JP3391206B2 - Method for estimating initial value of regenerable power - Google Patents

Method for estimating initial value of regenerable power

Info

Publication number
JP3391206B2
JP3391206B2 JP02898097A JP2898097A JP3391206B2 JP 3391206 B2 JP3391206 B2 JP 3391206B2 JP 02898097 A JP02898097 A JP 02898097A JP 2898097 A JP2898097 A JP 2898097A JP 3391206 B2 JP3391206 B2 JP 3391206B2
Authority
JP
Japan
Prior art keywords
initial value
battery
power
internal resistance
regenerative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02898097A
Other languages
Japanese (ja)
Other versions
JPH10224905A (en
Inventor
匡 辻
強 袖野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP02898097A priority Critical patent/JP3391206B2/en
Publication of JPH10224905A publication Critical patent/JPH10224905A/en
Application granted granted Critical
Publication of JP3391206B2 publication Critical patent/JP3391206B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電気自動車等の電
気車における回生可能パワー初期値推定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for estimating a regenerable power initial value in an electric vehicle such as an electric vehicle.

【0002】[0002]

【従来の技術】電気自動車等の電気車において、放電途
中のキー・オフ後に再び走行を開始する際に、回生充電
の回生可能パワー初期値の設定方法の一例として車両の
最大回生パワーを用いる方法があげられる。このとき、
回生電力は最大回生パワー以下となるように回生制御さ
れるが、その場合、回生電力が電池の実際に回生受け入
れ可能な電力より大きくなって過電圧を生じるおそれが
あった。このような過電圧を避けるために、充電制御回
路のROMに保存されている電池の常温初期特性に基づ
いて回生可能パワー初期値を設定する方法がある。すな
わち、常温初期の満充電時相当の回生受入電力を、電池
の温度,劣化および電池を構成する各単セルのばらつき
を考慮して補正し、その補正した値(満充電時の受入電
力推定値)を電池の放電深度にかかわらず常に回生可能
パワー初期値P0として用いる。
2. Description of the Related Art In an electric vehicle such as an electric vehicle, a method of using the maximum regenerative power of the vehicle as an example of a method of setting an initial value of regenerative power for regenerative charging when the vehicle restarts after key-off during discharging. Can be given. At this time,
The regenerative electric power is regeneratively controlled so as to be equal to or less than the maximum regenerative electric power, but in that case, the regenerative electric power may become larger than the electric power that can be actually received by the regenerative electric power and may cause an overvoltage. In order to avoid such an overvoltage, there is a method of setting the regenerable power initial value based on the room temperature initial characteristics of the battery stored in the ROM of the charge control circuit. That is, the regenerative received power equivalent to full charge at the beginning of room temperature is corrected in consideration of the temperature and deterioration of the battery and the variation of each single cell constituting the battery, and the corrected value (the estimated received power at full charge is calculated). ) Is always used as the regenerable power initial value P0 regardless of the discharge depth of the battery.

【0003】図6は従来方法により算出される回生可能
パワー初期値P0を説明する図であり、横軸が放電電力
量(Wh)、縦軸が回生受入電力(kW)である。図6
において、曲線L61は電池の常温初期特性を示してお
り、P1が常温初期の満充電時相当の回生受入電力であ
る。一方、曲線L62は電池の温度や劣化等を考慮して推
定した実際の電池特性(回生受入電力の実力値)を示し
ており、P0は満充電時相当の回生受入電力である。例
えば、走行開始時の放電電力量が図に示すようにa(W
h)であった場合を説明すると、走行開始時には回生可
能パワー初期値はP0(放電深度によらずP0に設定され
るので)に設定され(図6のB点)、走行開始後は放電
中の電圧,電流に基づくパワー演算が行われる度に回生
可能パワーが演算され、曲線L63に示すような曲線に沿
って実力値(曲線L62)に収束し、適正な回生パワーが
得られるようになる。
FIG. 6 is a diagram for explaining the regenerative power initial value P0 calculated by the conventional method, in which the horizontal axis represents the discharge power amount (Wh) and the vertical axis represents the regenerative received power (kW). Figure 6
In, the curve L61 shows the room temperature initial characteristics of the battery, and P1 is the regenerative received power corresponding to the full charge at the room temperature initial. On the other hand, the curve L62 shows the actual battery characteristics (actual value of the regenerative received power) estimated in consideration of the temperature and deterioration of the battery, and P0 is the regenerative received power corresponding to the full charge. For example, the discharge power amount at the start of traveling is a (W
In the case of h), the regenerative power initial value is set to P0 (because it is set to P0 regardless of the depth of discharge) at the start of running, and is discharging after the start of running. Each time the power calculation based on the voltage and current is performed, the regenerable power is calculated, converges to the actual value (curve L62) along the curve as shown by the curve L63, and proper regenerative power can be obtained. .

