JPH11160367A - Apparatus for detecting voltage of battery pack for electric automobile - Google Patents

Apparatus for detecting voltage of battery pack for electric automobile

Info

Publication number
JPH11160367A
JPH11160367A JP9324529A JP32452997A JPH11160367A JP H11160367 A JPH11160367 A JP H11160367A JP 9324529 A JP9324529 A JP 9324529A JP 32452997 A JP32452997 A JP 32452997A JP H11160367 A JPH11160367 A JP H11160367A
Authority
JP
Japan
Prior art keywords
voltage
battery
module
circuit
voltage detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9324529A
Other languages
Japanese (ja)
Other versions
JP3395952B2 (en
Inventor
Takumi Shimizu
工 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP32452997A priority Critical patent/JP3395952B2/en
Priority to US09/195,555 priority patent/US6313637B1/en
Publication of JPH11160367A publication Critical patent/JPH11160367A/en
Application granted granted Critical
Publication of JP3395952B2 publication Critical patent/JP3395952B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus for detecting a voltage of a battery pack for an electric automobile which can more highly accurately detect an open module voltage, a void a useless life decrease of the high-voltage battery pack, detect a module voltage stably irrespective of a large change in state in which a running power is stored. SOLUTION: A main battery 19 for storing a high-voltage, e.g. 300 V running power is divided to many battery modules 101-120. A module voltage of each battery module 101-120 is detected by a differential voltage detection circuit 201-220 and an A/D converter 5-8, and transmitted to a signal-processing circuit part 1. A circuit-driving power for the differential voltage detection circuits 201-220 and A/D converters 5-8 is supplied, not from the main battery 19, but from an auxiliary battery 301 through a DC-DC converter 300.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、組み電池の電圧検
出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an assembled battery voltage detecting device.

【0002】[0002]

【従来の技術】特開平8−140204号公報は、組み
電池を構成する複数の電池モジュ−ルのモジュ−ル電圧
を個別に検出するモジュ−ル電圧検出回路部の出力電圧
をフォトカプラ素子を通じて低圧の信号処理回路部に送
信する組み電池の電圧検出装置を提案している。
2. Description of the Related Art Japanese Unexamined Patent Publication No. Hei 8-140204 discloses an output voltage of a module voltage detecting circuit for individually detecting module voltages of a plurality of battery modules constituting an assembled battery through a photocoupler element. A voltage detector for a battery pack for transmitting to a low-voltage signal processing circuit has been proposed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述し
た従来の組み電池の電圧検出装置では、各モジュ−ル電
圧検出回路部は、それぞれの電池モジュ−ルから個別に
回路作動用電力を個別に給電される個別給電方式か、又
は、組み電池全体から共通して回路作動用電力を給電さ
れる総電圧給電方式のどちらかを採用することになる
が、電気自動車の走行電力蓄電用の主バッテリに用いる
場合、この主バッテリは走行及び充電の状況に応じて電
圧が大きく変動するので、どちらの方式を採用するにし
ても低容量時における作動信頼性の低下が懸念された。
However, in the above-described conventional voltage detecting apparatus for assembled batteries, each module voltage detecting circuit unit individually supplies circuit operating power from each battery module. Either an individual power supply system or a total voltage power supply system in which power for circuit operation is supplied in common from the entire assembled battery will be adopted. In the case of using the main battery, the voltage of the main battery greatly fluctuates depending on the running and charging conditions. Therefore, whichever method is adopted, there is a concern that the operation reliability at the time of low capacity is reduced.

【0004】また、各電池モジュ−ルの容量の正確な測
定にはその充放電電流が0の時の端子電圧すなわち開放
端子電圧の検出が有効であるが、電池モジュ−ル自身が
モジュ−ル電圧検出回路部に回路作動用電力を給電する
前者の給電方式の場合に放電電流が0とならないので正
確な開放端子電圧を計測することができず、開放端子電
圧の高精度の計測が容易ではないという不具合があっ
た。
In order to accurately measure the capacity of each battery module, it is effective to detect the terminal voltage when the charging / discharging current is 0, that is, the open terminal voltage. In the case of the former power supply method of supplying the circuit operating power to the voltage detection circuit, the discharge current does not become 0, so that it is not possible to accurately measure the open terminal voltage, and it is not easy to measure the open terminal voltage with high accuracy. There was a problem that there was no.

【0005】更に、後者の給電方式の場合には、それぞ
れのモジュ−ル電圧検出回路部へその回路作動用電力を
主バッテリすなわち組み電池全体から給電するので電力
消費が大きいという問題があり、前者の場合には、各モ
ジュ−ル電圧検出回路部の電力消費のばらつきが各電池
モジュ−ルの容量ばらつきと、それによる電池の劣化の
不平等を生じさせるという問題があった。
Further, in the case of the latter power supply system, the power for operating the circuit is supplied to each module voltage detection circuit section from the main battery, that is, the whole assembled battery, so that there is a problem that the power consumption is large. In the case of (1), there is a problem that variations in the power consumption of each module voltage detection circuit unit cause variations in the capacities of the respective battery modules and unequal battery deterioration.

【0006】本発明は上記問題点に鑑みなされたもので
あり、開放モジュ−ル電圧がより高精度に検出でき、高
圧の組み電池の無用な寿命短縮を回避でき、更に、走行
電力蓄電状態の大きな変動にもかかわらずモジュ−ル電
圧の安定な検出を行うことができる電気自動車用組み電
池の電圧検出装置を提供することをその解決すべき課題
としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and it is possible to detect the open module voltage with higher accuracy, to avoid unnecessary shortening of the life of a high-voltage assembled battery, and to further reduce the running power storage state. An object of the present invention is to provide a voltage detecting device for an assembled battery for an electric vehicle, which can stably detect a module voltage despite a large fluctuation.

【0007】[0007]

【課題を解決するための手段】請求項1に記載した本発
明の組み電池の電圧検出装置によれば、たとえば300
Vといった高圧の走行電力蓄電用の主バッテリは多数の
電池モジュ−ルに分割され、各電池モジュ−ルのモジュ
−ル電圧はモジュ−ル電圧検出回路部で検出されて、信
号処理回路部に伝送される。
According to the voltage detecting device for an assembled battery of the present invention, for example, 300
A main battery for storing high-voltage running power such as V is divided into a number of battery modules, and the module voltage of each battery module is detected by a module voltage detection circuit section and sent to a signal processing circuit section. Transmitted.

【0008】本構成では特に、それぞれ異なるとともに
高電位を処理するモジュ−ル電圧検出回路部の回路作動
用電力を主バッテリではなく補機バッテリから給電する
ことをその特徴としている。このようにすれば、電気自
動車用組み電池の電圧検出装置において、その開放モジ
ュ−ル電圧をより高精度に検出でき、高圧の組み電池の
無用な寿命短縮を回避でき、更に、走行電力蓄電状態の
大きな変動にもかかわらずモジュ−ル電圧の安定な検出
を行うことができる。
In this configuration, the power for operating the circuit of the module voltage detection circuit which is different and processes a high potential is supplied not from the main battery but from the auxiliary battery. With this configuration, in the voltage detection device for an assembled battery for an electric vehicle, the open module voltage can be detected with higher accuracy, unnecessary shortening of the life of the high-voltage assembled battery can be avoided, and the running power storage state can be further reduced. Module voltage can be detected stably despite large fluctuations in the module voltage.

