JP2004031123A - Capacity calculation method and device for battery pack connected in parallel - Google Patents

Capacity calculation method and device for battery pack connected in parallel Download PDF

Info

Publication number
JP2004031123A
JP2004031123A JP2002185824A JP2002185824A JP2004031123A JP 2004031123 A JP2004031123 A JP 2004031123A JP 2002185824 A JP2002185824 A JP 2002185824A JP 2002185824 A JP2002185824 A JP 2002185824A JP 2004031123 A JP2004031123 A JP 2004031123A
Authority
JP
Japan
Prior art keywords
parallel
battery
internal resistance
correction coefficient
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002185824A
Other languages
Japanese (ja)
Inventor
Kenichi Sakai
酒井 健一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002185824A priority Critical patent/JP2004031123A/en
Publication of JP2004031123A publication Critical patent/JP2004031123A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a capacity calculation method for a battery pack capable of correctly calculating the capacity of the battery by considering states of cells connected in parallel with one another. <P>SOLUTION: A CPU 102 (not shown) is used for obtaining a curve Wh(P/α) by carrying out temperature correction of an initial characteristic Wh(P) of the battery pack by a temperature correction coefficient α. The characteristic curve after the temperature correction is further corrected by an internal resistance deterioration correction coefficient γ to obtain a curve Wh(P/αγ). The characteristic curve after the internal resistance deterioration correction is further corrected by a capacity deterioration correction coefficient β to obtain a curve βWh(P/αγ). The characteristic curve after the capacity deterioration correction is further corrected by a parallel internal resistance deterioration correction coefficient Γ to obtain a curve βWh(P/αγΓ). The characteristic curve after the parallel internal resistance deterioration correction is further corrected by a parallel capacity deterioration correction coefficient B to obtain a curve βBWh(P/αγΓ). <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、並列に接続された電池の容量演算方法および装置に関する。
【0002】
【従来の技術】
充電可能な二次電池の特性の一つとしてパワー対放電電力特性が知られている。一般に、電池の容量の算出は、基本となる初期特性Whを温度補正係数α、電池容量劣化補正係数β、および内部抵抗劣化補正係数γでそれぞれ補正した基準特性を用いて行われる。温度補正係数αは、電池の内部抵抗が電池の温度によって変化する変化率から導かれる。容量劣化補正係数βおよび内部抵抗劣化補正係数γの算出方法は、特開2000−261901号公報に一例が記載されている。上記公報に記載の方法では、補正係数を算出する際に二次電池の開放電圧を次のいずれかの方法で求める。
1.無負荷時に端子電圧を実測して得る。
2.充放電時に測定した複数の電流値および電圧値から得たIV特性により推定する。
3.充放電時に測定した電流値および総電圧値に基づいて推定する。
このように、いずれの方法でも電池の電圧測定が不可欠である。
【0003】
【発明が解決しようとする課題】
複数の二次単電池を並列に接続した電池について、電池容量を算出したいという要求がある。電池を並列に接続すると、電圧が高い側の電池から電圧が低い側の電池へ電流が流れる。この電流は調整電流と呼ばれ、電池間の端子電圧を合わせるように流れる。したがって、単電池を並列に接続した並列電池の端子電圧を測定しても単電池ごとの実際の開放電圧がわからないため、個々の単電池の状態を考慮して電池容量を算出することが困難である。
【0004】
本発明の目的は、並列に接続された単電池の状態を考慮して電池の容量を正しく演算するようにした組電池の容量演算方法および装置を提供することにある。
【0005】
【課題を解決するための手段】
本発明は、複数の二次単電池を並列に接続した並列電池を直列に複数接続した組電池の放電容量を演算する方法に関し、組電池の放電時の並列電池ごとの電圧値、および放電時の組電池の電流値による特性から並列電池ごとに内部抵抗をそれぞれ算出し、算出した内部抵抗の最大値、および最大値に対応する並列電池以外の並列電池の内部抵抗値を用いて上記内部抵抗が最大値を有する並列電池を構成する単電池の内部抵抗の最大値を推定する。そして、内部抵抗が最大値を有する並列電池以外の並列電池の内部抵抗の平均値を用いて並列電池を構成する単電池の内部抵抗の平均値を算出し、単電池の内部抵抗の平均値および最大値の比によって並列電池の放電容量を補正するようにしたものである。
【0006】
また、本発明は並列接続された組電池の容量演算装置に関し、複数の二次単電池を並列に接続し、前記並列電池を直列に複数接続した組電池の放電時に、前記並列電池ごとの電圧を検出するとともに、組電池の放電時に、組電池を流れる電流を検出し、この検出された電圧および電流に基づいて、前記並列電池ごとの内部抵抗を算出し、この内部抵抗が最大の並列電池を抽出し、この抽出された並列電池の内部抵抗と、前記抽出された並列電池以外の並列電池の内部抵抗とを用いて、抽出された並列電池を構成する単電池の内部抵抗の最大値を推定し、抽出された並列電池以外の並列電池の内部抵抗の平均値を用いて、前記並列電池を構成する単電池の内部抵抗の平均値を算出し、単電池の内部抵抗の平均値および単電池の内部抵抗の最大値の比を用いて、並列内部抵抗劣化補正係数を算出し、この算出された並列内部抵抗劣化補正係数で、前記並列電池の放電容量を補正するようにしたものである。
【0007】
【発明の効果】
本発明によれば、並列に接続された単電池の状態を考慮して容量演算を行うので、並列接続された組電池の容量を正しく演算することができる。
【0008】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を説明する。
図1は、本発明による方法で組電池の容量を演算する制御ユニットを搭載した車両の全体構成図である。以下の実施の形態では、組電池を電気自動車の電源として適用した例を説明する。図1において、車両の制御システムは、車両システムと電池制御ユニットとで構成される。図中の太い実線は強電ライン(強電系の配線)を表し、通常の実線は弱電ライン(弱電系の配線)を示す。破線は各ブロック間で送受される信号ラインを示す。
【0009】
車両システムは、電流センサ201と、電圧センサ202と、温度センサ203と、駆動用モータ301と、補機システム302と、メインリレー303A,303Bとを有する。組電池は、二次単電池(セル)C1〜C8によって構成される。単電池C1およびC2、単電池C3およびC4、単電池C5およびC6、ならびに単電池C7およびC8は、それぞれ並列に接続されている。組電池は、これら4組の並列電池(C1,C2)、並列電池(C3,C4)、並列電池(C5,C6)、並列電池(C7,C8)が直列に接続されている。電池制御ユニットは、セル電圧検出部101と、CPU102と、メモリ103とを有する。
【0010】
駆動用モータ301は、組電池から供給される電力によって車両の駆動力を発生する一方、組電池に対する回生電力を発生する。補機システム302は、組電池から供給される電力によって車両に搭載される不図示のエアコンディショナ(A/C)などを駆動する。メインリレー303A,303Bは、CPU102の指令により開閉制御され、駆動モータ301および補機システム302への電力供給をオン/オフする。
【0011】
電流センサ201は、強電ラインに流れる電流を検出し、検出信号をCPU102へ送出する。電圧センサ202は、組電池の電圧(総電圧)を検出し、検出信号をCPU102へ送出する。温度センサ203は、組電池の温度を検出し、温度検出信号をCPU102へ送出する。
【0012】