【0004】[0004]

【発明が解決しようとする課題】しかしながら、電池は
放電深度により受け入れ可能な電力値が異なるため、上
述したような、放電深度による受け入れの差を考慮せず
に満充電時の受入推定値P0を常に初期値とする方法で
は、放電途中のキー・オフ後の回生可能パワー初期値が
実力値に対して低くなる。そのため、走行開始後、実力
値に収束するのに時間がかかり、その間は実際に受け入
れ可能な電力より小さな回生可能パワーによって回生充
電が制御されるため効率的な回生充電が行えないという
問題があった。
However, since the acceptable power value of the battery varies depending on the depth of discharge, the estimated acceptance value P0 at full charge is taken into consideration without considering the difference in acceptance depending on the depth of discharge as described above. In the method of always using the initial value, the initial value of the regenerable power after key-off during discharging becomes lower than the actual value. For this reason, it takes time to converge to the actual value after the start of traveling, and during that time, regenerative charging is controlled by regenerative power that is smaller than the power that can actually be accepted, so there is a problem that efficient regenerative charging cannot be performed. It was

【0005】本発明の目的は、電気自動車等の電気車に
おいて、キー・オフ後の走行開始時の回生充電を効率的
に行うことができる回生可能パワー初期値推定方法を提
供することにある。
An object of the present invention is to provide a method for estimating an initial value of regenerable power that can efficiently perform regenerative charging at the start of running after key-off in an electric vehicle such as an electric vehicle.

【0006】[0006]

【課題を解決するための手段】(1)請求項1の発明に
よる回生可能パワー初期値推定方法は、電気車用電池の
開放電圧実測値をEとし、初期常温電池に関する内部抵
抗基準値をR0とし、走行開始時の電池状態に応じた補
正係数をbとし、回生充電制御における受け入れ可能電
力の走行開始時初期値である上限電圧をVhとしたとき
に、回生充電制御における受け入れ可能電力の走行開始
時初期値である回生可能パワー初期値を次式
(1) In the method for estimating the regenerative power initial value according to the invention of claim 1, the measured open circuit voltage of the electric vehicle battery is E, and the internal resistance reference value for the initial room temperature battery is R0. When the correction coefficient according to the battery state at the start of traveling is b and the upper limit voltage that is the initial value at the start of traveling of the receivable electric power in the regenerative charging control is Vh, traveling of the receivable electric power in the regenerative charging control is performed. The regenerative power initial value, which is the initial value at the start, is calculated by the following formula

【数5】 (回生可能パワー初期値)={Vh・(Vh−E)/RO}・b により算出するようにしたことにより上述の目的を達成
する。 (2)請求項2の発明は、請求項1に記載の回生可能パ
ワー初期値推定方法において、補正係数bを、電池温度
に依存する内部抵抗変化を表す温度補正係数b1と、電
池の劣化に依存する内部抵抗変化を表す劣化補正係数b
2とを用いてb=b1・b2で算出する。 (3)請求項3の発明は、請求項1に記載の回生可能パ
ワー初期値推定方法において、補正係数bを、電池温度
に依存する内部抵抗変化を表す温度補正係数b1と、電
池の劣化に依存する内部抵抗変化を表す劣化補正係数b
2と、電池を構成する各単セルのばらつきを補正するば
らつき補正係数b3とを用いてb=b1・b2・b3で
算出する。 (4)請求項4の発明は、請求項3に記載の回生可能パ
ワー初期値推定方法において、ばらつき補正係数b3
を、電池を構成する各単セルの内部抵抗の最大値Rmax
と、各単セルの内部抵抗の平均値をRaveとを用いてb
3=Rmax/Raveで算出する。
(5) (Initial regenerative power value) = {Vh (Vh-E) / RO} b The above object is achieved by the calculation. (2) The invention of claim 2 is the method for estimating the regenerative power initial value according to claim 1, wherein the correction coefficient b is a temperature correction coefficient b1 indicating a change in internal resistance depending on the battery temperature, and deterioration of the battery. Deterioration correction coefficient b that represents the dependent internal resistance change
2 is used to calculate b = b1 · b2. (3) According to the invention of claim 3, in the method for estimating the regenerative power initial value according to claim 1, the correction coefficient b is a temperature correction coefficient b1 indicating a change in internal resistance depending on the battery temperature, and deterioration of the battery. Deterioration correction coefficient b that represents the dependent internal resistance change
2 and a variation correction coefficient b3 that corrects the variation of each single cell forming the battery, and is calculated by b = b1, b2, b3. (4) The invention according to claim 4 is the variation correction coefficient b3 in the method for estimating the regenerative power initial value according to claim 3.
Is the maximum value Rmax of the internal resistance of each single cell that constitutes the battery
And Rave the average value of the internal resistance of each unit cell, b
3 = Rmax / Rave

