−DCコンバ−タが
出力する前記電源電圧は、互いに異なる前記電圧検出ブ
ロックに属する複数の前記電池モジュ−ルの正極又は負
極の電位を個別に基準として形成されていることを特徴
としている。
Furthermore, the degree of consumption of each battery module varies due to the variation in the circuit operating power of the module voltage detecting circuit unit, and the deterioration of the battery modules does not become unequal. According to the configuration of claim 2, claim 1
In the voltage detection device for an assembled battery for an electric vehicle described above, the module voltage detection circuit unit further includes a plurality of differential voltage detection circuits that respectively detect module voltages of the plurality of battery modules adjacent to each other. The input / output isolated DC-D having a plurality of voltage detection blocks
The C converter is individually provided for each of the voltage detection blocks, and the power source voltages output by the input / output isolated DC-DC converters are different from each other in the plurality of batteries. It is characterized in that it is formed with the potential of the positive electrode or the negative electrode of the module as a reference individually .

【0011】このようにすれば、組み電池の電池モジュ
−ルが、それぞれ異なる電位と非常な高圧をもつにもか
かわらず、回路構成を一層簡素化することができる。請
求項3記載の構成によれば請求項2記載の電気自動車用
組み電池の電圧検出装置において更に、前記各入出力絶
縁型DC−DCコンバ−タは、一個の一次巻線と複数の
二次巻線を共通のコアに巻装して構成される共通のトラ
ンスと、前記補機バッテリから給電されて前記一次巻線
に交流電圧を印加する共通の発振回路とを有することを
特徴としているので、本発明の補機バッテリ電源電力給
電型の主バッテリ電圧検出回路装置の回路構成を簡素化
することができる。好適な実施態様において、各電圧検
出ブロックの出力は信号処理回路部へフォトカプラ素子
を通じて出力される。このようにすれば、各電圧検出ブ
ロックの出力電圧が高圧かつ互いに異なるDC電位をも
つにもかかわらず、各信号電圧のDCレベル(基準電
位)の共通化と、後段の信号処理回路部の低圧駆動とを
実現することができる。
By doing so, the circuit configuration can be further simplified even though the battery modules of the assembled battery have different potentials and extremely high voltages. According to the configuration of claim 3, in the voltage detecting device for an assembled battery for an electric vehicle according to claim 2, the input / output isolation is further provided.
Edge-type DC-DC converters have one primary winding and multiple
A common transformer constructed by winding the secondary winding around a common core.
And the primary winding powered by the auxiliary battery
Having a common oscillating circuit that applies alternating voltage to
As a feature, the auxiliary equipment battery power supply of the present invention
Simplified circuit configuration of electric main battery voltage detection circuit device
can do. In a preferred embodiment, the output of each voltage detection block is output to the signal processing circuit section through a photo coupler element . If so this, the output voltage of the voltage detection block despite having a high pressure and different DC potentials, the common and, subsequent signal processing circuit of the DC level of each signal voltage (reference potential) Low-voltage driving can be realized.

【0012】[0012]

【発明の実施の形態】以下、本発明の好適な態様を以下
の実施例により詳細に説明する。ただし、本発明は下記
の実施例の構成に限定されるものではなく、置換可能な
公知回路を用いて構成できることは当然である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the following examples. However, the present invention is not limited to the configurations of the following embodiments, and it goes without saying that known circuits that can be replaced can be used.

【0013】[0013]

【実施例】本発明の電気自動車用組み電池の電圧検出装
置の一実施例を図1、図2を参照して説明する。図1
は、組み電池19の各モジュ−ル電圧をデジタル信号に
変換する電気自動車用組み電池の電圧検出装置を示すブ
ロック回路図であり、電気自動車の走行モ−タ−給電用
の組み電池19、差動型電圧検出回路201〜220、
A/D変換回路5〜8が図示されている。図2は図1の
この電圧検出装置の信号の流れを示すブロック回路図で
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a voltage detecting device for an assembled battery for an electric vehicle according to the present invention will be described with reference to FIGS. Figure 1
FIG. 4 is a block circuit diagram showing a voltage detection device of an assembled battery for an electric vehicle that converts each module voltage of the assembled battery 19 into a digital signal. Dynamic voltage detection circuits 201 to 220,
A / D conversion circuits 5-8 are shown. FIG. 2 is a block circuit diagram showing a signal flow of the voltage detecting device of FIG.

【0014】1は電池の充放電を制御するマイコン、2
はデマルチプレクサからなるクロック信号分配用のセレ
クタ回路(以下、クロック信号セレクタ回路ともい
う)、3はデマルチプレクサからなる制御信号分配用の
セレクタ回路(以下、制御信号セレクタ回路ともい
う)、4はマルチプレクサからなるデジタル信号選択用
のセレクタ回路(以下、デ−タセレクタ回路ともい
う)、5〜10はA/D変換回路、201〜220及び
13は差動型電圧検出回路、14はアナログ増幅回路、
15は電流センサ、101〜120は組み電池19の各
電池モジュ−ル(単にモジュ−ルともいう)である。た
だし、図2において、電池モジュ−ル106〜120、
差動型電圧検出回路206〜220、A/D変換回路6
〜8は図示省略されている。
Reference numeral 1 is a microcomputer for controlling charge / discharge of a battery, 2
Is a selector circuit for distributing a clock signal (hereinafter also referred to as a clock signal selector circuit) including a demultiplexer, 3 is a selector circuit for distributing a control signal including a demultiplexer (hereinafter also referred to as a control signal selector circuit), and 4 is a multiplexer A selector circuit for selecting a digital signal (hereinafter also referred to as a data selector circuit), 5 to 10 are A / D conversion circuits, 201 to 220 and 13 are differential voltage detection circuits, 14 is an analog amplification circuit,
Reference numeral 15 is a current sensor, and 101 to 120 are battery modules (also simply referred to as modules) of the assembled battery 19. However, in FIG. 2, the battery modules 106 to 120,
Differential type voltage detection circuits 206 to 220, A / D conversion circuit 6
8 are omitted in the figure.