【0009】また、モジュ−ル電圧検出のために、この
モジュ−ル電圧を発生する各電池モジュ−ルの蓄電量を
消耗させることがないので、高精度のモジュ−ル電圧、
総電圧及びそれに基づく容量推定が可能となり、更にモ
ジュ−ル電圧検出回路部の回路作動用電力分は電池モジ
ュ−ルの放電電流を減らせるので、特に負荷電流が0か
または小さい場合において、正確な開放モジュ−ル電圧
を計測することができ、それにより高精度の容量推定が
可能となる。ちなみに、開放端子電圧と容量とは密接な
相関関係をもつ。また、組み電池の蓄電量が大きく低下
する長距離走行後でも組み電池から給電されていないの
で、その電圧低下又は容量不足の影響を受けることがな
く、特に高精度のモジュ−ル電圧検出を必要とするこの
組み電池の蓄電量低下時においても安定にモジュ−ル電
圧検出を行うことができる。
In addition, since the amount of power stored in each battery module that generates the module voltage is not consumed for detecting the module voltage, a highly accurate module voltage can be obtained.
It is possible to estimate the total voltage and the capacity based on it, and the power for operating the circuit of the module voltage detection circuit can reduce the discharge current of the battery module, so it is accurate especially when the load current is zero or small. It is possible to measure the open-circuit module voltage, thereby enabling a highly accurate capacity estimation. Incidentally, the open terminal voltage and the capacitance have a close correlation. In addition, since power is not supplied from the assembled battery even after long-distance running, when the charged amount of the assembled battery is greatly reduced, there is no need to be affected by the voltage drop or capacity shortage. The module voltage can be detected stably even when the charged amount of the battery pack decreases.

【0010】また更に、モジュ−ル電圧検出回路部の回
路作動用電力のばらつきにより各電池モジュ−ルの消耗
の程度がばらついて、電池モジュ−ルの劣化が不平等と
なることもない。請求項2記載の構成によれば請求項1
記載の電気自動車用組み電池の電圧検出装置において更
に、モジュ−ル電圧検出回路部は、互いに隣接する複数
の電池モジュ−ルのモジュ−ル電圧をそれぞれ検出する
複数の差動型電圧検出回路により構成される電圧検出ブ
ロックを複数有し、入出力絶縁型のDC−DCコンバ−
タは各電圧検出ブロックごとに個別に設けられる。
Further, the degree of consumption of each battery module is not varied due to the variation of the circuit operating power of the module voltage detecting circuit portion, and the deterioration of the battery modules does not become unequal. According to the configuration of claim 2, claim 1 is
In the above-described voltage detecting device for an assembled battery for an electric vehicle, the module voltage detecting circuit unit may further include a plurality of differential voltage detecting circuits for detecting module voltages of a plurality of battery modules adjacent to each other. I / O-isolated DC-DC converter with multiple configured voltage detection blocks
The data is provided individually for each voltage detection block.

【0011】このようにすれば、組み電池の電池モジュ
−ルが、それぞれ異なる電位と非常な高圧をもつにもか
かわらず、回路構成を一層簡素化することができる。請
求項3記載の構成によれば請求項2記載の電気自動車用
組み電池の電圧検出装置において更に、各電圧検出ブロ
ックの出力は信号処理回路部へフォトカプラ素子を通じ
て出力される。 このようにすれば、各電圧検出ブロッ
クの出力電圧が高圧かつ互いに異なるDC電位をもつに
もかかわらず、各信号電圧のDCレベル(基準電位)の
共通化と、後段の信号処理回路部の低圧駆動とを実現す
ることができる。
In this way, the circuit configuration can be further simplified despite the fact that the battery modules of the assembled battery have different potentials and very high voltages. According to a third aspect of the present invention, in the voltage detecting device for an assembled battery for an electric vehicle according to the second aspect, an output of each voltage detecting block is output to a signal processing circuit unit through a photocoupler element. With this configuration, the DC levels (reference potentials) of the signal voltages can be shared and the low voltage of the signal processing circuit unit in the subsequent stage can be shared even though the output voltages of the voltage detection blocks have high voltages and different DC potentials. Driving can be realized.

【0012】[0012]

【発明の実施の形態】以下、本発明の好適な態様を以下
の実施例により詳細に説明する。ただし、本発明は下記
の実施例の構成に限定されるものではなく、置換可能な
公知回路を用いて構成できることは当然である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the following examples. However, the present invention is not limited to the configuration of the following embodiment, and it is obvious that the present invention can be configured using a replaceable known circuit.

【0013】[0013]

【実施例】本発明の電気自動車用組み電池の電圧検出装
置の一実施例を図1、図2を参照して説明する。図1
は、組み電池19の各モジュ−ル電圧をデジタル信号に
変換する電気自動車用組み電池の電圧検出装置を示すブ
ロック回路図であり、電気自動車の走行モ−タ−給電用
の組み電池19、差動型電圧検出回路201〜220、
A/D変換回路5〜8が図示されている。図2は図1の
この電圧検出装置の信号の流れを示すブロック回路図で
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of a voltage detecting device for an assembled battery for an electric vehicle according to the present invention will be described with reference to FIGS. FIG.
FIG. 2 is a block circuit diagram showing an assembled battery voltage detecting device for an electric vehicle for converting each module voltage of the assembled battery 19 into a digital signal. Dynamic voltage detection circuits 201 to 220,
A / D conversion circuits 5 to 8 are illustrated. FIG. 2 is a block circuit diagram showing a signal flow of the voltage detection device of FIG.

【0014】1は電池の充放電を制御するマイコン、2
はデマルチプレクサからなるクロック信号分配用のセレ
クタ回路(以下、クロック信号セレクタ回路ともい
う)、3はデマルチプレクサからなる制御信号分配用の
セレクタ回路(以下、制御信号セレクタ回路ともい
う)、4はマルチプレクサからなるデジタル信号選択用
のセレクタ回路(以下、デ−タセレクタ回路ともい
う)、5〜10はA/D変換回路、201〜220及び
13は差動型電圧検出回路、14はアナログ増幅回路、
15は電流センサ、101〜120は組み電池19の各
電池モジュ−ル(単にモジュ−ルともいう)である。た
だし、図2において、電池モジュ−ル106〜120、
差動型電圧検出回路206〜220、A/D変換回路6
〜8は図示省略されている。
1 is a microcomputer for controlling charging and discharging of the battery, 2
Is a selector circuit for clock signal distribution composed of a demultiplexer (hereinafter also referred to as a clock signal selector circuit), 3 is a selector circuit for distribution of control signals composed of a demultiplexer (hereinafter also referred to as a control signal selector circuit), and 4 is a multiplexer 5 to 10 are A / D converter circuits, 201 to 220 and 13 are differential voltage detection circuits, 14 is an analog amplifier circuit,
Reference numeral 15 denotes a current sensor, and reference numerals 101 to 120 denote each battery module (also simply referred to as a module) of the assembled battery 19. However, in FIG. 2, the battery modules 106 to 120,
Differential voltage detection circuits 206 to 220, A / D conversion circuit 6
8 are not shown.

【0015】また、図1において、301は電気自動車
の制御装置及び電子装置へ給電するための補機バッテ
リ、300は補機バッテリ301から給電される直流電
力を必要なDC電位レベルと必要な電圧とをもつ直流電
源電圧に変換する電圧検出ブロック給電用電源回路(D
CーDCコンバータ)、20a、20b、20c、20
dは、A/D変換回路5〜8の出力を電気絶縁しつつマ
イコン1に伝送するフォトカプラ素子である。同様に、
A/D変換回路9、10の出力も図示しないフォトカプ
ラ素子によりマイコン1に伝送される。
In FIG. 1, reference numeral 301 denotes an auxiliary battery for supplying electric power to a control device and an electronic device of an electric vehicle; and 300, a DC power supplied from the auxiliary battery 301 to a required DC potential level and a required voltage. Power supply circuit (D
C-DC converter), 20a, 20b, 20c, 20
Reference numeral d denotes a photocoupler element that transmits the outputs of the A / D conversion circuits 5 to 8 to the microcomputer 1 while electrically insulating the outputs. Similarly,
Outputs of the A / D conversion circuits 9 and 10 are also transmitted to the microcomputer 1 by a photocoupler element (not shown).