【0007】[0007]

【発明の効果】(1)請求項1〜4の発明によれば、電
池の開放電圧実測値,初期常温電池に関する内部抵抗基
準値および走行開始時の電池状態に応じた補正係数に基
づいて、すなわち走行開始時の放電深度に応じた電池特
性に基づいて回生可能パワー初期値を算出しているた
め、精度の良い回生可能パワー初期値を得ることがで
き、走行開始時から効率良く回生充電を行うことができ
る。 (2)請求項3および請求項4の発明によれば、電池を
構成する各単セルの内部抵抗のばらつきをばらつき補正
係数b3で補正するようにしたので、より精度の高い回
生可能パワー初期値を算出することができる。
(1) According to the inventions of claims 1 to 4, based on the measured open circuit voltage of the battery, the internal resistance reference value for the initial room temperature battery, and the correction coefficient according to the battery state at the start of running, In other words, since the regenerative power initial value is calculated based on the battery characteristics according to the depth of discharge at the start of travel, it is possible to obtain a highly accurate initial regenerative power value, and efficient regenerative charging from the start of travel. It can be carried out. (2) According to the inventions of claims 3 and 4, since the variation in the internal resistance of each single cell constituting the battery is corrected by the variation correction coefficient b3, a more accurate regenerative possible power initial value is obtained. Can be calculated.

【0008】[0008]

【発明の実施の形態】以下、図1〜図5を参照して本発
明の実施の形態を説明する。図4は、本発明による回生
可能パワー初期値推定方法を適用した電気自動車の走行
駆動機構の構成を示すブロック図である。電池11はイ
ンバータ12に直流電力を供給し、インバータ12は直
流電力を交流電力に変換して走行エネルギーを発生す
る。回生時には車両の走行エネルギーがモータ13およ
びインバータ12を介して電気エネルギーに逆変換さ
れ、電池11が充電されるとともに車両に回生ブレーキ
がかかる。電圧センサ14は電池11の両端電圧Vを検
出し、電流センサ15は電池11に流れる電流Iを検出
する。18は電池11の温度Tを検出する温度センサで
ある。なお、電流Iは、モータ駆動時に電池11からイ
ンバータ12へ流れる方向を正とし、回生充電時にイン
バータ12から電池11へ流れる方向を負とする。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to FIGS. FIG. 4 is a block diagram showing a configuration of a traveling drive mechanism of an electric vehicle to which the method for estimating the regenerative power initial value according to the present invention is applied. The battery 11 supplies DC power to the inverter 12, and the inverter 12 converts the DC power into AC power to generate running energy. During regeneration, the running energy of the vehicle is converted back into electric energy via the motor 13 and the inverter 12, the battery 11 is charged, and the vehicle is regeneratively braked. The voltage sensor 14 detects the voltage V across the battery 11, and the current sensor 15 detects the current I flowing through the battery 11. A temperature sensor 18 detects the temperature T of the battery 11. The current I is positive when flowing from the battery 11 to the inverter 12 when driving the motor, and is negative when flowing from the inverter 12 to the battery 11 during regenerative charging.

【0009】コントローラ16は、電圧センサ14,電
流センサ15および温度センサ18により検出された電
圧V,電流Iおよび温度Tに基づいて、電池11の最大
放電電力と最大充電電力を演算し、演算結果に基づいて
インバータ12の出力制御や回生制御などを行なう。そ
して、キー・オフ後の走行開始時には、回生充電を行う
際の受け入れ可能な電力である回生可能パワーの走行開
始時の値として、後述する推定方法で得られた回生可能
パワー初期値を用いて回生制御を行う。セルコントロー
ラ17は、電池11の各単セル111〜11nの充放電
制御を行うとともに、各単セル111〜11nの端子電
圧(以下、セル電圧と呼ぶ)vcを検出する。
The controller 16 calculates the maximum discharge power and the maximum charge power of the battery 11 based on the voltage V, the current I and the temperature T detected by the voltage sensor 14, the current sensor 15 and the temperature sensor 18, and the calculation result. The output control and regenerative control of the inverter 12 are performed based on the above. Then, at the start of running after the key is turned off, the regenerative possible power initial value obtained by the estimation method to be described later is used as the value at the start of running of the regenerable power that is the power that can be accepted when performing regenerative charging. Performs regenerative control. The cell controller 17 controls charging / discharging of each of the unit cells 111 to 11n of the battery 11 and detects a terminal voltage (hereinafter, referred to as a cell voltage) vc of each of the unit cells 111 to 11n.