【0015】また、図1において、301は電気自動車
の制御装置及び電子装置へ給電するための補機バッテ
リ、300は補機バッテリ301から給電される直流電
力を必要なDC電位レベルと必要な電圧とをもつ直流電
源電圧に変換する電圧検出ブロック給電用電源回路(D
CーDCコンバータ)、20a、20b、20c、20
dは、A/D変換回路5〜8の出力を電気絶縁しつつマ
イコン1に伝送するフォトカプラ素子である。同様に、
A/D変換回路9、10の出力も図示しないフォトカプ
ラ素子によりマイコン1に伝送される。
In FIG. 1, reference numeral 301 denotes an auxiliary battery for supplying electric power to a control device and an electronic device of an electric vehicle, and 300 denotes DC power supplied from the auxiliary battery 301, a required DC potential level and a required voltage. Power supply circuit for voltage detection block power supply (D
C-DC converter), 20a, 20b, 20c, 20
Reference numeral d is a photocoupler element that transmits the outputs of the A / D conversion circuits 5 to 8 to the microcomputer 1 while electrically insulating the outputs. Similarly,
The outputs of the A / D conversion circuits 9 and 10 are also transmitted to the microcomputer 1 by a photo coupler element (not shown).

【0016】電池モジュ−ル101〜120はそれぞれ
12個の単電池を縦続接続してなる。電池モジュ−ル1
01は最高位のモジュ−ル電圧をもち、電池モジュ−ル
120は最低位のモジュ−ル電圧をもつ。20は各セレ
クタ回路2〜4と各A/D変換回路5〜10を接続する
シリアル信号線群であり、この実施例では、各信号線は
マイコン1の保護のために上述したフォトカプラ素子2
0a、20b、20c、20dなどを有している。
Each of the battery modules 101 to 120 is made up of twelve unit cells connected in series. Battery module 1
01 has the highest module voltage and battery module 120 has the lowest module voltage. Reference numeral 20 denotes a serial signal line group that connects each selector circuit 2 to 4 and each A / D conversion circuit 5 to 10. In this embodiment, each signal line is a photocoupler element 2 for protecting the microcomputer 1.
0a, 20b, 20c, 20d and the like.

【0017】A/D変換回路5〜10はそれぞれ5チャ
ンネル入力の切り替え入力型のA/D変換回路であり、
入力される切り替え信号により、各A/D変換回路5〜
10は同期してチャンネル切り替えされる。図1からわ
かるように、電池モジュ−ル101のモジュ−ル電圧は
差動型電圧検出回路201で所定の基準電位1に対する
信号電圧に変換されてからA/D変換回路5でA/D変
換される。同様に、電池モジュ−ル102のモジュ−ル
電圧は差動型電圧検出回路202で所定の基準電位1に
対する信号電圧に変換されてからA/D変換回路5でA
/D変換され、電池モジュ−ル103のモジュ−ル電圧
は差動型電圧検出回路203で所定の基準電位1に対す
る信号電圧に変換されてからA/D変換回路5でA/D
変換され、電池モジュ−ル104のモジュ−ル電圧は差
動型電圧検出回路203で所定の基準電位1に対する信
号電圧に変換されてからA/D変換回路5でA/D変換
され、電池モジュ−ル105のモジュ−ル電圧は差動型
電圧検出回路205で所定の基準電位1に対する信号電
圧に変換されてからA/D変換回路5でA/D変換され
る。
The A / D conversion circuits 5 to 10 are switching input type A / D conversion circuits each having 5 channel inputs.
Depending on the input switching signal, each A / D conversion circuit 5
Channel 10 is switched in synchronization. As can be seen from FIG. 1, the module voltage of the battery module 101 is converted into a signal voltage with respect to a predetermined reference potential 1 by the differential type voltage detection circuit 201 and then A / D converted by the A / D conversion circuit 5. To be done. Similarly, the module voltage of the battery module 102 is converted into a signal voltage with respect to a predetermined reference potential 1 by the differential voltage detection circuit 202, and then A / D is converted by the A / D conversion circuit 5.
A / D conversion is performed, the module voltage of the battery module 103 is converted into a signal voltage for a predetermined reference potential 1 by the differential voltage detection circuit 203, and then the A / D conversion circuit 5 performs A / D conversion.
The converted module voltage of the battery module 104 is converted into a signal voltage with respect to a predetermined reference potential 1 by the differential type voltage detection circuit 203, and then A / D converted by the A / D conversion circuit 5, and the battery module The module voltage of the module 105 is converted into a signal voltage for a predetermined reference potential 1 by the differential voltage detection circuit 205, and then A / D converted by the A / D conversion circuit 5.

【0018】同様に、電池モジュ−ル106〜110の
モジュ−ル電圧は差動型電圧検出回路206〜210を
通じてA/D変換回路6に入力され、電池モジュ−ル1
11〜115のモジュ−ル電圧は差動型電圧検出回路2
11〜215を通じてA/D変換回路7に入力され、電
池モジュ−ル116〜120のモジュ−ル電圧は差動型
電圧検出回路216〜220を通じてA/D変換回路8
に入力される。
Similarly, the module voltages of the battery modules 106 to 110 are input to the A / D conversion circuit 6 through the differential type voltage detection circuits 206 to 210, and the battery module 1
The module voltages 11 to 115 are the differential type voltage detection circuit 2
11 to 215 are input to the A / D conversion circuit 7, and the module voltages of the battery modules 116 to 120 are supplied to the A / D conversion circuit 8 via the differential type voltage detection circuits 216 to 220.
Entered in.

【0019】また、組み電池19の総電圧は差動型電圧
検出回路13で所定の共通接地電位に対する信号電圧に
変換されからA/D変換回路9でA/D変換され、組み
電池19の電流は増幅回路14を通じてA/D変換回路
19でA/D変換され、図示しないフォトカプラ素子を
通じてマイコン1に出力される。A/D変換回路5〜1
0の出力は、デ−タセレクタ回路4にて時間順次に選択
され、信号SINとしてマイコン1に読み込まれる。A
/D変換回路5〜10は同期動作シリアル出力型のA/
D変換回路であって、変換デ−タすなわちシリアルデジ
タル信号はデジタル信号確定後に入力するクロックパル
スに同期して出力される。
Further, the total voltage of the assembled battery 19 is converted into a signal voltage with respect to a predetermined common ground potential by the differential type voltage detection circuit 13 and then A / D converted by the A / D conversion circuit 9 to obtain the current of the assembled battery 19. Is A / D converted by the A / D conversion circuit 19 through the amplifier circuit 14 and output to the microcomputer 1 through a photo coupler element (not shown). A / D conversion circuit 5-1
The output of 0 is time-sequentially selected by the data selector circuit 4 and read into the microcomputer 1 as a signal SIN. A
A / D conversion circuits 5-10 are synchronous operation serial output type A /
In the D conversion circuit, the conversion data, that is, the serial digital signal is output in synchronization with the clock pulse input after the digital signal is determined.