セル電圧検出部101は、並列電池(C1,C2)の端子電圧と、並列電池(C3,C4)の端子電圧と、並列電池(C5,C6)の端子電圧と、並列電池(C7,C8)の端子電圧とをそれぞれ検出し、4組の電圧情報をCPU102へ送出する。CPU102は、4組の並列電池の電圧情報を用いて充電(回生)時の最大充電電力および放電時の最大放電電力を演算する。最大充放電電力の演算は、車両走行時(IGNスイッチオン時)、組電池の充電時に行う。最大充放電電力の演算結果は、CPU102から車両システムCPU304へ送信される。CPU102はさらに、組電池の温度が異常の場合に車両システムCPU304へ温度異常を報知する。
【0013】
メモリ103は、CPU102に入力された4組の並列電池の電圧情報や強電ラインの電流の情報などを記憶する。
【0014】
車両システムCPU304は、駆動用モータ301および補機システム302へ出力される電力がCPU102から受信した最大放電電力以下になるように、組電池から出力される電力を制限して車両システムを制御する。また、車両システムCPU304は、駆動モータ301から回生される電力がCPU102から受信した最大充電電力以下になるように、組電池を充電する電力を制限して車両システムを制御する。車両警告灯305は、車両システムCPU304の指令により点灯し、車両システムの異常発生を運転者に報知する。補助電池401は、CPU102および車両システムCPU304へ電力を供給する。スイッチSWは、運転者によるイグニション(IGN)スイッチ402のオン/オフに連動し、補助電池401からの電力供給をオン/オフする。
【0015】
図2は、本発明による方法で算出した上記組電池のパワー対放電電力(容量)特性を説明する図である。パワー対放電電力特性は、二次電池の電池状態を表す特性の一つである。図2において、横軸は電池の出力可能なパワーPを表し、縦軸は放電電力量Whを表す。一般に、電池の初期特性を示す曲線Wh(P)は、出力可能パワーPのn次式で近似することができる。近似式については後述する。放電容量を示す曲線Wh(P)は、以下の補正係数でそれぞれ補正される。
▲1▼温度補正係数α
▲2▼内部抵抗劣化補正係数γ
▲3▼容量劣化補正係数β
▲4▼組電池の並列内部抵抗劣化補正係数Γ
▲5▼組電池の並列容量劣化補正係数Β
【0016】
図2の曲線Wh(P/α)は、初期特性Wh(P)を温度補正係数αで温度補正したものである。曲線Wh(P/αγ)は、温度補正後の特性曲線を内部抵抗劣化補正係数γでさらに補正したものである。曲線β・Wh(P/αγ)は、内部抵抗劣化補正後の特性曲線を容量劣化補正係数βでさらに補正したものである。
【0017】
曲線β・Wh(P/αγΓ)は、容量劣化補正後の特性曲線を並列内部抵抗劣化補正係数Γでさらに補正したものである。曲線β・Β・Wh(P/αγΓ)は、並列内部抵抗劣化補正後の特性曲線を並列容量劣化補正係数Βでさらに補正したものである。このようにして得られるパワー対放電電力特性β・Β・Wh(P/αγΓ)が、上記組電池の放電容量を示す基準特性として用いられる。
【0018】
本発明は、上記放電容量の演算に際し、とくに、上記▲4▼並列内部抵抗劣化補正係数Γ、および▲5▼並列容量劣化補正係数Βで補正する点に特徴を有する。
【0019】
上記▲1▼〜▲3▼の温度補正係数α、内部抵抗劣化補正係数γ、および容量劣化補正係数βは、組電池を構成する4組の並列電池C(P)(単電池C1およびC2で構成)、並列電池C(P)(単電池C3およびC4で構成)、並列電池C(P)(単電池C5およびC6で構成)、および並列電池C(P)(単電池C7およびC8で構成)において、並列電池の平均の放電容量を補正する係数として算出される。
【0020】
リチウムイオン電池の場合を例にとれば、曲線Wh(P)は次式(1)で近似できる。
【数1】
Wh(P)=aP+bP+cP+d               (1)
ただし、係数a,b,c,dは初期電池の特性から決定される。
【0021】
温度補正係数をαで上式(1)に対する温度補正を行うと、温度補正後の曲線Wh(P/α)式は次式(2)で表される。
【数2】
Wh(P/α)=a(P/α)+b(P/α)+c(P/α)+d    (2)
【0022】
温度補正係数αは、温度に依存した電池の内部抵抗の変化を示すパラメータである。一般に、電池の内部抵抗は電池温度の上昇とともに減少する。そこで、あらかじめ温度−内部抵抗の関係を実測してテーブル化し、温度に応じたテーブル参照値の形で温度補正係数αを与える。テーブル参照値は、メモリ103に記憶させておく。
【0023】
内部抵抗劣化補正係数γおよび容量劣化補正係数βで上式(2)に対する劣化補正を行うと、劣化補正後の曲線Wh(P/αγ)×βは次式(3)で表される。
【数3】
Wh(P/αγ)×β
=β{a(P/αγ)+b(P/αγ)+c(P/αγ)+d}     (3)
【0024】
図1のCPU102は、上記γおよびβを以下の手順で算出する。
1.並列電池ごとに端子電圧および電流を測定する。
2.各並列電池の電圧の平均を算出する。
3.内部抵抗劣化補正係数γを算出する。
4.容量劣化補正係数βを算出する。
【0025】
1.並列電池ごとの端子電圧および電流の測定
CPU102は、セル電圧検出部10から4組の並列電池C(P)、C(P)、C(P)、およびC(P)の端子電圧を示す情報をそれぞれ入力するとともに、電流センサ201から強電ラインの電流を示す情報を入力する。強電ラインに流れる電流値は、各並列電池の電流値に等しい。
【0026】
2.並列電池の電圧平均の算出
CPU102は、入力された電圧情報が示す各並列電池の電圧値V(P)〜V(P)の平均値V(Pave)を算出する。
【0027】
3.内部抵抗劣化補正係数γの算出
CPU102は、放電中の複数回の測定によって得た並列電池の電圧平均値V(Pave)および電流値を用いて並列電池のIV特性を直線回帰演算する。図3は、回帰直線を説明する図であり、放電中の並列電池の電流I,電圧Vを測定し、その測定データから得たものである。リチウムイオン電池やニッケル水素電池などは、放電時のIV特性の直線性がよいので測定したデータをもとに回帰直線を延長することができる。図中の×印は測定データを表している。この場合の回帰直線は、次式(4)で表わすことができる。
【数4】
V(Pave)=E(Pave)−I×R(Pave)              (4)
ただし、V(Pave)は並列電池の端子電圧平均値、V軸切片E(Pave)は並列電池の開放電圧平均値、回帰直線の傾きR(Pave)は並列電池の内部抵抗平均である。
【0028】
CPU102は、内部抵抗平均R(Pave)の上昇率の逆数を内部抵抗劣化補正係数γとする。具体的には、電池の初期状態で得られる内部抵抗平均R0(Pave)と、電池が劣化した状態で得られる内部抵抗平均R1(Pave)との比をとり、次式(5)により内部抵抗劣化補正係数γを算出する。
【数5】
γ=R0(Pave)/R1(Pave)                  (5)
【0029】
4.容量劣化補正係数βの算出
図4は、並列電池の初期状態で実測した放電容量(Ah)と開放電圧との関係を表す図である。図4によるマップデータは、あらかじめ実測したデータがメモリ103に記憶されている。CPU102は、放電中に実測した電気量とマップデータによる容量とを対比する。具体的には、放電中の所定時間における電流値を積算して放電電気量Ahdを算出するとともに、上記電流値の積算開始時の開放電圧平均値E(Pave)と、上記電流値の積算終了時の開放電圧平均値E(Pave)とを上記回帰演算によって得る。CPU102は、図4においてEおよびEの差に対応する容量差ΔAh(Pave)を求め、次式(6)により容量劣化補正係数βを算出する。
【数6】
β=Ahd/ΔAh(Pave)                   (6)
以上により、温度補正係数α、組電池を構成する並列電池の平均の内部抵抗劣化補正係数γ、および並列電池の平均の容量劣化補正係数βが得られる。
【0030】
組電池全体の並列内部抵抗劣化補正係数Γおよび並列容量劣化補正係数Βで上式(3)に対する劣化補正を行うと、劣化補正後の曲線Wh(P/αγΓ)×β×Βは次式(7)で表される。
【数7】
Wh(P/αγ)×β×Β
=β・Β{a(P/αγΓ)+b(P/αγΓ)+c(P/αγΓ)+d} (7)
【0031】
CPU102は、並列内部抵抗劣化補正係数Γを以下の手順で算出する。
1.並列電池ごとに端子電圧および電流を測定する。
2.並列電池ごとに最大放電電力を算出する。
3.最大放電電力が最小のものを抽出する。
4.抽出した並列電池を構成する単電池の中で最も大きい内部抵抗Rmaxを推定する。
5.内部抵抗Rmaxと、他の単電池の内部抵抗Raveとの比を算出し、並列内部抵抗劣化補正係数Γとする。
【0032】
1.並列電池ごとの端子電圧および電流の測定
上記内部抵抗劣化補正係数γ、および容量劣化補正係数βの算出において説明した測定と同様なので説明を省略する。なお、γおよびβの算出時に測定したデータをそのまま使用してもよいし、新たに測定したデータを用いてもよい。
【0033】
2.並列電池ごとの最大放電電力の算出
CPU102は、入力された電圧情報が示す電圧値および電流情報が示す電流値を用いて各並列電池ごとのIV特性を直線回帰演算する。この場合の回帰直線は、次式(8)で表わすことができる。
【数8】
V(P)=E(P)−I×R(P)                   (8)
ただし、V(P)は並列電池の端子電圧、V軸切片E(P)は並列電池の開放電圧、回帰直線の傾きR(P)は並列電池の内部抵抗である。
【0034】
図5は、上式(8)の回帰直線を説明する図であり、放電中の並列電池の電流Iおよび電圧Vの測定データから得たものである。リチウムイオン電池やニッケル水素電池などは、充電時と放電時とで電池の内部抵抗がほぼ一致し、さらに充放電時のIV特性の直線性がよいので、放電側で測定したデータをもとに回帰直線を充電側に延長することができる。図中の×印は測定データを表している。
【0035】
図5において、回帰直線と放電時の放電停止電圧Vmin(P)との交点Bの電流Imax(P)は、並列電池の最大放電電流を与える。並列電池の最大放電電力Pmax(P)は、上式(8)により次式(9)で算出される。
【数9】
Pmax(P)=Vmin(P)×Imax(P)
=Vmin(P)×(E(P)−Vmin(P))/R(P)           (9)
【0036】
3.最大放電電力が最小の並列電池を抽出