【0016】電池モジュ−ル101〜120はそれぞれ
12個の単電池を縦続接続してなる。電池モジュ−ル1
01は最高位のモジュ−ル電圧をもち、電池モジュ−ル
120は最低位のモジュ−ル電圧をもつ。20は各セレ
クタ回路2〜4と各A/D変換回路5〜10を接続する
シリアル信号線群であり、この実施例では、各信号線は
マイコン1の保護のために上述したフォトカプラ素子2
0a、20b、20c、20dなどを有している。
Each of the battery modules 101 to 120 is formed by cascading 12 cells. Battery module 1
01 has the highest module voltage, and the battery module 120 has the lowest module voltage. Reference numeral 20 denotes a serial signal line group for connecting each of the selector circuits 2 to 4 and each of the A / D conversion circuits 5 to 10. In this embodiment, each of the signal lines is a photocoupler element 2 for protecting the microcomputer 1.
0a, 20b, 20c, 20d, etc.

【0017】A/D変換回路5〜10はそれぞれ5チャ
ンネル入力の切り替え入力型のA/D変換回路であり、
入力される切り替え信号により、各A/D変換回路5〜
10は同期してチャンネル切り替えされる。図1からわ
かるように、電池モジュ−ル101のモジュ−ル電圧は
差動型電圧検出回路201で所定の基準電位1に対する
信号電圧に変換されてからA/D変換回路5でA/D変
換される。同様に、電池モジュ−ル102のモジュ−ル
電圧は差動型電圧検出回路202で所定の基準電位1に
対する信号電圧に変換されてからA/D変換回路5でA
/D変換され、電池モジュ−ル103のモジュ−ル電圧
は差動型電圧検出回路203で所定の基準電位1に対す
る信号電圧に変換されてからA/D変換回路5でA/D
変換され、電池モジュ−ル104のモジュ−ル電圧は差
動型電圧検出回路203で所定の基準電位1に対する信
号電圧に変換されてからA/D変換回路5でA/D変換
され、電池モジュ−ル105のモジュ−ル電圧は差動型
電圧検出回路205で所定の基準電位1に対する信号電
圧に変換されてからA/D変換回路5でA/D変換され
る。
Each of the A / D conversion circuits 5 to 10 is a switching input type A / D conversion circuit having five channel inputs.
Depending on the input switching signal, each of the A / D conversion circuits 5 to 5
Channels 10 are switched synchronously. As can be seen from FIG. 1, the module voltage of the battery module 101 is converted to a signal voltage corresponding to a predetermined reference potential 1 by a differential voltage detection circuit 201 and then A / D converted by an A / D conversion circuit 5. Is done. Similarly, the module voltage of the battery module 102 is converted to a signal voltage corresponding to a predetermined reference potential 1 by the differential voltage detection circuit 202, and then the A / D conversion circuit 5 converts the signal voltage to A.
/ D conversion, the module voltage of the battery module 103 is converted to a signal voltage corresponding to a predetermined reference potential 1 by the differential voltage detection circuit 203, and then the A / D conversion circuit 5 converts the signal voltage to an A / D signal.
The module voltage of the battery module 104 is converted to a signal voltage corresponding to a predetermined reference potential 1 by the differential voltage detection circuit 203, and then A / D converted by the A / D conversion circuit 5, and The module voltage of the module 105 is converted into a signal voltage corresponding to a predetermined reference potential 1 by the differential voltage detection circuit 205 and then A / D converted by the A / D conversion circuit 5.

【0018】同様に、電池モジュ−ル106〜110の
モジュ−ル電圧は差動型電圧検出回路206〜210を
通じてA/D変換回路6に入力され、電池モジュ−ル1
11〜115のモジュ−ル電圧は差動型電圧検出回路2
11〜215を通じてA/D変換回路7に入力され、電
池モジュ−ル116〜120のモジュ−ル電圧は差動型
電圧検出回路216〜220を通じてA/D変換回路8
に入力される。
Similarly, the module voltages of the battery modules 106 to 110 are input to the A / D conversion circuit 6 through the differential voltage detection circuits 206 to 210, and the battery module 1
The module voltages of 11 to 115 are applied to the differential voltage detection circuit 2.
The module voltages of the battery modules 116 to 120 are input to the A / D conversion circuit 7 through 11 to 215, and the A / D conversion circuit 8 is output to the A / D conversion circuit 8 through the differential voltage detection circuits 216 to 220.
Is input to

【0019】また、組み電池19の総電圧は差動型電圧
検出回路13で所定の共通接地電位に対する信号電圧に
変換されからA/D変換回路9でA/D変換され、組み
電池19の電流は増幅回路14を通じてA/D変換回路
19でA/D変換され、図示しないフォトカプラ素子を
通じてマイコン1に出力される。A/D変換回路5〜1
0の出力は、デ−タセレクタ回路4にて時間順次に選択
され、信号SINとしてマイコン1に読み込まれる。A
/D変換回路5〜10は同期動作シリアル出力型のA/
D変換回路であって、変換デ−タすなわちシリアルデジ
タル信号はデジタル信号確定後に入力するクロックパル
スに同期して出力される。
Further, the total voltage of the assembled battery 19 is converted into a signal voltage with respect to a predetermined common ground potential by the differential voltage detection circuit 13, and then A / D converted by the A / D conversion circuit 9. Is A / D converted by an A / D conversion circuit 19 through an amplification circuit 14 and output to the microcomputer 1 through a photocoupler element (not shown). A / D conversion circuits 5-1
The output of 0 is sequentially selected by the data selector circuit 4 and read into the microcomputer 1 as a signal SIN. A
/ D conversion circuits 5 to 10 are synchronous operation serial output type A /
In a D conversion circuit, conversion data, that is, a serial digital signal is output in synchronization with a clock pulse input after the digital signal is determined.

【0020】更に説明すると、A/D変換回路5は、ア
ナログ信号が入力されるアナログ入力端子、シリアル信
号であるデジタル信号を出力するデ−タ出力端子、シリ
アル信号である制御命令が入力される制御命令入力端
子、及び、同期用のクロックパルスが入力されるクロッ
クパルス入力端子を有し、読み込み指令が制御命令入力
端子へ入力されると、クロックパルス入力端子へ入力さ
れるクロックパルスのエッジに同期してアナログ信号の
読み込みが行われ、その後、次のクロックパルスの入力
により8ビットのシリアルデジタル信号が出力される。
その他のA/D変換回路6〜10も同じ構造を有してい
る。
More specifically, the A / D conversion circuit 5 receives an analog input terminal for inputting an analog signal, a data output terminal for outputting a digital signal as a serial signal, and a control command as a serial signal. A control command input terminal, and a clock pulse input terminal to which a clock pulse for synchronization is input, and when a read command is input to the control command input terminal, an edge of the clock pulse input to the clock pulse input terminal The reading of the analog signal is performed in synchronism, and then the input of the next clock pulse outputs an 8-bit serial digital signal.
The other A / D conversion circuits 6 to 10 have the same structure.

【0021】この組み電池の電圧検出装置の更に詳細な
動作を以下に説明する。マイコン1は、クロック信号セ
レクタ回路2へクロックパルスSCLK及びA/D変換
回路選択信号SELを出力し、制御信号セレクタ回路3
へ読み込み指令などの制御命令信号SOUT及びA/D
変換回路選択信号SELを出力し、デ−タセレクタ回路
4へA/D変換回路選択信号SELを出力し、デ−タセ
レクタ回路4からシリアルデジタル信号を受け取る。
A more detailed operation of the battery pack voltage detecting device will be described below. The microcomputer 1 outputs the clock pulse SCLK and the A / D conversion circuit selection signal SEL to the clock signal selector circuit 2, and outputs the control signal selector circuit 3
Command signals SOUT and A / D
A conversion circuit selection signal SEL is output, an A / D conversion circuit selection signal SEL is output to the data selector circuit 4, and a serial digital signal is received from the data selector circuit 4.