【0020】更に説明すると、A/D変換回路5は、ア
ナログ信号が入力されるアナログ入力端子、シリアル信
号であるデジタル信号を出力するデ−タ出力端子、シリ
アル信号である制御命令が入力される制御命令入力端
子、及び、同期用のクロックパルスが入力されるクロッ
クパルス入力端子を有し、読み込み指令が制御命令入力
端子へ入力されると、クロックパルス入力端子へ入力さ
れるクロックパルスのエッジに同期してアナログ信号の
読み込みが行われ、その後、次のクロックパルスの入力
により8ビットのシリアルデジタル信号が出力される。
その他のA/D変換回路6〜10も同じ構造を有してい
る。
More specifically, the A / D conversion circuit 5 receives an analog input terminal to which an analog signal is input, a data output terminal to output a digital signal which is a serial signal, and a control command which is a serial signal. It has a control command input terminal and a clock pulse input terminal to which a clock pulse for synchronization is input. When a read command is input to the control command input terminal, the edge of the clock pulse input to the clock pulse input terminal The analog signal is read in synchronism, and then an 8-bit serial digital signal is output when the next clock pulse is input.
The other A / D conversion circuits 6 to 10 also have the same structure.

【0021】この組み電池の電圧検出装置の更に詳細な
動作を以下に説明する。マイコン1は、クロック信号セ
レクタ回路2へクロックパルスSCLK及びA/D変換
回路選択信号SELを出力し、制御信号セレクタ回路3
へ読み込み指令などの制御命令信号SOUT及びA/D
変換回路選択信号SELを出力し、デ−タセレクタ回路
4へA/D変換回路選択信号SELを出力し、デ−タセ
レクタ回路4からシリアルデジタル信号を受け取る。
A more detailed operation of the voltage detecting device for the assembled battery will be described below. The microcomputer 1 outputs the clock pulse SCLK and the A / D conversion circuit selection signal SEL to the clock signal selector circuit 2, and the control signal selector circuit 3
Control command signal SOUT and A / D such as read command
The conversion circuit selection signal SEL is output, the A / D conversion circuit selection signal SEL is output to the data selector circuit 4, and the serial digital signal is received from the data selector circuit 4.

【0022】(同時読み込み)マイコン1は、A/D変
換回路選択信号SELによりA/D変換回路5〜10の
全てを選択することをクロック信号セレクタ回路2及び
制御信号セレクタ回路3に通知し、これにより制御信号
セレクタ回路3は読み込み命令をA/D変換回路5〜1
0全てに送信し、クロック信号セレクタ回路2はクロッ
クパルスSCLKをA/D変換回路5〜10全てに送信
し、各A/D変換回路5〜10は読み込み命令入力直後
に入力するクロックパルスのエッジに同期してアナログ
信号の読み込みを行い、それを8ビットのデジタル信号
に変換して保持する。なお、この時、A/D変換回路5
〜10の全てを選択するA/D変換回路選択信号SEL
はデ−タセレクタ回路4に対してはデ−タセレクタ回路
4の内部において無効とされる。
(Simultaneous reading) The microcomputer 1 notifies the clock signal selector circuit 2 and the control signal selector circuit 3 that all of the A / D conversion circuits 5-10 are selected by the A / D conversion circuit selection signal SEL, As a result, the control signal selector circuit 3 sends the read instruction to the A / D conversion circuits 5-1.
0, the clock signal selector circuit 2 transmits the clock pulse SCLK to all A / D conversion circuits 5 to 10, and each A / D conversion circuit 5 to 10 inputs the edge of the clock pulse input immediately after the input of the read command. The analog signal is read in synchronism with, and it is converted into an 8-bit digital signal and held. At this time, the A / D conversion circuit 5
A / D conversion circuit selection signal SEL for selecting all of
Is invalidated in the data selector circuit 4 with respect to the data selector circuit 4.

【0023】(順次出力)次に、マイコン1は、A/D
変換回路選択信号SELによりA/D変換回路5を選択
することをセレクタ回路2〜4に通知し、これによりク
ロック信号セレクタ回路2はクロックパルスSCLKを
A/D変換回路5にだけ送信し、これによりA/D変換
回路5はクロックパルスSCLKのエッジに同期してシ
リアルデジタル信号をデ−タセレクタ回路4に出力し、
デ−タセレクタ回路4はA/D変換回路選択信号SEL
によりA/D変換回路5を選択しているので、このA/
D変換回路5からのシリアルデジタル信号はマイコン1
に送信される。
(Sequential output) Next, the microcomputer 1 executes A / D
The selector circuit 2 to 4 is informed that the A / D converter circuit 5 is selected by the converter circuit selection signal SEL, whereby the clock signal selector circuit 2 transmits the clock pulse SCLK only to the A / D converter circuit 5. As a result, the A / D conversion circuit 5 outputs a serial digital signal to the data selector circuit 4 in synchronization with the edge of the clock pulse SCLK,
The data selector circuit 4 uses the A / D conversion circuit selection signal SEL
Since the A / D conversion circuit 5 is selected by
The serial digital signal from the D conversion circuit 5 is the microcomputer 1
Sent to.

【0024】次に、マイコン1は、A/D変換回路選択
信号SELによりA/D変換回路6を選択することをセ
レクタ回路2〜4に通知し、その後は上記と同じ動作を
行ってA/D変換回路6のシリアルデジタル信号をマイ
コン1へ送信し、以下同様に、各A/D変換回路8〜1
0のシリアルデジタル信号がマイコン1へ送信される。
Next, the microcomputer 1 notifies the selector circuits 2 to 4 that the A / D conversion circuit 6 is selected by the A / D conversion circuit selection signal SEL, and thereafter performs the same operation as described above to perform A / D conversion. The serial digital signal of the D conversion circuit 6 is transmitted to the microcomputer 1, and thereafter, the A / D conversion circuits 8 to 1 are similarly processed.
A serial digital signal of 0 is transmitted to the microcomputer 1.