CPU102は、上述したように算出した4組の並列電池C(P)〜C(P)の最大放電電力Pmax(P)、Pmax(P)、Pmax(P)、Pmax(P)の中で、最小値のものを抽出する。以後、抽出した最小値をPmax(Pmin)と記す。また、Pmax(Pmin)に対応する並列電池をC(Pmin)、この並列電池C(Pmin)の内部抵抗をR(Pmin)と記す。
【0037】
4.並列電池C(Pmin)を構成する単電池の中で最も大きい内部抵抗Rmaxを推定CPU102は、抽出した並列電池C(Pmin)を構成する単電池のうち、1つの単電池のみが他の単電池に比べて内部抵抗が大きくなったと仮定する。つまり、単電池C1〜C8の8つの単電池で組電池を構成する場合を例にとれば、1つの単電池が劣化してその内部抵抗Rmaxが上昇し、他の7つの単電池の内部抵抗は同一の正常値をとる場合を想定する。並列電池C(Pmin)の内部抵抗R(Pmin)は、次式(10)で与えられる。
【数10】
R(Pmin)=(Rmax×Rave(n−1))/(Rmax+(n−1)×Rave) (10)
ただし、Raveは正常な単電池の内部抵抗の平均値である。nは並列電池を構成する単電池の数である。図1の例ではn=2である。
【0038】
各単電池の内部抵抗の平均値Raveは、次式(11)で与えられる。
【数11】
R(P)ave=Rave/(n×Rave)              (11)
ただし、R(P)aveは、並列電池C(Pmin)以外の並列電池C(P)の内部抵抗R(P)の平均値である。nは並列電池を構成する単電池の数である。
【0039】
CPU102は、並列電池C(Pmin)以外の並列電池C(P)の内部抵抗R(P)をそれぞれ求め、これら内部抵抗R(P)の平均値を算出して上式(11)の左辺に代入し、単電池の内部抵抗の平均値Raveを算出する。算出した平均値Raveをさらに上式(10)へ代入し、内部抵抗Rmaxを算出する。
【0040】
5.内部抵抗Rmaxと他の単電池の内部抵抗Raveとの比の算出
CPU102は、Rmax/Raveを算出する。Rmax/Raveを内部抵抗最大セル比(R(Pmin)ratio)と呼び、この逆数Rave/Rmaxを組電池の並列内部抵抗劣化補正係数Γとする(式12)。
【数12】
Γ=Rave/Rmax                      (12)
【0041】
CPU102は、並列容量劣化補正係数Βを以下のように算出する。CPU102は、上記マップデータから得た並列電池ごとの容量と、放電中に実測した電気量とを対比する。上述した容量劣化補正係数βの算出の際は実測した電気量と並列電池の平均の放電容量とを対比したが、ここでは並列電池の平均の容量の代わりに、実測した電気量と並列電池ごとの放電容量とを対比する。具体的には、放電中の所定時間における電流値を積算して放電電気量capAhを算出するとともに、上記電流値の積算開始時の開放電圧値E(P)と、上記電流値の積算終了時の開放電圧値E(P)とを上記回帰演算によって並列電池ごとに得る。CPU102は、図4において並列電池ごとのEおよびEの差に対応する容量差ΔAh(P)を求め、容量劣化係数(Ahratio)を次式(13)により算出する。
【数13】
Ahratio=capAh/ΔAh(P)                 (13)
【0042】
CPU102は、各並列電池の容量劣化係数(Ahratio)の中で最小値をAhratiominとする。CPU102はさらに、各並列電池の容量劣化係数(Ahratio)の平均値Ahratioaveを算出し、組電池全体の並列電池容量劣化補正係数Βを次式(14)を用いて算出する。
【数14】
Β=(Ahratioave−(Ahratioave−Ahratiomin)×n)/Ahratioave (14)
ただし、nは並列電池を構成する単電池の数である。
【0043】
以上説明した実施の形態についてまとめる。
(1)単電池C1およびC2を並列に接続した並列電池C(P)と、単電池C3およびC4を並列に接続した並列電池C(P)と、単電池C5およびC6を並列に接続した並列電池C(P)と、単電池C7およびC8を並列に接続した並列電池C(P)とをそれぞれ直列に接続して組電池を構成する。CPU102は、あらかじめ温度−内部抵抗の関係を実測してテーブル化し、テーブルデータを参照して温度補正係数αとする。
(2)上記組電池に流れる電流を電流センサ201で検出し、上記組電池を構成するそれぞれの並列電池の端子電圧をセル電圧検出部101で検出する。CPU102は、放電中の複数回の測定によって得た並列電池の電圧平均値V(Pave)および電流値を用いて並列電池のIV特性を直線回帰演算し、並列電池の内部抵抗平均R(Pave)の上昇率の逆数をとり、内部抵抗劣化補正係数γとする。
(3)CPU102は、放電中の所定時間における電流値を積算して放電電気量Ahdを算出するとともに、上記電流値の積算開始時の開放電圧平均値E(Pave)と、上記電流値の積算終了時の開放電圧平均値E(Pave)とを回帰演算によって得る。CPU102は、EおよびEの差に対応する容量差ΔAh(Pave)を図4のマップデータから求め、AhdおよびΔAh(Pave)の比をとって容量劣化補正係数βとする。
【0044】
(4)CPU102は、並列電池C(Pmin)の内部抵抗R(P)が最大値を有する並列電池C(Pmin)に着目し、当該並列電池を構成する単電池のうち1つの単電池の内部抵抗が他の単電池の内部抵抗に比べて上昇して最大値Rmaxを有し、他の単電池の内部抵抗が同一の正常値をとると仮定して内部抵抗最大セル比Rmax/Raveを算出する。CPU102は、内部抵抗最大セル比の逆数Rave/Rmaxを組電池の並列内部抵抗劣化補正係数Γとするようにした。Raveは、並列電池C(Pmin)以外の並列電池の内部抵抗R(P)から算出した他の単電池の内部抵抗である。内部抵抗最大セル比を用いて並列内部抵抗劣化補正係数Γを算出するので、並列電池を構成する単電池の容量が低い方の電池に応じた補正係数を得ることができる。さらに、並列電池C(Pmin)を構成する単電池のうち1つの単電池の内部抵抗が上昇して最大値Rmaxをとる仮定をしたので、内部抵抗の最悪値を想定して補正係数を算出できる。この結果、組電池を構成するいずれの単電池でも使用電池電圧が上下限値から外れないように適切な領域で電池を使用することができ、電池の劣化を防止できる。
【0045】
上記(4)について補足説明する。図6は、2つの単電池V1およびV2が並列に接続された並列電池を示す図である。この並列電池に負荷を接続すると、並列電池は電流Iを負荷へ流す。セル電圧検出部101は、負荷時の端子電圧Vを検出する。単電池V1のSOC(充電状態)が単電池V2のSOCより高く、単電池V1から単電池V2側へ容量調整電流が流れる状態では、単電池V1の電流I1の一部が単電池V2側へ流れる。並列電池の中で単電池の電圧のばらつきに起因して電圧が高い側の電池から電圧が低い側の電池へ調整電流が流れる場合、2つの単電池の開放電圧は異なる値をとる。図7は、時間の経過とともにセル電圧検出部101で検出される端子電圧、および各単電池の開放電圧を示す図である。図7において、横軸は時間を表し、縦軸は電圧を表す。曲線Vは並列電池の端子電圧を、曲線E01は単電池V1の開放電圧を、曲線E02は単電池V2の開放電圧をそれぞれ示す。図7は、並列電池の端子電圧Vが電池使用時の電圧下限値を下回らない状態でも、単電池V2の開放電圧が電圧下限値より低くなる場合があることを示している。本発明による演算方法は、並列電池のうち電池電圧が低い方の単電池の電池電圧が下限値を下回らないように組電池の放電容量を演算するものである。
【0046】
(5)組電池としての並列容量劣化補正係数Βを算出するとき、容量劣化係数(Ahratio)が最小値をとる並列電池を抽出し、この並列電池の容量劣化係数と、並列電池の容量劣化係数の平均値とを用いて算出するようにしたので、全ての並列電池の使用電池電圧が上下限値を外れないように適切な領域で電池を使用することが可能になり、電池の劣化を防止することができる。なお、容量劣化係数(Ahratio)は並列電池ごとの容量を示す係数であり、容量劣化係数が最小となる並列電池は、他の並列電池に比べて容量劣化が進行した並列電池とみなせる。
【0047】
上記の説明で用いた並列電池を構成する単電池の数n、および直列接続した並列電池の数mは、上述した例に限らず適宜設定してよい。
【0048】
以上の説明では、並列電池の開放電圧を回帰直線によって推定するようにした。この理由は、充放電IV特性の直線性がよい電池は推定開放電圧と実際の開放電圧とがよく一致するためである。
【0049】
並列電池の開放電圧を得る方法として、上記推定の代わりに無負荷時の電圧を測定して開放電圧を得てもよい。
【0050】
特許請求の範囲における各構成要素と、発明の実施の形態における各構成要素との対応について説明する。組電池は、たとえば、単電池C1〜C8によって構成される。並列接続電池は、たとえば、単電池C1およびC2を並列に接続した並列電池C(P)、単電池C3およびC4を並列に接続した並列電池C(P)、単電池C5およびC6を並列に接続した並列電池C(P)、および単電池C7およびC8を並列に接続した並列電池C(P)によって構成される。また、電圧センサ202が電圧検出手段を、電流センサ201が電流検出手段を、CPU102が内部抵抗算出手段、抽出手段、推定手段、平均値算出手段、補正係数算出手段、および放電容量補正手段を、それぞれ構成する。なお、本発明の特徴的な機能を損なわない限り、各構成要素は上記構成に限定されるものではない。
【図面の簡単な説明】
【図1】本発明による方法で組電池の放電容量を演算する制御ユニットを搭載した車両の全体構成図である。
【図2】組電池のパワー対放電電力特性を説明する図である。
【図3】回帰直線を説明する図である。
【図4】並列電池の初期状態で実測した放電容量と開放電圧との関係を表す図である。
【図5】回帰直線を説明する図である。
【図6】2つの単電池が並列に接続された並列電池を示す図である。
【図7】並列電池の端子電圧および各単電池の開放電圧を示す図である。
【符号の説明】
101…セル電圧検出部、      102…CPU、
103…メモリ、          201…電流センサ、
304…車両システムCPU、    C1〜C8…単電池
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for calculating the capacity of batteries connected in parallel.
