JP4035913B2 - Charged state detection device for assembled battery and vehicle control device using the device - Google Patents

Charged state detection device for assembled battery and vehicle control device using the device Download PDF

Info

Publication number
JP4035913B2
JP4035913B2 JP07432099A JP7432099A JP4035913B2 JP 4035913 B2 JP4035913 B2 JP 4035913B2 JP 07432099 A JP07432099 A JP 07432099A JP 7432099 A JP7432099 A JP 7432099A JP 4035913 B2 JP4035913 B2 JP 4035913B2
Authority
JP
Japan
Prior art keywords
battery
voltage
detection circuit
current
assembled battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07432099A
Other languages
Japanese (ja)
Other versions
JP2000270492A (en
Inventor
有司 宇佐美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP07432099A priority Critical patent/JP4035913B2/en
Publication of JP2000270492A publication Critical patent/JP2000270492A/en
Application granted granted Critical
Publication of JP4035913B2 publication Critical patent/JP4035913B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、特に電気自動車もしくはハイブリッド車に好適な、組み電池の充電状態検出装置ならびにこの検出装置を備えた車両制御装置に関する。
【0002】
【従来の技術】
電気自動車の駆動用電池は、数V〜十数Vの電池モジュールを数十個直列に接続した組電池構造をしており、これを1つのパッケージに納め、電池パックとして車体に搭載されている。この様な電池パックを搭載したハイブリッド車及び電気自動車において、組電池の残存容量や、劣化具合等を正確に把握することが、走行及び充電性能を向上させるための要因の一つである。
【0003】
そこで従来は、各電池モジュール毎もしくは、数個の電池モジュール毎に電池電圧を測定して、組電池の残存容量や劣化の状態などを把握するためのパラメータの1つとしている。これらの電池電圧(以降個別電圧と略)の検出手段は電池パック内に組み込まれ、他の制御とを高電圧から絶縁している。
【0004】
この個別電圧検出手段は、測定した各個別電圧データを車両制御や走行制御を行う走行制御ユニットに搭載されたコントローラにシリアル通信などでデータ転送し、このコントローラで電池状態を判断している。
【0005】
【発明が解決しようとする課題】
しかしながら、このようなシステム構成では、電流センサによる総電流のサンプリング時間に対して、個別電圧のサンプリング時間に時間差が生じる問題を有している。これは電池状態を判断するコントローラにおいて、個別電圧のサンプリング時間=データ転送された時間となるが、実際の個別電圧データは、それ以前に個別電圧検出手段によってサンプリングされた時点のデータであるため、総電流のデータと個別電圧のデータに同期が取れず、電池状態の演算精度が悪化することが問題となる。
【0006】
そこで、本発明は、組電池の個別電圧検出手段と、この総電流の電流検出手段において、個別電圧と総電流の同期検出を実現することにより、より正確な電池状態が把握可能な電気自動車やハイブリッド車を提供することを目的とする。
【0007】
【課題を解決するための手段】
請求項1に記載した本発明の充電状態検出装置によれば、互いに直列接続されて高圧の組み電池を構成する多数の電池モジュ−ルの各モジュ−ル電圧を順次に個別に検出する電圧検出回路と、前記組み電池の総電流を検出する電流検出回路と、前記電圧検出回路と前記電流検出回路により、検出された電圧および電流に応じて組み電池の充電状態を演算する電池状態演算手段とを備えた組み電池の充電状態検出装置において、
前記電流検出回路は、前記組み電池と前記組み電池に接続される電力変換器との間に設けられた電流センサにより前記組み電池の総電流を検出するものであって、前記電池演算手段が出力する信号に基づいて前記電圧検出回路による電圧検出と前記電流検出回路による電流検出を行うことにより電圧検出時期と電流検出時期とを同期させた。
【0008】
これによれば、電圧および電流を同期して検出することで、より正確な電池状態が検出することができる。
【0009】
また、請求項2記載の電池の充電状態検出装置においては、電池モジュールと電圧検出回路とを1つのパッケージに納めている。
【0010】
請求項3記載の車両制御装置によれば、互いに直列接続されて高圧の組み電池を構成する多数の電池モジュ−ルと、この電池モジュールの各モジュ−ル電圧を順次に個別に検出する電圧検出回路とを有する電池パックと、前記組み電池の総電流を検出する電流検出回路と、前記電圧検出回路と前記電流検出回路により、検出された電圧および電流に応じて組み電池の充電状態を演算する電池状態演算手段とを備えた組み電池の充電状態検出装置と、この充電状態検出装置によって検出された電池の充電状態に応じて、車両の駆動源を制御する駆動源制御回路とを備え、前記電流検出回路は、前記組み電池と前記組み電池に接続される電力変換器との間に設けられた電流センサにより前記組み電池の総電流を検出するものであって、
前記電池演算手段が出力する信号に基づいて前記電圧検出回路による電圧検出と前記電流検出回路による電流検出を行うことにより電圧検出時期と電流検出時期とを同期させた。
【0011】
これによれば、電圧および電流を同じタイミングで検出することで、組み電池の正確な充電状態を検出することで、車両の駆動源を適格に制御することができる。
【0012】
また、請求項4記載の車両制御装置においては、前記電流検出回路、前記充電状態検出回路および前記駆動源制御回路とは、前記電池パックとは異なる別のパッケージに収納されている。
【0013】
さらに、請求項5記載の車両制御装置においては、前記電圧検出回路により検出された電圧は、前記充電状態検出回路に通信により送られる。
【0014】
【発明の実施の形態】
以下、本発明の好適な態様を以下の実施例により詳細に説明する。ただし、本発明は下記の実施例の構成に限定されるものではなく、置換可能な公知回路を用いて構成できることは当然である。
【0015】
【実施例】
本発明の車両制御装置の一実施例を図1、図2を参照して説明する。
【0016】
図1は本発明のシステム構成概略図で、19は走行用バッテリで、数V〜十数V程度の電圧の電池モジュールが数十個直列に接続した組電池構造をしている。
【0017】
1は個別電圧検出手段で、走行用バッテリの電池モジュール19と他の制御系を絶縁すると共に、各電池モジュール19の電圧V1〜Vnを個別に測定し、測定データをシリアル通信で信号201に出力している。なお、この個別電圧検出手段1については、後述する。
【0018】
30は電池パックで、走行用バッテリ19と個別電圧検出手段1とを1つのパッケージに納め、走行用の電源ユニットとして車両に搭載されている。
【0019】
40は走行用モータであり、走行用バッテリ19に蓄えられた電力を、50の走行用インバータで電力変換して駆動する。そして、電気自動車もしくはハイブリッド車の駆動源である走行用モータ40を駆動させるものである。
【0020】
60は電流検出手段であり、走行用バッテリ19に流れる電池モジュールの総電流Ibを、磁気平衡式電流センサなどを用いて測定し、信号601として電圧出力する。
【0021】
70は走行制御ユニットで、走行用インバータ50と電流検出手段60及びコントローラ80等から構成された走行制御装置で、電池パック30とは別のパッケージになっている。
【0022】
80は本システムを制御するためのコントローラで、車両の各種センサ信号(例えば、アクセルセンサ84、ブレーキセンサ85、シフトセンサ86等)を入力し、マイコンによって走行用インバータ50を制御して、走行用モータ40を駆動することで車両の走行を制御している。
【0023】
そして、コントローラ80内の電池状態演算手段81は、電流検出手段60と個別電圧検出手段1からの信号により、組み電池の充電状態を検出している。この検出方法については、一般に知られていることから説明を省略する。
【0024】
また、車両制御手段82においては、電池状態演算手段81からの電池充電状態の情報と、上述した各センサ84,85,86の信号から、車両を駆動するに必要なトルクを演算する。なお、トルクの演算方法については、例えば、特開平11−6449号公報を参照のこと。
【0025】
さらに、トルク制御装置83は、上記車両制御手段82により、演算されたトルクに応じて、走行用インバータ50の電流制御を行うものである。また、走行用バッテリ19に充電する際は、本システムの外部または内部の充電器と協調し、充電制御を行っている。そして、信号201及び信号601を介して走行用バッテリ19の各電池モジュール電圧V1〜Vnや総電流Ibを検出して、走行用バッテリ19の残存容量や劣化具合等を演算、監視し、必要に応じて走行能力を制限したり、充電電流を制御することによりシステムの走行及び充電性能を向上させている。
【0026】
そして、電池パック301について、以下、図3および図4に基づいて説明する。組み電池19の各モジュ−ル電圧をデジタル信号に変換する組み電池の電圧検出装置を示すブロック図であり、組み電池19、差動型電圧検出回路201〜220、A/D変換回路5〜8、フォトカプラ素子20aが図示されている。
【0027】
図4は図3のこの電圧検出装置を用いた電池モニタ装置の一実施例を示すブロック図である。