【0025】なお、上記一連の動作は入力切り替え型の
マルチ入力A/D変換回路5〜10の第1の入力チャン
ネルに対して実行されるが、その後、上記一連の動作
が、第2〜第5の各チャンネル入力に対して実施され
る。次に、組み電池19の各モジュ−ル電圧を検出する
差動型電圧検出回路201〜220について、図1を参
照して説明する。
The above series of operations is executed for the first input channel of the input switching type multi-input A / D conversion circuits 5-10. 5 for each channel input. Next, the differential voltage detection circuits 201 to 220 for detecting each module voltage of the assembled battery 19 will be described with reference to FIG.

【0026】この実施例では組み電池19を構成する合
計240個の単電池が互いに縦続接続される20個の電
池モジュ−ル101〜120に区分され、更に、電池モ
ジュ−ル101〜105は第1の電圧検出ブロックを構
成し、電池モジュ−ル106〜110は第2の電圧検出
ブロックを構成し、電池モジュ−ル111〜115は第
3の電圧検出ブロックを構成し、電池モジュ−ル116
〜120は第4の電圧検出ブロックを構成している。
In this embodiment, a total of 240 unit cells constituting the assembled battery 19 are divided into 20 battery modules 101 to 120 which are connected in series, and the battery modules 101 to 105 are the first. 1, the battery modules 106 to 110 constitute a second voltage detection block, the battery modules 111 to 115 constitute a third voltage detection block, and the battery module 116.
˜120 form a fourth voltage detection block.

【0027】第1の電圧検出ブロックは、第1の基準電
位である基準電位1をもち、第2の電圧検出ブロックは
第2の基準電位である基準電位2をもち、第3の電圧検
出ブロックは、第3の基準電位である基準電位3をも
ち、第4の電圧検出ブロックは第4の基準電位である基
準電位4を有している
The first voltage detection block has a reference potential 1 which is a first reference potential, the second voltage detection block has a reference potential 2 which is a second reference potential, and the third voltage detection block. Has a reference potential 3 which is a third reference potential, and the fourth voltage detection block has a reference potential 4 which is a fourth reference potential .

【0028】この実施例では、基準電位1は電池モジュ
−ル103の低位側端子電圧(電池モジュ−ル104の
高位側端子電圧)に設定され、以下同様に、各基準電位
2〜4は、各電圧検出ブロックにおける高電位側から3
番目の電池モジュ−ルの低位側端子電圧(低位側から2
番目の電池モジュ−ルの高位側端子電圧)に設定されて
いる。
In this embodiment, the reference potential 1 is set to the low-side terminal voltage of the battery module 103 (the high-side terminal voltage of the battery module 104). 3 from the high potential side in each voltage detection block
The low side terminal voltage of the second battery module (2 from the low side)
The high-side terminal voltage of the second battery module) is set.

【0029】すなわち、この実施例では、同一の電圧検
出ブロック内の各差動型電圧検出回路の基準電位(入力
側抵抗回路網の一端に印加される定電位)は等しくさ
れ、また、各電圧検出ブロックには異なる基準電位1〜
4が印加される。更に、各基準電位1〜4は、電圧検出
ブロック内の各電池モジュ−ルの中間電位(最高端子電
圧と最低端子電圧との中間の値にできるだけ近い値)に
設定され、更に、各基準電位1〜4として電池モジュ−
ルの端子電圧を用いている。
That is, in this embodiment, the reference potentials (constant potentials applied to one end of the input side resistance circuit network) of the differential type voltage detection circuits in the same voltage detection block are equalized, and the respective voltages are equal. Different reference potentials 1 to 1 for the detection block
4 is applied. Furthermore, the reference potentials 1 to 4 are set to intermediate potentials of the battery modules in the voltage detection block (values as close as possible to the intermediate value between the highest terminal voltage and the lowest terminal voltage). Battery module as 1-4
The terminal voltage is used.

【0030】図3に差動型電圧検出回路201の回路図
を示す。2011は入力抵抗r1、r2及び帰還抵抗r
f1をもつオペアンプであって、電池モジュ−ル101
の高電位側の端子電圧V1と基準電位1(ここでは電池
モジュ−ル103の低位側端子電圧(電池モジュ−ル1
04の高位側端子電圧に設定されている)との差(V1
−V4)を検出する。
FIG. 3 shows a circuit diagram of the differential type voltage detection circuit 201. 2011 is an input resistance r1, r2 and a feedback resistance r
An operational amplifier having f1, which is a battery module 101
Terminal voltage V1 on the high potential side and reference potential 1 (here, the terminal voltage V1 on the low potential side of the battery module 103 (the battery module 1
04 (set to the high-side terminal voltage) (V1
-V4) is detected.

【0031】同様に、2012は入力抵抗r3、r4及
び帰還抵抗rf2をもつオペアンプであって、電池モジ
ュ−ル101の低電位側の端子電圧V2と差(V1−V
4)との和から基準電位1(ここでは電池モジュ−ル1
03の低位側端子電圧(電池モジュ−ル104の高位側
端子電圧に設定されている)を減算することにより、差
V1−V2を検出する。
Similarly, 2012 is an operational amplifier having input resistors r3 and r4 and a feedback resistor rf2, which is a difference (V1-V) from the terminal voltage V2 on the low potential side of the battery module 101.
4) and the reference potential 1 (here, battery module 1
The difference V1-V2 is detected by subtracting the low side terminal voltage of 03 (set to the high side terminal voltage of the battery module 104).

【0032】オペアンプ2011、2012の正、負の
電源電圧は、オペアンプの正、負の入力端の電位が仮想
接地電位すなわち、この実施例では基準電位V4にほぼ
等しくなることから、正の電源電圧VHは基準電位V4
より所定電圧(ここでは7.5V)高く設定し、負の電
源電圧VLは基準電位V4より所定電圧(ここでは7.
5V)低く設定した電圧を形成すればよい。
The positive and negative power supply voltages of the operational amplifiers 2011 and 2012 are positive power supply voltages because the potentials of the positive and negative input terminals of the operational amplifiers are substantially equal to the virtual ground potential, that is, the reference potential V4 in this embodiment. VH is the reference potential V4
A predetermined voltage (here, 7.5 V) is set higher, and the negative power supply voltage VL is higher than the reference potential V4 by a predetermined voltage (here, 7.
5V) It is sufficient to form a voltage set low.

【0033】なお、基準電位Vはこの電圧検出ブロッ
クの最高電位V1と最低電位V6の中間電位であればよ
く、特別の電圧発生回路を用いて形成してもよい。本実
施例の回路装置の他の特徴を以下に説明する。まず、同
一の電圧検出ブロック内において同一の上記基準電位を
もつ全ての差動型電圧検出回路の出力電圧を同一の順次
切り替え型のA/D変換回路に入力するので、検出すべ
き各電池モジュ−ルの電圧が大幅に異なるにもかかわら
ずA/D変換回路を共用化を実現して回路構成の大幅な
簡素化を実現することができる。
The reference potential V 4 may be an intermediate potential between the highest potential V 1 and the lowest potential V 6 of this voltage detection block, and may be formed using a special voltage generating circuit. Other features of the circuit device of this embodiment will be described below. First, since the output voltages of all the differential voltage detection circuits having the same reference potential in the same voltage detection block are input to the same A / D conversion circuit of the sequential switching type, each battery module to be detected is detected. It is possible to realize the common use of the A / D conversion circuit and to greatly simplify the circuit configuration, although the voltage of the circuit is significantly different.

【0034】また、各A/D変換回路の出力信号は、所
定の低電源電圧で駆動されるマイコン1へフォトカプラ
素子(たとえば20a)を通じて出力されるので、前段
の電圧検出ブロックの動作電圧に合わせてそれぞれ電源
電圧が異なる各A/D変換回路の出力信号電圧のDC電
圧差を解消すると共に、高圧をカットして低電圧で作動
する単一のデジタル信号処理回路(通常はCPU)で信
号をデジタル処理することができる。
Further, the output signal of each A / D conversion circuit is output to the microcomputer 1 driven by a predetermined low power supply voltage through a photocoupler element (for example, 20a), so that the operating voltage of the voltage detection block in the preceding stage is set. In addition to eliminating the DC voltage difference of the output signal voltage of each A / D conversion circuit with a different power supply voltage, a single digital signal processing circuit (usually a CPU) that cuts high voltage and operates at low voltage Can be digitally processed.

【0035】上記各差動型電圧検出回路201〜22
0、A/D変換回路5〜10に印加される電源電圧(V
H、VL)を形成する電源電圧発生回路(DC−DCコ
ンバータ)300を図4を参照して説明する。301は
電気自動車の補機に給電する低圧(12V)の補機バッ
テリであり、そのDC電力は発振回路302で交流電力
に変換された4つの二次コイルをもつトランス303を
通じて4つの電圧検出ブロック給電用電源回路304〜
307に給電されている。すなわち、発振回路302、
トランス303及び電圧検出ブロック給電用電源回路3
04〜307が上記DC−DCコンバータ300を構成
している。
The differential voltage detection circuits 201 to 22 described above.
0, the power supply voltage (V
A power supply voltage generation circuit (DC-DC converter) 300 that forms H, VL) will be described with reference to FIG. Reference numeral 301 denotes a low-voltage (12V) auxiliary battery that supplies auxiliary power to an electric vehicle, and DC voltage thereof is converted into AC power by an oscillation circuit 302, and four voltage detection blocks are passed through a transformer 303 having four secondary coils. Power supply circuit 304 for power supply
Power is being supplied to 307. That is, the oscillation circuit 302,
Transformer 303 and voltage detection block power supply power supply circuit 3
04 to 307 configure the DC-DC converter 300.

【0036】これら4つの電圧検出ブロック給電用電源
回路304〜307は同じ回路構成であるので、最高電
位の電圧検出ブロックに電源電圧を給電する電源回路3
04について以下に説明する。トランス303から印加
された交流電圧は整流平滑回路3041で直流電圧に変
換されて、差動型電圧検出回路201〜205の正負の
電源端に印加される。
Since these four voltage detection block power supply circuits 304 to 307 have the same circuit configuration, the power supply circuit 3 for supplying the power supply voltage to the voltage detection block having the highest potential.
04 will be described below. The AC voltage applied from the transformer 303 is converted into a DC voltage by the rectifying / smoothing circuit 3041 and applied to the positive and negative power source terminals of the differential voltage detection circuits 201 to 205.

【0037】この実施例の特徴は、基準電位Vc1を発
生する次の回路構成に特徴をもつ。具体的に説明すれ
ば、定電圧回路3042とツェナダイオ−ド3043と
を直列接続して整流平滑回路3041から直流電圧を印
加する。そして、定電圧回路3042の出力電圧をA/
D変換回路5の高位電源電圧VH’とし、定電圧回路3
042とツェナダイオ−ド3043との接続点をA/D
変換回路5の低位電源電圧VL’とし、更に、この低位
電源電圧VL’を、差動型電圧検出回路201〜205
に基準電位1=Vc1として給電する。なお、定電圧回
路3042の出力電圧=A/D変換回路5の高位電源電
圧VH’と基準電位1=Vc1との電位差は、ツェナダ
イオ−ド3043の電圧降下をほぼ等しくなるように設
定される。
The feature of this embodiment lies in the following circuit configuration for generating the reference potential Vc1. Specifically, the constant voltage circuit 3042 and the Zener diode 3043 are connected in series, and a DC voltage is applied from the rectifying / smoothing circuit 3041. The output voltage of the constant voltage circuit 3042 is A /
The high-level power supply voltage VH ′ of the D conversion circuit 5 is set, and the constant voltage circuit 3
042 and Zener diode 3043 connected to A / D
The lower power supply voltage VL ′ of the conversion circuit 5 is set, and this lower power supply voltage VL ′ is further used as the differential voltage detection circuits 201 to 205.
Is supplied with the reference potential 1 = Vc1. The potential difference between the output voltage of the constant voltage circuit 3042 = the higher power supply voltage VH ′ of the A / D conversion circuit 5 and the reference potential 1 = Vc1 is set so that the voltage drop of the Zener diode 3043 becomes substantially equal.