【0022】(同時読み込み)マイコン1は、A/D変
換回路選択信号SELによりA/D変換回路5〜10の
全てを選択することをクロック信号セレクタ回路2及び
制御信号セレクタ回路3に通知し、これにより制御信号
セレクタ回路3は読み込み命令をA/D変換回路5〜1
0全てに送信し、クロック信号セレクタ回路2はクロッ
クパルスSCLKをA/D変換回路5〜10全てに送信
し、各A/D変換回路5〜10は読み込み命令入力直後
に入力するクロックパルスのエッジに同期してアナログ
信号の読み込みを行い、それを8ビットのデジタル信号
に変換して保持する。なお、この時、A/D変換回路5
〜10の全てを選択するA/D変換回路選択信号SEL
はデ−タセレクタ回路4に対してはデ−タセレクタ回路
4の内部において無効とされる。
(Simultaneous reading) The microcomputer 1 notifies the clock signal selector circuit 2 and the control signal selector circuit 3 that all of the A / D conversion circuits 5 to 10 are selected by the A / D conversion circuit selection signal SEL. As a result, the control signal selector circuit 3 sends the read command to the A / D conversion circuits 5-1.
0, the clock signal selector circuit 2 transmits the clock pulse SCLK to all the A / D conversion circuits 5 to 10, and each of the A / D conversion circuits 5 to 10 receives the edge of the clock pulse input immediately after the input of the read command. The analog signal is read in synchronism with the analog signal, and is converted into an 8-bit digital signal and held. At this time, the A / D conversion circuit 5
A / D conversion circuit selection signal SEL for selecting all of -10
Is invalidated inside the data selector circuit 4 with respect to the data selector circuit 4.

【0023】(順次出力)次に、マイコン1は、A/D
変換回路選択信号SELによりA/D変換回路5を選択
することをセレクタ回路2〜4に通知し、これによりク
ロック信号セレクタ回路2はクロックパルスSCLKを
A/D変換回路5にだけ送信し、これによりA/D変換
回路5はクロックパルスSCLKのエッジに同期してシ
リアルデジタル信号をデ−タセレクタ回路4に出力し、
デ−タセレクタ回路4はA/D変換回路選択信号SEL
によりA/D変換回路5を選択しているので、このA/
D変換回路5からのシリアルデジタル信号はマイコン1
に送信される。
(Sequential output) Next, the microcomputer 1 performs A / D
The selection of the A / D conversion circuit 5 is notified to the selector circuits 2 to 4 by the conversion circuit selection signal SEL, whereby the clock signal selector circuit 2 transmits the clock pulse SCLK only to the A / D conversion circuit 5, As a result, the A / D conversion circuit 5 outputs a serial digital signal to the data selector circuit 4 in synchronization with the edge of the clock pulse SCLK.
The data selector circuit 4 outputs an A / D conversion circuit selection signal SEL.
Selects the A / D conversion circuit 5, the A / D conversion circuit 5
The serial digital signal from the D conversion circuit 5 is
Sent to.

【0024】次に、マイコン1は、A/D変換回路選択
信号SELによりA/D変換回路6を選択することをセ
レクタ回路2〜4に通知し、その後は上記と同じ動作を
行ってA/D変換回路6のシリアルデジタル信号をマイ
コン1へ送信し、以下同様に、各A/D変換回路8〜1
0のシリアルデジタル信号がマイコン1へ送信される。
Next, the microcomputer 1 notifies the selector circuits 2 to 4 that the A / D conversion circuit 6 is to be selected by the A / D conversion circuit selection signal SEL, and thereafter performs the same operation as described above to execute A / D conversion. The serial digital signal of the D / A conversion circuit 6 is transmitted to the microcomputer 1, and similarly, each of the A / D conversion circuits 8 to 1
A serial digital signal of “0” is transmitted to the microcomputer 1.

【0025】なお、上記一連の動作は入力切り替え型の
マルチ入力A/D変換回路5〜10の第1の入力チャン
ネルに対して実行されるが、その後、上記一連の動作
が、第2〜第5の各チャンネル入力に対して実施され
る。次に、組み電池19の各モジュ−ル電圧を検出する
差動型電圧検出回路201〜220について、図1を参
照して説明する。
The above series of operations is executed for the first input channels of the input switching type multi-input A / D conversion circuits 5 to 10. After that, the above series of operations is performed in the second to second stages. 5 for each channel input. Next, differential voltage detection circuits 201 to 220 for detecting each module voltage of the assembled battery 19 will be described with reference to FIG.

【0026】この実施例では組み電池19を構成する合
計240個の単電池が互いに縦続接続される20個の電
池モジュ−ル101〜120に区分され、更に、電池モ
ジュ−ル101〜105は第1の電圧検出ブロックを構
成し、電池モジュ−ル106〜110は第2の電圧検出
ブロックを構成し、電池モジュ−ル111〜115は第
3の電圧検出ブロックを構成し、電池モジュ−ル116
〜120は第4の電圧検出ブロックを構成している。
In this embodiment, a total of 240 cells constituting the assembled battery 19 are divided into 20 battery modules 101 to 120 which are cascaded with each other. 1, the battery modules 106 to 110 constitute a second voltage detection block, the battery modules 111 to 115 constitute a third voltage detection block, and the battery module 116
To 120 constitute a fourth voltage detection block.

【0027】第1の電圧検出ブロックは、第1の基準電
位である基準電位1をもち、第2の電圧検出ブロックは
第2の基準電位である基準電位2をもち、第3の電圧検
出ブロックは、第3の基準電位である基準電位3をも
ち、第4の電圧検出ブロックは第4の基準電位である基
準電位4をもち、第5の電圧検出ブロックは第5の基準
電位である基準電位5を有している。
The first voltage detection block has a reference potential 1 as a first reference potential, the second voltage detection block has a reference potential 2 as a second reference potential, and a third voltage detection block. Has a reference potential 3 that is a third reference potential, the fourth voltage detection block has a reference potential 4 that is a fourth reference potential, and the fifth voltage detection block has a reference potential that is a fifth reference potential. It has a potential of 5.

【0028】この実施例では、基準電位1は電池モジュ
−ル103の低位側端子電圧(電池モジュ−ル104の
高位側端子電圧)に設定され、以下同様に、各基準電位
2〜4は、各電圧検出ブロックにおける高電位側から3
番目の電池モジュ−ルの低位側端子電圧(低位側から2
番目の電池モジュ−ルの高位側端子電圧)に設定されて
いる。
In this embodiment, the reference potential 1 is set to the lower terminal voltage of the battery module 103 (the higher terminal voltage of the battery module 104). 3 from the high potential side in each voltage detection block
The lower terminal voltage of the second battery module (2 from the lower side)
(The higher terminal voltage of the second battery module).

【0029】すなわち、この実施例では、同一の電圧検
出ブロック内の各差動型電圧検出回路の基準電位(入力
側抵抗回路網の一端に印加される定電位)は等しくさ
れ、また、各電圧検出ブロックには異なる基準電位1〜
4が印加される。更に、各基準電位1〜4は、電圧検出
ブロック内の各電池モジュ−ルの中間電位(最高端子電
圧と最低端子電圧との中間の値にできるだけ近い値)に
設定され、更に、各基準電位1〜4として電池モジュ−
ルの端子電圧を用いている。
That is, in this embodiment, the reference potential (constant potential applied to one end of the input-side resistor network) of each differential voltage detection circuit in the same voltage detection block is equalized. The detection block has different reference potentials 1 to
4 is applied. Further, each of the reference potentials 1 to 4 is set to an intermediate potential (a value as close as possible to an intermediate value between the highest terminal voltage and the lowest terminal voltage) of each battery module in the voltage detection block. Battery modules as 1-4
Terminal voltage.

【0030】図3に差動型電圧検出回路201の回路図
を示す。2011は入力抵抗r1、r2及び帰還抵抗r
f1をもつオペアンプであって、電池モジュ−ル101
の高電位側の端子電圧V1と基準電位1(ここでは電池
モジュ−ル103の低位側端子電圧(電池モジュ−ル1
04の高位側端子電圧に設定されている)との差(V1
−V4)を検出する。
FIG. 3 is a circuit diagram of the differential voltage detection circuit 201. 2011 is input resistance r1, r2 and feedback resistance r
An operational amplifier having f1 and a battery module 101
The terminal voltage V1 on the high potential side and the reference potential 1 (here, the low-side terminal voltage of the battery module 103 (the battery module 1)
04 (which is set to the high-side terminal voltage of V.04).
-V4) is detected.

【0031】同様に、2012は入力抵抗r3、r4及
び帰還抵抗rf2をもつオペアンプであって、電池モジ
ュ−ル101の低電位側の端子電圧V2と差(V1−V
4)との和から基準電位1(ここでは電池モジュ−ル1
03の低位側端子電圧(電池モジュ−ル104の高位側
端子電圧に設定されている)を減算することにより、差
V1−V2を検出する。
Similarly, reference numeral 2012 denotes an operational amplifier having input resistors r3 and r4 and a feedback resistor rf2, which is different from the terminal voltage V2 on the low potential side of the battery module 101 by (V1-V
4) and the reference potential 1 (here, the battery module 1)
The difference V1-V2 is detected by subtracting the lower terminal voltage of 03 (set to the higher terminal voltage of the battery module 104).

【0032】オペアンプ2011、2012の正、負の
電源電圧は、オペアンプの正、負の入力端の電位が仮想
接地電位すなわち、この実施例では基準電位V4にほぼ
等しくなることから、正の電源電圧VHは基準電位V4
より所定電圧(ここでは7.5V)高く設定し、負の電
源電圧VLは基準電位V4より所定電圧(ここでは7.
5V)低く設定した電圧を形成すればよい。
The positive and negative power supply voltages of the operational amplifiers 2011 and 2012 are set to the positive power supply voltage because the potentials of the positive and negative input terminals of the operational amplifier become substantially equal to the virtual ground potential, that is, the reference potential V4 in this embodiment. VH is the reference potential V4
The negative power supply voltage VL is set higher than the reference potential V4 by a predetermined voltage (7.5 V here).
5V) A low voltage may be formed.

【0033】なお、基準電位V1はこの電圧検出ブロッ
クの最高電位V1と最低電位V6の中間電位であればよ
く、特別の電圧発生回路を用いて形成してもよい。本実
施例の回路装置の他の特徴を以下に説明する。まず、同
一の電圧検出ブロック内において同一の上記基準電位を
もつ全ての差動型電圧検出回路の出力電圧を同一の順次
切り替え型のA/D変換回路に入力するので、検出すべ
き各電池モジュ−ルの電圧が大幅に異なるにもかかわら
ずA/D変換回路を共用化を実現して回路構成の大幅な
簡素化を実現することができる。
The reference potential V1 may be an intermediate potential between the highest potential V1 and the lowest potential V6 of the voltage detection block, and may be formed by using a special voltage generating circuit. Other features of the circuit device according to the present embodiment will be described below. First, the output voltages of all the differential voltage detection circuits having the same reference potential in the same voltage detection block are input to the same sequentially switching A / D conversion circuit. Although the voltage of the A / D converter is largely different, the A / D conversion circuit can be shared and the circuit configuration can be greatly simplified.

【0034】また、各A/D変換回路の出力信号は、所
定の低電源電圧で駆動されるマイコン1へフォトカプラ
素子(たとえば20a)を通じて出力されるので、前段
の電圧検出ブロックの動作電圧に合わせてそれぞれ電源
電圧が異なる各A/D変換回路の出力信号電圧のDC電
圧差を解消すると共に、高圧をカットして低電圧で作動
する単一のデジタル信号処理回路(通常はCPU)で信
号をデジタル処理することができる。
The output signal of each A / D conversion circuit is output to the microcomputer 1 driven by a predetermined low power supply voltage through a photocoupler element (for example, 20a). In addition to eliminating the DC voltage difference between the output signal voltages of the A / D conversion circuits having different power supply voltages, a single digital signal processing circuit (usually a CPU) that operates at low voltage by cutting high voltage Can be digitally processed.

【0035】上記各差動型電圧検出回路201〜22
0、A/D変換回路5〜10に印加される電源電圧(V
H、VL)を形成する電源電圧発生回路(DC−DCコ
ンバータ)300を図4を参照して説明する。301は
電気自動車の補機に給電する低圧(12V)の補機バッ
テリであり、そのDC電力は発振回路302で交流電力
に変換された4つの二次コイルをもつトランス303を
通じて4つの電圧検出ブロック給電用電源回路304〜
307に給電されている。すなわち、発振回路302、
トランス303及び電圧検出ブロック給電用電源回路3
04〜307が上記DC−DCコンバータ300を構成
している。
Each of the above differential type voltage detecting circuits 201 to 22
0, the power supply voltage (V) applied to the A / D conversion circuits 5 to 10
H, VL) will be described with reference to FIG. Reference numeral 301 denotes a low-voltage (12 V) auxiliary battery that supplies power to an auxiliary device of an electric vehicle. The DC power of the low-voltage (12 V) auxiliary battery is converted into an AC power by an oscillation circuit 302 through a transformer 303 having four secondary coils. Power supply power supply circuit 304 to
307. That is, the oscillation circuit 302,
Transformer 303 and power supply circuit 3 for power supply of voltage detection block
04 to 307 constitute the DC-DC converter 300.

【0036】これら4つの電圧検出ブロック給電用電源
回路304〜307は同じ回路構成であるので、最高電
位の電圧検出ブロックに電源電圧を給電する電源回路3
04について以下に説明する。トランス303から印加
された交流電圧は整流平滑回路3041で直流電圧に変
換されて、差動型電圧検出回路201〜205の正負の
電源端に印加される。
Since the power supply circuits 304 to 307 for supplying power to the four voltage detection blocks have the same circuit configuration, the power supply circuit 3 for supplying the power supply voltage to the highest potential voltage detection block is provided.
04 will be described below. The AC voltage applied from the transformer 303 is converted into a DC voltage by the rectifying / smoothing circuit 3041 and applied to the positive and negative power supply terminals of the differential voltage detection circuits 201 to 205.

【0037】この実施例の特徴は、基準電位Vc1を発
生する次の回路構成に特徴をもつ。具体的に説明すれ
ば、定電圧回路3042とツェナダイオ−ド3043と
を直列接続して整流平滑回路3041から直流電圧を印
加する。そして、定電圧回路3042の出力電圧をA/
D変換回路5の高位電源電圧VH’とし、定電圧回路3
042とツェナダイオ−ド3043との接続点をA/D
変換回路5の低位電源電圧VL’とし、更に、この低位
電源電圧VL’を、差動型電圧検出回路201〜205
に基準電位1=Vc1として給電する。なお、定電圧回
路3042の出力電圧=A/D変換回路5の高位電源電
圧VH’と基準電位1=Vc1との電位差は、ツェナダ
イオ−ド3043の電圧降下をほぼ等しくなるように設
定される。
This embodiment is characterized by the following circuit configuration for generating the reference potential Vc1. More specifically, a constant voltage circuit 3042 and a Zener diode 3043 are connected in series, and a DC voltage is applied from a rectifying / smoothing circuit 3041. Then, the output voltage of the constant voltage circuit 3042 is changed to A /
The high power supply voltage VH ′ of the D conversion circuit 5 is
A / D is used to connect the connection point of the Zener diode 3043
The lower power supply voltage VL ′ of the conversion circuit 5 is used as the lower power supply voltage VL ′.
Is supplied as the reference potential 1 = Vc1. The potential difference between the output voltage of the constant voltage circuit 3042 = the higher power supply voltage VH 'of the A / D conversion circuit 5 and the reference potential 1 = Vc1 is set so that the voltage drop of the Zener diode 3043 becomes substantially equal.