【0028】
1は電池の電圧を制御するCPU、2はデマルチプレクサからなるクロック信号分配用のセレクタ回路(以下、クロック信号セレクタ回路ともいう)、3はデマルチプレクサからなる制御信号分配用のセレクタ回路(以下、制御信号セレクタ回路ともいう)、4はマルチプレクサからなるデジタル信号選択用のセレクタ回路(以下、デ−タセレクタ回路ともいう)、5〜10はA/D変換回路、201〜220及び13は差動型電圧検出回路、14はアナログ増幅回路、15は電流センサ、101〜120は組み電池19の各電池モジュ−ル(単にモジュ−ルともいう)である。ただし、図4において、電池モジュ−ル106〜120、差動型電圧検出回路206〜220、A/D変換回路6〜8は図示省略されている。
【0029】
電池モジュ−ル101〜120はそれぞれ12個の単電池を縦続接続してなる。電池モジュ−ル101は最高位のモジュ−ル電圧をもち、電池モジュ−ル120は最低位のモジュ−ル電圧をもつ。20は各セレクタ回路2〜4と各A/D変換回路5〜10を接続するシリアル信号線群であり、この実施例では、各信号線はCPU1の保護のためにそれぞれフォトカプラ(たとえば20a)を有している。A/D変換回路5〜10はそれぞれ5チャンネル入力の切り替え入力型のA/D変換回路であり、入力される切り替え信号により、各A/D変換回路5〜10は同期してチャンネル切り替えされる。
【0030】
図4からわかるように、モジュ−ル101のモジュ−ル電圧は差動型電圧検出回路201で所定の基準電位1に対する信号電圧に変換されてからA/D変換回路5でA/D変換される。同様に、モジュ−ル102のモジュ−ル電圧は差動型電圧検出回路202で所定の基準電位1に対する信号電圧に変換されてからA/D変換回路5でA/D変換され、モジュ−ル103のモジュ−ル電圧は差動型電圧検出回路203で所定の基準電位1に対する信号電圧に変換されてからA/D変換回路5でA/D変換され、モジュ−ル104のモジュ−ル電圧は差動型電圧検出回路204で所定の基準電位1に対する信号電圧に変換されてからA/D変換回路5でA/D変換され、モジュ−ル105のモジュ−ル電圧は差動型電圧検出回路205で所定の基準電位1に対する信号電圧に変換されてからA/D変換回路5でA/D変換される。
【0031】
同様に、電池モジュ−ル106〜110のモジュ−ル電圧は差動型電圧検出回路206〜210を通じてA/D変換回路6に入力され、電池モジュ−ル111〜115のモジュ−ル電圧は差動型電圧検出回路211〜215を通じてA/D変換回路7に入力され、電池モジュ−ル116〜120のモジュ−ル電圧は差動型電圧検出回路216〜220を通じてA/D変換回路8に入力される。
【0032】
また、組み電池19の総電圧は差動型電圧検出回路13で所定の共通接地電位に対する信号電圧に変換されからA/D変換回路9でA/D変換され、組み電池19の電流は増幅回路14を通じてA/D変換回路19でA/D変換される。
【0033】
各A/D変換回路5〜10の出力は、デ−タセレクタ回路4にて時間順次に選択され、信号SINとしてCPU1に読み込まれる。
【0034】
A/D変換回路5〜10は同期動作シリアル出力型のA/D変換回路であって、変換デ−タすなわちシリアルデジタル信号はデジタル信号確定後に入力するクロックパルスに同期して出力される。
【0035】
更に説明すると、A/D変換回路5は、アナログ信号が入力されるアナログ入力端子、シリアル信号であるデジタル信号を出力するデ−タ出力端子、シリアル信号である制御命令が入力される制御命令入力端子、及び、同期用のクロックパルスが入力されるクロックパルス入力端子を有し、読み込み指令が制御命令入力端子へ入力されると、アナログ信号の読み込みが行われ、その後、次のクロックパルスの入力により8ビットのシリアルデジタル信号が出力される。その他のA/D変換回路6〜10も同じ構造を有している。
【0036】
次に、組み電池19の各モジュ−ル電圧を検出する差動型電圧検出回路201〜220について、図3を参照して説明する。
【0037】
この実施例では組み電池19を構成する合計240個の単電池が互いに縦続接続される20個の電池モジュ−ル101〜120に区分され、更に、電池モジュ−ル101〜105は第1の電圧検出ブロックを構成し、電池モジュ−ル106〜110は第2の電圧検出ブロックを構成し、電池モジュ−ル111〜115は第3の電圧検出ブロックを構成し、電池モジュ−ル116〜120は第4の電圧検出ブロックを構成している。
【0038】
第1の電圧検出ブロックは、第1の基準電位である基準電位1をもち、第2の電圧検出ブロックは第2の基準電位である基準電位2をもち、第3の電圧検出ブロックは、第3の基準電位である基準電位3をもち、第4の電圧検出ブロックは第4の基準電位である基準電位4を有している。
【0039】
この実施例では、基準電位1は電池モジュ−ル103の低位側端子電圧(電池モジュ−ル104の高位側端子電圧)に設定され、以下同様に、各基準電位2〜4は、各電圧検出ブロックにおける高電位側から3番目の電池モジュ−ルの低位側端子電圧(低位側から2番目の電池モジュ−ルの高位側端子電圧)に設定されている。
【0040】
すなわち、この実施例では、同一の電圧検出ブロック内の各差動型電圧検出回路の基準電位(入力側抵抗回路網の一端に印加される定電位)は等しくされ、また、各電圧検出ブロックには異なる基準電位1〜4が印加される。更に、各基準電位1〜4は、電圧検出ブロック内の各電池モジュ−ルの中間電位(最高端子電圧と最低端子電圧との中間の値にできるだけ近い値)に設定され、更に、各基準電位1〜4として電池モジュ−ルの端子電圧を用いている。
【0041】
次に、図2において、本発明の個別電圧及び総電流データを確定する場合のタイミングチャートを示す。このタイミングチャートでは、コントローラ80に組み込まれたマイコンによってタイミングが制御されている。
【0042】
まず、各電池モジュール電圧V1〜Vnと総電流Ibのサンプリングを同期させるため、コントローラ80が所定周期のパルス信号を同期信号として信号211に出力する(図2(a)参照)と共に、このパルス信号に合わせて信号601を介して総電流Ibの検出を行っている(図2(e)参照)。
【0043】
さらに、個別電圧検出手段1は、図2(a)の信号211のタイミングに合わせて電池モジュール電圧V1〜Vnの測定する(図2(b)参照)と共に、測定データを信号201にシリアル通信で出力している(図2(c)参照)。
【0044】
また、コントローラ80は、信号201を介して行われる各電池モジュール電圧V1〜Vnのシリアル通信データの受信に合わせて、電池モジュール電圧V1〜Vnの更新(図2(d)参照)及び総電流Ibデータの更新(図2(f)参照)を行っている。
【0045】
以上の制御により、組電池の個別電圧検出手段と、この総電流の電流検出手段が別体になったシステム構成においても、個別電圧と総電流の同期検出を実現でき、より正確な電池状態が把握可能となり、車両駆動源(走行用モータ40)を適格に駆動できる電気自動車やハイブリッド車を提供することができる。
【図面の簡単な説明】
【図1】本発明の車両制御装置のシステム図である。
【図2】本発明の電圧および電流の検出を示すタイミングチャートである。
【図3】組み電池19の各モジュ−ル電圧をデジタル信号に変換する組み電池の電圧検出装置を示すブロック図である。
【図4】図3の組み電池の電圧検出装置を用いた組み電池の電池モニタ装置の一実施例を示すブロック回路図である。
【符号の説明】
1は個別電圧検出手段、19は組み電池、30は電池パック、40は走行用モータ、50はインバータ回路、60は電流検出手段、70は走行制御ユニット、80はコントローラ、81は電池状態演算手段。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an assembled battery charge state detection device particularly suitable for an electric vehicle or a hybrid vehicle, and a vehicle control device including the detection device.
[0002]
[Prior art]
The drive battery of an electric vehicle has an assembled battery structure in which several tens to several tens of volt battery modules are connected in series, and this is housed in one package and mounted on the vehicle body as a battery pack. . In a hybrid vehicle and an electric vehicle equipped with such a battery pack, accurately grasping the remaining capacity of the assembled battery, the degree of deterioration, etc. is one of the factors for improving the running and charging performance.
[0003]
Therefore, conventionally, the battery voltage is measured for each battery module or for several battery modules, and is used as one of the parameters for grasping the remaining capacity and the state of deterioration of the assembled battery. These battery voltage (hereinafter abbreviated as individual voltage) detection means are incorporated in the battery pack and insulate other controls from the high voltage.
[0004]