【0010】図1は回生可能パワー初期値推定方法を説
明する図である。図1において縦軸は電圧、横軸は電流
を表しており、電流Iに関して正の領域が放電側を示
し、一方、負の領域が充電側を示している。まず、走行
開始前、すなわちモータ停止時に開放電圧Eを実測す
る。この開放電圧Eと電池の内部抵抗Rとから走行開始
時の電池特性を求める(図1の直線L1)。なお、実際
の内部抵抗は走行開始後でないと分からないので、内部
抵抗Rとしては、常温初期値としてROMに保存されて
いる内部抵抗基準値R0を電池状態に応じた温度,劣化
等について補正した推定値が用いられる。また、開放電
圧Eの測定は、充電前開放電圧チェックの場合と同様
に、演算の誤差を最小とするためにDC/DC変換器等
の強電負荷の投入前に行う。
FIG. 1 is a diagram for explaining a method for estimating a regenerative power initial value. In FIG. 1, the vertical axis represents voltage and the horizontal axis represents current. The positive region of the current I indicates the discharge side, while the negative region indicates the charge side. First, the open circuit voltage E is measured before the start of travel, that is, when the motor is stopped. From the open circuit voltage E and the internal resistance R of the battery, the battery characteristic at the start of running is determined (straight line L1 in FIG. 1). Since the actual internal resistance cannot be known until after the start of running, the internal resistance reference value R0 stored in the ROM as the room temperature initial value was corrected for the temperature and deterioration according to the battery state. Estimates are used. Further, the open circuit voltage E is measured before turning on a heavy electric load such as a DC / DC converter in order to minimize the calculation error, as in the case of the pre-charge open circuit voltage check.

【0011】次に、特性直線L1を充電側に延長して、
直線L1と回生上限電圧Vhとの交点Cの電流をIcとす
ると、次式(1)が成立する。
Next, the characteristic straight line L1 is extended to the charging side,
When the current at the intersection C between the straight line L1 and the regenerative upper limit voltage Vh is Ic, the following equation (1) is established.

【数6】Vh=E−Ic・R …(1) そして、次式(2)で与えられる回生可能パワーを走行
開始時の回生可能パワー初期値とする。
## EQU6 ## Vh = E-Ic.multidot.R (1) Then, the regenerable power given by the following equation (2) is set as the regenerable power initial value at the start of traveling.

【数7】Vh(Vh−E)/R …(2) なお、回生上限電圧Vhは、回生充電時の車両の上限電
圧に回生可能パワー初期値演算の際の誤差分の余裕を持
たせた値である。
[Formula 7] Vh (Vh-E) / R (2) Note that the regenerative upper limit voltage Vh is set such that the upper limit voltage of the vehicle at the time of regenerative charging has a margin for an error in the calculation of the regenerative power initial value. It is a value.

【0012】上述した式(2)において、内部抵抗基準
値R0と補正係数bとを用いて内部抵抗RをR=b・R0
と表すと、回生可能パワー初期値は次式(3)のように
なる。
In the above equation (2), the internal resistance R is R = bR0 using the internal resistance reference value R0 and the correction coefficient b.
Then, the initial value of the regenerable power is expressed by the following equation (3).

【数8】 (回生可能パワー初期値)={Vh(Vh−E)/R0}・b …(3) 図1に示す直線L0は、内部抵抗基準値R0と開放電圧
Eとから得られる電池特性を示しており、回生上限電圧
Vhとの交点Dにおける回生可能パワーは
(Equation 8) (Regenerative power initial value) = {Vh (Vh−E) / R0} · b (3) The straight line L0 shown in FIG. 1 is a battery obtained from the internal resistance reference value R0 and the open circuit voltage E. The characteristic shows that the regenerative power at the intersection D with the regenerative upper limit voltage Vh is

【数9】Vh(Vh−E)/R0 …(4) となる。この電池特性を補正係数bで補正したものが上
述した直線L1である。
## EQU9 ## Vh (Vh-E) / R0 (4) The straight line L1 is obtained by correcting the battery characteristic with the correction coefficient b.

【0013】補正係数bは、温度による内部抵抗変化を
表すパラメータである温度補正係数b1と、電池の劣化
による内部抵抗変化を表すパラメータである劣化補正係
数b2と、さらに、電池11を構成する各単セルのばら
つきを補正するばらつき補正係数b3とを用いて、b=
b1・b2・b3と表される。
The correction coefficient b is a temperature correction coefficient b1 that is a parameter that represents a change in internal resistance due to temperature, a deterioration correction coefficient b2 that is a parameter that is a parameter that represents a change in internal resistance due to deterioration of the battery, and each of the constituent elements of the battery 11. Using the variation correction coefficient b3 for correcting the variation of the single cell, b =
It is represented as b1, b2, and b3.

【0014】ここで、ばらつき補正係数b3は各単セル
の内部抵抗の内の最大の内部抵抗と平均の内部抵抗との
比であり、以下ではその算出方法の概略を説明する。電
池11を構成する各単セルの内部抵抗には劣化状態など
に起因するばらつきがあり、同一の電流が流れても各セ
ル電圧は同一にならない。なお、各単セルの開放電圧e
0は所定の放電量以内であればセルフコントローラ17
による電圧ばらつきの均等化によりほぼ等しい値に揃え
ることができる。平均的な電圧降下を示す単セルの内部
抵抗をRaveとし、最も電圧降下が大きい劣化セルの内
部抵抗をRmaxとすると、放電電流Iに対して平均的な
単セルでは開放電圧e0からI・Raveだけセル電圧が降
下し、劣化セルでは開放電圧e0からI・Rmaxだけセル
電圧が降下する。
Here, the variation correction coefficient b3 is the ratio of the maximum internal resistance of the internal resistance of each single cell to the average internal resistance, and the calculation method will be outlined below. The internal resistance of each single cell forming the battery 11 varies due to a deterioration state and the like, and even if the same current flows, the cell voltages do not become the same. The open circuit voltage e of each unit cell
If 0 is within a predetermined discharge amount, the self controller 17
By equalizing the voltage variation due to, it is possible to make the values almost equal. Assuming that the internal resistance of a single cell exhibiting an average voltage drop is Rave and the internal resistance of the deteriorated cell having the largest voltage drop is Rmax, the average single cell with respect to the discharge current I has an open voltage e0 to I · Rave. The cell voltage drops by a certain amount, and in the deteriorated cell, the cell voltage drops by I · Rmax from the open voltage e0.

【0015】n個の単セルの内のいずれか1個でもセル
電圧vcが所定電圧(例えば、3.4V)以下になり、
その状態が所定時間以上継続したときの総電圧Vtと上
記実測された開放電圧Eとに基づいて、劣化した単セル
の最大の内部抵抗Rmaxと平均的な単セルの内部抵抗Ra
veとの比を求め、それをばらつき補正係数b3とする。
例えば、前記所定電圧を3.4Vとした場合、次式
(5)を用いて演算される。
In any one of the n unit cells, the cell voltage vc becomes a predetermined voltage (for example, 3.4 V) or less,
The maximum internal resistance Rmax of the deteriorated single cell and the average internal resistance Ra of the single cell are calculated based on the total voltage Vt when the state continues for a predetermined time or more and the measured open circuit voltage E.
The ratio with ve is calculated and used as the variation correction coefficient b3.
For example, when the predetermined voltage is 3.4 V, the calculation is performed using the following equation (5).

【数10】 b3=Rmax/Rave=(I・Rmax)/(I・Rave) =(E−3.4n)/(E−Vt) …(5)[Equation 10]     b3 = Rmax / Rave = (I · Rmax) / (I · Rave)         = (E-3.4n) / (E-Vt) (5)