【0038】このようにすれば、簡単な回路構成でA/
D変換回路5に定電源電圧を印加する定電圧回路304
2に更にツェナダイオ−ド3043を一個追加するだけ
で、電池モジュ−ル104の高位側端子電圧を用いるよ
り格段に電位変動が少なく安定な基準電位を形成するこ
とができる。なお、電圧検出ブロック給電用電源回路3
04は差動型電圧検出回路201〜205及びA/D変
換回路5に給電するのと同様に、電圧検出ブロック給電
用電源回路305は差動型電圧検出回路206〜211
5及びA/D変換回路6に給電し、電圧検出ブロック給
電用電源回路306は差動型電圧検出回路211〜21
5及びA/D変換回路7に給電し、電圧検出ブロック給
電用電源回路307は差動型電圧検出回路216〜22
0及びA/D変換回路8に給電するのは当然である。
In this way, A /
A constant voltage circuit 304 for applying a constant power supply voltage to the D conversion circuit 5
By simply adding one Zener diode 3043 to 2 above, it is possible to form a stable reference potential with much less potential fluctuation than using the higher terminal voltage of the battery module 104. The power supply circuit 3 for supplying voltage to the voltage detection block
04 supplies power to the differential voltage detection circuits 201 to 205 and the A / D conversion circuit 5, and the voltage detection block power supply power supply circuit 305 supplies power to the differential voltage detection circuits 206 to 211.
5 and the A / D conversion circuit 6, and the voltage detection block power supply power supply circuit 306 is provided with differential voltage detection circuits 211 to 21.
5 and the A / D conversion circuit 7 and the power supply circuit 307 for supplying voltage to the voltage detection block is provided with differential voltage detection circuits 216 to 22.
It is natural that power is supplied to the 0 and A / D conversion circuit 8.

【0039】なお、図1では基準電位1〜4は、所定の
モジュ−ル電圧を用いるように図示しているが、実際に
は基準電位1〜4の安定性が高いことが好ましいので、
図4に示すように電圧検出ブロック給電用電源回路30
4〜307により創成されることが好ましい。この実施
例によれば以下の作用効果を奏することができる。 そ
れぞれ異なるとともに高電位を処理するモジュ−ル電圧
検出回路部(差動型電圧検出回路201〜220、A/
D変換回路5〜8)の回路作動用電力を主バッテリ(組
み電池)19ではなく補機バッテリ301から給電する
ことをその特徴としている。
Although the reference potentials 1 to 4 are shown using predetermined module voltages in FIG. 1, it is preferable that the reference potentials 1 to 4 have high stability in practice.
As shown in FIG. 4, the voltage detection block power supply power supply circuit 30
It is preferably created by 4-307. According to this embodiment, the following functions and effects can be obtained. A module voltage detection circuit unit (differential voltage detection circuits 201 to 220, A /
It is characterized in that the circuit operating power of the D conversion circuits 5 to 8) is supplied not from the main battery (assembled battery) 19 but from the auxiliary battery 301.

【0040】このようにすれば、電気自動車用組み電池
の電圧検出装置において、その開放モジュ−ル電圧をよ
り高精度に検出でき、高圧の組み電池19の無用な寿命
短縮を回避でき、更に、走行電力蓄電状態の大きな変動
にもかかわらずモジュ−ル電圧の安定な検出を行うこと
ができる。また、モジュ−ル電圧検出のために、このモ
ジュ−ル電圧を発生する各電池モジュ−ル101〜12
0の蓄電量を消耗させることがないので、高精度のモジ
ュ−ル電圧、総電圧及びそれに基づく容量推定が可能と
なり、更に上記モジュ−ル電圧検出回路部の回路作動用
電力分は電池モジュ−ル101〜120の放電電流を減
らせるので、特に負荷電流が0かまたは小さい場合にお
いて、正確な開放モジュ−ル電圧を計測することがで
き、それにより高精度の容量推定が可能となる。ちなみ
に、開放端子電圧と容量とは密接な相関関係をもつ。ま
た、組み電池19の蓄電量が大きく低下する長距離走行
後でも組み電池から給電されていないので、その電圧低
下又は容量不足の影響を受けることがなく、特に高精度
のモジュ−ル電圧検出を必要とするこの組み電池の蓄電
量低下時においても安定にモジュ−ル電圧検出を行うこ
とができる。
In this manner, in the voltage detecting device for an assembled battery for an electric vehicle, the open module voltage can be detected with higher accuracy, and unnecessary shortening of the life of the high-voltage assembled battery 19 can be avoided. Stable detection of the module voltage can be performed despite large fluctuations in the running power storage state. In order to detect the module voltage, each of the battery modules 101 to 12 for generating the module voltage is used.
Since the power storage amount of 0 is not consumed, it is possible to estimate the module voltage and the total voltage with high precision and the capacity estimation based on the module voltage. Since the discharge current of the modules 101 to 120 can be reduced, an accurate open module voltage can be measured particularly when the load current is zero or small, thereby enabling highly accurate capacity estimation. Incidentally, the open terminal voltage and the capacitance have a close correlation. In addition, since power is not supplied from the assembled battery even after long-distance traveling when the charged amount of the assembled battery 19 is greatly reduced, the module voltage is not affected by the voltage drop or the capacity shortage. It is possible to stably detect the module voltage even when the required charged amount of the assembled battery is low.

【0041】また更に、モジュ−ル電圧検出回路部の回
路作動用電力のばらつきにより各電池モジュ−ル101
〜120の消耗の程度がばらついて、電池モジュ−ルの
劣化が不平等となることもない。
Further, each battery module 101 is caused by a variation in circuit operating power of the module voltage detection circuit.
The deterioration of the battery module does not become unequal due to the variation in the degree of consumption of the battery module.

【図面の簡単な説明】[Brief description of the drawings]

【図1】組み電池1の各モジュ−ル電圧をデジタル信号
に変換する組み電池の電圧検出装置を示すブロック図で
ある。
FIG. 1 is a block diagram showing an assembled battery voltage detecting device for converting each module voltage of the assembled battery 1 into a digital signal.

【図2】図1の組み電池の電圧検出装置を用いた組み電
池の電池モニタ装置の一実施例を示すブロック回路図で
ある。
FIG. 2 is a block circuit diagram showing an embodiment of a battery monitoring device of the assembled battery using the voltage detecting device of the assembled battery of FIG. 1;

【図3】図1のA/D変換回路5のブロック回路図であ
る。
FIG. 3 is a block circuit diagram of the A / D conversion circuit 5 of FIG.

【図4】図1のA/D変換回路5及び差動型電圧検出回
路201に給電する電源回路のブロック回路図である。
FIG. 4 is a block circuit diagram of a power supply circuit that supplies power to the A / D conversion circuit 5 and the differential voltage detection circuit 201 in FIG.

【符号の説明】[Explanation of symbols]

1はマイコン(信号処理回路部)、19は組み電池(主
バッテリ)、101〜120は電池モジュ−ル、201
〜220は差動型電圧検出回路(モジュ−ル電圧検出回
路部)、5〜10はA/D変換回路(モジュ−ル電圧検
出回路部)、20a〜20dはフォトカプラ素子、30
0はDC−DCコンバータ、301は補機バッテリ。
1 is a microcomputer (signal processing circuit), 19 is an assembled battery (main battery), 101 to 120 are battery modules, 201
220 to 220 are differential voltage detection circuits (module voltage detection circuit sections), 5 to 10 are A / D conversion circuits (module voltage detection circuit sections), 20a to 20d are photocoupler elements, 30
0 is a DC-DC converter and 301 is an auxiliary battery.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // B60R 16/02 670 B60R 16/02 670S G01R 19/165 G01R 19/165 M ────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 6 Identification symbol FI // B60R 16/02 670 B60R 16/02 670S G01R 19/165 G01R 19/165 M

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】多数の電池モジュ−ルが互いに縦続接続さ
れた高圧の組み電池からなる走行電力蓄電用の主バッテ
リと、補機駆動用の補機バッテリとを備える電気自動車
用組み電池の電圧検出装置であって、 前記各電池モジュ−ルのモジュ−ル電圧を個別に検出す
るモジュ−ル電圧検出回路部と、前記補機バッテリから
給電されて前記各モジュ−ル電圧を信号処理する信号処
理回路部と、トランスを有すると共に前記補機バッテリ
の電圧を昇圧して電源電圧として前記モジュ−ル電圧検
出回路部に印加する入出力絶縁型のDC−DCコンバ−
タとを備えることを特徴とする電気自動車用組み電池の
電圧検出装置。
1. The voltage of an assembled battery for an electric vehicle comprising a main battery for storing running power, comprising a high-voltage assembled battery in which a number of battery modules are connected in cascade with each other, and an auxiliary battery for driving auxiliary equipment. A detection device, comprising: a module voltage detection circuit unit for individually detecting a module voltage of each of the battery modules; and a signal supplied from the auxiliary battery for signal processing of each of the module voltages. An input / output insulated DC-DC converter having a processing circuit unit and a transformer, and boosting the voltage of the auxiliary battery and applying the boosted voltage to the module voltage detection circuit unit as a power supply voltage;
And a voltage detecting device for an assembled battery for an electric vehicle.
【請求項2】請求項1記載の電気自動車用組み電池の電
圧検出装置において、 前記モジュ−ル電圧検出回路部は、互いに隣接する複数
の前記電池モジュ−ルのモジュ−ル電圧をそれぞれ検出
する複数の前記差動型電圧検出回路により構成される電
圧検出ブロックを複数有し、 前記入出力絶縁型のDC−DCコンバ−タは前記各電圧
検出ブロックごとに個別に設けられることを特徴とする
電気自動車用組み電池の電圧検出装置。
2. The voltage detecting device for an assembled battery for an electric vehicle according to claim 1, wherein the module voltage detecting circuit detects module voltages of a plurality of battery modules adjacent to each other. It has a plurality of voltage detection blocks constituted by a plurality of the differential voltage detection circuits, and the input / output insulated DC-DC converter is individually provided for each of the voltage detection blocks. A voltage detector for assembled batteries for electric vehicles.
【請求項3】請求項2記載の電気自動車用組み電池の電
圧検出装置において、 前記各電圧検出ブロックの出力は前記信号処理回路部へ
フォトカプラ素子を通じて出力されることを特徴とする
電気自動車用組み電池の電圧検出装置。
3. The voltage detection device for an assembled battery for an electric vehicle according to claim 2, wherein an output of each of the voltage detection blocks is output to the signal processing circuit unit through a photocoupler element. A voltage detector for assembled batteries.
JP32452997A 1997-11-20 1997-11-26 Voltage detector for assembled batteries for electric vehicles Expired - Lifetime JP3395952B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP32452997A JP3395952B2 (en) 1997-11-26 1997-11-26 Voltage detector for assembled batteries for electric vehicles
US09/195,555 US6313637B1 (en) 1997-11-20 1998-11-19 Voltage detecting device for set battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32452997A JP3395952B2 (en) 1997-11-26 1997-11-26 Voltage detector for assembled batteries for electric vehicles

Publications (2)

Publication Number Publication Date
JPH11160367A true JPH11160367A (en) 1999-06-18
JP3395952B2 JP3395952B2 (en) 2003-04-14

Family

ID=18166829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32452997A Expired - Lifetime JP3395952B2 (en) 1997-11-20 1997-11-26 Voltage detector for assembled batteries for electric vehicles

Country Status (1)

Country Link
JP (1) JP3395952B2 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000016108A1 (en) * 1998-09-11 2000-03-23 Matsushita Electric Industrial Co., Ltd. Battery voltage detector
JP2000270492A (en) * 1999-03-18 2000-09-29 Denso Corp Device for detecting charged state of assembly battery and vehicle control device using the same
WO2002095863A1 (en) * 2001-05-17 2002-11-28 Sanyo Electric Co., Ltd. Voltage measuring circuit of battery pack
JP2006060324A (en) * 2004-08-17 2006-03-02 Denso Corp Interface circuit
JP2006284538A (en) * 2005-04-05 2006-10-19 Nissan Motor Co Ltd Voltage-detecting device
KR100709258B1 (en) 2005-10-20 2007-04-19 삼성에스디아이 주식회사 Battery management system
KR100814128B1 (en) 2007-02-06 2008-03-14 주식회사 파워로직스 Battery cell voltage measurement circuit
WO2009110244A1 (en) 2008-03-07 2009-09-11 株式会社 東芝 Battery system
US7602144B2 (en) 2005-10-20 2009-10-13 Samsung Sdi Co., Ltd. Battery management system
US7634369B2 (en) 2006-10-12 2009-12-15 Samsung Sdi Co., Ltd. Battery management system (BMS) and driving method thereof
US7652449B2 (en) 2006-09-26 2010-01-26 Samsung Sdi Co., Ltd. Battery management system and driving method thereof
US7656124B2 (en) 2005-07-29 2010-02-02 Samsung Sdi Co., Ltd. Battery management system and driving method thereof
US7679325B2 (en) 2005-04-07 2010-03-16 Samsung Sdi Co., Ltd. Battery management system and driving method for cutting off and coupling battery module from/to external device
US7680613B2 (en) 2006-10-16 2010-03-16 Samsung Sdi Co., Ltd. Battery management system (BMS) and driving method thereof
JP2010197324A (en) * 2009-02-27 2010-09-09 Furukawa Battery Co Ltd:The Insulating measuring instrument
JP2011004260A (en) * 2009-06-19 2011-01-06 Murayama Denki Seisakusho:Kk A/d conversion unit, and measuring device
US7880432B2 (en) 2005-10-20 2011-02-01 Samsung Sdi Co., Ltd. Battery management system and battery management method
CN102044718A (en) * 2009-10-13 2011-05-04 上海空间电源研究所 Power lithium iron phosphate battery pack management system for electric automobiles and working method of system
JP2011163847A (en) * 2010-02-08 2011-08-25 Denso Corp Battery voltage monitoring apparatus
US8013573B2 (en) 2007-03-19 2011-09-06 Samsung Sdi Co., Ltd. Battery pack that provides precise voltage measurements of batteries when safety switch is present
WO2011136111A1 (en) * 2010-04-28 2011-11-03 矢崎総業株式会社 Voltage detection device for fuel cell
CN102403760A (en) * 2010-09-15 2012-04-04 三美电机株式会社 Protective circuit
US8174237B2 (en) 2005-07-07 2012-05-08 Kabushiki Kaisha Toshiba Battery module
JP2013072817A (en) * 2011-09-28 2013-04-22 Sanyo Electric Co Ltd Power supply system for vehicle use and vehicle equipped with the same
JP2014048281A (en) * 2012-09-04 2014-03-17 Sanyo Electric Co Ltd Electric power unit and failure detection circuit
US8796986B2 (en) 2006-11-01 2014-08-05 Samsung Sdi Co., Ltd. Battery management system and driving method thereof
CN104553813A (en) * 2014-12-16 2015-04-29 惠州市亿能电子有限公司 Electric automobile high-voltage power-on circuit and control method thereof
WO2016051684A1 (en) * 2014-09-29 2016-04-07 パナソニックIpマネジメント株式会社 Storage cell control device and storage module management system
CN105774558A (en) * 2016-03-17 2016-07-20 北京航空航天大学 Integrated safety detection device for electric automobile
KR20190071471A (en) * 2017-12-14 2019-06-24 현대오트론 주식회사 Apparatus for Protecting Cell Sensing Circuit of Low-Voltage Battery in Vehicle

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6462510B1 (en) 1998-09-11 2002-10-08 Matsushita Electric Industrial Co., Ltd. Battery voltage detector
WO2000016108A1 (en) * 1998-09-11 2000-03-23 Matsushita Electric Industrial Co., Ltd. Battery voltage detector
JP2000270492A (en) * 1999-03-18 2000-09-29 Denso Corp Device for detecting charged state of assembly battery and vehicle control device using the same
WO2002095863A1 (en) * 2001-05-17 2002-11-28 Sanyo Electric Co., Ltd. Voltage measuring circuit of battery pack
US6919706B2 (en) 2001-05-17 2005-07-19 Sanyo Electric Co., Ltd. Voltage measuring circuit of battery pack
JP2006060324A (en) * 2004-08-17 2006-03-02 Denso Corp Interface circuit
JP2006284538A (en) * 2005-04-05 2006-10-19 Nissan Motor Co Ltd Voltage-detecting device
JP4501754B2 (en) * 2005-04-05 2010-07-14 日産自動車株式会社 Voltage detector
US7679325B2 (en) 2005-04-07 2010-03-16 Samsung Sdi Co., Ltd. Battery management system and driving method for cutting off and coupling battery module from/to external device
US8174237B2 (en) 2005-07-07 2012-05-08 Kabushiki Kaisha Toshiba Battery module
US7656124B2 (en) 2005-07-29 2010-02-02 Samsung Sdi Co., Ltd. Battery management system and driving method thereof
US7928736B2 (en) 2005-10-20 2011-04-19 Samsung Sdi Co., Ltd. Method of estimating state of charge for battery and battery management system using the same
US7602144B2 (en) 2005-10-20 2009-10-13 Samsung Sdi Co., Ltd. Battery management system
KR100709258B1 (en) 2005-10-20 2007-04-19 삼성에스디아이 주식회사 Battery management system
US7880432B2 (en) 2005-10-20 2011-02-01 Samsung Sdi Co., Ltd. Battery management system and battery management method
US7652449B2 (en) 2006-09-26 2010-01-26 Samsung Sdi Co., Ltd. Battery management system and driving method thereof
US7634369B2 (en) 2006-10-12 2009-12-15 Samsung Sdi Co., Ltd. Battery management system (BMS) and driving method thereof
US7680613B2 (en) 2006-10-16 2010-03-16 Samsung Sdi Co., Ltd. Battery management system (BMS) and driving method thereof
US8796986B2 (en) 2006-11-01 2014-08-05 Samsung Sdi Co., Ltd. Battery management system and driving method thereof
KR100814128B1 (en) 2007-02-06 2008-03-14 주식회사 파워로직스 Battery cell voltage measurement circuit
US8013573B2 (en) 2007-03-19 2011-09-06 Samsung Sdi Co., Ltd. Battery pack that provides precise voltage measurements of batteries when safety switch is present
WO2009110244A1 (en) 2008-03-07 2009-09-11 株式会社 東芝 Battery system
US8570695B2 (en) 2008-03-07 2013-10-29 Kabushiki Kaisha Toshiba Battery system
JP2010197324A (en) * 2009-02-27 2010-09-09 Furukawa Battery Co Ltd:The Insulating measuring instrument
JP2011004260A (en) * 2009-06-19 2011-01-06 Murayama Denki Seisakusho:Kk A/d conversion unit, and measuring device
CN102044718A (en) * 2009-10-13 2011-05-04 上海空间电源研究所 Power lithium iron phosphate battery pack management system for electric automobiles and working method of system
JP2011163847A (en) * 2010-02-08 2011-08-25 Denso Corp Battery voltage monitoring apparatus
WO2011136111A1 (en) * 2010-04-28 2011-11-03 矢崎総業株式会社 Voltage detection device for fuel cell
JP2011233413A (en) * 2010-04-28 2011-11-17 Yazaki Corp Voltage detection device for fuel cell
CN102782920A (en) * 2010-04-28 2012-11-14 矢崎总业株式会社 Voltage detection device for fuel cell
US9935324B2 (en) 2010-04-28 2018-04-03 Yazaki Corporation Voltage detection device for fuel cell
CN102403760A (en) * 2010-09-15 2012-04-04 三美电机株式会社 Protective circuit
JP2013072817A (en) * 2011-09-28 2013-04-22 Sanyo Electric Co Ltd Power supply system for vehicle use and vehicle equipped with the same
JP2014048281A (en) * 2012-09-04 2014-03-17 Sanyo Electric Co Ltd Electric power unit and failure detection circuit
WO2016051684A1 (en) * 2014-09-29 2016-04-07 パナソニックIpマネジメント株式会社 Storage cell control device and storage module management system
JPWO2016051684A1 (en) * 2014-09-29 2017-08-10 パナソニックIpマネジメント株式会社 Storage cell control device and storage module management system
US10698036B2 (en) 2014-09-29 2020-06-30 Panasonic Intellectual Property Management Co., Ltd. Power storage cell control device and power storage module management system
CN104553813A (en) * 2014-12-16 2015-04-29 惠州市亿能电子有限公司 Electric automobile high-voltage power-on circuit and control method thereof
CN105774558A (en) * 2016-03-17 2016-07-20 北京航空航天大学 Integrated safety detection device for electric automobile
KR20190071471A (en) * 2017-12-14 2019-06-24 현대오트론 주식회사 Apparatus for Protecting Cell Sensing Circuit of Low-Voltage Battery in Vehicle

Also Published As

Publication number Publication date
JP3395952B2 (en) 2003-04-14

Similar Documents

Publication Publication Date Title
JPH11160367A (en) Apparatus for detecting voltage of battery pack for electric automobile
US7663341B2 (en) System for controlling voltage balancing in a plurality of lithium-ion cell battery packs and method thereof
JP3795499B2 (en) Voltage equalization device for storage element
JP4186916B2 (en) Battery pack management device
US7638973B2 (en) System for controlling voltage balancing in a plurality of lithium-ion cell battery packs and method thereof
EP3037830B1 (en) Battery monitoring device
US6930474B2 (en) Current sense apparatus and method using a combination of a simulation and a real sense for a switching mode power converter
US6313637B1 (en) Voltage detecting device for set battery
US4677037A (en) Fuel cell power supply
KR100480911B1 (en) Instrument for measuring voltages of cells
EP3822109A1 (en) Ground fault detection device
JP3226161B2 (en) Battery cell voltage detector
JP5100141B2 (en) Power supply for vehicle
US11811024B2 (en) BMS and battery system
CN115315632A (en) Management device and power supply system
JP2006353020A (en) Power supply device for vehicle
JP3979594B2 (en) Battery voltage detection device
WO2020022344A1 (en) Power supply system and management device
JP3827123B2 (en) Control device for battery pack for electric vehicles
JP4566964B2 (en) Total battery voltage detector
JP4508977B2 (en) Assembled battery voltage measuring device and assembled battery voltage measuring method
JP2009072038A (en) Voltage detector for battery pack and method of controlling the same
CN111725574B (en) Battery system, battery module and battery control circuit therein
JP2005265777A (en) Switch control unit, its method, and voltage measuring apparatus
JP2001185232A (en) Battery pack

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110207

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130207

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140207

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term