The individual voltage detecting means transfers the measured individual voltage data to a controller mounted on a traveling control unit that performs vehicle control and traveling control by serial communication or the like, and the controller determines the battery state.
[0005]
[Problems to be solved by the invention]
However, such a system configuration has a problem that a time difference occurs in the sampling time of the individual voltage with respect to the sampling time of the total current by the current sensor. In the controller for determining the battery state, the sampling time of the individual voltage = the time when the data is transferred, but the actual individual voltage data is the data at the time when it was previously sampled by the individual voltage detecting means. There is a problem that the total current data and the individual voltage data are not synchronized, and the calculation accuracy of the battery state deteriorates.
[0006]
Therefore, the present invention provides an electric vehicle capable of grasping a more accurate battery state by realizing individual voltage and total current synchronous detection in the assembled battery individual voltage detection means and the total current detection means. The purpose is to provide a hybrid vehicle.
[0007]
[Means for Solving the Problems]
According to the state of charge detection device of the present invention as set forth in claim 1, voltage detection is carried out to individually detect each module voltage of a large number of battery modules that are connected in series with each other and constitute a high voltage assembled battery. A circuit, a current detection circuit that detects a total current of the assembled battery, and a battery state calculation unit that calculates a charge state of the assembled battery according to the voltage and current detected by the voltage detection circuit and the current detection circuit; In a state of charge detection device for an assembled battery comprising :
The current detection circuit detects a total current of the assembled battery by a current sensor provided between the assembled battery and a power converter connected to the assembled battery, and the battery calculation unit outputs The voltage detection timing and the current detection timing are synchronized by performing voltage detection by the voltage detection circuit and current detection by the current detection circuit based on the signal to be detected .
[0008]
According to this, a more accurate battery state can be detected by detecting the voltage and current in synchronization.
[0009]
According to another aspect of the present invention, the battery module and the voltage detection circuit are housed in one package.
[0010]
According to the vehicle control device of claim 3, a plurality of battery modules that are connected in series to form a high-voltage assembled battery, and voltage detection that individually detects each module voltage of the battery module sequentially. A battery pack having a circuit, a current detection circuit for detecting a total current of the assembled battery, and the voltage detection circuit and the current detection circuit calculate a state of charge of the assembled battery according to the detected voltage and current. includes a state of charge detecting device of the assembled battery having a battery state calculating means, depending on the charge state of the battery detected by the charging state detection device, and a driving source control circuit for controlling the drive source of the vehicle, the The current detection circuit detects a total current of the assembled battery by a current sensor provided between the assembled battery and a power converter connected to the assembled battery,
The voltage detection timing and the current detection timing are synchronized by performing voltage detection by the voltage detection circuit and current detection by the current detection circuit based on a signal output from the battery calculation means .
[0011]
According to this, by detecting the voltage and current at the same timing, it is possible to properly control the drive source of the vehicle by detecting the accurate state of charge of the assembled battery.
[0012]
According to a fourth aspect of the present invention, the current detection circuit, the charge state detection circuit, and the drive source control circuit are housed in a different package from the battery pack.
[0013]
Furthermore, in the vehicle control apparatus according to claim 5, the voltage detected by the voltage detection circuit is transmitted to the charge state detection circuit by communication.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the following examples. However, the present invention is not limited to the configurations of the following embodiments, and can naturally be configured using a replaceable known circuit.
[0015]
【Example】
An embodiment of the vehicle control apparatus of the present invention will be described with reference to FIGS.
[0016]
FIG. 1 is a schematic diagram of the system configuration of the present invention. Reference numeral 19 denotes a battery for traveling, which has an assembled battery structure in which several tens of battery modules having a voltage of about several volts to several tens of volts are connected in series.
[0017]
Reference numeral 1 denotes an individual voltage detection means that insulates the battery module 19 of the running battery from other control systems, measures the voltages V1 to Vn of each battery module 19 individually, and outputs the measurement data to the signal 201 by serial communication. is doing. The individual voltage detection means 1 will be described later.
[0018]
A battery pack 30 includes the traveling battery 19 and the individual voltage detecting means 1 in one package and is mounted on the vehicle as a traveling power supply unit.
[0019]
Reference numeral 40 denotes a traveling motor, which is driven by converting electric power stored in the traveling battery 19 with 50 traveling inverters. And the motor 40 for driving | running | working which is a drive source of an electric vehicle or a hybrid vehicle is driven.
[0020]
Reference numeral 60 denotes current detection means, which measures the total current Ib of the battery module flowing through the traveling battery 19 using a magnetic balance type current sensor or the like, and outputs a voltage as a signal 601.
[0021]
Reference numeral 70 denotes a travel control unit, which is a travel control device composed of a travel inverter 50, a current detection means 60, a controller 80, and the like, and is a package different from the battery pack 30.
[0022]
Reference numeral 80 denotes a controller for controlling this system, which inputs various sensor signals of the vehicle (for example, an accelerator sensor 84, a brake sensor 85, a shift sensor 86, etc.), and controls the traveling inverter 50 by a microcomputer to drive the vehicle. Driving of the vehicle is controlled by driving the motor 40.
[0023]
The battery state calculation means 81 in the controller 80 detects the state of charge of the assembled battery based on signals from the current detection means 60 and the individual voltage detection means 1. Since this detection method is generally known, a description thereof will be omitted.
[0024]
Further, the vehicle control means 82 calculates the torque required to drive the vehicle from the information on the battery charge state from the battery state calculation means 81 and the signals of the sensors 84, 85, 86 described above. For the torque calculation method, see, for example, Japanese Patent Application Laid-Open No. 11-6449.
[0025]
Further, the torque control device 83 performs current control of the traveling inverter 50 according to the torque calculated by the vehicle control means 82. Moreover, when charging the battery 19 for driving | running | working, it cooperates with the charger outside or inside this system, and performs charge control. Then, the battery module voltages V1 to Vn and the total current Ib of the traveling battery 19 are detected via the signal 201 and the signal 601, and the remaining capacity and the deterioration degree of the traveling battery 19 are calculated and monitored. Accordingly, the running ability and charging performance of the system are improved by limiting the running capacity and controlling the charging current accordingly.
[0026]
And the battery pack 301 is demonstrated based on FIG. 3 and FIG. 4 below. It is a block diagram which shows the voltage detection apparatus of the assembled battery which converts each module voltage of the assembled battery 19 into a digital signal, and is the assembled battery 19, the differential type voltage detection circuits 201-220, and the A / D conversion circuits 5-8. A photocoupler element 20a is shown.
[0027]
FIG. 4 is a block diagram showing an embodiment of a battery monitoring device using the voltage detection device of FIG.
[0028]
1 is a CPU for controlling the voltage of a battery, 2 is a selector circuit for distributing a clock signal made of a demultiplexer (hereinafter also referred to as a clock signal selector circuit), and 3 is a selector circuit for distributing a control signal made of a demultiplexer (hereinafter, called (Also referred to as a control signal selector circuit) 4 is a selector circuit for selecting a digital signal comprising a multiplexer (hereinafter also referred to as a data selector circuit), 5 to 10 are A / D conversion circuits, and 201 to 220 and 13 are differential types. A voltage detection circuit, 14 is an analog amplifier circuit, 15 is a current sensor, 101 to 120 are battery modules (also simply referred to as modules) of the assembled battery 19. However, in FIG. 4, the battery modules 106 to 120, the differential voltage detection circuits 206 to 220, and the A / D conversion circuits 6 to 8 are not shown.
[0029]
Each of the battery modules 101 to 120 is formed by cascading 12 unit cells. Battery module 101 has the highest module voltage, and battery module 120 has the lowest module voltage. Reference numeral 20 denotes a serial signal line group for connecting the selector circuits 2 to 4 and the A / D conversion circuits 5 to 10. In this embodiment, each signal line is a photocoupler (for example, 20a) for protection of the CPU 1. have. Each of the A / D conversion circuits 5 to 10 is a switching input type A / D conversion circuit with 5 channel inputs, and the channels of the A / D conversion circuits 5 to 10 are synchronously switched by an input switching signal. .
[0030]
As can be seen from FIG. 4, the module voltage of the module 101 is converted into a signal voltage with respect to a predetermined reference potential 1 by the differential voltage detection circuit 201 and then A / D converted by the A / D conversion circuit 5. The Similarly, the module voltage of the module 102 is converted into a signal voltage with respect to a predetermined reference potential 1 by the differential voltage detection circuit 202 and then A / D converted by the A / D conversion circuit 5. The module voltage 103 is converted to a signal voltage corresponding to a predetermined reference potential 1 by the differential voltage detection circuit 203 and then A / D converted by the A / D conversion circuit 5, and the module voltage of the module 104 is converted. Is converted to a signal voltage corresponding to a predetermined reference potential 1 by the differential voltage detection circuit 204 and then A / D converted by the A / D conversion circuit 5, and the module voltage of the module 105 is detected by the differential voltage detection. The signal is converted into a signal voltage corresponding to a predetermined reference potential 1 by the circuit 205 and then A / D converted by the A / D conversion circuit 5.
[0031]
Similarly, the module voltages of the battery modules 106 to 110 are input to the A / D conversion circuit 6 through the differential voltage detection circuits 206 to 210, and the module voltages of the battery modules 111 to 115 are different. The dynamic voltage detection circuits 211 to 215 are input to the A / D conversion circuit 7, and the module voltages of the battery modules 116 to 120 are input to the A / D conversion circuit 8 through the differential voltage detection circuits 216 to 220. Is done.
[0032]
The total voltage of the assembled battery 19 is converted into a signal voltage with respect to a predetermined common ground potential by the differential voltage detection circuit 13 and then A / D converted by the A / D conversion circuit 9, and the current of the assembled battery 19 is amplified by an amplifier circuit. A / D conversion is performed by the A / D conversion circuit 19 through 14.
[0033]
Outputs of the A / D conversion circuits 5 to 10 are selected in time sequence by the data selector circuit 4 and read into the CPU 1 as a signal SIN.
[0034]
The A / D conversion circuits 5 to 10 are synchronous operation serial output type A / D conversion circuits, and the conversion data, that is, the serial digital signal is output in synchronization with the clock pulse input after the digital signal is determined.
[0035]
More specifically, the A / D conversion circuit 5 has an analog input terminal for inputting an analog signal, a data output terminal for outputting a digital signal as a serial signal, and a control command input for receiving a control command as a serial signal. Terminal and a clock pulse input terminal to which a clock pulse for synchronization is input. When a read command is input to the control command input terminal, an analog signal is read and then the next clock pulse is input. As a result, an 8-bit serial digital signal is output. The other A / D conversion circuits 6 to 10 have the same structure.
[0036]
Next, the differential voltage detection circuits 201 to 220 for detecting each module voltage of the assembled battery 19 will be described with reference to FIG.
[0037]
In this embodiment, a total of 240 single cells constituting the assembled battery 19 are divided into 20 battery modules 101 to 120 connected in cascade, and the battery modules 101 to 105 are further connected to a first voltage. The battery modules 106 to 110 constitute a second voltage detection block, the battery modules 111 to 115 constitute a third voltage detection block, and the battery modules 116 to 120 constitute a detection block. A fourth voltage detection block is configured.
[0038]
The first voltage detection block has a reference potential 1 that is a first reference potential, the second voltage detection block has a reference potential 2 that is a second reference potential, and the third voltage detection block has a first potential. The fourth voltage detection block has a reference potential 4 that is a fourth reference potential.
[0039]
In this embodiment, the reference potential 1 is set to the lower terminal voltage of the battery module 103 (the higher terminal voltage of the battery module 104). The lower terminal voltage of the third battery module from the high potential side in the block (the higher terminal voltage of the second battery module from the lower side) is set.
[0040]
That is, in this embodiment, the reference potential of each differential voltage detection circuit in the same voltage detection block (a constant potential applied to one end of the input side resistor network) is made equal, and each voltage detection block has Different reference potentials 1 to 4 are applied. Further, each of the reference potentials 1 to 4 is set to an intermediate potential of each battery module in the voltage detection block (a value as close as possible to an intermediate value between the highest terminal voltage and the lowest terminal voltage). The terminal voltage of the battery module is used as 1-4.
[0041]
Next, FIG. 2 shows a timing chart when determining the individual voltage and total current data of the present invention. In this timing chart, the timing is controlled by a microcomputer incorporated in the controller 80.
[0042]
First, in order to synchronize the sampling of the battery module voltages V1 to Vn and the total current Ib, the controller 80 outputs a pulse signal having a predetermined cycle to the signal 211 as a synchronization signal (see FIG. 2A) and this pulse signal. Accordingly, the total current Ib is detected via the signal 601 (see FIG. 2E).
[0043]
Furthermore, the individual voltage detection means 1 measures the battery module voltages V1 to Vn in accordance with the timing of the signal 211 in FIG. 2A (see FIG. 2B), and the measurement data is transferred to the signal 201 by serial communication. (See FIG. 2C).
[0044]
Further, the controller 80 updates the battery module voltages V1 to Vn (see FIG. 2D) and the total current Ib in accordance with the reception of serial communication data of the battery module voltages V1 to Vn performed via the signal 201. Data is updated (see FIG. 2 (f)).
[0045]
With the above control, even in a system configuration in which the individual voltage detection means of the assembled battery and the current detection means of the total current are separated, the synchronous detection of the individual voltage and the total current can be realized, and a more accurate battery state can be achieved. It is possible to provide an electric vehicle or a hybrid vehicle that can be grasped and can properly drive the vehicle drive source (travel motor 40).
[Brief description of the drawings]
FIG. 1 is a system diagram of a vehicle control device of the present invention.
FIG. 2 is a timing chart showing voltage and current detection according to the present invention.
FIG. 3 is a block diagram showing an assembled battery voltage detection device that converts each module voltage of the assembled battery 19 into a digital signal.
4 is a block circuit diagram showing an embodiment of a battery monitoring device for an assembled battery using the voltage detection device for the assembled battery of FIG. 3. FIG.
[Explanation of symbols]
1 is an individual voltage detection means, 19 is an assembled battery, 30 is a battery pack, 40 is a motor for traveling, 50 is an inverter circuit, 60 is a current detection means, 70 is a travel control unit, 80 is a controller, 81 is a battery state calculation means .

Claims (5)

互いに直列接続されて高圧の組み電池を構成する多数の電池モジュ−ルの各モジュ−ル電圧を順次に個別に検出する電圧検出回路と、前記組み電池の総電流を検出する電流検出回路と、前記電圧検出回路と前記電流検出回路により、検出された電圧および電流に応じて組み電池の充電状態を演算する電池状態演算手段とを備えた組み電池の充電状態検出装置において、
前記電流検出回路は、前記組み電池と前記組み電池に接続される電力変換器との間に設けられた電流センサにより前記組み電池の総電流を検出するものであって、前記電池演算手段が出力する信号に基づいて前記電圧検出回路による電圧検出と前記電流検出回路による電流検出を行うことにより電圧検出時期と電流検出時期とを同期させたことを特徴とする組み電池の充電状態検出装置。
A voltage detection circuit that individually detects each module voltage of a large number of battery modules that are connected in series to form a high-voltage assembled battery, and a current detection circuit that detects the total current of the assembled battery; In a battery pack state of charge detection device comprising battery state calculation means for calculating the state of charge of the battery pack according to the voltage and current detected by the voltage detection circuit and the current detection circuit,
The current detection circuit detects a total current of the assembled battery by a current sensor provided between the assembled battery and a power converter connected to the assembled battery, and the battery calculation unit outputs An assembled battery charge state detection device , wherein voltage detection time and current detection time are synchronized by performing voltage detection by the voltage detection circuit and current detection by the current detection circuit based on a signal to be detected.
請求項1記載の電池の充電状態検出装置において、前記電池モジュールと前記電圧検出回路とを1つのパッケージに納めていることを特徴とする組み電池の充電状態検出装置。  2. The battery charge state detection device according to claim 1, wherein the battery module and the voltage detection circuit are housed in one package. 互いに直列接続されて高圧の組み電池を構成する多数の電池モジュ−ルと、この電池モジュールの各モジュ−ル電圧を順次に個別に検出する電圧検出回路とを有する電池パックと、前記組み電池の総電流を検出する電流検出回路と、前記電圧検出回路と前記電流検出回路により、検出された電圧および電流に応じて組み電池の充電状態を演算する電池状態演算手段とを備えた組み電池の充電状態検出装置と、この充電状態検出装置によって検出された電池の充電状態に応じて、車両の駆動源を制御する駆動源制御回路とを備え、
前記電流検出回路は、前記組み電池と前記組み電池に接続される電力変換器との間に設けられた電流センサにより前記組み電池の総電流を検出するものであって、前記電池演算手段が出力する信号に基づいて前記電圧検出回路による電圧検出と前記電流検出回路による電流検出を行うことにより電圧検出時期と電流検出時期とを同期させたことを特徴とする車両制御装置。
A battery pack having a number of battery modules that are connected in series to form a high-voltage assembled battery, and a voltage detection circuit that individually detects each module voltage of the battery module individually; Charging an assembled battery comprising: a current detection circuit for detecting a total current; and a battery state calculation means for calculating a charge state of the assembled battery according to the voltage and current detected by the voltage detection circuit and the current detection circuit. A state detection device, and a drive source control circuit that controls the drive source of the vehicle according to the state of charge of the battery detected by the charge state detection device;
The current detection circuit detects a total current of the assembled battery by a current sensor provided between the assembled battery and a power converter connected to the assembled battery, and the battery calculation unit outputs A vehicle control device that synchronizes voltage detection time and current detection time by performing voltage detection by the voltage detection circuit and current detection by the current detection circuit based on a signal to be detected .
請求項3記載の車両制御装置において、前記電流検出回路、前記充電状態検出回路および前記駆動源制御回路とは、前記電池パックとは異なる別のパッケージに収納されていることを特徴とする車両制御装置。  4. The vehicle control device according to claim 3, wherein the current detection circuit, the charge state detection circuit, and the drive source control circuit are housed in a different package from the battery pack. apparatus. 請求項4記載の車両制御装置において、前記電圧検出回路により検出された電圧は、前記充電状態検出回路に通信により送られることを特徴とする車両制御装置。  5. The vehicle control device according to claim 4, wherein the voltage detected by the voltage detection circuit is transmitted to the charge state detection circuit by communication.
JP07432099A 1999-03-18 1999-03-18 Charged state detection device for assembled battery and vehicle control device using the device Expired - Fee Related JP4035913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07432099A JP4035913B2 (en) 1999-03-18 1999-03-18 Charged state detection device for assembled battery and vehicle control device using the device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07432099A JP4035913B2 (en) 1999-03-18 1999-03-18 Charged state detection device for assembled battery and vehicle control device using the device

Publications (2)

Publication Number Publication Date
JP2000270492A JP2000270492A (en) 2000-09-29
JP4035913B2 true JP4035913B2 (en) 2008-01-23

Family

ID=13543722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07432099A Expired - Fee Related JP4035913B2 (en) 1999-03-18 1999-03-18 Charged state detection device for assembled battery and vehicle control device using the device

Country Status (1)

Country Link
JP (1) JP4035913B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103008A1 (en) * 2012-12-28 2014-07-03 株式会社日立製作所 Assembled battery system, storage battery system, and method for monitoring and controlling assembled battery system
WO2023095411A1 (en) * 2021-11-24 2023-06-01 株式会社デンソーテン Battery monitoring system, battery monitoring device, and battery monitoring method

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4628019B2 (en) * 2004-05-31 2011-02-09 三洋電機株式会社 Data collection device
JP4519073B2 (en) * 2006-01-10 2010-08-04 三洋電機株式会社 Charge / discharge control method and control device for battery pack
JP5065000B2 (en) * 2007-12-28 2012-10-31 三洋電機株式会社 Voltage measuring device and assembled battery system including the same
JP5088557B2 (en) * 2008-01-18 2012-12-05 本田技研工業株式会社 Capacitor and battery system
KR100995075B1 (en) 2008-08-26 2010-11-18 삼성에스디아이 주식회사 Battery management system and driving method thereof
CN102209905B (en) * 2008-11-10 2013-12-25 株式会社Lg化学 Apparatus and method for synchronizing and measuring current and voltage of secondary battery pack
US8417472B2 (en) * 2008-12-19 2013-04-09 02Micro Inc. Synchronized data sampling systems and methods
KR101016813B1 (en) 2009-05-19 2011-02-21 에스비리모티브 주식회사 Battery management system and driving method thereof
JP5468846B2 (en) * 2009-08-25 2014-04-09 矢崎総業株式会社 Multi-battery battery status monitoring unit
TW201239379A (en) * 2011-03-23 2012-10-01 Dhc Specialty Corp Frequency-variable detection method for battery goodness status and device thereof
DE102011079291A1 (en) * 2011-07-18 2013-01-24 Sb Limotive Company Ltd. Battery management system and method for determining the states of charge of battery cells, battery and motor vehicle with battery management system
KR102361784B1 (en) * 2017-09-11 2022-02-10 주식회사 엘지에너지솔루션 System and method for synchronizing pack voltage and pack current of bms
JP2019132765A (en) 2018-02-01 2019-08-08 株式会社デンソー Battery monitoring device
WO2020084817A1 (en) * 2018-10-26 2020-04-30 住友電気工業株式会社 Battery monitoring system, and physical quantity aggregation method
CN112440817B (en) * 2019-08-31 2022-06-14 比亚迪股份有限公司 Battery management system and method and electric automobile

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03225286A (en) * 1990-01-31 1991-10-04 Nippon Densan Corp Residual quantity display device
JP3922655B2 (en) * 1996-07-12 2007-05-30 株式会社東京アールアンドデー Power supply control system and power supply control method
JPH116449A (en) * 1997-06-16 1999-01-12 Denso Corp Hybrid car control device
JPH1155866A (en) * 1997-08-04 1999-02-26 Denso Corp Battery charger
JPH11136867A (en) * 1997-10-31 1999-05-21 Hitachi Ltd Storage system
JP3226161B2 (en) * 1997-11-28 2001-11-05 株式会社デンソー Battery cell voltage detector
JPH11150880A (en) * 1997-11-20 1999-06-02 Denso Corp Voltage-detecting device of assembled battery
JP3395952B2 (en) * 1997-11-26 2003-04-14 株式会社デンソー Voltage detector for assembled batteries for electric vehicles
JPH11299122A (en) * 1998-02-10 1999-10-29 Denso Corp Method and device for charging state control
JPH11262188A (en) * 1998-03-13 1999-09-24 Denso Corp Equipment and method for correcting variations in series connected battery
JP3827123B2 (en) * 1998-06-24 2006-09-27 株式会社デンソー Control device for battery pack for electric vehicles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103008A1 (en) * 2012-12-28 2014-07-03 株式会社日立製作所 Assembled battery system, storage battery system, and method for monitoring and controlling assembled battery system
WO2023095411A1 (en) * 2021-11-24 2023-06-01 株式会社デンソーテン Battery monitoring system, battery monitoring device, and battery monitoring method

Also Published As

Publication number Publication date
JP2000270492A (en) 2000-09-29

Similar Documents

Publication Publication Date Title
JP4035913B2 (en) Charged state detection device for assembled battery and vehicle control device using the device
US7663341B2 (en) System for controlling voltage balancing in a plurality of lithium-ion cell battery packs and method thereof
EP3130934B1 (en) Battery monitoring device
KR100995075B1 (en) Battery management system and driving method thereof
US8446123B2 (en) State monitoring unit for monitoring a state of an assembled battery
JP5088557B2 (en) Capacitor and battery system
US6437538B1 (en) Battery voltage measurement apparatus
CN102227645B (en) Apparatus and method for monitoring cell voltage of battery pack
US8564277B2 (en) System for and method of virtual simultaneous sampling with a single ADC core
JP4020630B2 (en) Power supply device having a voltage detection circuit
JP4421070B2 (en) Laminate voltage measuring device
JP4628019B2 (en) Data collection device
US20170113564A1 (en) Energy storage apparatus, vehicle apparatus, and control method
JP4588675B2 (en) Voltage detection device and electric vehicle
JP2003240806A (en) Cell voltage measurement device for battery pack and its method
JP5955507B2 (en) Voltage detection circuit and voltage detection device for power storage device, and vehicle equipped with the same
US9793582B2 (en) Method for data transmission on battery systems having a plurality of cells
JP2006353020A (en) Power supply device for vehicle
WO2021085869A1 (en) Method for estimating battery state of charge and battery management system equipped with same
CN117054895A (en) Battery monitoring device and method
JP2003254998A (en) Cell voltage measuring method of battery pack and its device
JP7107707B2 (en) Battery monitoring device and battery monitoring method
CN110622019A (en) Battery system and vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071022

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees