JP2004031014A - Maximum charge-discharge power calculation method and device for battery pack including parallel connection battery - Google Patents

Maximum charge-discharge power calculation method and device for battery pack including parallel connection battery

Info

Publication number
JP2004031014A
JP2004031014A JP2002182920A JP2002182920A JP2004031014A JP 2004031014 A JP2004031014 A JP 2004031014A JP 2002182920 A JP2002182920 A JP 2002182920A JP 2002182920 A JP2002182920 A JP 2002182920A JP 2004031014 A JP2004031014 A JP 2004031014A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
battery
parallel
power
maximum
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002182920A
Other languages
Japanese (ja)
Inventor
Kenichi Sakai
酒井 健一
Original Assignee
Nissan Motor Co Ltd
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Apparatus for testing electrical condition of accumulators or electric batteries, e.g. capacity or charge condition
    • G01R31/3644Various constructional arrangements
    • G01R31/3679Various constructional arrangements for determining battery ageing or deterioration, e.g. state-of-health (SoH), state-of-life (SoL)

Abstract

PROBLEM TO BE SOLVED: To provide a method for calculating the maximum charge-discharge power so as to use batteries connected in parallel in a proper region.
SOLUTION: The battery pack is composed by connecting, in series to one another, a parallel battery with cells C1 and C2 connected in parallel, a parallel battery with cells C3 and C4 connected in parallel, a parallel battery with cells C5 and C6 connected in parallel, and a parallel battery with cells C7 and C8 connected in parallel. A current flowing through the battery pack is detected by a current sensor 201, and terminal voltages of the respective parallel batteries are detected by a cell voltage detection part 101. A CPU 102 calculates the maximum discharge power Pmax(P) and the maximum charge power PCmax(P) for every parallel battery by a linear regression calculation. When the maximum discharge power of the battery pack is calculated, the maximum discharge power of the battery pack is calculated according to the discharge power of the parallel battery minimizing the maximum discharge power Pmax(P) for every parallel battery. When the maximum charge power of the battery pack is calculated, the maximum charge power of the battery pack is calculated according to the discharge power of the parallel battery minimizing the maximum charge power PCmax(P) for every parallel battery.
COPYRIGHT: (C)2004,JPO

Description

【0001】 [0001]
【発明の属する技術分野】 BACKGROUND OF THE INVENTION
本発明は、並列に接続された電池を含む組電池の最大充放電電力演算方法および装置に関する。 The present invention relates to the maximum charge and discharge power calculation method and apparatus of an assembled battery comprising a battery connected in parallel.
【0002】 [0002]
【従来の技術】 BACKGROUND OF THE INVENTION
電気自動車などのように、充電可能な二次電池を電源として負荷を駆動する技術が知られている。 Such as electric vehicles, a technique for driving a load a chargeable secondary battery as a power source is known. 電池は、負荷を駆動する放電動作と電池を充電する充電動作とを繰り返し行う。 Battery, repeatedly performing charging operation for charging the discharging operation and a battery for driving a load. このような電池の放電電力および充電電力は、それぞれが最大放電電力および最大充電電力以下となるように制御される。 Such discharge power and charge power of the battery, each of which is controlled to be equal to or less than the maximum discharge power and the maximum charging power. 最大放電電力および最大充電電力を算出する方法として、電池の放電中に測定した端子電圧Vおよび放電電流Iに基づいてIV特性を直線回帰演算する方法が提案されている(たとえば、特開平9−218251号公報参照)。 Maximum a discharge power and a method of calculating the maximum charging power, a method of linear regression calculating the IV characteristics based on the terminal voltage V and the discharge current I measured during discharge of the battery have been proposed (e.g., JP-A-9- see Japanese Unexamined Patent Publication No. 218251). 一般に、リチウムイオン電池やニッケル水素電池は、電池の放電深度(DOD)が所定の領域(たとえば、0〜60%)で充電時と放電時の内部抵抗がほぼ一致する上に、充放電時のIV特性の直線性がよい。 In general, a lithium ion battery or a nickel hydrogen battery, depth of discharge (DOD) is a predetermined region of the battery (e.g., 0-60%) over the discharge time the internal resistance of the charging substantially coincides with, at the time of charge and discharge linearity of IV characteristics good. そこで、電池の放電中に測定した端子電圧Vを縦軸に、放電電流Iを横軸にそれぞれ記し、得られたIV特性から回帰直線を求める。 Therefore, the vertical axis terminal voltage V measured during discharge of the battery, discharging noted respectively current I on the horizontal axis, obtaining a regression line from the resulting IV characteristics. この回帰直線を放電側の領域および充電側の領域へそれぞれ延長すると、V軸切片が電池の開放電圧を表す。 When the regression line, respectively extending to the discharge side of the region and the charge side of the area, V-axis intercept represents the open-circuit voltage of the battery. 最大放電電力は、回帰直線と放電時の放電停止電圧Vminとの交点が示す電流Imax、および放電停止電圧Vminの積で与えられる。 Maximum discharge power, current indicated by the intersection between the discharge stop voltage Vmin at the time of discharging the regression line Imax, and is given by the product of the discharge stop voltage Vmin. 一方、最大充電電力は、回帰直線と許容最大電圧Vmaxとの交点が示す電流Icmax、および許容最大電圧Vmaxの積で与えられる。 On the other hand, the maximum charging power, the current indicated by the intersection of the regression line and the maximum permissible voltage Vmax Icmax, and is given by the product of the maximum permissible voltage Vmax.
【0003】 [0003]
【発明が解決しようとする課題】 [Problems that the Invention is to Solve
複数の二次単電池を並列に接続した電池を上記電源に使用したいという要求がある。 The battery connecting a plurality of rechargeable battery cells in parallel there is a demand for use in the power supply. 電池を並列に接続すると、電圧が高い側の電池から電圧が低い側の電池へ電流が流れる。 Connecting battery in parallel, a current flows the voltage from the battery of higher voltage side to the lower side of the battery. この電流は調整電流と呼ばれ、電池間の端子電圧を合わせるように流れる。 This current is called the adjusted current flows to match the terminal voltage between the battery. したがって、単電池を並列に接続した並列電池の端子電圧を測定しても単電池ごとの実際の開放電圧がわからないため、従来の方法では個々の単電池の状態を考慮して最大放電電力および最大充電電力を求めることが困難である。 Therefore, even when measuring the terminal voltage of the parallel batteries battery cells connected in parallel I do not know the actual open-circuit voltage of each unit cell, the maximum discharge power and the maximum taking into account the state of the unit cells by conventional methods it is difficult to determine the charging power.
【0004】 [0004]
本発明の目的は、並列に接続された二次単電池を適切な領域で使用するための最大放電電力と最大充電電力の少なくとも一方を演算する並列接続電池を含む組電池の最大充放電電力演算方法および装置を提供することにある。 An object of the present invention, the maximum charge and discharge power calculation of an assembled battery including a maximum discharge power and connected in parallel batteries for calculating at least one of a maximum charging power for using a connected secondary battery cells in parallel at appropriate regions to provide a method and apparatus.
【0005】 [0005]
【課題を解決するための手段】 In order to solve the problems]
本発明は、複数の二次単電池を並列に接続した並列電池を直列に複数接続した組電池の最大充放電電力を演算する方法に関し、組電池の放電時の並列電池ごとの電圧値、および放電時の組電池の電流値による特性から並列電池ごとに内部抵抗をそれぞれ算出し、算出した内部抵抗の最大値、および最大値に対応する並列電池以外の並列電池の内部抵抗値を用いて上記内部抵抗が最大値を有する並列電池を構成する単電池の内部抵抗の最大値を推定し、推定した内部抵抗の最大値に応じて最大放電電力と最大充電電力の少なくとも一方を算出するようにしたものである。 The present invention relates to a method of calculating the maximum charge and discharge power of the battery assembly connecting a plurality of parallel battery connecting a plurality of rechargeable battery cells in parallel to the series, the voltage value of each parallel battery during discharging of the battery pack, and the internal resistance was calculated from each of the characteristics due to the current value of the battery pack during discharge per parallel battery, calculated maximum value of the internal resistance, and by using the internal resistance of the parallel batteries other than parallel battery corresponding to the maximum value the internal resistance is estimated the maximum value of the internal resistance of the cells constituting the parallel battery having a maximum value, and to calculate at least one of the maximum discharge power and the maximum charging power according to the maximum value of the internal resistance estimated it is intended.
【0006】 [0006]
また、本発明は並列接続電池を含む組電池の最大充放電電力演算装置に関し、複数の二次単電池を並列に接続し、前記並列電池を直列に複数接続した組電池の放電時に、前記並列電池ごとの電圧を検出するとともに、組電池の放電時に、組電池を流れる電流を検出し、この検出された電圧および電流に基づいて、前記並列電池ごとの内部抵抗を算出し、この内部抵抗が最大の並列電池を抽出し、この抽出された並列電池の内部抵抗と、前記抽出された並列電池以外の並列電池の内部抵抗とを用いて、抽出された並列電池を構成する単電池の内部抵抗の最大値を推定し、この推定された内部抵抗の最大値に応じて、組電池の最大放電電力と最大充電電力の少なくとも一方を演算するようにしたものである。 The present invention also relates to the maximum charge and discharge power calculation of the assembled battery including a parallel connection battery, by connecting a plurality of rechargeable unit cells in parallel, during discharging of the battery assembly connecting a plurality of the parallel cells in series, the parallel detects the voltage of each battery, during the discharge of the assembled battery, detects a current flowing through the assembled battery, on the basis of the detected voltage and current, and calculates the internal resistance of each of the parallel batteries, the internal resistance extracting maximum parallelism battery, the internal resistance of the extracted parallel cell, by using the internal resistance of the parallel batteries other than parallel battery the extracted, the internal resistance of the cells constituting the extracted parallel battery estimating a maximum value of, in accordance with the maximum value of the estimated internal resistance, it is obtained so as to calculate at least one of a maximum discharge power and the maximum charging power of the battery pack.
【0007】 [0007]
【発明の効果】 【Effect of the invention】
本発明で並列接続電池を含む組電池の最大充放電電力を演算すると、組電池を構成する並列電池の単電池を適切な領域で使用できるので、電池の劣化を防止できる。 When calculating the maximum charge and discharge power of the battery pack including a parallel connection battery in the present invention, it is possible to use a single cell of a parallel battery constituting the battery pack in the appropriate area, can prevent deterioration of the battery.
【0008】 [0008]
【発明の実施の形態】 DETAILED DESCRIPTION OF THE INVENTION
以下、図面を参照して本発明の実施の形態を説明する。 Hereinafter, with reference to the drawings illustrating the embodiments of the present invention.
図1は、本発明による方法で組電池の充放電電力を演算する制御ユニットを搭載した車両の全体構成図である。 Figure 1 is an overall configuration diagram of a vehicle equipped with a control unit for calculating the charge and discharge power of the battery pack in the process according to the invention. 以下の実施の形態では、組電池を電気自動車の電源として適用した例を説明する。 In the following embodiments, an example of applying the assembled battery as an electric vehicle power supply. 図1において、車両の制御システムは、車両システムと電池制御ユニットとで構成される。 In Figure 1, the control system of the vehicle, and a vehicle system and a battery control unit. 図中の太い実線は強電ライン(強電系の配線)を表し、通常の実線は弱電ライン(弱電系の配線)を示す。 Thick solid line in the figure represents a strong electric lines (heavy electric system wiring), a typical solid showing a weak line (light electric system wiring). 破線は各ブロック間で送受される信号ラインを示す。 Broken lines indicate signal lines to be received between the blocks.
【0009】 [0009]
車両システムは、電流センサ201と、電圧センサ202と、温度センサ203と、駆動用モータ301と、補機システム302と、メインリレー303A,303Bとを有する。 The vehicle system includes a current sensor 201, voltage sensor 202, a temperature sensor 203, a driving motor 301, an auxiliary system 302, the main relay 303A, and 303B. 組電池は、二次単電池(セル)C1〜C8によって構成される。 Assembled battery is constituted by a secondary battery cells (cell) C1 to C8. 単電池C1およびC2、単電池C3およびC4、単電池C5およびC6、ならびに単電池C7およびC8は、それぞれ並列に接続されている。 Single batteries C1 and C2, the unit cells C3 and C4, the unit cells C5 and C6 as well as single cells C7 and C8, are respectively connected in parallel. 組電池は、これら4組の並列電池(C1,C2)、並列電池(C3,C4)、並列電池(C5,C6)、並列電池(C7,C8)が直列に接続されている。 Battery pack, these four sets of parallel cell (C1, C2), a parallel battery (C3, C4), parallel battery (C5, C6), a parallel battery (C7, C8) are connected in series. 電池制御ユニットは、セル電圧検出部101と、CPU102と、メモリ103とを有する。 Battery control unit includes a cell voltage detection unit 101, a CPU 102, and a memory 103.
【0010】 [0010]
駆動用モータ301は、組電池の直流電力が図示しないインバータを介して交流電力として供給されることで駆動し、車両の駆動力を発生する一方、組電池に対する回生電力を発生する。 Driving motor 301 is driven by DC power of the battery pack is supplied as AC power via an inverter (not shown), while generating the driving force of the vehicle, it generates regenerative power to the battery pack. 補機システム302は、組電池から供給される電力によって車両に搭載される不図示のエアコンディショナ(A/C)などを駆動する。 Auxiliary system 302 drives the like air conditioner (not shown) mounted on a vehicle by electric power supplied from the assembled battery (A / C). メインリレー303A,303Bは、CPU102の指令により開閉制御され、駆動モータ301および補機システム302への電力供給をオン/オフする。 Main relay 303A, 303B are opened and closed controlled by a command CPU 102, on / off power supply to the drive motor 301 and the auxiliary system 302.
【0011】 [0011]
電流センサ201は、強電ライン(=組電池)を流れる電流を検出し、検出信号をCPU102へ送出する。 Current sensor 201 detects a current flowing in the strong electric line (= battery pack), and sends a detection signal to the CPU 102. 電圧センサ202は、組電池の電圧(総電圧)を検出し、検出信号をCPU102へ送出する。 Voltage sensor 202 detects the battery pack voltage (total voltage), and sends a detection signal to the CPU 102. 温度センサ203は、組電池の温度を検出し、温度検出信号をCPU102へ送出する。 Temperature sensor 203 detects the temperature of the battery pack, and sends a temperature detection signal to the CPU 102.
【0012】 [0012]
セル電圧検出部101は、並列電池(C1,C2)の端子電圧と、並列電池(C3,C4)の端子電圧と、並列電池(C5,C6)の端子電圧と、並列電池(C7,C8)の端子電圧とをそれぞれ検出し、4組の電圧情報をCPU102へ送出する。 Cell voltage detection unit 101, and the terminal voltage of the parallel battery (C1, C2), and the terminal voltage of the parallel battery (C3, C4), and the terminal voltage of the parallel battery (C5, C6), a parallel battery (C7, C8) the terminal voltage and the detected respectively, and sends four pairs of voltage information to the CPU 102. CPU102は、4組の並列電池の電圧情報を用いて充電(回生)時の最大充電電力および放電時の最大放電電力を演算する。 CPU102 calculates the maximum charging power and the maximum discharge power during discharging when charging (regenerative) using the voltage information of the four sets of parallel cell. 最大充放電電力の演算は、車両走行時(IGNスイッチオン時)、組電池の充電時に行う。 Calculation of the maximum charge and discharge power, while the vehicle is running (when IGN switch on), and during charging of the assembled battery. 最大充放電電力の演算結果は、CPU102から車両システムCPU304へ送信される。 Maximum operation result of the charge and discharge power is transmitted from the CPU102 to the vehicle system CPU 304. CPU102はさらに、組電池の温度が異常の場合に車両システムCPU304へ温度異常を報知する。 CPU102 further temperature of the assembled battery to inform the abnormal temperature to the vehicle system CPU304 in the case of abnormalities.
【0013】 [0013]
メモリ103は、CPU102に入力された4組の並列電池の電圧情報や強電ライン(=組電池)の電流の情報などを記憶する。 Memory 103 stores information or the like of the current of the voltage information and high voltage line 4 set of parallel cell input to the CPU 102 (= the battery pack).
【0014】 [0014]
車両システムCPU304は、駆動用モータ301および補機システム302へ出力される電力がCPU102から受信した最大放電電力以下になるように、組電池から出力される電力を制限して車両システムを制御する。 Vehicle systems CPU304, the power output to the driving motor 301 and auxiliary system 302 to be less than the maximum discharge power received from the CPU 102, to limit the power output from the assembled battery to control the vehicle system. また、車両システムCPU304は、駆動モータ301から回生される電力がCPU102から受信した最大充電電力以下になるように、組電池を充電する電力を制限して車両システムを制御する。 The vehicle system CPU304 is electric power regenerated from the driving motor 301 is to be less than the maximum charging power received from the CPU 102, to limit the power to charge the battery pack to control the vehicle system. 車両警告灯305は、車両システムCPU304の指令により点灯し、車両システムの異常発生を運転者に報知する。 Vehicle warning lamp 305 is lit by a command vehicle system CPU 304, notifying the abnormality of the vehicle system to the driver. 補助電池401は、CPU102および車両システムCPU304へ電力を供給する。 Auxiliary battery 401 supplies power to the CPU102 and the vehicle system CPU 304. スイッチSWは、運転者によるイグニション(IGN)スイッチ402のオン/オフに連動し、補助電池401からの電力供給をオン/オフする。 Switch SW in conjunction with the ON / OFF of the ignition (IGN) switch 402 by the driver to turn on / off power supply from auxiliary battery 401.
【0015】 [0015]
本発明は、上記組電池の放電時の最大放電電力および充電(回生)時の最大充電電力の演算方法に特徴を有する。 The present invention is characterized by the maximum operation method of charging power when the maximum discharge power and charge during discharge of the battery pack (regeneration).
【0016】 [0016]
CPU102は、最大放電電力の演算を以下の手順で行う。 CPU102 performs the following steps calculation of the maximum discharge power.
▲1▼並列電池ごとに端子電圧および電流を測定する。 ▲ 1 ▼ measuring the terminal voltage and current for each parallel battery.
▲2▼並列電池ごとに最大放電電力を算出する。 ▲ 2 ▼ calculates the maximum discharge power for each parallel battery.
▲3▼最大放電電力が最小のものを抽出する。 ▲ 3 ▼ maximum discharge power is extracted smallest.
▲4▼抽出した並列電池を構成する単電池の中で最も大きい内部抵抗R maxを推定する。 ▲ 4 ▼ estimates the greatest internal resistance R C max among the cells constituting the extracted parallel batteries.
▲5▼内部抵抗R maxと、他の単電池の内部抵抗R aveとの比を算出する。 ▲ 5 ▼ calculates the internal resistance R C max, the ratio of the internal resistance R C ave of other unit cells.
▲6▼組電池の最大放電電力を算出する。 ▲ 6 ▼ calculates the maximum discharge power of the battery pack.
【0017】 [0017]
1. 1. 並列電池ごとの端子電圧および電流の測定CPU102は、セル電圧検出部10から4組の並列電池C(P )(単電池C1およびC2で構成)、並列電池C(P )(単電池C3およびC4で構成)、並列電池C(P )(単電池C5およびC6で構成)、および並列電池C(P )(単電池C7およびC8で構成)の端子電圧を示す情報をそれぞれ入力するとともに、電流センサ201から強電ラインの電流を示す情報を入力する。 Measurement of terminal voltage and current of each parallel battery CPU102 is (consisting of single batteries C1 and C2) from the cell voltage detection unit 10 four sets of parallel cell C (P 1), parallel cell C (P 2) (single cell C3 and consists of C4), parallel cell C (P 3) (inputs constituted by unit cells C5 and C6), and parallel battery C (P 4) information indicating the terminal voltage (composed of unit cells C7 and C8), respectively with inputs information from the current sensor 201 indicating the current of the high voltage line. 強電ラインに流れる電流値は、各並列電池の電流値(たとえば、単電池C1を流れる電流値と単電池C2を流れる電流値との合計の電流値)に等しい。 Current flowing through the high-power line is equal to the current value of each of the parallel cells (e.g., the current value of the sum of the current flowing through the current value and the unit cell C2 through the single cell C1).
【0018】 [0018]
2. 2. 並列電池ごとの最大放電電力の算出CPU102は、放電中の複数回の測定によって得た電圧情報が示す電圧値、および電流情報が示す電流値を用いて各並列電池ごとにIV特性を直線回帰演算する。 Calculating CPU102 maximum discharge power of each parallel battery, multiple voltage values ​​indicated by the voltage information obtained by the measurement in the discharge, and the linear regression calculating the IV characteristics for each parallel battery using a current value indicated by the current information to. 図2は、回帰直線を説明する図であり、放電中の並列電池の電流I,電圧Vを測定し、その測定データから得たものである。 Figure 2 is a diagram illustrating a regression line, the current I of the parallel battery during discharge, the voltage V is measured, it is obtained from the measured data. リチウムイオン電池やニッケル水素電池などのように充電時と放電時とで電池の内部抵抗がほぼ一致し、さらに充放電時のIV特性の直線性がよい電池は、放電側で測定したデータをもとに回帰直線を充電側に延長することができる。 Match Lithium-ion battery or a nickel hydrogen battery internal resistance between during the charge and discharge of the battery, such as substantially, further linearity good battery IV characteristics during charging and discharging, even the data measured in the discharge side it is possible to extend the regression line on the charge side to and. 図中の×印は測定データを表している。 × mark in the figure represents the measured data.
【0019】 [0019]
図2の回帰直線は、次式(1)で表わすことができる。 Regression line of FIG. 2 can be expressed by the following equation (1).
【数1】 [Number 1]
V(P)=E (P)−I×R(P) (1) V (P) = E 0 ( P) -I × R (P) (1)
ただし、V(P)は並列電池の端子電圧、V軸切片E (P)は並列電池の開放電圧、回帰直線の傾きR(P)は並列電池の内部抵抗である。 However, V (P) is the terminal voltage of the parallel batteries, V-axis intercept E 0 (P) is the open-circuit voltage of the parallel battery, the slope of the regression line R (P) is the internal resistance of the parallel batteries.
【0020】 [0020]
本実施の形態では、並列電池の開放電圧E (P)を回帰直線によって推定する。 In this embodiment, the open circuit voltage E 0 (P) parallel battery estimated by the regression line. 無負荷時の電圧を測定して開放電圧を得る方法もあるが、充放電IV特性の直線性がよい電池は推定開放電圧と実際の開放電圧とがよく一致するので、放電中の測定値によるIV特性を用いて推定する。 How to obtain the open-circuit voltage by measuring the voltage at no load also, but since linearity is good battery charge and discharge IV characteristics coincide well with the actual open-circuit voltage and the estimated open circuit voltage, according to the measurement value during discharge It estimated using IV characteristics.
【0021】 [0021]
図2において、回帰直線と放電時の放電停止電圧Vmin(P)との交点Bの電流Imax(P)は、並列電池の最大放電電流となる。 2, a current Imax of the intersection B between the regression line and the discharge time of the discharge stop voltage Vmin (P) (P) becomes the maximum discharge current of the parallel batteries. 並列電池の最大放電電力Pmax(P)は、上式(1)により次式(2)で算出される。 Maximum discharge power Pmax parallel battery (P) is the above equation (1) is calculated by the following equation (2).
【数2】 [Number 2]
【0022】 [0022]
3. 3. 最大放電電力が最小の並列電池を抽出CPU102は、上述したように算出した4組の並列電池C(P )〜C(P )の最大放電電力Pmax(P )、Pmax(P )、Pmax(P )、Pmax(P )の中で、最小値のものを抽出する。 Maximum extraction discharge power is a minimum parallel battery CPU102, the maximum discharge power Pmax of the four sets of parallel cell C calculated as described above (P 1) ~C (P 4 ) (P 1), Pmax (P 2) , Pmax (P 3), in Pmax (P 4), to extract the smallest value. 以後、抽出した最小値をPmax(Pmin)と記す。 Thereafter, the extracted minimum value referred to Pmax (Pmin). また、Pmax(Pmin)に対応する並列電池をC(Pmin)、この並列電池C(Pmin)の内部抵抗をR(Pmin)と記す。 Further, Pmax (Pmin) C (Pmin) parallel cell corresponding to the internal resistance of the parallel cell C (Pmin) referred to as R (Pmin).
【0023】 [0023]
4. 4. 並列電池C(Pmin)を構成する単電池の中で最も大きい内部抵抗R maxを推定CPU102は、抽出した並列電池C(Pmin)を構成する単電池のうち、1つの単電池のみが他の単電池に比べて内部抵抗が大きくなったと仮定する。 Estimating the greatest internal resistance R C max among the cells constituting the parallel battery C (Pmin) CPU 102, among the cells constituting the extracted parallel cell C (Pmin), only one of the cells is another assume the internal resistance is increased as compared with the single cell. つまり、単電池C1〜C8の8つの単電池で組電池を構成する場合を例にとれば、1つの単電池が劣化してその内部抵抗R maxが上昇し、他の7つの単電池の内部抵抗は同一の正常値をとることを想定する。 That is, take the case of constituting the battery pack in the eight cell in the cells C1~C8 example, the internal resistance R C max in one of the cells is degraded is increased, the other seven of the cells internal resistance is assumed to take the same normal. 並列電池C(Pmin)の内部抵抗R(Pmin)は、次式(3)で与えられる。 The internal resistance R of the parallel cell C (Pmin) (Pmin) is given by the following equation (3).
【数3】 [Number 3]
R(Pmin)=(R max×R ave (n−1) )/(R max+(n−1)×R ave) (3) R (Pmin) = (R C max × R C ave (n-1)) / (R C max + (n-1) × R C ave) (3)
ただし、R aveは正常な単電池の内部抵抗の平均値である。 However, R C ave is the average value of the internal resistance of the normal unit cells. nは並列電池を構成する単電池の数である。 n is the number of cells constituting the parallel battery. 図1の例ではn=2である。 In the example of FIG. 1 is a n = 2.
【0024】 [0024]
各単電池の内部抵抗の平均値R aveは、次式(4)で与えられる。 Mean value R C ave of the internal resistance of each cell is given by the following equation (4).
【数4】 [Number 4]
R(P)ave=R ave /(n×R ave) (4) R (P) ave = R C ave n / (n × R C ave) (4)
ただし、R(P)aveは、並列電池C(Pmin)以外の並列電池C(P)の内部抵抗R(P)の平均値である。 However, R (P) ave is the average value of the internal resistance R (P) of parallel cell C (Pmin) parallel cell other than C (P). nは並列電池を構成する単電池の数である。 n is the number of cells constituting the parallel battery.
【0025】 [0025]
CPU102は、並列電池C(Pmin)以外の並列電池C(P)の内部抵抗R(P)をそれぞれ求め、これら内部抵抗R(P)の平均値を算出して上式(4)の左辺に代入し、単電池の内部抵抗の平均値R aveを算出する。 CPU102, the internal resistance R of the parallel cell C parallel batteries other than (Pmin) C (P) (P) is determined, respectively, on the left side of the above equation to calculate the average value of the internal resistance R (P) (4) assignment and calculates an average value R C ave of the internal resistance of the cell. 算出した平均値R aveをさらに上式(3)へ代入し、内部抵抗R maxを算出する。 The calculated average value R C ave substituted further above equation to (3), to calculate the internal resistance R C max.
【0026】 [0026]
5. 5. 内部抵抗R maxと他の単電池の内部抵抗R aveとの比の算出CPU102は、R max/R aveを算出する。 Calculation of the internal resistance R C max and other ratios between the internal resistance R C ave of the cell CPU102 calculates R C max / R C ave. max/R aveを内部抵抗最大セル比(R(Pmin)ratio)と呼ぶ。 The R C max / R C ave called the internal resistance maximum cell ratio (R (Pmin) ratio).
【0027】 [0027]
6. 6. 組電池の最大放電電力の算出CPU102は、次式(5)により組電池の最大放電電力PMAXを算出する。 Calculation of maximum discharge power of the battery pack CPU102 calculates the maximum discharge power PMAX of the assembled battery by the following equation (5).
【数5】 [Number 5]
PMAX PMAX
=Vmin(P)×(E (Pmin)×m−Vmin(P))/(R(P)ave×m×R(Pmin)ratio) (5) = Vmin (P) × (E 0 (Pmin) × m-Vmin (P)) / (R (P) ave × m × R (Pmin) ratio) (5)
ただし、Vmin(P)は、並列電池の放電停止電圧である。 However, Vmin (P) is a discharge stop voltage of the parallel batteries. (Pmin)は、並列電池C(Pmin)の開放電圧である。 E 0 (Pmin) is the open-circuit voltage of the parallel cell C (Pmin). mは並列電池の組数である。 m is the number of sets of parallel cell. 図1の例ではm=4である。 In the example of FIG. 1 is a m = 4. R(P)aveは、並列電池C(Pmin)以外の並列電池C(P)の内部抵抗R(P)の平均値である。 R (P) ave is the average value of the internal resistance R (P) of parallel cell C (Pmin) parallel cell other than C (P). R(Pmin)ratioは、内部抵抗最大セル比である。 R (Pmin) ratio is the internal resistance maximum cell ratio.
【0028】 [0028]
CPU102は、最大充電電力の演算を以下の手順で行う。 CPU102 performs the following steps calculation of the maximum charging power.
▲1▼並列電池ごとに端子電圧および電流を測定する。 ▲ 1 ▼ measuring the terminal voltage and current for each parallel battery.
▲2▼並列電池ごとに最大充電電力を算出する。 ▲ 2 ▼ calculates the maximum charging power for each parallel battery.
▲3▼最大充電電力が最小のものを抽出する。 ▲ 3 ▼ maximum charging power is extracted smallest.
▲4▼抽出した並列電池を構成する単電池の中で最も大きい内部抵抗R maxを推定する。 ▲ 4 ▼ estimates the greatest internal resistance R C max among the cells constituting the extracted parallel batteries.
▲5▼内部抵抗R maxと、他の単電池の内部抵抗R aveとの比を算出する。 ▲ 5 ▼ calculates the internal resistance R C max, the ratio of the internal resistance R C ave of other unit cells.
▲6▼組電池の最大充電電力を算出する。 ▲ 6 ▼ calculates the maximum charging power of the battery pack.
このうち、▲1▼、▲4▼および▲5▼は上述した最大放電電力の演算の場合と同様であるので説明を省略する。 Among, ▲ 1 ▼, ▲ 4 ▼ and ▲ 5 ▼ is omitted because it is similar to the case of the calculation of the maximum discharge power as described above.
【0029】 [0029]
2. 2. 並列電池ごとの最大放電電力の算出図2において、回帰直線と充電時の許容最大電圧Vmax(P)との交点Aの電流ICmax(P)は、並列電池の最大充電電流を与える。 In calculating Figure 2 of the maximum discharge power of each parallel battery, current ICmax of intersection A of the allowable maximum voltage Vmax at the time of charging the regression line (P) (P) gives the maximum charge current of the parallel batteries. CPU102は、並列電池の最大充電電力PCmaxを次式(6)で算出する。 CPU102 calculates the maximum charging power PCmax parallel battery following equation (6).
【数6】 [6]
【0030】 [0030]
3. 3. 最大充電電力が最小の並列電池を抽出CPU102は、上述したように算出した4組の並列電池C(P )〜C(P )の最大充電電力PCmax(P )、PCmax(P )、PCmax(P )、PCmax(P )の中で、最小値のものを抽出する。 Maximum extraction charging power is minimum of the parallel battery CPU102, the maximum charging power PCmax four sets of parallel cell C calculated as described above (P 1) ~C (P 4 ) (P 1), PCmax (P 2) , PCmax (P 3), in PCmax (P 4), to extract the smallest value. 以後、抽出した最小値をPCmax(Pmin)と記す。 Thereafter, the extracted minimum value referred to PCmax (Pmin). また、PCmax(Pmin)に対応する並列電池をC(Pmin)、この並列電池C(Pmin)の内部抵抗をR(Pmin)と記す。 Further, PCmax (Pmin) C (Pmin) parallel cell corresponding to the internal resistance of the parallel cell C (Pmin) referred to as R (Pmin).
【0031】 [0031]
6. 6. 組電池の最大充電電力の算出CPU102は、次式(7)により組電池の最大充電電力PCMAXを算出する。 Calculation of maximum charging power of the battery pack CPU102 calculates the maximum charging power PCMAX of the assembled battery by the following equation (7).
【数7】 [Equation 7]
PCMAX PCMAX
=Vmax(P)×(E (Pmin)×m−Vmax(P))/(R(P)ave×m×R(Pmin)ratio)(7) = Vmax (P) × (E 0 (Pmin) × m-Vmax (P)) / (R (P) ave × m × R (Pmin) ratio) (7)
ただし、Vmax(P)は、並列電池の許容最大電圧である。 However, Vmax (P) is the maximum allowable voltage of the parallel batteries. (Pmin)は、並列電池C(Pmin)の開放電圧である。 E 0 (Pmin) is the open-circuit voltage of the parallel cell C (Pmin). mは並列電池の組数である。 m is the number of sets of parallel cell. R(P)aveは、並列電池C(Pmin)以外の並列電池C(P)の内部抵抗R(P)の平均値である。 R (P) ave is the average value of the internal resistance R (P) of parallel cell C (Pmin) parallel cell other than C (P). R(Pmin)ratioは、内部抵抗最大セル比である。 R (Pmin) ratio is the internal resistance maximum cell ratio.
【0032】 [0032]
以上説明した実施の形態についてまとめる。 Summarized the embodiment described above.
(1)単電池C1およびC2を並列に接続した並列電池C(P )と、単電池C3およびC4を並列に接続した並列電池C(P )と、単電池C5およびC6を並列に接続した並列電池C(P )と、単電池C7およびC8を並列に接続した並列電池C(P )とをそれぞれ直列に接続して組電池を構成する。 (1) connected to the single batteries C1 and C2 parallel cell C connected in parallel (P 1), and unit cell C3 and C4 the parallel battery C connected in parallel (P 2), the unit cells C5 and C6 in parallel parallel battery C (P 3) which is parallel cell single cells C7 and C8 are connected in parallel C (P 4) and respectively connected in series to form the assembled battery.
(2)上記組電池に流れる電流を電流センサ201で検出し、上記組電池を構成するそれぞれの並列電池の端子電圧をセル電圧検出部101で検出する。 (2) the current flowing through the assembled battery detected by the current sensor 201, for detecting the terminal voltage of each parallel battery constituting the battery pack in the cell voltage detection unit 101. CPU102は、直線回帰演算により並列電池ごとに最大放電電力Pmax(P)および最大充電電力PCmax(P)を算出する。 CPU102 calculates the maximum discharge power Pmax (P) and the maximum charging power PCmax (P) for each parallel battery by linear regression computation.
【0033】 [0033]
(3)組電池としての最大放電電力PMAXを算出するとき、並列電池ごとの最大放電電力Pmax(P)が最小の並列電池を選び、この並列電池C(Pmin)の放電電力に応じて組電池としての最大放電電力PMAXを算出するようにした。 (3) set when calculating the maximum discharge power PMAX as a battery, select the maximum discharge power Pmax (P) is a minimum parallel batteries per parallel batteries, the assembled battery according to the discharge power of the parallel cell C (Pmin) and to calculate the maximum discharge power PMAX as. 並列電池C(Pmin)の内部抵抗R(P)は、組電池を構成する並列電池の中で最大である。 The internal resistance R of the parallel cell C (Pmin) (P) is the largest of the parallel cells constituting the battery pack. 並列電池の最大放電電力Pmax(P)が最小Pmax(Pmin)の並列電池に着目して算出することにより、いずれの並列電池でも電池電圧が下限値を下回らないように適切な領域で電池を使用することができ、電池の劣化を防止することができる。 By the maximum discharge power Pmax parallel battery (P) is calculated by focusing on parallel battery minimum Pmax (Pmin), using the battery in the appropriate region as the battery voltage does not drop below the lower limit in either parallel battery it can be, it is possible to prevent deterioration of the battery.
【0034】 [0034]
(4)上記並列電池C(Pmin)について、当該並列電池を構成する単電池のうち1つの単電池の内部抵抗が他の単電池の内部抵抗に比べて上昇して最大値R maxを有し、他の単電池の内部抵抗が同一の正常値をとると仮定して内部抵抗最大セル比R max/R aveを算出するようにした。 (4) for the parallel battery C (Pmin), have a maximum value R C max by the internal resistance of one of the unit cells among the cells constituting the parallel battery increases as compared to the internal resistance of the other unit cell and was to calculate the internal resistance maximum cell ratio R C max / R C ave assuming internal resistance of the other unit cell takes the same normal. aveは、並列電池C(Pmin)以外の並列電池の内部抵抗R(P)から算出した他の単電池の内部抵抗である。 R C ave is an internal resistance of the other unit cell which is calculated from the internal resistance R (P) in parallel batteries other than parallel cell C (Pmin). 内部抵抗最大セル比を用いて組電池の最大放電電力PMAXを算出するので、並列電池を構成する単電池の容量が低い方の電池に応じた放電制限値を得ることができる。 Since calculates the maximum discharge power PMAX of the assembled battery using the internal resistance maximum cell ratio, it is possible to obtain a discharge limit value corresponding to the battery having the lower the capacity of the cells constituting the parallel battery. さらに、並列電池C(Pmin)を構成する単電池のうち1つの単電池の内部抵抗が上昇して最大値R maxをとる仮定をしたので、内部抵抗の最悪値を想定して最大放電電力を算出できる。 Furthermore, since the assumption that the maximum value R C max internal resistance of one of the unit cells among the cells constituting the parallel battery C (Pmin) is increased, the maximum discharge power assuming a worst value of the internal resistance It can be calculated. この結果、組電池を構成するいずれの単電池でも電池電圧が下限値を下回らないように適切な領域で電池を使用することができ、電池の劣化を防止できる。 As a result, it is possible to use the battery in the appropriate region as the battery voltage does not drop below the lower limit in any of the cells that form the assembled battery can be prevented the deterioration of the battery.
【0035】 [0035]
上記(4)について補足説明する。 Supplementary described above (4). 図3は、2つの単電池V1およびV2が並列に接続された並列電池を示す図である。 Figure 3 is a diagram showing a parallel battery two battery cells V1 and V2 are connected in parallel. この並列電池に負荷を接続すると、並列電池は電流Iを負荷へ流す。 When a load is connected to the parallel cell, parallel battery electric current I to the load. セル電圧検出部101は、負荷時の端子電圧Vを検出する。 Cell voltage detection unit 101 detects the load terminal voltage V. 単電池V1のSOC(充電状態)が単電池V2のSOCより高く、単電池V1から単電池V2側へ容量調整電流が流れる状態では、単電池V1の電流I1の一部が単電池V2側へ流れる。 SOC of the cells V1 (state of charge) is higher than the SOC of the cell V2, in the state in which capacity adjustment current from a single cell V1 to the unit cell V2 side flows, part of the current I1 of the cell V1 is the single cell V2 side It flows. 並列電池の中で単電池の電圧のばらつきに起因して電圧が高い側の電池から電圧が低い側の電池へ調整電流が流れる場合、2つの単電池の開放電圧は異なる値をとる。 If in the parallel battery due to variations of the voltage of the cell voltage from the battery of higher voltage side through a low side to battery adjusting current, open-circuit voltage of the two unit cells are different values. 図4は、時間の経過とともにセル電圧検出部101で検出される端子電圧、および各単電池の開放電圧を示す図である。 Figure 4 is a diagram showing an open circuit voltage of the cell voltage terminal voltage is detected by the detection unit 101, and each cell with time. 図4において、横軸は時間を表し、縦軸は電圧を表す。 4, the horizontal axis represents time and the vertical axis represents voltage. 曲線Vは並列電池の端子電圧を、曲線E 01は単電池V1の開放電圧を、曲線E 02は単電池V2の開放電圧をそれぞれ示す。 Curve V is a terminal voltage of the parallel battery, curve E 01 is the open-circuit voltage of the cell V1, curve E 02 indicates the open circuit voltage of the cell V2, respectively. 図4は、並列電池の端子電圧Vが電池使用時の電圧下限値を下回らない状態でも、単電池V2の開放電圧が電圧下限値より低くなる場合があることを示している。 4, even when the terminal voltage V of the parallel battery does not fall below the lower limit value of voltage at the time of use batteries indicates that the open circuit voltage of the cell V2 may become lower than the voltage limit value. 本発明による演算方法は、並列電池のうち電池電圧が低い方の単電池の電池電圧が下限値を下回らないように最大放電電力を演算するものである。 Calculation method according to the present invention are those battery voltages of the cells towards the battery voltage is low among the parallel battery calculates the maximum discharge power so as not to fall below a lower limit value.
【0036】 [0036]
(5)組電池としての最大充電電力PCMAXを算出するとき、並列電池ごとの最大充電電力PCmax(P)が最小の並列電池を選び、この並列電池C(Pmin)の充電電力に応じて組電池としての最大充電電力PCMAXを算出するようにした。 (5) set when the maximum calculated charging power PCMAX as a battery, select the maximum charging power PCmax (P) is a minimum parallel batteries per parallel battery, the battery pack according to the charging power of the parallel cell C (Pmin) maximum charging power PCMAX as was to be calculated. 並列電池C(Pmin)の内部抵抗R(P)は、組電池を構成する並列電池の中で最大である。 The internal resistance R of the parallel cell C (Pmin) (P) is the largest of the parallel cells constituting the battery pack. 並列電池の最大充電電力PCmax(P)が最小PCmax(Pmin)の並列電池に着目して算出することにより、いずれの並列電池でも電池電圧が上限値を上回らないように適切な領域で電池を使用することができ、電池の劣化を防止することができる。 By maximum charge power PCmax parallel battery (P) is calculated by focusing on parallel battery minimum PCmax (Pmin), using the battery in the appropriate region as the battery voltage does not exceed the upper limit value in any of the parallel battery it can be, it is possible to prevent deterioration of the battery.
【0037】 [0037]
(6)上記並列電池C(Pmin)について、上記(4)と同様に内部抵抗最大セル比R max/R aveを算出するようにした。 (6) For the parallel cell C (Pmin), and to calculate the (4) Internal resistance maximum cell ratio in the same manner as R C max / R C ave. 内部抵抗最大セル比を用いて組電池の最大充電電力PCMAXを算出するので、並列電池を構成する単電池の容量が低い方の電池に応じた充電制限値を得ることができる。 Since calculates the maximum charging power PCMAX of the battery using the internal resistance maximum cell ratio, it is possible to obtain the charge limit value corresponding to the battery having the lower the capacity of the cells constituting the parallel battery. さらに、並列電池C(Pmin)を構成する単電池のうち1つの単電池の内部抵抗が上昇して最大値R maxをとる仮定をしたので、内部抵抗の最悪値を想定して最大充電電力を算出できる。 Furthermore, since the assumption that the maximum value R C max internal resistance of one of the unit cells among the cells constituting the parallel battery C (Pmin) is increased, the maximum charging power assuming a worst value of the internal resistance It can be calculated. この結果、組電池を構成するいずれの単電池でも電池電圧が上限値を上回らないように適切な領域で電池を使用することができ、電池の劣化を防止できる。 As a result, it is possible to battery voltage in any of the cells constituting the battery pack uses the battery in the appropriate areas so as not to exceed the upper limit value, it is possible to prevent deterioration of the battery.
【0038】 [0038]
上記の説明で用いた並列電池を構成する単電池の数n、および直列接続した並列電池の数mは、上述した例に限らず適宜設定してよい。 The number m of the number n, and parallel battery in series connection of the cells constituting the parallel battery used in the above description, may be set appropriately not limited to the example described above.
【0039】 [0039]
特許請求の範囲における各構成要素と、発明の実施の形態における各構成要素との対応について説明する。 As the components in the appended claims, the correspondence between the components in the embodiment of the invention will be described. 組電池は、たとえば、単電池C1〜C8によって構成される。 Battery pack, for example, constituted by a single cell C1 to C8. 並列接続電池は、たとえば、単電池C1およびC2を並列に接続した並列電池C(P )、単電池C3およびC4を並列に接続した並列電池C(P )、単電池C5およびC6を並列に接続した並列電池C(P )、および単電池C7およびC8を並列に接続した並列電池C(P )によって構成される。 Parallel connection cells, for example, parallel cell C (P 1) connected single cells C1 and C2 in parallel, the parallel batteries C (P 2) of the unit cells C3 and C4 are connected in parallel, parallel single cells C5 and C6 It constituted by connecting in parallel cell C (P 3), and parallel battery C (P 4) of the unit cell C7 and C8 are connected in parallel to the. また、電圧センサ202が電圧検出手段を、電流センサ201が電流検出手段を、CPU102が内部抵抗算出手段、抽出手段、推定手段、および最大充放電電力演算手段をそれぞれ構成する。 Further, the voltage detecting unit voltage sensor 202, a current detection means a current sensor 201, CPU 102 is the internal resistance calculation means, extracting means, the estimating means, and the maximum charge and discharge power calculation means, respectively. なお、本発明の特徴的な機能を損なわない限り、各構成要素は上記構成に限定されるものではない。 Incidentally, as long as they do not impair the characteristic features of the present invention, each component is not limited to the above configuration.
【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS
【図1】本発明による方法で組電池の充放電電力を演算する制御ユニットを搭載した車両の全体構成図である。 It is an overall configuration diagram of a vehicle equipped with a control unit for calculating the charge and discharge power of the battery pack in the method according to the invention; FIG.
【図2】回帰直線を説明する図である。 Figure 2 is a diagram illustrating a regression line.
【図3】2つの単電池が並列に接続された並列電池を示す図である。 [3] Two of the cells is a diagram showing the connected parallel batteries in parallel.
【図4】並列電池の端子電圧および各単電池の開放電圧を示す図である。 4 is a diagram showing an open circuit voltage of the terminal voltage and the respective cells of a parallel cell.
【符号の説明】 DESCRIPTION OF SYMBOLS
101…セル電圧検出部、 102…CPU、 101 ... cell voltage detection unit, 102 ... CPU,
103…メモリ、 201…電流センサ、 103 ... memory, 201 ... current sensor,
304…車両システムCPU、 C1〜C8…単電池 304 ... vehicle system CPU, C1~C8 ... single battery

Claims (6)

  1. 複数の二次単電池を並列に接続し、前記並列電池を直列に複数接続した組電池の最大充放電電力を演算する方法であって、 A method of connecting a plurality of rechargeable unit cells in parallel, calculates the maximum discharge power of the battery assembly connecting a plurality of the parallel cells in series,
    前記組電池の放電時に前記並列電池ごとの電圧をそれぞれ検出し、 The voltage of each of the parallel battery respectively detected during the discharge of the assembled battery,
    前記放電時に前記組電池を流れる電流を検出し、 Detecting a current flowing through the battery pack during the discharge,
    前記検出した電流値および電圧値による特性から前記並列電池ごとに内部抵抗をそれぞれ算出し、 The internal resistance was calculated from each of the characteristics due to the current and voltage values ​​that the detected for each of the parallel cells,
    前記算出した内部抵抗が最大値を有する並列電池を抽出し、 Internal resistance the calculated extracts the parallel battery having a maximum value,
    前記抽出した並列電池の内部抵抗値、および前記抽出した並列電池以外の並列電池の内部抵抗値を用いて前記抽出した並列電池を構成する単電池の内部抵抗の最大値を推定し、 Internal resistance of the parallel batteries the extracted, and the maximum value of the internal resistance of the cells constituting the parallel battery the extracted using the internal resistance of the parallel batteries other than the extracted parallel battery estimated,
    前記推定した内部抵抗の最大値に応じて最大放電電力と最大充電電力の少なくとも一方を算出することを特徴とする並列接続電池を含む組電池の最大充放電電力演算方法。 Maximum discharge power calculation method of an assembled battery including a parallel connection battery and calculates at least one of the maximum discharge power and the maximum charging power according to the maximum value of the internal resistance described above estimation.
  2. 請求項1に記載の組電池の最大充放電電力の演算方法において、 In a method of calculating the maximum charge and discharge power of the battery pack according to claim 1,
    前記抽出した並列電池の検出電圧および前記検出した電流値による特性から当該並列電池の開放電圧を推定し、 Estimating the open circuit voltage of the parallel batteries characteristics by the detection voltage and the detected current value of the parallel batteries the extracted,
    前記最大放電電力の算出は、前記推定した開放電圧、前記並列電池の放電停止電圧、前記直列接続した前記並列電池の数、前記推定した内部抵抗の最大値、および前記並列電池ごとの内部抵抗の平均値を用いて算出することを特徴とする並列接続電池を含む組電池の最大充放電電力演算方法。 Calculation of the maximum discharge power, the estimated open circuit voltage, the discharge stop voltage of the parallel battery, the number of the parallel batteries the series connection, the maximum value of the internal resistance that the estimated, and the internal resistance of each of the parallel batteries maximum discharge power calculation method of an assembled battery including a parallel connection battery and calculates using the average value.
  3. 請求項1に記載の組電池の最大充放電電力の演算方法において、 In a method of calculating the maximum charge and discharge power of the battery pack according to claim 1,
    前記抽出した並列電池の検出電圧および前記検出した電流値による特性から当該並列電池の開放電圧を推定し、 Estimating the open circuit voltage of the parallel batteries characteristics by the detection voltage and the detected current value of the parallel batteries the extracted,
    前記最大充電電力の算出は、前記推定した開放電圧、前記並列電池の最大許容電圧、前記直列接続した前記並列電池の数、前記推定した内部抵抗の最大値、および前記並列電池ごとの内部抵抗の平均値を用いて算出することを特徴とする並列接続電池を含む組電池の最大充放電電力演算方法。 Calculation of the maximum charging power, the estimated open-circuit voltage, the maximum allowable voltage of the parallel battery, the number of the parallel batteries the series connection, the maximum value of the internal resistance that the estimated, and the internal resistance of each of the parallel batteries maximum discharge power calculation method of an assembled battery including a parallel connection battery and calculates using the average value.
  4. 請求項1〜3のいずれかに記載の組電池の最大充放電電力の演算方法において、 In a method of calculating the maximum charge and discharge power of the battery pack according to claim 1,
    前記並列電池ごとの内部抵抗の算出および前記開放電圧の推定は、直線回帰演算を用いることを特徴とする並列接続電池を含む組電池の最大充放電電力演算方法。 The estimation of the calculation and the open-circuit voltage of the internal resistance of each parallel battery, the maximum discharge power calculation method of an assembled battery including a parallel connection battery, which comprises using a linear regression computation.
  5. 請求項1〜4のいずれかに記載の組電池の最大充放電電力の演算方法において、 In a method of calculating the maximum charge and discharge power of the battery pack according to claim 1,
    前記抽出した並列電池を構成する単電池の内部抵抗の最大値の推定は、前記組電池を構成する全単電池のうち1つの単電池の内部抵抗が上昇し、前記1つの単電池以外は同一の内部抵抗値を有するとみなして行うことを特徴とする並列接続電池を含む組電池の最大充放電電力演算方法。 Estimate of the maximum value of the internal resistance of the cells constituting the parallel battery the extracted, the assembled battery constituting the internal resistance of one of the cells of all the unit cells is increased, the same, except the one of the cells maximum discharge power calculation method of an assembled battery including a parallel connection battery and performing regarded as having an internal resistance of.
  6. 複数の二次単電池を並列に接続し、前記並列電池を直列に複数接続した組電池と、 A battery assembly connecting a plurality connecting a plurality of rechargeable unit cells in parallel, said parallel cells in series,
    前記組電池の放電時に、前記並列電池ごとの電圧を検出する電圧検出手段と、 During discharge of the assembled battery, a voltage detecting means for detecting a voltage of each of the parallel cells,
    前記組電池の放電時に、前記組電池を流れる電流を検出する電流検出手段と、 During discharge of the assembled battery, current detecting means for detecting a current flowing through the battery pack,
    前記電圧検出手段および前記電流検出手段により検出された電圧および電流に基づいて、前記並列電池ごとの内部抵抗を算出する内部抵抗算出手段と、 And the internal resistance calculation means based on the detected voltage and current, and calculates the internal resistance of each of the parallel battery by the voltage detecting means and said current detecting means,
    前記内部抵抗算出手段により算出された内部抵抗が最大の並列電池を抽出する抽出手段と、 Extraction means for the internal resistance calculated by the internal resistance calculation means for extracting the maximum parallelism battery,
    前記抽出手段によって抽出された並列電池の内部抵抗と、前記抽出された並列電池以外の並列電池の内部抵抗とを用いて、前記抽出された並列電池を構成する単電池の内部抵抗の最大値を推定する推定手段と、 The internal resistance of the parallel cells extracted by said extraction means, by using the internal resistance of the parallel batteries other than parallel battery the extracted, the maximum value of the internal resistance of the cells constituting the extracted parallel battery and estimating means for estimating for,
    前記推定手段によって推定された内部抵抗の最大値に応じて、前記組電池の最大放電電力と最大充電電力の少なくとも一方を算出する最大充放電電力演算手段と、 Depending on the maximum value of the internal resistance estimated by said estimating means, and the maximum charge and discharge power calculation means for calculating at least one of the maximum discharge power and the maximum charging power of the battery pack,
    を備えたことを特徴とする並列接続電池を含む組電池の最大充放電電力演算装置。 Maximum discharge power calculation of the assembled battery including a parallel connection cell characterized by comprising a.
JP2002182920A 2002-06-24 2002-06-24 Maximum charge-discharge power calculation method and device for battery pack including parallel connection battery Pending JP2004031014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002182920A JP2004031014A (en) 2002-06-24 2002-06-24 Maximum charge-discharge power calculation method and device for battery pack including parallel connection battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002182920A JP2004031014A (en) 2002-06-24 2002-06-24 Maximum charge-discharge power calculation method and device for battery pack including parallel connection battery

Publications (1)

Publication Number Publication Date
JP2004031014A true true JP2004031014A (en) 2004-01-29

Family

ID=31179289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002182920A Pending JP2004031014A (en) 2002-06-24 2002-06-24 Maximum charge-discharge power calculation method and device for battery pack including parallel connection battery

Country Status (1)

Country Link
JP (1) JP2004031014A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165211A (en) * 2005-12-16 2007-06-28 Hitachi Vehicle Energy Ltd Secondary battery management device
JP2007517190A (en) * 2003-11-20 2007-06-28 エルジー・ケム・リミテッド Calculation of the power capacity of the battery pack using the advanced cell model predictive techniques
US8341449B2 (en) 2010-04-16 2012-12-25 Lg Chem, Ltd. Battery management system and method for transferring data within the battery management system
US8449998B2 (en) 2011-04-25 2013-05-28 Lg Chem, Ltd. Battery system and method for increasing an operational life of a battery cell
DE112011102788T5 (en) 2010-08-24 2013-06-13 Suzuki Motor Corporation Energy storage system
DE112011102789T5 (en) 2010-08-24 2013-07-04 Suzuki Motor Corp. Electrically powered means of transportation
US8519675B2 (en) 2008-01-30 2013-08-27 Lg Chem, Ltd. System, method, and article of manufacture for determining an estimated battery cell module state
CN103608210A (en) * 2011-06-17 2014-02-26 裕罗有限公司 Power relay assembly driving apparatus and driving method thereof
US8859119B2 (en) 2011-06-30 2014-10-14 Lg Chem, Ltd. Heating system for a battery module and method of heating the battery module
US8974928B2 (en) 2011-06-30 2015-03-10 Lg Chem, Ltd. Heating system for a battery module and method of heating the battery module
US8974929B2 (en) 2011-06-30 2015-03-10 Lg Chem, Ltd. Heating system for a battery module and method of heating the battery module
US8993136B2 (en) 2011-06-30 2015-03-31 Lg Chem, Ltd. Heating system for a battery module and method of heating the battery module
WO2017111751A1 (en) * 2015-12-21 2017-06-29 Okan Universitesi Internal resistance measurement method for power supplies like batteries or supercapacitors

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007517190A (en) * 2003-11-20 2007-06-28 エルジー・ケム・リミテッド Calculation of the power capacity of the battery pack using the advanced cell model predictive techniques
US7969120B2 (en) 2003-11-20 2011-06-28 Lg Chem, Ltd. Method for calculating power capability of battery packs using advanced cell model predictive techniques
JP4722857B2 (en) * 2003-11-20 2011-07-13 エルジー・ケム・リミテッド Calculation of the power capacity of the battery pack using the advanced cell model predictive techniques
JP2007165211A (en) * 2005-12-16 2007-06-28 Hitachi Vehicle Energy Ltd Secondary battery management device
US8519675B2 (en) 2008-01-30 2013-08-27 Lg Chem, Ltd. System, method, and article of manufacture for determining an estimated battery cell module state
US8341449B2 (en) 2010-04-16 2012-12-25 Lg Chem, Ltd. Battery management system and method for transferring data within the battery management system
DE112011102788T5 (en) 2010-08-24 2013-06-13 Suzuki Motor Corporation Energy storage system
DE112011102789T5 (en) 2010-08-24 2013-07-04 Suzuki Motor Corp. Electrically powered means of transportation
US9461494B2 (en) 2010-08-24 2016-10-04 Suzuki Motor Corporation Power storage system
US9227524B2 (en) 2010-08-24 2016-01-05 Suzuki Motor Corporation Electric-powered vehicle
US8449998B2 (en) 2011-04-25 2013-05-28 Lg Chem, Ltd. Battery system and method for increasing an operational life of a battery cell
CN103608210A (en) * 2011-06-17 2014-02-26 裕罗有限公司 Power relay assembly driving apparatus and driving method thereof
US8859119B2 (en) 2011-06-30 2014-10-14 Lg Chem, Ltd. Heating system for a battery module and method of heating the battery module
US8974928B2 (en) 2011-06-30 2015-03-10 Lg Chem, Ltd. Heating system for a battery module and method of heating the battery module
US8974929B2 (en) 2011-06-30 2015-03-10 Lg Chem, Ltd. Heating system for a battery module and method of heating the battery module
US8993136B2 (en) 2011-06-30 2015-03-31 Lg Chem, Ltd. Heating system for a battery module and method of heating the battery module
WO2017111751A1 (en) * 2015-12-21 2017-06-29 Okan Universitesi Internal resistance measurement method for power supplies like batteries or supercapacitors

Similar Documents

Publication Publication Date Title
US5659240A (en) Intelligent battery charger for electric drive system batteries
US5965991A (en) Control system for a vehicle-mounted battery
US6359419B1 (en) Quasi-adaptive method for determining a battery's state of charge
US20010054877A1 (en) Charge equalizing device for power storage unit
US7053588B2 (en) Power supply controller, electric vehicle and battery control unit
US20030042866A1 (en) Battery control device
US20010035737A1 (en) Method of replacing secondary battery
US20030146737A1 (en) Battery assembly system and electric-motor vehicle system using the same
US20030030414A1 (en) Apparatus for and method of calculating output deterioration in secondary battery
US20030178970A1 (en) Battery control device
US20120013304A1 (en) Battery control apparatus, vehicle, and battery control method
US20080074082A1 (en) Battery management system and method
US20070139005A1 (en) Power supply device and method of controlling the same
WO2010005079A1 (en) Battery charge/discharge control device and hybrid vehicle using the same
US6710575B2 (en) Method for controlling a charging state of a battery for an electric vehicle
JP2009123435A (en) Device and method of controlling secondary battery
JP2004025979A (en) Power supply system for travelling vehicle
JPH1032936A (en) Control system and method for power supply
JP2000261901A (en) Calculating method for battery capacity deterioration of secondary battery
JP2000166109A (en) Charged state detecting device for battery
US6646421B2 (en) Method and apparatus for controlling residual battery capacity of secondary battery
US20070262750A1 (en) Battery management system and method of operating same
US20110148426A1 (en) Battery system and method for detecting internal short circuit in battery system
US20100052617A1 (en) Degradation determination method for lithium-ion battery, control method for lithium-ion battery, degradation determination apparatus for lithium-ion battery, control apparatus for lithium-ion battery, and vehicle
JP2004215459A (en) Power controller