【0016】上述した回生可能パワー初期値の演算で
は、内部抵抗の放電深度依存性が少ないということを前
提として演算を行ったが、例えば、リチウムイオン電池
において放電深度が所定値以内(放電深度がほぼ60%
以内)であれば、このような条件を満たしている。しか
し、内部抵抗と放電深度との関係を表す図2に示すよう
に、放電深度に対する内部抵抗変化に変曲点が表れる高
放電深度域や、鉛酸電池など放電の進行に対する内部抵
抗の変化が大きな電池では、放電深度が大きくなるにつ
れて回生可能パワー初期値の推定誤差が大きくなる。図
2において、L21は温度,劣化補正をする前の初期値に
対する演算値を示し、L31は温度,劣化補正をした劣化
時の演算値を示している。低放電深度域(図2の領域Q
1)では、演算値はほぼ実力値を表しており、この領域
Q1では内部抵抗の演算に関して高精度保証が可能な領
域である。一方、上述したように高放電深度域(図2の
領域Q2)では演算値L21,L31とそれぞれの実力値L
22,L32との間に大きなずれ(演算誤差)が生じるよう
になる。
In the calculation of the regenerative power initial value described above, the calculation is performed on the assumption that the internal resistance has little dependency on the depth of discharge. For example, in a lithium ion battery, the depth of discharge is within a predetermined value (the depth of discharge is Almost 60%
If it is within), such a condition is satisfied. However, as shown in FIG. 2, which shows the relationship between the internal resistance and the depth of discharge, there is a high discharge depth region where an inflection point appears in the change of the internal resistance with respect to the depth of discharge, and a change of the internal resistance with respect to the progress of discharge such as a lead acid battery. In a large battery, the estimation error of the initial value of regenerable power increases as the depth of discharge increases. In FIG. 2, L21 indicates the temperature and the calculated value for the initial value before the deterioration correction, and L31 indicates the temperature and the calculated value when the deterioration is corrected. Low depth of discharge area (area Q in FIG. 2)
In 1), the calculated value almost represents the actual value, and in this area Q1, high accuracy can be guaranteed for the calculation of the internal resistance. On the other hand, as described above, in the high discharge depth region (region Q2 in FIG. 2), the calculated values L21 and L31 and the respective actual value L
A large deviation (calculation error) occurs between 22 and L32.

【0017】図3は回生可能パワー初期値と放電深度と
の関係を示す図である。図2のL21,L31に対応して、
L41が温度,劣化補正前の初期値に対する演算値を、L
51が劣化時の演算値をそれぞれ示す。一方、L42,L52
は初期値および劣化時の実力値を示している。放電深度
の小さい領域Q3は図2に示す内部抵抗の高精度保証可
能領域Q1に対応する領域であり、この領域Q3では回
生可能パワー初期値の演算精度が高い。一方、高放電深
度域では、上述した理由から回生可能パワー初期値の演
算精度が落ちてしまう。
FIG. 3 is a diagram showing the relationship between the regenerative power initial value and the depth of discharge. Corresponding to L21 and L31 in FIG.
L41 is the calculated value for the initial value before temperature and deterioration correction,
51 indicates the calculated value at the time of deterioration. On the other hand, L42, L52
Indicates the initial value and the actual value at the time of deterioration. The region Q3 where the depth of discharge is small is a region corresponding to the region Q1 in which the internal resistance can be accurately guaranteed as shown in FIG. 2, and in this region Q3, the calculation accuracy of the regenerative power initial value is high. On the other hand, in the high discharge depth range, the accuracy of calculation of the regenerable power initial value is reduced due to the reason described above.

【0018】しかし、図3に示すように、高放電深度域
では回生可能パワー初期値の演算値および実力値とも車
両の最大回生パワーに対して十分大きくなっており、回
生可能パワー初期値は低放電深度域(領域Q3)のみで
高い演算精度を保証すれば十分であることが分かる。
However, as shown in FIG. 3, both the calculated regenerative power initial value and the actual value are sufficiently larger than the maximum regenerative power of the vehicle in the high depth of discharge range, and the regenerative power initial value is low. It can be seen that it is sufficient to guarantee a high calculation accuracy only in the depth of discharge area (area Q3).

【0019】図5は、本実施の形態による方法で推定し
た回生可能パワー初期値と従来のそれとを説明する図で
あり、図6の点B付近を拡大した図である。図5におい
て、点Cは上述した方法で算出した走行開始時(放電電
力量a)の回生可能パワー初期値(値をP2とする)を
示している。上述したように、本実施の形態の回生可能
パワー初期値の推定方法によれば、キー・オフ後の走行
開始時の開放電圧と電池状態に応じた温度,劣化等の補
正係数を用いて、図1に示した電池の放電深度に応じた
V−I特性(すなわち、パワー演算方法の考え方を適用
して)から回生可能パワー初期値を演算しているため、
精度の良い回生可能パワー初期値が得られる。すなわ
ち、値P2は電池の実力値に近い値となり、その誤差Δ
Pは非常に小さい。そのため、走行後はL64に示すよう
な曲線に沿って曲線L62に速やかに収束し、走行開始時
から効率良く回生充電を行うことができる。
FIG. 5 is a diagram for explaining the regenerative power initial value estimated by the method according to the present embodiment and the conventional value, and is an enlarged view of the vicinity of point B in FIG. In FIG. 5, point C indicates the regenerative possible power initial value (value is P2) at the start of travel (discharged power amount a) calculated by the above-described method. As described above, according to the method for estimating the regenerable power initial value of the present embodiment, the correction coefficient for temperature, deterioration, etc. according to the open circuit voltage and the battery state at the start of running after key-off is used, Since the regenerative power initial value is calculated from the VI characteristic (that is, the idea of the power calculation method is applied) according to the depth of discharge of the battery shown in FIG. 1,
An accurate initial value of regenerable power can be obtained. That is, the value P2 is close to the actual value of the battery, and its error Δ
P is very small. Therefore, after traveling, the vehicle quickly converges to the curve L62 along the curve shown by L64, and regenerative charging can be efficiently performed from the start of traveling.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による回生可能パワー初期値推定方法の
一実施の形態を説明する図。
FIG. 1 is a diagram for explaining an embodiment of a method for estimating a regenerable power initial value according to the present invention.