[0002]
[Prior art]
Power-discharge power characteristics are known as one of the characteristics of a rechargeable secondary battery. In general, the battery capacity is calculated using reference characteristics obtained by correcting the basic initial characteristics Wh with a temperature correction coefficient α, a battery capacity deterioration correction coefficient β, and an internal resistance deterioration correction coefficient γ. The temperature correction coefficient α is derived from a change rate at which the internal resistance of the battery changes according to the temperature of the battery. An example of a method of calculating the capacity deterioration correction coefficient β and the internal resistance deterioration correction coefficient γ is described in Japanese Patent Application Laid-Open No. 2000-261901. In the method described in the above publication, the open-circuit voltage of the secondary battery is calculated by one of the following methods when calculating the correction coefficient.
1. Obtain and measure the terminal voltage when there is no load.
2. The estimation is made based on IV characteristics obtained from a plurality of current values and voltage values measured during charging and discharging.
3. The estimation is performed based on the current value and the total voltage value measured during charging and discharging.
As described above, the voltage measurement of the battery is indispensable in any method.
[0003]
[Problems to be solved by the invention]
There is a demand to calculate the battery capacity of a battery in which a plurality of secondary cells are connected in parallel. When batteries are connected in parallel, current flows from the battery with the higher voltage to the battery with the lower voltage. This current is called an adjustment current and flows so as to match the terminal voltage between the batteries. Therefore, it is difficult to calculate the battery capacity in consideration of the state of each unit cell because the actual open-circuit voltage of each unit cell is not known even when the terminal voltage of the unit cells connected in parallel is measured. is there.
[0004]
An object of the present invention is to provide a method and an apparatus for calculating the capacity of a battery pack that correctly calculate the capacity of a battery in consideration of the state of cells connected in parallel.
[0005]
[Means for Solving the Problems]
The present invention relates to a method of calculating the discharge capacity of a battery pack in which a plurality of parallel cells in which a plurality of secondary cells are connected in parallel is connected. The internal resistance is calculated for each of the parallel batteries from the characteristics of the current value of the assembled battery, and the internal resistance is calculated using the maximum value of the calculated internal resistance and the internal resistance values of the parallel batteries other than the parallel battery corresponding to the maximum value. Estimate the maximum value of the internal resistance of the unit cells constituting the parallel battery having the maximum value. Then, the average value of the internal resistance of the cells constituting the parallel battery is calculated using the average value of the internal resistances of the parallel batteries other than the parallel battery having the maximum internal resistance, and the average value of the internal resistance of the cells and The discharge capacity of the parallel battery is corrected by the ratio of the maximum value.
[0006]
Further, the present invention relates to a capacity calculating device for battery packs connected in parallel, wherein a plurality of secondary cells are connected in parallel, and a voltage of each of the parallel batteries is discharged at the time of discharging the battery pack in which a plurality of the parallel batteries are connected in series. And, when the battery pack is discharged, the current flowing through the battery pack is detected, and the internal resistance of each of the parallel batteries is calculated based on the detected voltage and current. By using the extracted internal resistance of the parallel battery and the internal resistance of the parallel battery other than the extracted parallel battery, the maximum value of the internal resistance of the unit cell constituting the extracted parallel battery is calculated. Using the estimated and extracted average value of the internal resistance of the parallel batteries other than the parallel battery, the average value of the internal resistance of the cells constituting the parallel battery is calculated, and the average value of the internal resistance of the cells and the average value of the cells are calculated. Maximum value of battery internal resistance Using a ratio, to calculate the parallel internal resistance deterioration correction factor, in the calculated parallel internal resistance deterioration correction coefficient is obtained so as to correct the discharge capacity of the parallel batteries.
[0007]
【The invention's effect】
According to the present invention, since the capacity calculation is performed in consideration of the state of the unit cells connected in parallel, the capacity of the battery pack connected in parallel can be calculated correctly.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an overall configuration diagram of a vehicle equipped with a control unit for calculating the capacity of a battery pack by the method according to the present invention. In the following embodiment, an example in which the assembled battery is applied as a power source of an electric vehicle will be described. In FIG. 1, the vehicle control system includes a vehicle system and a battery control unit. The thick solid line in the figure represents a high-voltage line (high-voltage wiring), and the normal solid line represents a low-voltage line (low-voltage wiring). Dashed lines indicate signal lines transmitted and received between each block.
[0009]
The vehicle system includes a current sensor 201, a voltage sensor 202, a temperature sensor 203, a driving motor 301, an auxiliary system 302, and main relays 303A and 303B. The assembled battery includes secondary cells (cells) C1 to C8. The cells C1 and C2, the cells C3 and C4, the cells C5 and C6, and the cells C7 and C8 are connected in parallel, respectively. In the battery pack, these four parallel batteries (C1, C2), parallel batteries (C3, C4), parallel batteries (C5, C6), and parallel batteries (C7, C8) are connected in series. The battery control unit has a cell voltage detection unit 101, a CPU 102, and a memory 103.
[0010]
The driving motor 301 generates driving power for the vehicle by the electric power supplied from the battery pack, and also generates regenerative power for the battery pack. The auxiliary system 302 drives an air conditioner (A / C) (not shown) mounted on the vehicle with electric power supplied from the battery pack. The main relays 303 </ b> A and 303 </ b> B are controlled to open and close according to a command from the CPU 102, and turn on / off power supply to the drive motor 301 and the auxiliary system 302.
[0011]
The current sensor 201 detects a current flowing through the high-power line, and sends a detection signal to the CPU 102. Voltage sensor 202 detects the voltage (total voltage) of the assembled battery and sends a detection signal to CPU 102. Temperature sensor 203 detects the temperature of the battery pack and sends a temperature detection signal to CPU 102.
[0012]
The cell voltage detection unit 101 includes a terminal voltage of the parallel batteries (C1, C2), a terminal voltage of the parallel batteries (C3, C4), a terminal voltage of the parallel batteries (C5, C6), and a terminal voltage of the parallel batteries (C7, C8). , And sends out four sets of voltage information to the CPU 102. The CPU 102 calculates the maximum charging power during charging (regeneration) and the maximum discharging power during discharging using the voltage information of the four parallel batteries. The calculation of the maximum charge / discharge power is performed when the vehicle is running (when the IGN switch is on) and when the battery pack is charged. The calculation result of the maximum charge / discharge power is transmitted from CPU 102 to vehicle system CPU 304. Further, when the temperature of the battery pack is abnormal, the CPU 102 notifies the vehicle system CPU 304 of the abnormal temperature.
[0013]
The memory 103 stores the voltage information of the four sets of parallel batteries, the information of the current of the high-power line, and the like input to the CPU 102.
[0014]
Vehicle system CPU 304 controls the vehicle system by limiting the power output from the assembled battery so that the power output to drive motor 301 and accessory system 302 is equal to or less than the maximum discharge power received from CPU 102. Further, vehicle system CPU 304 controls the vehicle system by limiting the power for charging the assembled battery so that the power regenerated from drive motor 301 is equal to or less than the maximum charging power received from CPU 102. The vehicle warning light 305 is turned on by a command from the vehicle system CPU 304 to notify the driver of the occurrence of an abnormality in the vehicle system. The auxiliary battery 401 supplies power to the CPU 102 and the vehicle system CPU 304. The switch SW turns on / off power supply from the auxiliary battery 401 in conjunction with turning on / off of an ignition (IGN) switch 402 by the driver.
[0015]
FIG. 2 is a diagram illustrating the power versus discharge power (capacity) characteristics of the battery pack calculated by the method according to the present invention. The power-to-discharge power characteristic is one of the characteristics representing the battery state of the secondary battery. In FIG. 2, the horizontal axis represents the output power P of the battery, and the vertical axis represents the discharge power amount Wh. In general, the curve Wh (P) indicating the initial characteristics of the battery can be approximated by the n-th order expression of the outputable power P. The approximate expression will be described later. The curves Wh (P) indicating the discharge capacities are respectively corrected by the following correction coefficients.
(1) Temperature correction coefficient α
(2) Internal resistance deterioration correction coefficient γ
(3) Capacity deterioration correction coefficient β
(4) Parallel internal resistance deterioration correction coefficient of battery packΓ
(5) Parallel capacity deterioration correction coefficient of battery packΒ
[0016]
The curve Wh (P / α) in FIG. 2 is obtained by correcting the initial characteristic Wh (P) with the temperature correction coefficient α. The curve Wh (P / αγ) is obtained by further correcting the characteristic curve after the temperature correction by the internal resistance deterioration correction coefficient γ. The curve β · Wh (P / αγ) is obtained by further correcting the characteristic curve after the internal resistance deterioration correction by the capacitance deterioration correction coefficient β.
[0017]
The curve β · Wh (P / αγΓ) is obtained by further correcting the characteristic curve after the capacity deterioration correction by the parallel internal resistance deterioration correction coefficient Γ. The curve β · Β · Wh (P / αγΓ) is obtained by further correcting the characteristic curve after the parallel internal resistance deterioration correction by the parallel capacitance deterioration correction coefficient Β. The power-discharge power characteristic β · β · Wh (P / αγΓ) thus obtained is used as a reference characteristic indicating the discharge capacity of the battery pack.
[0018]
The present invention is characterized in that the calculation of the discharge capacity is corrected, in particular, by the above (4) parallel internal resistance deterioration correction coefficient Γ and (5) parallel capacity deterioration correction coefficient Β.
[0019]
The temperature correction coefficient α, the internal resistance deterioration correction coefficient γ, and the capacity deterioration correction coefficient β of the above ( 1 ) to ( 3 ) are four sets of parallel batteries C (P 1 ) (single cells C1 and C2) constituting the assembled battery. ), Parallel battery C (P 2 ) (comprising cells C3 and C4), parallel battery C (P 3 ) (comprising cells C5 and C6), and parallel battery C (P 4 ) (cell C7) And C8) are calculated as coefficients for correcting the average discharge capacity of the parallel batteries.
[0020]
Taking the case of a lithium ion battery as an example, the curve Wh (P) can be approximated by the following equation (1).
(Equation 1)
Wh (P) = aP 3 + bP 2 + cP + d (1)
However, the coefficients a, b, c and d are determined from the characteristics of the initial battery.
[0021]
When the temperature correction coefficient α is used to perform temperature correction on the above equation (1), the curve Wh (P / α) equation after the temperature correction is expressed by the following equation (2).
(Equation 2)
Wh (P / α) = a (P / α) 3 + b (P / α) 2 + c (P / α) + d (2)
[0022]
The temperature correction coefficient α is a parameter indicating a change in the internal resistance of the battery depending on the temperature. Generally, the internal resistance of a battery decreases with increasing battery temperature. Therefore, the relationship between the temperature and the internal resistance is actually measured in advance and tabulated, and a temperature correction coefficient α is given in the form of a table reference value corresponding to the temperature. The table reference value is stored in the memory 103.
[0023]
When the deterioration correction for the above equation (2) is performed using the internal resistance deterioration correction coefficient γ and the capacity deterioration correction coefficient β, the curve Wh (P / αγ) × β after the deterioration correction is expressed by the following equation (3).
[Equation 3]
Wh (P / αγ) × β
= Β {a (P / αγ) 3 + b (P / αγ) 2 + c (P / αγ) + d} (3)
[0024]
The CPU 102 in FIG. 1 calculates the above γ and β in the following procedure.
1. The terminal voltage and current are measured for each parallel battery.
2. The average of the voltage of each parallel battery is calculated.
3. The internal resistance deterioration correction coefficient γ is calculated.
4. The capacity deterioration correction coefficient β is calculated.
[0025]
1. The CPU 102 measures the terminal voltage and current of each parallel battery. The CPU 102 detects four sets of terminals of the parallel batteries C (P 1 ), C (P 2 ), C (P 3 ), and C (P 4 ) from the cell voltage detection unit 10. The information indicating the voltage is input, and the information indicating the current of the high-power line is input from the current sensor 201. The value of the current flowing through the high voltage line is equal to the value of the current of each parallel battery.
[0026]
2. Calculation of Voltage Average of Parallel Battery The CPU 102 calculates the average value V (Pave) of the voltage values V (P 1 ) to V (P 4 ) of each parallel battery indicated by the input voltage information.
[0027]
3. Calculation of Internal Resistance Degradation Correction Coefficient γ The CPU 102 performs a linear regression calculation of the IV characteristics of the parallel battery using the average voltage V (Pave) and the current value of the parallel battery obtained by a plurality of measurements during discharging. FIG. 3 is a diagram for explaining a regression line, which is obtained from the measured data of the current I and the voltage V of a parallel battery being discharged. Lithium-ion batteries, nickel-metal hydride batteries, and the like have good linearity of IV characteristics at the time of discharge, so that the regression line can be extended based on measured data. The crosses in the figure represent measurement data. The regression line in this case can be expressed by the following equation (4).
(Equation 4)
V (Pave) = E 0 (Pave) −I × R (Pave) (4)
Here, V (Pave) is the average terminal voltage of the parallel batteries, the V-axis intercept E 0 (Pave) is the average open-circuit voltage of the parallel batteries, and the slope R (Pave) of the regression line is the average internal resistance of the parallel batteries.
[0028]
The CPU 102 sets the reciprocal of the rate of increase of the internal resistance average R (Pave) as the internal resistance deterioration correction coefficient γ. Specifically, the ratio of the internal resistance average R0 (Pave) obtained in the initial state of the battery to the internal resistance average R1 (Pave) obtained in the deteriorated state of the battery is calculated, and the internal resistance is calculated by the following equation (5). The deterioration correction coefficient γ is calculated.
(Equation 5)
γ = R0 (Pave) / R1 (Pave) (5)
[0029]
4. Calculation of Capacity Deterioration Correction Coefficient β FIG. 4 is a diagram showing the relationship between the discharge capacity (Ah) actually measured in the initial state of the parallel battery and the open circuit voltage. As the map data according to FIG. 4, data actually measured in advance is stored in the memory 103. The CPU 102 compares the amount of electricity measured during the discharge with the capacity based on the map data. Specifically, the electric current value at a predetermined time during the discharge is integrated to calculate the amount of discharged electricity Ahd, the open-circuit voltage average value E 1 (Pave) at the start of the integration of the current value, and the integration of the current value The open-circuit voltage average value E 2 (Pave) at the end is obtained by the regression calculation. CPU102 calculates a capacity difference ΔAh corresponding to the difference between E 1 and E 2 (Pave) in FIG. 4, to calculate the capacity deterioration correction factor β according to the following equation (6).
(Equation 6)
β = Ahd / ΔAh (Pave) (6)
As described above, the temperature correction coefficient α, the average internal resistance deterioration correction coefficient γ of the parallel batteries constituting the assembled battery, and the average capacity deterioration correction coefficient β of the parallel batteries are obtained.
[0030]
When the deterioration correction for the above equation (3) is performed using the parallel internal resistance deterioration correction coefficient Γ and the parallel capacity deterioration correction coefficient Β of the entire assembled battery, the curve Wh (P / αγΓ) × β × Β after deterioration correction is expressed by the following equation ( 7).
(Equation 7)
Wh (P / αγ) × β × Β
= ΒΒ {{a (P / αγΓ) 3 + b (P / αγΓ) 2 + c (P / αγΓ) + d} (7)
[0031]
CPU calculates parallel internal resistance deterioration correction coefficient で in the following procedure.
1. The terminal voltage and current are measured for each parallel battery.
2. Calculate the maximum discharge power for each parallel battery.
3. The one with the smallest maximum discharge power is extracted.
4. The largest internal resistance R C max among the cells constituting the extracted parallel battery is estimated.
5. The ratio between the internal resistance R C max and the internal resistance R C ave of another unit cell is calculated, and is set as a parallel internal resistance deterioration correction coefficient Γ.
[0032]
1. Measurement of Terminal Voltage and Current for Each Parallel Battery The measurement is the same as that described in the calculation of the internal resistance deterioration correction coefficient γ and the capacity deterioration correction coefficient β, and thus the description is omitted. The data measured when calculating γ and β may be used as is, or newly measured data may be used.
[0033]
2. Calculation of maximum discharge power for each parallel battery CPU 102 performs a linear regression operation on the IV characteristics of each parallel battery using the voltage value indicated by the input voltage information and the current value indicated by the current information. The regression line in this case can be expressed by the following equation (8).
(Equation 8)
V (P) = E 0 (P) −I × R (P) (8)
Here, V (P) is the terminal voltage of the parallel battery, the V-axis intercept E 0 (P) is the open voltage of the parallel battery, and the slope R (P) of the regression line is the internal resistance of the parallel battery.
[0034]
FIG. 5 is a diagram for explaining the regression line of the above equation (8), which is obtained from measurement data of the current I and the voltage V of the parallel battery being discharged. Lithium-ion batteries and nickel-metal hydride batteries have almost the same internal resistance during charging and discharging, and have good linearity of IV characteristics during charging and discharging. The regression line can be extended to the charging side. The crosses in the figure represent measurement data.
[0035]
In FIG. 5, the current Imax (P) at the intersection B of the regression line and the discharge stop voltage Vmin (P) during discharge gives the maximum discharge current of the parallel battery. The maximum discharge power Pmax (P) of the parallel battery is calculated by the following equation (9) using the above equation (8).
(Equation 9)
Pmax (P) = Vmin (P) × Imax (P)
= Vmin (P) × (E 0 (P) −Vmin (P)) / R (P) (9)
[0036]
3. The CPU 102 extracts the parallel battery with the minimum maximum discharge power. The CPU 102 calculates the maximum discharge power Pmax (P 1 ), Pmax (P 2 ) of the four parallel batteries C (P 1 ) to C (P 4 ) calculated as described above. , Pmax (P 3 ) and Pmax (P 4 ) are extracted. Hereinafter, the extracted minimum value is referred to as Pmax (Pmin). The parallel battery corresponding to Pmax (Pmin) is denoted by C (Pmin), and the internal resistance of this parallel battery C (Pmin) is denoted by R (Pmin).
[0037]
4. The CPU 102 estimates the largest internal resistance R C max among the cells constituting the parallel battery C (Pmin). The CPU 102 determines that only one cell among the extracted cells constituting the parallel battery C (Pmin) is the other. Assume that the internal resistance is higher than that of a single cell. That is, in the case where the battery pack is composed of eight cells C1 to C8 as an example, one cell deteriorates, its internal resistance R C max increases, and the cells of the other seven cells C1 to C8 increase. It is assumed that the internal resistance takes the same normal value. The internal resistance R (Pmin) of the parallel battery C (Pmin) is given by the following equation (10).
(Equation 10)
R (Pmin) = ( RC max × RC cave (n−1) ) / ( RC max + (n−1) × RC cave) (10)
However, R C ave is the average value of the internal resistance of the normal unit cells. n is the number of cells constituting the parallel battery. In the example of FIG. 1, n = 2.
[0038]
Mean value R C ave of the internal resistance of each cell is given by the following equation (11).
[Equation 11]
R (P) ave = R C ave n / (n × R C ave) (11)
Here, R (P) ave is the average value of the internal resistance R (P) of the parallel batteries C (P) other than the parallel battery C (Pmin). n is the number of cells constituting the parallel battery.
[0039]
The CPU 102 calculates the internal resistances R (P) of the parallel batteries C (P) other than the parallel battery C (Pmin), calculates the average value of these internal resistances R (P), and calculates Then, the average value R C ave of the internal resistance of the cell is calculated. The calculated average value R C ave is further substituted into the above equation (10) to calculate the internal resistance R C max.
[0040]
5. Calculation of ratio of internal resistance R C max to internal resistance R C ave of another unit cell CPU 102 calculates R C max / R C ave. R C max / R C ave is called an internal resistance maximum cell ratio (R (Pmin) ratio), and the reciprocal R C ave / R C max is set as a parallel internal resistance deterioration correction coefficient Γ of the assembled battery (Equation 12).
(Equation 12)
Γ = R C ave / R C max (12)
[0041]
The CPU 102 calculates the parallel capacity deterioration correction coefficient Β as follows. The CPU 102 compares the capacity of each parallel battery obtained from the map data with the amount of electricity measured during discharging. When calculating the capacity deterioration correction coefficient β described above, the actually measured amount of electricity was compared with the average discharge capacity of the parallel batteries, but here, instead of the average capacity of the parallel batteries, the actually measured amount of electricity and each parallel battery were used. In comparison with the discharge capacity. More specifically, the electric current value at a predetermined time during the discharge is integrated to calculate the discharge electricity amount capAh, and the open-circuit voltage value E 1 (P) at the start of the current value integration and the end of the current value integration are calculated. The open-circuit voltage value E 2 (P) at the time is obtained for each parallel battery by the regression calculation. CPU102 calculates a capacity difference corresponding to the difference between E 1 and E 2 of each parallel battery .DELTA.Ah (P) in FIG. 4, is calculated by the following equation (13) the capacity deterioration factor (Ahratio).
(Equation 13)
Ahratio = capAh / ΔAh (P) (13)
[0042]
The CPU 102 sets the minimum value among the capacity deterioration coefficients (Ahratio) of the respective parallel batteries to Ahratiomin. The CPU 102 further calculates an average value Ahratioave of the capacity deterioration coefficient (Ahratio) of each parallel battery, and calculates a parallel battery capacity deterioration correction coefficient の of the entire assembled battery using the following equation (14).
[Equation 14]
Β = (Ahratioave- (Ahratioave-Ahratiomin) × n) / Ahratioave (14)
Here, n is the number of cells constituting the parallel battery.
[0043]
The embodiments described above are summarized.
(1) connected to the single batteries C1 and C2 parallel cell C connected in parallel (P 1), and unit cell C3 and C4 the parallel battery C connected in parallel (P 2), the unit cells C5 and C6 in parallel The assembled parallel battery C (P 3 ) and the parallel battery C (P 4 ) in which the unit cells C7 and C8 are connected in parallel are connected in series to form an assembled battery. The CPU 102 measures the relationship between the temperature and the internal resistance in advance and forms a table, and refers to the table data as a temperature correction coefficient α.
(2) The current flowing through the battery pack is detected by the current sensor 201, and the terminal voltage of each parallel battery constituting the battery pack is detected by the cell voltage detection unit 101. The CPU 102 performs a linear regression calculation on the IV characteristics of the parallel battery using the average voltage V (Pave) and the current value of the parallel battery obtained by a plurality of measurements during discharging, and calculates the average internal resistance R (Pave) of the parallel battery. The reciprocal of the rate of increase is taken as the internal resistance deterioration correction coefficient γ.
(3) The CPU 102 integrates the current value during a predetermined time during the discharge to calculate the amount of discharged electricity Ahd, and calculates the open-circuit voltage average value E 1 (Pave) at the start of the integration of the current value and the current value. The open-circuit voltage average value E 2 (Pave) at the end of the integration is obtained by regression calculation. CPU102 is capacitance difference .DELTA.Ah corresponding to the difference between E 1 and E 2 a (Pave) calculated from the map data of FIG. 4, the capacity deterioration correction coefficient β taking the ratio of the Ahd and .DELTA.Ah (Pave).
[0044]
(4) The CPU 102 pays attention to the parallel battery C (Pmin) in which the internal resistance R (P) of the parallel battery C (Pmin) has the maximum value, and the inside of one of the cells constituting the parallel battery. Assuming that the resistance rises as compared with the internal resistance of the other cells and has a maximum value R C max, and the internal resistance of the other cells takes the same normal value, the internal resistance maximum cell ratio R C max / Calculate R C ave. CPU102 was the reciprocal R C ave / R C max of the internal resistance maximum cell ratio as a parallel internal resistance deterioration correction coefficient Γ of the battery pack. R C ave is an internal resistance of the other unit cell which is calculated from the internal resistance R (P) in parallel batteries other than parallel cell C (Pmin). Since the parallel internal resistance deterioration correction coefficient Γ is calculated using the internal resistance maximum cell ratio, it is possible to obtain a correction coefficient corresponding to the battery having the lower capacity of the unit cells constituting the parallel battery. Furthermore, since it is assumed that the internal resistance of one of the cells constituting the parallel battery C (Pmin) increases and takes the maximum value R C max, the correction coefficient is calculated by assuming the worst value of the internal resistance. Can be calculated. As a result, the battery can be used in an appropriate region so that the used battery voltage does not deviate from the upper and lower limit values in any of the cells constituting the assembled battery, and the battery can be prevented from being deteriorated.
[0045]
The above (4) will be supplementarily described. FIG. 6 is a diagram illustrating a parallel battery in which two unit cells V1 and V2 are connected in parallel. When a load is connected to the parallel battery, the parallel battery passes a current I to the load. The cell voltage detection unit 101 detects a terminal voltage V under load. In a state where the SOC (charging state) of the cell V1 is higher than the SOC of the cell V2 and a capacity adjustment current flows from the cell V1 to the cell V2, a part of the current I1 of the cell V1 flows to the cell V2. Flows. When the adjustment current flows from the battery with the higher voltage to the battery with the lower voltage due to the variation in the voltage of the cells in the parallel cells, the open voltages of the two cells take different values. FIG. 7 is a diagram illustrating the terminal voltage detected by the cell voltage detection unit 101 over time, and the open-circuit voltage of each cell. In FIG. 7, the horizontal axis represents time, and the vertical axis represents voltage. The curve V indicates the terminal voltage of the parallel battery, the curve E01 indicates the open voltage of the cell V1, and the curve E02 indicates the open voltage of the cell V2. FIG. 7 shows that even when the terminal voltage V of the parallel battery does not fall below the lower voltage limit when the battery is used, the open voltage of the cell V2 may be lower than the lower voltage limit. The calculation method according to the present invention calculates the discharge capacity of the assembled battery such that the battery voltage of the unit cell having the lower battery voltage among the parallel batteries does not fall below the lower limit.
[0046]
(5) When calculating the parallel capacity deterioration correction coefficient Β as a battery pack, a parallel battery having a minimum capacity deterioration coefficient (Ahratio) is extracted, and the capacity deterioration coefficient of this parallel battery and the capacity deterioration coefficient of the parallel battery are extracted. It is possible to use the battery in an appropriate area so that the battery voltage of all the parallel batteries does not exceed the upper and lower limits, and prevent the battery from deteriorating. can do. Note that the capacity deterioration coefficient (Ahratio) is a coefficient indicating the capacity of each parallel battery, and a parallel battery with the smallest capacity deterioration coefficient can be regarded as a parallel battery whose capacity deterioration has progressed compared to other parallel batteries.
[0047]
The number n of unit cells constituting the parallel battery and the number m of parallel batteries connected in series used in the above description are not limited to the above-described example, and may be set as appropriate.
[0048]
In the above description, the open-circuit voltage of the parallel battery is estimated by a regression line. The reason for this is that the estimated open-circuit voltage and the actual open-circuit voltage of a battery having good linearity of the charge-discharge IV characteristics are well matched.
[0049]
As a method of obtaining the open-circuit voltage of the parallel battery, the open-circuit voltage may be obtained by measuring the voltage at no load instead of the above estimation.
[0050]
Correspondence between each component in the claims and each component in the embodiment of the invention will be described. The assembled battery includes, for example, the cells C1 to C8. Parallel connection cells, for example, parallel cell C (P 1) connected single cells C1 and C2 in parallel, the parallel batteries C (P 2) of the unit cells C3 and C4 are connected in parallel, parallel single cells C5 and C6 It constituted by connecting in parallel cell C (P 3), and parallel battery C (P 4) of the unit cell C7 and C8 are connected in parallel to the. Further, the voltage sensor 202 is a voltage detecting unit, the current sensor 201 is a current detecting unit, and the CPU 102 is an internal resistance calculating unit, an extracting unit, an estimating unit, an average value calculating unit, a correction coefficient calculating unit, and a discharge capacity correcting unit. Configure each. Note that each component is not limited to the above configuration as long as the characteristic functions of the present invention are not impaired.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of a vehicle equipped with a control unit for calculating a discharge capacity of a battery pack by a method according to the present invention.
FIG. 2 is a diagram illustrating power versus discharge power characteristics of a battery pack.
FIG. 3 is a diagram illustrating a regression line.
FIG. 4 is a diagram illustrating a relationship between a measured discharge capacity and an open circuit voltage in an initial state of a parallel battery.
FIG. 5 is a diagram illustrating a regression line.
FIG. 6 is a diagram showing a parallel battery in which two unit cells are connected in parallel.
FIG. 7 is a diagram showing a terminal voltage of a parallel battery and an open voltage of each cell.
[Explanation of symbols]
101: cell voltage detection unit, 102: CPU,
103: memory, 201: current sensor,
304: vehicle system CPU, C1 to C8: single cells

Claims (4)

複数の二次単電池を並列に接続し、前記並列電池を直列に複数接続した組電池の放電容量を演算する方法において、
前記組電池の放電時に前記並列電池ごとの電圧をそれぞれ検出し、
前記放電時に前記組電池を流れる電流を検出し、
前記検出した電流値および電圧値による特性から前記並列電池ごとに内部抵抗をそれぞれ算出し、
前記算出した内部抵抗が最大値を有する並列電池を抽出し、
前記抽出した並列電池の内部抵抗値、および前記抽出した並列電池以外の並列電池の内部抵抗の平均値を用いて前記抽出した並列電池を構成する単電池の内部抵抗の最大値を推定し、
前記抽出した並列電池以外の並列電池の内部抵抗の平均値を用いて前記並列電池を構成する単電池の内部抵抗の平均値を算出し、
前記単電池の内部抵抗の平均値および前記単電池の内部抵抗の最大値の比を用いて並列内部抵抗劣化補正係数を算出し、
前記並列内部抵抗劣化補正係数で前記並列電池の放電容量を補正することを特徴とする並列接続された組電池の容量演算方法。
A method for calculating the discharge capacity of a battery pack in which a plurality of secondary cells are connected in parallel and the plurality of parallel batteries are connected in series,
Detecting the voltage of each of the parallel batteries at the time of discharging the battery pack,
Detecting the current flowing through the battery pack during the discharging,
The internal resistance is calculated for each of the parallel batteries from the characteristics based on the detected current value and voltage value,
The calculated internal resistance extracts the parallel battery having the maximum value,
The extracted internal resistance value of the parallel battery, and the maximum value of the internal resistance of the unit cell constituting the extracted parallel battery using the average value of the internal resistance of the parallel battery other than the extracted parallel battery,
Using the average value of the internal resistance of the parallel battery other than the extracted parallel battery, calculate the average value of the internal resistance of the cells constituting the parallel battery,
A parallel internal resistance deterioration correction coefficient is calculated using a ratio of the average value of the internal resistance of the unit cells and the maximum value of the internal resistance of the unit cells,
A capacity calculation method for battery packs connected in parallel, wherein the discharge capacity of the parallel batteries is corrected by the parallel internal resistance deterioration correction coefficient.
請求項1に記載の並列接続された組電池の容量演算方法において、
前記検出した電流値、前記検出した電圧値、および前記並列電池の初期特性から前記並列電池ごとの容量を示す係数をそれぞれ算出し、
前記容量を示す係数の最小値および平均値を用いて並列容量劣化補正係数を算出し、
前記並列容量劣化補正係数で前記並列電池の放電容量をさらに補正することを特徴とする並列接続された組電池の容量演算方法。
The method of claim 1, wherein the capacity of the battery packs connected in parallel is calculated.
The detected current value, the detected voltage value, and a coefficient indicating the capacity of each parallel battery are calculated from the initial characteristics of the parallel battery, respectively.
Calculate a parallel capacity deterioration correction coefficient using the minimum value and the average value of the coefficient indicating the capacity,
A capacity calculation method for battery packs connected in parallel, further comprising correcting the discharge capacity of the parallel batteries with the parallel capacity deterioration correction coefficient.
請求項1または2に記載の並列接続された組電池の容量演算方法において、
前記並列電池の平均の放電容量を補正する、(1)温度補正係数、(2)内部抵抗劣化補正係数、および(3)容量劣化補正係数をそれぞれ算出し、
前記並列電池の放電容量を前記(1)温度補正係数、(2)内部抵抗劣化補正係数、および(3)容量劣化補正係数でさらに補正することを特徴とする並列接続された組電池の容量演算方法。
3. The method for calculating the capacity of battery packs connected in parallel according to claim 1 or 2,
Calculating (1) a temperature correction coefficient, (2) an internal resistance deterioration correction coefficient, and (3) a capacity deterioration correction coefficient for correcting the average discharge capacity of the parallel battery,
The discharge capacity of the parallel battery is further corrected by the (1) temperature correction coefficient, (2) internal resistance deterioration correction coefficient, and (3) capacity deterioration correction coefficient. Method.
複数の二次単電池を並列に接続し、前記並列電池を直列に複数接続した組電池と、
前記組電池の放電時に、前記並列電池ごとの電圧を検出する電圧検出手段と、
前記組電池の放電時に、前記組電池を流れる電流を検出する電流検出手段と、
前記電圧検出手段および前記電流検出手段により検出された電圧および電流に基づいて、前記並列電池ごとの内部抵抗を算出する内部抵抗算出手段と、
前記内部抵抗算出手段により算出された内部抵抗が最大の並列電池を抽出する抽出手段と、
前記抽出手段によって抽出された並列電池の内部抵抗と、前記抽出された並列電池以外の並列電池の内部抵抗とを用いて、前記抽出された並列電池を構成する単電池の内部抵抗の最大値を推定する推定手段と、
前記抽出手段で抽出された並列電池以外の並列電池の内部抵抗の平均値を用いて、前記並列電池を構成する単電池の内部抵抗の平均値を算出する平均値算出手段と、
前記平均値算出手段によって算出された単電池の内部抵抗の平均値および前記推定手段で推定された単電池の内部抵抗の最大値の比を用いて、並列内部抵抗劣化補正係数を算出する補正係数算出手段と、
前記補正係数算出手段によって算出された並列内部抵抗劣化補正係数で、前記並列電池の放電容量を補正する放電容量補正手段と、
を備えることを特徴とする並列接続された組電池の容量演算装置。
A battery pack in which a plurality of secondary cells are connected in parallel, and a plurality of the parallel batteries are connected in series,
At the time of discharging the battery pack, voltage detecting means for detecting a voltage of each of the parallel batteries,
When the battery pack is discharged, current detection means for detecting a current flowing through the battery pack,
Based on the voltage and current detected by the voltage detecting means and the current detecting means, an internal resistance calculating means for calculating an internal resistance for each of the parallel batteries;
Extraction means for extracting a parallel battery having the maximum internal resistance calculated by the internal resistance calculation means,
Using the internal resistance of the parallel battery extracted by the extracting means and the internal resistance of the parallel battery other than the extracted parallel battery, the maximum value of the internal resistance of the unit cells constituting the extracted parallel battery is calculated. Estimating means for estimating,
Using the average value of the internal resistance of the parallel batteries other than the parallel battery extracted by the extraction means, average value calculation means for calculating the average value of the internal resistance of the unit cells constituting the parallel battery,
A correction coefficient for calculating a parallel internal resistance deterioration correction coefficient using a ratio between the average value of the internal resistance of the cell calculated by the average value calculation means and the maximum value of the internal resistance of the cell estimated by the estimation means Calculating means;
A discharge capacity correction means for correcting the discharge capacity of the parallel battery with the parallel internal resistance deterioration correction coefficient calculated by the correction coefficient calculation means,
A capacity calculating device for assembled batteries connected in parallel, characterized by comprising:
JP2002185824A 2002-06-26 2002-06-26 Capacity calculation method and device for battery pack connected in parallel Pending JP2004031123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002185824A JP2004031123A (en) 2002-06-26 2002-06-26 Capacity calculation method and device for battery pack connected in parallel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002185824A JP2004031123A (en) 2002-06-26 2002-06-26 Capacity calculation method and device for battery pack connected in parallel

Publications (1)

Publication Number Publication Date
JP2004031123A true JP2004031123A (en) 2004-01-29

Family

ID=31181344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002185824A Pending JP2004031123A (en) 2002-06-26 2002-06-26 Capacity calculation method and device for battery pack connected in parallel

Country Status (1)

Country Link
JP (1) JP2004031123A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006338944A (en) * 2005-05-31 2006-12-14 Nissan Motor Co Ltd Battery control device
JP2007057385A (en) * 2005-08-24 2007-03-08 Fuji Heavy Ind Ltd Degradation estimation system for electricity accumulation device
WO2008108455A1 (en) * 2007-03-06 2008-09-12 Toyota Jidosha Kabushiki Kaisha Electric vehicle, method for estimating state of charge, and computer readable recording medium recording program for executing state of charge estimation method on computer
WO2012137456A1 (en) * 2011-04-01 2012-10-11 トヨタ自動車株式会社 Method for determining remaining lifetime
EP2432067A3 (en) * 2008-01-24 2013-02-27 Toyota Jidosha Kabushiki Kaisha Battery system, vehicle, and battery mounted device
CN103068620A (en) * 2010-08-24 2013-04-24 铃木株式会社 Electric-powered vehicle
DE112011102788T5 (en) 2010-08-24 2013-06-13 Suzuki Motor Corporation Energy storage system
KR20180032907A (en) * 2016-09-23 2018-04-02 주식회사 엘지화학 APARRATUS AND METHOD FOR MANAGEMENT PARALLEL BATTERYPACK's SOC AND SOH
US20190081369A1 (en) * 2016-03-08 2019-03-14 Kabushiki Kaisha Toshiba Battery monitoring device and method
CN112485693A (en) * 2020-11-19 2021-03-12 上海电力大学 Battery health state rapid evaluation method based on temperature probability density function
CN113533993A (en) * 2020-04-21 2021-10-22 丰田自动车株式会社 Battery pack state determination device and state determination method
CN113533993B (en) * 2020-04-21 2024-04-30 丰田自动车株式会社 State determination device and state determination method for battery pack

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006338944A (en) * 2005-05-31 2006-12-14 Nissan Motor Co Ltd Battery control device
JP2007057385A (en) * 2005-08-24 2007-03-08 Fuji Heavy Ind Ltd Degradation estimation system for electricity accumulation device
US8648571B2 (en) 2007-03-06 2014-02-11 Toyota Jidosha Kabushiki Kaisha Electric-powered vehicle, method for estimating state of charge, and computer-readable storage medium having program stored therein for causing computer to execute method for estimating state of charge
WO2008108455A1 (en) * 2007-03-06 2008-09-12 Toyota Jidosha Kabushiki Kaisha Electric vehicle, method for estimating state of charge, and computer readable recording medium recording program for executing state of charge estimation method on computer
JP2008220080A (en) * 2007-03-06 2008-09-18 Toyota Motor Corp Electric vehicle, charged state estimating method, and computer-readable storage medium recording program for making computer excute charged state estimating method
JP4706648B2 (en) * 2007-03-06 2011-06-22 トヨタ自動車株式会社 Electric vehicle, charging state estimation method, and computer-readable recording medium recording a program for causing a computer to execute the charging state estimation method
EP2432067A3 (en) * 2008-01-24 2013-02-27 Toyota Jidosha Kabushiki Kaisha Battery system, vehicle, and battery mounted device
US9227524B2 (en) 2010-08-24 2016-01-05 Suzuki Motor Corporation Electric-powered vehicle
DE112011102789T5 (en) 2010-08-24 2013-07-04 Suzuki Motor Corp. Electrically powered means of transportation
CN103068620A (en) * 2010-08-24 2013-04-24 铃木株式会社 Electric-powered vehicle
US9461494B2 (en) 2010-08-24 2016-10-04 Suzuki Motor Corporation Power storage system
DE112011102788T5 (en) 2010-08-24 2013-06-13 Suzuki Motor Corporation Energy storage system
CN103403565A (en) * 2011-04-01 2013-11-20 丰田自动车株式会社 Method for determining remaining lifetime
WO2012137456A1 (en) * 2011-04-01 2012-10-11 トヨタ自動車株式会社 Method for determining remaining lifetime
US20190081369A1 (en) * 2016-03-08 2019-03-14 Kabushiki Kaisha Toshiba Battery monitoring device and method
US11693060B2 (en) 2016-03-08 2023-07-04 Kabushiki Kaisha Toshiba Battery monitoring device and method
EP3429053A4 (en) * 2016-03-08 2019-11-06 Kabushiki Kaisha Toshiba Battery monitoring device and method
US10211651B2 (en) * 2016-09-23 2019-02-19 Lg Chem, Ltd. Device and method for managing SOC and SOH of parallel-connected battery pack
KR101940704B1 (en) 2016-09-23 2019-01-21 주식회사 엘지화학 APARRATUS AND METHOD FOR MANAGEMENT PARALLEL BATTERYPACK's SOC AND SOH
KR20180032907A (en) * 2016-09-23 2018-04-02 주식회사 엘지화학 APARRATUS AND METHOD FOR MANAGEMENT PARALLEL BATTERYPACK's SOC AND SOH
CN113533993A (en) * 2020-04-21 2021-10-22 丰田自动车株式会社 Battery pack state determination device and state determination method
JP2021173551A (en) * 2020-04-21 2021-11-01 トヨタ自動車株式会社 Assembled battery state determination device and state determination method
JP7314855B2 (en) 2020-04-21 2023-07-26 トヨタ自動車株式会社 BATTERY STATE DETERMINATION DEVICE AND STATE DETERMINATION METHOD
CN113533993B (en) * 2020-04-21 2024-04-30 丰田自动车株式会社 State determination device and state determination method for battery pack
CN112485693A (en) * 2020-11-19 2021-03-12 上海电力大学 Battery health state rapid evaluation method based on temperature probability density function

Similar Documents

Publication Publication Date Title
US7923969B2 (en) State of charge equalizing device and assembled battery system including same
JP4523738B2 (en) Secondary battery remaining capacity control method and apparatus
US11346887B2 (en) Method and apparatus for calculating SOH of battery power pack, and electric vehicle
JP4157317B2 (en) Status detection device and various devices using the same
JP3964635B2 (en) Memory effect detection method and solution
JP5621818B2 (en) Power storage system and equalization method
US7971345B2 (en) Reconstituted battery pack, reconstituted battery pack producing method, reconstituted battery pack using method, and reconstituted battery pack control system
US8085051B2 (en) Abnormality detecting device for storage element, abnormality detecting method for storage element, abnormality detecting program for storage element, and computer-readable recording medium storing abnormality detecting program
US7652449B2 (en) Battery management system and driving method thereof
US8294416B2 (en) Method and device for controlling the operating point of a battery
US9438059B2 (en) Battery control apparatus and battery control method
JP5348987B2 (en) How to detect battery deterioration
US8674659B2 (en) Charge control device and vehicle equipped with the same
EP2717415A1 (en) Electricity storage system
WO2008065910A1 (en) Accumulator failure detecting device, accumulator failure detecting method, accumulator failure detecting program, and computer-readable recording medium containing the accumulator failure detecting program
US20120161709A1 (en) Secondary-battery control apparatus
KR20170004499A (en) Method for Detecting Battery Pack Current
JP2004031014A (en) Maximum charge-discharge power calculation method and device for battery pack including parallel connection battery
WO2019184842A1 (en) Method and apparatus for calculating soc of power battery pack, and electric vehicle
JP2003079059A (en) On vehicle battery pack control device
JP6711221B2 (en) Battery system
JP2004031123A (en) Capacity calculation method and device for battery pack connected in parallel
KR101856068B1 (en) Apparatus and method for measuring isolation resistance using battery pack voltage
JP2001186682A (en) Method of controlling discharge of battery
JP3997707B2 (en) Monitoring device, control device and battery module