【0038】このようにすれば、簡単な回路構成でA/
D変換回路5に定電源電圧を印加する定電圧回路304
2に更にツェナダイオ−ド3043を一個追加するだけ
で、電池モジュ−ル104の高位側端子電圧を用いるよ
り格段に電位変動が少なく安定な基準電位を形成するこ
とができる。なお、電圧検出ブロック給電用電源回路3
04は差動型電圧検出回路201〜205及びA/D変
換回路5に給電するのと同様に、電圧検出ブロック給電
用電源回路305は差動型電圧検出回路206〜211
5及びA/D変換回路6に給電し、電圧検出ブロック給
電用電源回路306は差動型電圧検出回路211〜21
5及びA/D変換回路7に給電し、電圧検出ブロック給
電用電源回路307は差動型電圧検出回路216〜22
0及びA/D変換回路8に給電するのは当然である。
In this way, A /
Constant voltage circuit 304 for applying a constant power supply voltage to the D conversion circuit 5
By simply adding one Zener diode 3043 to 2, it is possible to form a stable reference potential with much less potential fluctuation than using the high-side terminal voltage of the battery module 104. The voltage detection block power supply circuit 3
The power supply circuit 305 for power supply to the voltage detection block supplies the differential voltage detection circuits 206 to 211 in the same manner as 04 supplies power to the differential voltage detection circuits 201 to 205 and the A / D conversion circuit 5.
5 and the A / D conversion circuit 6 and the voltage detection block power supply circuit 306 is a differential type voltage detection circuit 211 to 21.
5 and the A / D conversion circuit 7, and the voltage detection block power supply circuit 307 supplies differential voltage detection circuits 216 to 22.
It is natural to power 0 and the A / D conversion circuit 8.

【0039】なお、図1では基準電位1〜4は、所定の
モジュ−ル電圧を用いるように図示しているが、実際に
は基準電位1〜4の安定性が高いことが好ましいので、
図4に示すように電圧検出ブロック給電用電源回路30
4〜307により創成されることが好ましい。また、
の実施例は、それぞれ異なるとともに高電位を処理する
モジュ−ル電圧検出回路部(差動型電圧検出回路201
〜220、A/D変換回路5〜8)の回路作動用電力を
主バッテリ(組み電池)19ではなく補機バッテリ30
1から給電することをその特徴としている。
In FIG. 1, the reference potentials 1 to 4 are illustrated so that a predetermined module voltage is used. However, in practice, it is preferable that the reference potentials 1 to 4 have high stability.
As shown in FIG. 4, the voltage detection block power supply power supply circuit 30
4 to 307 is preferable. Further, this embodiment is different from the module voltage detection circuit section (differential type voltage detection circuit 201) for processing high potentials.
-220, A / D conversion circuits 5-8) circuit operating power is supplied from the auxiliary battery 30 instead of the main battery (assembled battery) 19.
The feature is that power is supplied from 1.

【0040】このようにすれば、電気自動車用組み電池
の電圧検出装置において、その開放モジュ−ル電圧をよ
り高精度に検出でき、高圧の組み電池19の無用な寿命
短縮を回避でき、更に、走行電力蓄電状態の大きな変動
にもかかわらずモジュ−ル電圧の安定な検出を行うこと
ができる。また、モジュ−ル電圧検出のために、このモ
ジュ−ル電圧を発生する各電池モジュ−ル101〜12
0の蓄電量を消耗させることがないので、高精度のモジ
ュ−ル電圧、総電圧及びそれに基づく容量推定が可能と
なり、更に上記モジュ−ル電圧検出回路部の回路作動用
電力分は電池モジュ−ル101〜120の放電電流を減
らせるので、特に負荷電流が0かまたは小さい場合にお
いて、正確な開放モジュ−ル電圧を計測することがで
き、それにより高精度の容量推定が可能となる。ちなみ
に、開放端子電圧と容量とは密接な相関関係をもつ。ま
た、組み電池19の蓄電量が大きく低下する長距離走行
後でも組み電池から給電されていないので、その電圧低
下又は容量不足の影響を受けることがなく、特に高精度
のモジュ−ル電圧検出を必要とするこの組み電池の蓄電
量低下時においても安定にモジュ−ル電圧検出を行うこ
とができる。
In this way, in the voltage detecting device for the battery pack for electric vehicles, the open module voltage can be detected with higher accuracy, and unnecessary life shortening of the high voltage battery pack 19 can be avoided. It is possible to stably detect the module voltage in spite of a large change in the traveling power storage state. Further, in order to detect the module voltage, each battery module 101 to 12 that generates this module voltage.
Since the amount of stored electricity of 0 is not consumed, highly accurate module voltage, total voltage and capacity estimation based on it are possible, and the circuit operating electric power of the module voltage detection circuit is a battery module. Since the discharge current of each of the modules 101 to 120 can be reduced, an accurate open module voltage can be measured particularly when the load current is 0 or small, which enables highly accurate capacity estimation. Incidentally, there is a close correlation between the open terminal voltage and the capacitance. In addition, since the battery pack 19 is not supplied with power even after long-distance running in which the amount of electricity stored in the battery pack 19 is significantly reduced, there is no influence of the voltage drop or capacity shortage, and particularly highly accurate module voltage detection is possible. The module voltage can be stably detected even when the required amount of charge of the battery pack is reduced.

【0041】また更に、モジュ−ル電圧検出回路部の回
路作動用電力のばらつきにより各電池モジュ−ル101
〜120の消耗の程度がばらついて、電池モジュ−ルの
劣化が不平等となることもない。
Furthermore, due to variations in circuit operating power of the module voltage detection circuit unit, each battery module 101
The degree of consumption of ~ 120 does not vary and the deterioration of the battery module does not become unequal.

【図面の簡単な説明】[Brief description of drawings]

【図1】組み電池1の各モジュ−ル電圧をデジタル信号
に変換する組み電池の電圧検出装置を示すブロック図で
ある。
FIG. 1 is a block diagram showing an assembled battery voltage detection device for converting each module voltage of the assembled battery 1 into a digital signal.

【図2】図1の組み電池の電圧検出装置を用いた組み電
池の電池モニタ装置の一実施例を示すブロック回路図で
ある。
FIG. 2 is a block circuit diagram showing an embodiment of a battery monitoring device for an assembled battery using the assembled battery voltage detection device of FIG.

【図3】図1のA/D変換回路5のブロック回路図であ
る。
FIG. 3 is a block circuit diagram of an A / D conversion circuit 5 of FIG.

【図4】図1のA/D変換回路5及び差動型電圧検出回
路201に給電する電源回路のブロック回路図である。
4 is a block circuit diagram of a power supply circuit that supplies power to the A / D conversion circuit 5 and the differential voltage detection circuit 201 of FIG.

【符号の説明】[Explanation of symbols]

1はマイコン(信号処理回路部)、19は組み電池(主
バッテリ)、101〜120は電池モジュ−ル、201
〜220は差動型電圧検出回路(モジュ−ル電圧検出回
路部)、5〜10はA/D変換回路(モジュ−ル電圧検
出回路部)、20a〜20dはフォトカプラ素子、30
0はDC−DCコンバータ、301は補機バッテリ。
Reference numeral 1 is a microcomputer (signal processing circuit section), 19 is an assembled battery (main battery), 101 to 120 are battery modules, 201
To 220 are differential voltage detection circuits (module voltage detection circuit section), 5 to 10 are A / D conversion circuits (module voltage detection circuit section), 20a to 20d are photocoupler elements, 30
0 is a DC-DC converter, and 301 is an auxiliary battery.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI // B60R 16/02 670 B60R 16/02 670S G01R 19/165 G01R 19/165 M (58)調査した分野(Int.Cl.7,DB名) G01R 19/00 - 19/32 B60L 3/00 H01M 2/10 H01M 10/42 H02M 3/28 B60R 16/02 670 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI // B60R 16/02 670 B60R 16/02 670S G01R 19/165 G01R 19/165 M (58) Fields investigated (Int.Cl. 7 , DB name) G01R 19/00-19/32 B60L 3/00 H01M 2/10 H01M 10/42 H02M 3/28 B60R 16/02 670

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】多数の電池モジュ−ルが互いに縦続接続さ
れた高圧の組み電池からなる走行電力蓄電用の主バッテ
リの前記各電池モジュ−ルのモジュ−ル電圧を個別に検
出するモジュ−ル電圧検出回路部と、前記各モジュ−ル
電圧を信号処理する信号処理回路部とを備える電気自動
車用組電池の電圧検出装置において、 前記主バッテリとは別に装備された補機駆動用の補機バ
ッテリの電圧を内蔵のトランスを通じてDCDC変換し
て前記モジュ−ル電圧検出回路部に電源電圧として印加
する入出力絶縁型のDC−DCコンバ−タを有し、 前記モジュ−ル電圧検出回路部は、前記DC−DCコン
バ−タから電源電圧を印加されて前記モジュ−ル電圧と
しての前記電池モジュ−ルの正、負極間の電位差を検出
し、 前記DC−DCコンバ−タが出力する前記電源電圧は、
前記電池モジュ−ルの正極又は負極の電位を基準として
形成されていることを特徴とする電気自動車用組み電池
の電圧検出装置。
1. A module for individually detecting a module voltage of each battery module of a main battery for storing electric power for running electric power, which is composed of a high-voltage assembled battery in which a large number of battery modules are cascade-connected to each other. A voltage detecting device for an assembled battery for an electric vehicle, comprising: a voltage detecting circuit unit; and a signal processing circuit unit for signal processing each of the module voltages, wherein an auxiliary device for driving an auxiliary device equipped separately from the main battery. An input / output insulation type DC-DC converter for converting the voltage of the battery to DC / DC through a built-in transformer and applying it to the module voltage detection circuit section as a power supply voltage is provided, and the module voltage detection circuit section is provided. A power supply voltage is applied from the DC-DC converter to detect a potential difference between the positive and negative electrodes of the battery module as the module voltage, and the DC-DC converter outputs the voltage. That the power supply voltage,
Based on the positive or negative potential of the battery module
A voltage detecting device for an assembled battery for an electric vehicle, which is characterized by being formed .
【請求項2】請求項1記載の電気自動車用組み電池の電
圧検出装置において、 前記モジュ−ル電圧検出回路部は、互いに隣接する複数
の前記電池モジュールのモジュール電圧をそれぞれ検出
する複数の差動型電圧検出回路をそれぞれ含む電圧検出
ブロックを複数有し、 前記入出力絶縁型のDC−DCコンバ−タは、前記各電
圧検出ブロックごとに個別に設けられ、 前記各入出力絶縁型DC−DCコンバ−タが出力する前
記電源電圧は、互いに異なる前記電圧検出ブロックに属
する複数の前記電池モジュ−ルの正極又は負極の電位
個別に基準として形成されていることを特徴とする電気
自動車用組み電池の電圧検出装置。
2. The voltage detection device for an assembled battery for an electric vehicle according to claim 1, wherein the module voltage detection circuit section detects a plurality of differential voltages of the plurality of battery modules adjacent to each other. A plurality of voltage detection blocks each including a voltage detection circuit, the input / output isolated DC-DC converters are individually provided for the voltage detection blocks, and the input / output isolated DC-DC converters are provided individually. The power supply voltage output by the converter is the positive or negative potential of the plurality of battery modules belonging to the different voltage detection blocks.
An assembled battery voltage detection device for an electric vehicle, which is formed individually as a reference .
【請求項3】請求項2記載の電気自動車用組み電池の電
圧検出装置において、 前記各入出力絶縁型DC−DCコンバ−タは、一個の一
次巻線と複数の二次巻線を共通のコアに巻装して構成さ
れる共通のトランスと、前記補機バッテリから給電され
て前記一次巻線に交流電圧を印加する共通の発振回路と
を有することを特徴とする電気自動車用組み電池の電圧
検出装置。
3. The voltage detecting device for an assembled battery for an electric vehicle according to claim 2, wherein each of the input / output isolated DC-DC converters has one primary winding and a plurality of secondary windings in common. An assembled battery for an electric vehicle, comprising: a common transformer wound around a core; and a common oscillator circuit that is supplied with power from the auxiliary battery and applies an AC voltage to the primary winding. Voltage detection device.
JP32452997A 1997-11-20 1997-11-26 Voltage detector for assembled batteries for electric vehicles Expired - Lifetime JP3395952B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP32452997A JP3395952B2 (en) 1997-11-26 1997-11-26 Voltage detector for assembled batteries for electric vehicles
US09/195,555 US6313637B1 (en) 1997-11-20 1998-11-19 Voltage detecting device for set battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32452997A JP3395952B2 (en) 1997-11-26 1997-11-26 Voltage detector for assembled batteries for electric vehicles

Publications (2)

Publication Number Publication Date
JPH11160367A JPH11160367A (en) 1999-06-18
JP3395952B2 true JP3395952B2 (en) 2003-04-14

Family

ID=18166829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32452997A Expired - Lifetime JP3395952B2 (en) 1997-11-20 1997-11-26 Voltage detector for assembled batteries for electric vehicles

Country Status (1)

Country Link
JP (1) JP3395952B2 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4146548B2 (en) 1998-09-11 2008-09-10 松下電器産業株式会社 Battery voltage detection device
JP4035913B2 (en) * 1999-03-18 2008-01-23 株式会社デンソー Charged state detection device for assembled battery and vehicle control device using the device
JP3696124B2 (en) 2001-05-17 2005-09-14 三洋電機株式会社 Battery voltage detection circuit
JP2006060324A (en) * 2004-08-17 2006-03-02 Denso Corp Interface circuit
JP4501754B2 (en) * 2005-04-05 2010-07-14 日産自動車株式会社 Voltage detector
KR100669434B1 (en) 2005-04-07 2007-01-15 삼성에스디아이 주식회사 Method for controlling secondary battery module
JP4762241B2 (en) 2005-07-07 2011-08-31 株式会社東芝 Battery module
KR100717789B1 (en) 2005-07-29 2007-05-11 삼성에스디아이 주식회사 Method for estimating soc of secondary battery module
KR100739054B1 (en) 2005-10-20 2007-07-12 삼성에스디아이 주식회사 Battery management system and method for measuring cell voltage of the battery
KR100740097B1 (en) 2005-10-20 2007-07-16 삼성에스디아이 주식회사 Method of estimating SOC for battery and battery management system using the same
KR100709258B1 (en) 2005-10-20 2007-04-19 삼성에스디아이 주식회사 Battery management system
KR100796668B1 (en) 2006-09-26 2008-01-22 삼성에스디아이 주식회사 Battery management system and driving method thereof
KR100859688B1 (en) 2006-10-12 2008-09-23 삼성에스디아이 주식회사 Battery management system and driving method thereof
KR100814884B1 (en) 2006-10-16 2008-03-20 삼성에스디아이 주식회사 Battery management system and driving method thereof
KR100839381B1 (en) 2006-11-01 2008-06-20 삼성에스디아이 주식회사 Battery management system and driving method thereof
KR100814128B1 (en) 2007-02-06 2008-03-14 주식회사 파워로직스 Battery cell voltage measurement circuit
KR100882913B1 (en) 2007-03-19 2009-02-10 삼성에스디아이 주식회사 Battery Pack
JP5319138B2 (en) 2008-03-07 2013-10-16 株式会社東芝 Battery system
JP2010197324A (en) * 2009-02-27 2010-09-09 Furukawa Battery Co Ltd:The Insulating measuring instrument
JP2011004260A (en) * 2009-06-19 2011-01-06 Murayama Denki Seisakusho:Kk A/d conversion unit, and measuring device
CN102044718A (en) * 2009-10-13 2011-05-04 上海空间电源研究所 Power lithium iron phosphate battery pack management system for electric automobiles and working method of system
JP2011163847A (en) * 2010-02-08 2011-08-25 Denso Corp Battery voltage monitoring apparatus
JP5538054B2 (en) 2010-04-28 2014-07-02 矢崎総業株式会社 Fuel cell voltage detection device
JP5510228B2 (en) * 2010-09-15 2014-06-04 ミツミ電機株式会社 Protection circuit
JP5844106B2 (en) * 2011-09-28 2016-01-13 三洋電機株式会社 Power supply device for vehicle and vehicle equipped with this power supply device
JP2014048281A (en) * 2012-09-04 2014-03-17 Sanyo Electric Co Ltd Electric power unit and failure detection circuit
WO2016051684A1 (en) * 2014-09-29 2016-04-07 パナソニックIpマネジメント株式会社 Storage cell control device and storage module management system
CN104553813B (en) * 2014-12-16 2017-04-12 惠州市亿能电子有限公司 Control method for electric automobile high-voltage power-on circuit
CN105774558A (en) * 2016-03-17 2016-07-20 北京航空航天大学 Integrated safety detection device for electric automobile
KR102020042B1 (en) * 2017-12-14 2019-09-09 현대오트론 주식회사 Apparatus for Protecting Cell Sensing Circuit of Low-Voltage Battery in Vehicle

Also Published As

Publication number Publication date
JPH11160367A (en) 1999-06-18

Similar Documents

Publication Publication Date Title
JP3395952B2 (en) Voltage detector for assembled batteries for electric vehicles
JP3795499B2 (en) Voltage equalization device for storage element
US5408170A (en) Device for charging a secondary battery having interrupt means to prevent overcharging
CN102792548B (en) Charge equalization system for batteries
EP1198050A1 (en) Electric energy storage device with cell energy control, and method of controlling cell energy
JP3863262B2 (en) Battery voltage measuring device
EP2201660A2 (en) Battery management system with integration of voltage sensor and charge equalizer
CN112534672B (en) Power supply system and management device
JP3226161B2 (en) Battery cell voltage detector
CN101669263A (en) Energy storage device, particularly for an automobile
JPH08237861A (en) Paralll charge controller, electric energy storage unit and charge controlling method
US6377023B1 (en) Charging control system for a battery of electric storage cells and in particular a battery of lithium cells
KR100795718B1 (en) Control power circuit of impedance measuring equipment and it's power saving method
JP7046750B2 (en) Power supply system and management equipment
US6420853B1 (en) Battery charger capable of accurately determining fully charged condition regardless of batteries with different charge chracteristics
JP2002354698A (en) Control circuit
JP3979594B2 (en) Battery voltage detection device
JP3544626B2 (en) Battery voltage detecting means, battery pack, battery management device, and battery voltage detecting method used therefor
JP3728622B2 (en) Charger
JP3697986B2 (en) Assembled battery
JP2008064519A (en) Total battery voltage detector
JP3827123B2 (en) Control device for battery pack for electric vehicles
CN111725574B (en) Battery system, battery module and battery control circuit therein
JP3319119B2 (en) Charging device
CN118713269A (en) Device for supplying electrical energy with at least n battery cells

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110207

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130207

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140207

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term