【図2】回生可能パワー初期値の推定誤差を説明する図
であり、内部抵抗と放電深度との関係を示す。
FIG. 2 is a diagram for explaining an estimation error of a regenerative power initial value, showing a relationship between an internal resistance and a depth of discharge.

【図3】回生可能パワー初期値の推定誤差を説明する図
であり、回生可能パワー初期値と放電深度との関係を示
す。
FIG. 3 is a diagram for explaining an estimation error of a regenerable power initial value, showing a relationship between a regenerable power initial value and a discharge depth.

【図4】電気自動車の走行駆動機構の構成を示すブロッ
ク図。
FIG. 4 is a block diagram showing a configuration of a traveling drive mechanism of the electric vehicle.

【図5】本実施の形態の方法による回生可能パワー初期
値と従来の方法による回生可能パワー初期値とを説明す
る図。
FIG. 5 is a diagram for explaining an initial value of regenerable power by the method of the present embodiment and an initial value of regenerable power by the conventional method.

【図6】従来の回生可能パワー初期値を説明する図。FIG. 6 is a diagram for explaining a conventional initial value of regenerable power.

【符号の説明】[Explanation of symbols]

11 電池 13 モータ 14 電圧センサ 15 電流センサ 16 バッテリーコントローラ 17 セルコントローラ 18 温度センサ 111〜11n 単セル 11 batteries 13 motor 14 Voltage sensor 15 Current sensor 16 Battery controller 17 cell controller 18 Temperature sensor 111-11n single cell

フロントページの続き (51)Int.Cl.7 識別記号 FI H02J 7/00 H02J 7/00 P (56)参考文献 特開 平9−98508(JP,A) 特開 平7−264709(JP,A) 特開 平5−284608(JP,A) 特開 平6−105405(JP,A) (58)調査した分野(Int.Cl.7,DB名) B60L 3/00 B60L 7/12 B60L 11/18 G01R 31/36 H01M 10/48 H02J 7/00 Continuation of front page (51) Int.Cl. 7 identification code FI H02J 7/00 H02J 7/00 P (56) References JP-A-9-98508 (JP, A) JP-A-7-264709 (JP, A ) JP-A-5-284608 (JP, A) JP-A-6-105405 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B60L 3/00 B60L 7/12 B60L 11 / 18 G01R 31/36 H01M 10/48 H02J 7/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電気車用電池の開放電圧実測値をEと
し、初期常温電池に関する内部抵抗基準値をR0とし、
走行開始時の電池状態に応じた補正係数をbとし、回生
充電時の上限電圧をVhとしたときに、回生充電制御に
おける受け入れ可能電力の走行開始時初期値である回生
可能パワー初期値を次式 【数1】 (回生可能パワー初期値)={Vh・(Vh−E)/RO}・b により算出するようにしたことを特徴とする回生可能パ
ワー初期値推定方法。
1. An actual open circuit voltage of an electric vehicle battery is set to E, an internal resistance reference value for an initial room temperature battery is set to R0,
When the correction coefficient according to the battery state at the start of travel is b and the upper limit voltage at the time of regenerative charging is Vh, the regenerative power initial value which is the initial value at the start of the acceptable power in the regenerative charging control is A method for estimating an initial value of regenerable power, characterized in that the initial value of regenerable power is calculated by the following equation: (initial value of regenerable power) = {Vh · (Vh−E) / RO} · b.
【請求項2】 請求項1 に記載の回生可能パワー初期値
推定方法において、 電池温度に依存する内部抵抗変化を表す温度補正係数を
b1とし、電池の劣化に依存する内部抵抗変化を表す劣
化補正係数をb2としたときに、前記補正係数bを次式 【数2】b=b1・b2 により算出するようにしたことを特徴とする回生可能パ
ワー初期値推定方法。
2. The method for estimating an initial value of regenerable power according to claim 1 , wherein a temperature correction coefficient indicating a change in internal resistance depending on a battery temperature is b1, and a deterioration correction indicating an internal resistance change depending on deterioration of the battery is set. A method for estimating a regenerable power initial value, characterized in that when the coefficient is b2, the correction coefficient b is calculated by the following equation b = b1 · b2.
【請求項3】 請求項1 に記載の回生可能パワー初期値
推定方法において、 電池温度に依存する内部抵抗変化を表す温度補正係数を
b1とし、電池の劣化に依存する内部抵抗変化を表す劣
化補正係数をb2とし、電池を構成する各単セルのばら
つきを補正するばらつき補正係数をb3としたときに、
前記補正係数bを次式 【数3】b=b1・b2・b3 により算出するようにしたことを特徴とする回生可能パ
ワー初期値推定方法。
3. The method for estimating an initial value of regenerable power according to claim 1 , wherein a temperature correction coefficient indicating an internal resistance change depending on a battery temperature is b1, and a deterioration correction indicating an internal resistance change depending on a deterioration of the battery is set. When the coefficient is b2 and the variation correction coefficient for correcting the variation of each single cell that constitutes the battery is b3,
The regenerative possible power initial value estimation method characterized in that the correction coefficient b is calculated by the following equation: b = b1, b2, b3.
【請求項4】 請求項3 に記載の回生可能パワー初期値
推定方法において、 前記電池を構成する各単セルの内部抵抗の最大値をRma
xとし、各単セルの内部抵抗の平均値をRaveとしたと
き、前記ばらつき補正係数b3を次式 【数4】b3=Rmax/Rave により算出するようにしたことを特徴とする回生可能パ
ワー初期値推定方法。
4. The method for estimating a regenerable power initial value according to claim 3 , wherein the maximum value of the internal resistance of each single cell forming the battery is Rma.
x and the average internal resistance of each unit cell is Rave, the variation correction coefficient b3 is calculated by the following equation b3 = Rmax / Rave. Value estimation method.
JP02898097A 1997-02-13 1997-02-13 Method for estimating initial value of regenerable power Expired - Fee Related JP3391206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02898097A JP3391206B2 (en) 1997-02-13 1997-02-13 Method for estimating initial value of regenerable power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02898097A JP3391206B2 (en) 1997-02-13 1997-02-13 Method for estimating initial value of regenerable power

Publications (2)

Publication Number Publication Date
JPH10224905A JPH10224905A (en) 1998-08-21
JP3391206B2 true JP3391206B2 (en) 2003-03-31

Family

ID=12263574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02898097A Expired - Fee Related JP3391206B2 (en) 1997-02-13 1997-02-13 Method for estimating initial value of regenerable power

Country Status (1)

Country Link
JP (1) JP3391206B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5682433B2 (en) * 2010-06-09 2015-03-11 日産自動車株式会社 Charge control system

Also Published As

Publication number Publication date
JPH10224905A (en) 1998-08-21

Similar Documents

Publication Publication Date Title
US9973018B2 (en) Electric storage system
US9475480B2 (en) Battery charge/discharge control device and hybrid vehicle using the same
JP6822300B2 (en) Charge rate estimation method and in-vehicle battery system
US7339351B2 (en) Method and apparatus for estimating remaining capacity of secondary battery
US8981729B2 (en) Charging control apparatus and charging control method for battery
JP4080817B2 (en) Battery leveling device for battery pack
JP2003303627A (en) Status detecting device and various devices using the same
JP2000150003A (en) Method and device for charged amount calculation for hybrid vehicle
JP2000069606A (en) Battery control unit
KR20200075929A (en) Periodic supplementary charging method for battery of vehicle
JP6711221B2 (en) Battery system
JPH0763830A (en) Apparatus for detecting residual capacity of battery for hybrid vehicle
JP2004031123A (en) Capacity calculation method and device for battery pack connected in parallel
JP5454027B2 (en) Charge control device and charge control method
JP3391206B2 (en) Method for estimating initial value of regenerable power
JP2001147260A (en) Remaining capacity detecting device for accumulator battery
JP6551362B2 (en) Power supply system
JP2002340996A (en) Battery capacity judging apparatus
JPH10142302A (en) Apparatus for detecting residual capacity of battery
JP7040489B2 (en) Control device
JP3628912B2 (en) Battery charge state detection device
JP3475894B2 (en) Apparatus for determining full charge of vehicle secondary battery and apparatus for calculating remaining capacity
WO2020085097A1 (en) Battery control device
JP2002122642A (en) Capacity determining method for secondary battery
JP4300363B2 (en) Battery pack capacity adjustment apparatus and method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100124

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100124

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110124

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees