JP6551362B2 - Power supply system - Google Patents

Power supply system Download PDF

Info

Publication number
JP6551362B2
JP6551362B2 JP2016206195A JP2016206195A JP6551362B2 JP 6551362 B2 JP6551362 B2 JP 6551362B2 JP 2016206195 A JP2016206195 A JP 2016206195A JP 2016206195 A JP2016206195 A JP 2016206195A JP 6551362 B2 JP6551362 B2 JP 6551362B2
Authority
JP
Japan
Prior art keywords
storage device
power storage
power
charge
charging rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016206195A
Other languages
Japanese (ja)
Other versions
JP2018066682A (en
Inventor
周平 吉田
周平 吉田
貴彦 山本
貴彦 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2016206195A priority Critical patent/JP6551362B2/en
Priority to DE112017005306.4T priority patent/DE112017005306T5/en
Priority to PCT/JP2017/037065 priority patent/WO2018074331A1/en
Publication of JP2018066682A publication Critical patent/JP2018066682A/en
Application granted granted Critical
Publication of JP6551362B2 publication Critical patent/JP6551362B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Description

第1蓄電装置と第2蓄電装置と、第1蓄電装置と第2蓄電装置との間を並列接続する接続回路と、を備えて構成される電源システムに関する。   The present invention relates to a power supply system including a first power storage device, a second power storage device, and a connection circuit connecting the first power storage device and the second power storage device in parallel.

近年、電気二重層キャパシタや、リチウムイオンキャパシタなどが電源として用いられている(例えば、特許文献1)。   In recent years, electric double layer capacitors, lithium ion capacitors, and the like have been used as power sources (for example, Patent Document 1).

特開2016−090426号公報Japanese Patent Application Laid-Open No. 2006-090426

電気二重層キャパシタやリチウムイオンキャパシタなどの蓄電装置は、二次電池と比較して、充放電電力が極めて大きいという長所を有する一方で、充電率に応じて端子間電圧が大きく変化するため安定した電力の出力が困難であるという短所を有する。そこで、お互いの短所を補うべく、電気二重層キャパシタやリチウムイオンキャパシタなどの蓄電装置と、二次電池などの蓄電装置とを組み合わせて用いる構成が考えられる。   Power storage devices such as electric double layer capacitors and lithium ion capacitors have the advantage that the charge / discharge power is extremely large compared to secondary batteries, while being stable because the voltage between terminals varies greatly depending on the charging rate. It has the disadvantage that it is difficult to output power. Therefore, in order to compensate each other's disadvantages, it is conceivable to use a combination of a storage device such as an electric double layer capacitor and a lithium ion capacitor and a storage device such as a secondary battery.

ここで、電気二重層キャパシタや、リチウムイオンキャパシタなどの蓄電装置は、充電率と端子間電圧との相関係数が高く、端子間電圧から充電率(又は残存容量)を精度よく算出することができる。一方で、二次電池などの充電率と端子間電圧との相関係数が低い蓄電装置においては、電流積算法を用いて充電率(又は残存容量)を算出する構成が一般的である。ここで、電流積算法を用いる場合、蓄電装置の劣化に伴って開放端電圧−充電率特性が変化したり、満充電容量が変化したりすることで、充電率の算出精度が悪化することが懸念される。   Here, a storage device such as an electric double layer capacitor or a lithium ion capacitor has a high correlation coefficient between the charging rate and the voltage between the terminals, and can accurately calculate the charging rate (or the remaining capacity) from the voltage between the terminals it can. On the other hand, in a power storage device having a low correlation coefficient between the charging rate of a secondary battery or the like and the voltage between terminals, a general configuration is to calculate the charging rate (or remaining capacity) using a current integration method. Here, when the current integration method is used, the calculation accuracy of the charging rate may deteriorate due to the change of the open-circuit voltage-charging rate characteristic or the change of the full charging capacity accompanying the deterioration of the power storage device. I am concerned.

本発明は、上記課題に鑑みてなされたものであり、充電率と端子間電圧との相関係数が高い第1蓄電装置と、充電率と端子間電圧との相関係数が低い第2蓄電装置とを組み合わせて用いる電源システムにおいて、第2蓄電装置の充電率を精度よく算出することを主たる目的とする。   The present invention has been made in view of the above problems, and a first power storage device having a high correlation coefficient between a charging rate and a voltage between terminals, and a second power storage having a low correlation coefficient between a charging rate and a voltage between terminals. It is a main object of the present invention to accurately calculate the charging rate of the second power storage device in a power supply system used in combination with a device.

本構成は、第1蓄電装置(11)と第2蓄電装置(12)と、前記第1蓄電装置と前記第2蓄電装置とを並列接続する第1接続回路(SWa,SWb)と、を備えて構成される電源システムにおいて、前記第1蓄電装置は、充電率と端子間電圧との相関係数が0.8以上のものであるとともに、前記第2蓄電装置は、充電率と端子間電圧との相関係数が0.8より低いものであって、前記第2蓄電装置に流れる充放電電流の検出値の積算値に基づいて、前記第2蓄電装置の充電率を算出する第1算出部(30)と、前記電源装置の充放電が停止されている状況において、前記第1接続回路を介して前記第1蓄電装置と前記第2蓄電装置との間で充放電を行い、前記第1蓄電装置と前記第2蓄電装置との間での充放電の開始時及び終了時における前記第1蓄電装置の端子間電圧の検出値のそれぞれに基づいて、前記第1蓄電装置と前記第2蓄電装置との間での充放電に伴う前記第1蓄電装置の充電率の変化量を算出する第2算出部(30)と、前記第1算出部により算出される前記第2蓄電装置の充電率、及び、前記第2算出部により算出される前記第1蓄電装置の充電率の変化量に基づいて、前記第1算出部による前記第2蓄電装置の充電率の算出を補正する補正部(30)と、を備える。   This configuration includes a first power storage device (11) and a second power storage device (12), and a first connection circuit (SWa, SWb) connecting the first power storage device and the second power storage device in parallel. In the power supply system configured as described above, the first power storage device has a correlation coefficient between the charging rate and the inter-terminal voltage of 0.8 or more, and the second power storage device includes the charging rate and the inter-terminal voltage. Calculation of calculating the state of charge of the second power storage device based on the integrated value of the detected values of the charge / discharge current flowing in the second power storage device, the correlation coefficient of which is lower than 0.8 And charging / discharging between the first power storage device and the second power storage device via the first connection circuit in a situation where charging / discharging of the power supply device is stopped, At the start and end of charge / discharge between one power storage device and the second power storage device Based on each detected value of the voltage between the terminals of the first power storage device, the amount of change in the charging rate of the first power storage device due to charging / discharging between the first power storage device and the second power storage device is calculated. A second calculation unit (30) to be calculated, a charging rate of the second power storage device calculated by the first calculation unit, and a change in the charging rate of the first power storage device calculated by the second calculation unit And a correction unit (30) for correcting the calculation of the charging rate of the second power storage device by the first calculation unit based on the amount.

本構成では、第1算出部は、電流積算法に基づき第2蓄電装置の充電率の算出を行う。また、第2算出部は、第1蓄電装置と第2蓄電装置との間での充放電を行い、当該充放電に伴う第1蓄電装置の充電率の変化量を算出する。そして、第2蓄電装置の充電率の算出値と、第1蓄電装置の充電率の変化量の算出値とに基づいて、第1算出部による電流積算法に基づく第2蓄電装置の充電率の算出を補正する。   In this configuration, the first calculation unit calculates the charging rate of the second power storage device based on the current integration method. Further, the second calculation unit performs charge and discharge between the first power storage device and the second power storage device, and calculates a change amount of the charge rate of the first power storage device accompanying the charge and discharge. Then, based on the calculated value of the charging rate of the second power storage device and the calculated value of the change amount of the charging rate of the first power storage device, the charging rate of the second power storage device based on the current integration method by the first calculating unit Correct the calculation.

ここで、第1蓄電装置の充電率と端子間電圧との相関係数が高いため、第2算出部は、第1蓄電装置の端子間電圧に基づいて精度よく第1蓄電装置の充電率を算出することができる。その結果、第1蓄電装置と第2蓄電装置との間で充放電を実施した場合の充放電の開始時及び終了時における第1蓄電装置の端子間電圧のそれぞれに基づく、第1蓄電装置11の充電率変化量の算出値の精度は高いものとなる。このため、第2蓄電装置の充電率の算出値と、第1蓄電装置の充電率の変化量の算出値とに基づいて、第1算出部による電流積算法に基づく第2蓄電装置の充電率の算出を補正することで、第2蓄電装置の充電率の算出精度を向上させることができる。   Here, since the correlation coefficient between the charging rate of the first power storage device and the voltage between the terminals is high, the second calculation unit accurately calculates the charging rate of the first power storage device based on the voltage between the terminals of the first power storage device. Can be calculated. As a result, the first power storage device 11 based on the voltage between the terminals of the first power storage device at the start and end of charge / discharge when charging / discharging is performed between the first power storage device and the second power storage device. The accuracy of the calculated value of the charging rate change amount is high. Therefore, based on the calculated value of the charging rate of the second power storage device and the calculated value of the change amount of the charging rate of the first power storage device, the charging rate of the second power storage device based on the current integration method by the first calculation unit The calculation accuracy of the charging rate of the second power storage device can be improved by correcting the calculation of.

電源システムの電気的構成図。The electrical block diagram of a power supply system. 第1蓄電装置と第2蓄電装置との間での充放電を表す図。FIG. 6 is a diagram showing charge and discharge between a first power storage device and a second power storage device. リチウムイオン二次電池及びリチウムイオンキャパシタの開放端電圧−充電率特性を表す図。The figure showing the open end voltage-charge rate characteristic of a lithium ion secondary battery and a lithium ion capacitor. 電流積算法による第2蓄電装置の充電率算出処理を表すフローチャート。The flowchart showing the charging rate calculation process of the 2nd electrical storage apparatus by the electric current integration method. 第2蓄電装置の開放端電圧−充電率マップの補正処理を表すフローチャート。The flowchart showing the correction | amendment process of the open end voltage-charging rate map of a 2nd electrical storage apparatus. 第1蓄電装置と第2蓄電装置の放電処理を表すフローチャート。The flowchart showing the discharge process of a 1st electrical storage apparatus and a 2nd electrical storage apparatus. 第2蓄電装置の満充電容量の補正処理を表すフローチャート。The flowchart showing the correction process of the full charge capacity of a 2nd electrical storage apparatus.

以下、本発明を具体化した実施形態を図面に基づいて説明する。本実施形態の「電源システム」は、車両に適用されるものであり、具体的には、車両に搭載される回転電機の電源として用いられるものである。本実施形態の車両は、エンジン(内燃機関)を有するものである。なお、車両はエンジンを有しないもの、例えば、電気自動車であってもよい。   Hereinafter, an embodiment of the present invention will be described based on the drawings. The "power supply system" of the present embodiment is applied to a vehicle, and specifically, used as a power supply of a rotating electrical machine mounted on the vehicle. The vehicle of the present embodiment has an engine (internal combustion engine). The vehicle may have no engine, for example, an electric vehicle.

図1に本電源システムを示す。電源装置10は、インバータ21を介して回転電機20に接続されている。電源装置10は、リチウムイオンキャパシタから構成される第1蓄電装置11と、リチウムイオン二次池から構成される第2蓄電装置12とから構成されている。また、電源装置10と電源装置10を制御する制御装置30とで「電源システム」を構成する。   FIG. 1 shows the power supply system. The power supply device 10 is connected to the rotating electrical machine 20 via an inverter 21. The power supply device 10 is configured of a first power storage device 11 configured of a lithium ion capacitor and a second power storage device 12 configured of a lithium ion secondary reservoir. Further, the power supply device 10 and the control device 30 that controls the power supply device 10 constitute a “power supply system”.

第1蓄電装置11は、複数のリチウムイオンキャパシタ13が直列接続されて構成されている。複数のリチウムイオンキャパシタ13を直列接続することで、第1蓄電装置11全体としての入出力電圧を増加させている。なお、複数のリチウムイオンキャパシタ13の直列接続体を並列接続して用いる構成としてもよいし、複数のリチウムイオンキャパシタ13を並列接続して用いる構成としてもよい。リチウムイオンキャパシタ13を並列接続することで、第1蓄電装置11の満充電容量Ahf1を増加させている。   The first power storage device 11 is configured by connecting a plurality of lithium ion capacitors 13 in series. By connecting the plurality of lithium ion capacitors 13 in series, the input / output voltage of the entire first power storage device 11 is increased. Note that a series connection of a plurality of lithium ion capacitors 13 may be connected in parallel to be used, or a plurality of lithium ion capacitors 13 may be connected in parallel to be used. By connecting the lithium ion capacitors 13 in parallel, the full charge capacity Ahf1 of the first power storage device 11 is increased.

第2蓄電装置12は、複数の組電池14が並列接続されて構成されている。組電池14は、複数の電池セル15が直列接続されて構成されている。複数の電池セル15を直列接続することで、第2蓄電装置12全体としての入出力電圧を増加させている。電池セル15は、具体的には、リチウムイオン二次電池である。複数の組電池14それぞれの開放端電圧は互いに略同一に設定されている。なお、組電池14は、複数の電池セルが互いに並列接続又は直列接続された電池群を複数備え、その複数の電池群が互いに直列接続又は並列接続されたものであってもよい。複数の組電池14を並列接続することで、第2蓄電装置12全体としての満充電容量Ahf2を増加させている。   The second power storage device 12 is configured by connecting a plurality of battery packs 14 in parallel. The battery assembly 14 is configured by connecting a plurality of battery cells 15 in series. By connecting the plurality of battery cells 15 in series, the input / output voltage of the second power storage device 12 as a whole is increased. Specifically, the battery cell 15 is a lithium ion secondary battery. The open end voltages of the plurality of battery packs 14 are set to be substantially the same. The assembled battery 14 may include a plurality of battery groups in which a plurality of battery cells are connected in parallel or in series with each other, and the plurality of battery groups may be connected in series with or in parallel with each other. By connecting the plurality of battery packs 14 in parallel, the full charge capacity Ahf2 of the entire second power storage device 12 is increased.

第1蓄電装置11と第2蓄電装置12とは、並列接続されて構成されている。より具体的には、第1蓄電装置11の低電圧側の端子と第2蓄電装置12の低電圧側の端子は、電源装置10の低電圧側端子P−に接続されており、第1蓄電装置11の高電圧側の端子と第2蓄電装置12の高電圧側の端子は、電源装置10の高電圧側端子P+に接続されている。   The first power storage device 11 and the second power storage device 12 are configured to be connected in parallel. More specifically, the low voltage side terminal of the first power storage device 11 and the low voltage side terminal of the second power storage device 12 are connected to the low voltage side terminal P− of the power supply device 10, and the first power storage device 10. The high voltage side terminal of the device 11 and the high voltage side terminal of the second power storage device 12 are connected to the high voltage side terminal P + of the power supply device 10.

第1蓄電装置11と高電圧側端子P+との間には、スイッチング素子SWaが設けられている。第2蓄電装置12を構成する複数の組電池14には、スイッチング素子SWbがそれぞれ設けられている。電源装置10とインバータ21との間にはスイッチング素子SWcが設けられている。なお、スイッチング素子SWaは、第1蓄電装置11と低電圧側端子P−との間に設けられていてもよく、スイッチング素子SWbは、組電池14と低電圧側端子P−との間に設けられていてもよい。また、スイッチング素子SWa〜SWcとして、機械式のリレースイッチや、IGBTやパワーMOS−FETなどの半導体スイッチング素子を用いるとよい。   A switching element SWa is provided between the first power storage device 11 and the high voltage side terminal P +. The plurality of assembled batteries 14 constituting the second power storage device 12 are each provided with a switching element SWb. A switching element SWc is provided between the power supply device 10 and the inverter 21. The switching element SWa may be provided between the first power storage device 11 and the low voltage side terminal P−, and the switching element SWb is provided between the assembled battery 14 and the low voltage side terminal P−. It may be done. Further, as the switching elements SWa to SWc, a mechanical relay switch, or a semiconductor switching element such as an IGBT or a power MOS-FET may be used.

スイッチング素子SWaがオン状態とされることで、第1蓄電装置11の充放電が実施される。スイッチング素子SWbがオン状態とされることで、対応する組電池14における充放電が実施される。スイッチング素子SWa,SWbの少なくとも一方がオン状態とされている状態で、スイッチング素子SWcがオン状態とされることで、電源装置10における充放電が実施される。「第1接続回路」としてのスイッチング素子SWa,SWbがともにオン状態とされることで、第1蓄電装置11と第2蓄電装置12との間での充放電が実施される。また、「第2接続回路」としてのスイッチング素子SWbがオン状態にされることで組電池14同士が導通状態とされる。これらスイッチング素子SWa,SWb,SWcの開閉制御は、制御装置30によって実施される。   Charging / discharging of the 1st electrical storage apparatus 11 is implemented by switching element SWa being turned on. As switching element SWb is turned on, charging / discharging of the corresponding assembled battery 14 is performed. When at least one of the switching elements SWa and SWb is turned on, the switching element SWc is turned on, whereby charging / discharging in the power supply device 10 is performed. Both switching elements SWa and SWb as the “first connection circuit” are turned on, whereby charge and discharge between the first power storage device 11 and the second power storage device 12 are performed. Further, when the switching element SWb as the “second connection circuit” is turned on, the assembled batteries 14 are brought into conduction. The control device 30 implements switching control of the switching elements SWa, SWb, and SWc.

回転電機20は、電力を回転力に変換する電動機としての動作(力行動作)、及び、回転力を電力に変換する発電機としての動作(回生動作)の両方が可能である。回転電機20は、エンジン22の出力軸に対して、例えば、ベルトを介して接続されている。回転電機20は、エンジン22の出力軸に対して回転力を付与することで、エンジン22の始動を行う。つまり、回転電機20は、エンジン始動用の電動機(スタータモータ)としての機能を有するものである。また、回転電機20は、エンジン22の出力軸に対して回転力を付与することで、車両の走行中のエンジン燃焼時においては、エンジン22の出力を補助(アシスト)することができ、車両の走行中のエンジン非燃焼時においては、EV(Electric Vehicle)走行を行うことができる。また、回転電機20は、車両の制動時において、車両の運動エネルギーを利用して回生発電を行うことができる。   The rotary electric machine 20 can perform both an operation (powering operation) as a motor that converts electric power into rotational force and an operation (regenerative operation) as a generator that converts rotational power into electric power. The rotary electric machine 20 is connected to an output shaft of the engine 22 via, for example, a belt. The rotating electrical machine 20 starts the engine 22 by applying a rotational force to the output shaft of the engine 22. That is, the rotating electrical machine 20 has a function as an electric motor (starter motor) for starting the engine. Further, by applying rotational force to the output shaft of the engine 22, the rotating electrical machine 20 can assist (assist) the output of the engine 22 at the time of engine combustion during traveling of the vehicle. When the engine is not combusting during traveling, EV (Electric Vehicle) traveling can be performed. In addition, at the time of braking of the vehicle, the rotating electrical machine 20 can perform regenerative power generation using kinetic energy of the vehicle.

インバータ21は、電源装置10から供給される直流電力を交流電力に変換し、力行動作を行う回転電機20に電力供給を行う。また、インバータ21は、回生動作を行う回転電機20から供給される交流電力を直流電力に変換して、電源装置10に対する充電を行う。なお、電源装置10にはインバータ21及び回転電機20以外の一般的な電気負荷が接続されているが、図1では省略している。   The inverter 21 converts the DC power supplied from the power supply device 10 into AC power, and supplies power to the rotating electrical machine 20 that performs a power running operation. Further, the inverter 21 converts AC power supplied from the rotating electrical machine 20 that performs the regenerative operation into DC power, and charges the power supply device 10. Note that a general electric load other than the inverter 21 and the rotating electrical machine 20 is connected to the power supply device 10, but is omitted in FIG. 1.

制御装置30は、第1蓄電装置11の端子間電圧V1を検出する電圧センサ31、及び、第1蓄電装置11の温度T1を検出する温度センサ33からそれぞれ検出値を取得する。制御装置30は、第1蓄電装置11の端子間電圧V1に基づいて、第1蓄電装置11の開放端電圧を取得する。第1蓄電装置11を構成するリチウムイオンキャパシタ13の内部抵抗は小さいため、制御装置30は、電圧センサ31による端子間電圧V1の検出値を第1蓄電装置11の開放端電圧と見なすことができる。   Control device 30 obtains detection values from voltage sensor 31 that detects inter-terminal voltage V1 of first power storage device 11, and temperature sensor 33 that detects temperature T1 of first power storage device 11. The control device 30 acquires the open end voltage of the first power storage device 11 based on the inter-terminal voltage V <b> 1 of the first power storage device 11. Since the internal resistance of the lithium ion capacitor 13 constituting the first power storage device 11 is small, the control device 30 can regard the detected value of the inter-terminal voltage V1 by the voltage sensor 31 as the open end voltage of the first power storage device 11 .

制御装置30は、取得した第1蓄電装置11の開放端電圧OCV1と、第1蓄電装置11の開放端電圧OCV1と第1蓄電装置11の充電率SOC1とを対応付けるマップとを対応付けるマップとに基づいて、第1蓄電装置11の充電率SOC1を算出する。第1蓄電装置11を構成するリチウムイオンキャパシタ13の開放端電圧−充電率特性は温度依存性を有するため、制御装置30は、第1蓄電装置11の温度T1に基づいて、第1蓄電装置11の開放端電圧OCV1と、第1蓄電装置11の充電率SOC1とを対応付けるマップの切り替えを行う。   Control device 30 is based on a map correlating the acquired open end voltage OCV1 of first power storage device 11 with a map correlating open end voltage OCV1 of first power storage device 11 with charge rate SOC1 of first power storage device 11. The charging rate SOC1 of the first power storage device 11 is calculated. Since the open-circuit voltage-charge rate characteristic of the lithium ion capacitor 13 constituting the first power storage device 11 has temperature dependency, the control device 30 determines the first power storage device 11 based on the temperature T1 of the first power storage device 11. Of the open circuit voltage OCV1 and the charge rate SOC1 of the first power storage device 11 are switched.

制御装置30は、第2蓄電装置12の端子間電圧V2を検出する電圧センサ34、第2蓄電装置12の充放電電流I2を検出する電流センサ35、及び、第2蓄電装置12の温度T2を検出する温度センサ36からそれぞれ検出値を取得する。制御装置30は、第2蓄電装置12の開放端電圧として、第2蓄電装置12における充放電が停止されている状況下における第2蓄電装置12の端子間電圧V2の検出値を取得する。ここで、制御装置30は、第2蓄電装置12における分極の影響を除去するために、第2蓄電装置12における充放電が停止されてから分極の影響が抑制される程度の所定時間経過した後に、第2蓄電装置12の開放端電圧として第2蓄電装置12の端子間電圧V2を取得する構成とするとよい。   Control device 30 has a voltage sensor 34 for detecting inter-terminal voltage V2 of second power storage device 12, a current sensor 35 for detecting charge / discharge current I2 of second power storage device 12, and temperature T2 of second power storage device 12. Detection values are acquired from the temperature sensors 36 to be detected. Control device 30 acquires the detected value of inter-terminal voltage V2 of second power storage device 12 under the condition where charging / discharging in second power storage device 12 is stopped as the open-circuit voltage of second power storage device 12. Here, in order to remove the influence of polarization in second power storage device 12, control device 30 stops charging / discharging in second power storage device 12 and then, after a predetermined time for which the influence of polarization is suppressed, has elapsed. Preferably, the inter-terminal voltage V2 of the second power storage device 12 is acquired as the open end voltage of the second power storage device 12.

制御装置30は、取得した第2蓄電装置12の開放端電圧OCV2と、第2蓄電装置12の開放端電圧OCV2と第2蓄電装置12の充電率SOC2とを対応付けるマップとを対応付けるマップとに基づいて、第2蓄電装置12の充電率SOC2を算出する。第2蓄電装置12を構成する電池セル15の開放端電圧−充電率特性は温度依存性を有するため、制御装置30は、第2蓄電装置12の温度T2に基づいて、第2蓄電装置12の開放端電圧と、第2蓄電装置12の充電率とを対応付けるマップの切り替えを行う。   Control device 30 is based on a map that correlates acquired open end voltage OCV2 of second power storage device 12 with a map that associates open end voltage OCV2 of second power storage device 12 with charge ratio SOC2 of second power storage device 12. The charging rate SOC2 of the second power storage device 12 is calculated. Since the open-circuit voltage-charge rate characteristic of the battery cell 15 constituting the second power storage device 12 has temperature dependence, the control device 30 determines the second power storage device 12 based on the temperature T2 of the second power storage device 12. Switching of a map that associates the open end voltage with the charging rate of the second power storage device 12 is performed.

ここで、電圧センサ31は、第1蓄電装置11を構成する各リチウムイオンキャパシタ13の端子間電圧を検出するものであってもよく、制御装置30は、各リチウムイオンキャパシタ13の充電率を算出するものであってもよい。同様に、電圧センサ34は、第2蓄電装置12を構成する各電池セル15の端子間電圧を検出するものであってもよく、制御装置30は、各電池セル15の充電率を算出するものであってもよい。   Here, the voltage sensor 31 may detect a voltage between terminals of each lithium ion capacitor 13 constituting the first power storage device 11, and the control device 30 calculates the charging rate of each lithium ion capacitor 13. You may do. Similarly, voltage sensor 34 may detect a voltage between terminals of each battery cell 15 configuring second power storage device 12, and control device 30 may calculate a charging rate of each battery cell 15. It may be.

第2蓄電装置12の充放電が開始されると、制御装置30は、取得した第2蓄電装置12の充放電電流I2の検出値と所定周期との積を所定周期Δt毎に積算することで、第2蓄電装置12の充電容量の変化量ΔAh2を算出する(ΔAh2=ΣI2・Δt)。制御装置30は、第2蓄電装置12の充電容量の変化量ΔAh2と、充放電開始前の第2蓄電装置12の充電率と、に基づいて、現在の第2蓄電装置12の充電率を算出する。具体的には、充電容量の変化量ΔAh2を第2蓄電装置12の満充電容量Ahf2で除算した値を充電率変化量ΔSOC2として、充放電開始前の第2蓄電装置12の充電率(前回値)に加算することで、現在の第2蓄電装置12の充電率を算出する(ΔSOC2=ΔAh2/Ahf2)。このように充放電電流の積算値に基づいて、蓄電装置の充電率、又は、充電容量を算出する方法を電流積算法と呼ぶ。   When charge / discharge of second power storage device 12 is started, control device 30 integrates the product of the acquired detected value of charge / discharge current I2 of second power storage device 12 and the predetermined cycle for each predetermined cycle Δt. Then, a change amount ΔAh2 of the charge capacity of the second power storage device 12 is calculated (ΔAh2 = ΣI2 · Δt). Control device 30 calculates the current charging rate of second power storage device 12 based on change amount ΔAh2 of the charge capacity of second power storage device 12 and the charging rate of second power storage device 12 before the start of charging and discharging. Do. Specifically, the charge rate change amount ΔSOC2 is a value obtained by dividing the change amount ΔAh2 of the charge capacity by the full charge capacity Ahf2 of the second power storage device 12, and the charge rate of the second power storage device 12 before the start of charge and discharge (previous value ) To calculate the current charging rate of the second power storage device 12 (ΔSOC2 = ΔAh2 / Ahf2). A method for calculating the charge rate or the charge capacity of the power storage device based on the integrated value of the charge / discharge current as described above is called a current integration method.

ここで、電流積算法において初期値として用いる開放端電圧に基づく充電率の算出に誤差が含まれていた場合、その誤差が残り続けるという問題がある。第2蓄電装置12を構成する電池セル15の劣化に伴い、開放端電圧−充電率特性は変化する。このため、開放端電圧−充電率マップを第2蓄電装置12の劣化に応じて補正を行わないと、開放端電圧に基づく充電率SOC2の算出において誤差が大きくなる。   Here, when an error is included in the calculation of the charging rate based on the open end voltage used as an initial value in the current integration method, there is a problem that the error remains. With the deterioration of the battery cell 15 constituting the second power storage device 12, the open-circuit voltage-charge rate characteristic changes. Therefore, if the open end voltage-charge rate map is not corrected according to the deterioration of the second power storage device 12, an error in calculation of the charge rate SOC2 based on the open end voltage becomes large.

そこで、本電源システムの制御装置30は、第1蓄電装置11と第2蓄電装置12との間で充放電を行い、その充放電に伴う第1蓄電装置11の充電率変化量ΔSOC1を算出する。そして、その算出された第1蓄電装置11の充電率変化量ΔSOC1と、電流積算法により算出された第2蓄電装置12の充電率SOC2とに基づいて、第2蓄電装置12の開放端電圧−充電率マップを補正する。以下、図2を用いて、第2蓄電装置12の開放端電圧−充電率マップの補正の説明を行う。   Therefore, control device 30 of the power supply system performs charge and discharge between first power storage device 11 and second power storage device 12, and calculates charge rate change amount ΔSOC1 of first power storage device 11 associated with the charge and discharge. . Then, based on the calculated charging rate change amount ΔSOC1 of the first power storage device 11 and the charging rate SOC2 of the second power storage device 12 calculated by the current integration method, the open end voltage of the second power storage device 12 − Correct the charging rate map. Hereinafter, the correction of the open-circuit voltage-charge rate map of the second power storage device 12 will be described with reference to FIG.

図2に斜線部で示す第1蓄電装置11(LiC)の充電容量の変化量ΔAh1と第2蓄電装置12(LiB)の充電容量の変化量ΔAh2との差は、第1蓄電装置11と第2蓄電装置12との間での充放電に伴う電力損失に相当するものとなる。第1蓄電装置11と第2蓄電装置12との間での充放電に伴う電力損失が充分に小さい場合、図3に斜線部で示す第1蓄電装置11の充電容量の変化量ΔAh1と第2蓄電装置12の充電容量の変化量ΔAh2とは等しい値となる。つまり、第1蓄電装置11の充電率変化量ΔSOC1に基づいて、第2蓄電装置12の充電率変化量ΔSOC2を算出することができる。   The difference between the change amount .DELTA.Ah1 of the charge capacity of the first power storage device 11 (LiC) and the change amount .DELTA.Ah2 of the charge capacity of the second power storage device 12 (LiB) shown by the hatched portion in FIG. It corresponds to the power loss associated with charge and discharge with the two power storage devices 12. When the power loss caused by the charge and discharge between the first power storage device 11 and the second power storage device 12 is sufficiently small, the change amount ΔAh1 of the charge capacity of the first power storage device 11 shown by the hatched portion in FIG. The amount of change ΔAh2 of the charge capacity of the storage device 12 is equal to the change amount ΔAh2. That is, the charge rate change amount ΔSOC2 of the second power storage device 12 can be calculated based on the charge rate change amount ΔSOC1 of the first power storage device 11.

そこで、制御装置30は、第1蓄電装置11の充電率変化量ΔSOC1に基づく第2蓄電装置12の充電率変化量ΔSOC2と、電流積算法に基づく第2蓄電装置12の充電率変化量ΔSOC2とを比較することで、第2蓄電装置12の第2蓄電装置12の開放端電圧−充電率マップを補正する。   Therefore, control device 30 controls charge rate change amount ΔSOC2 of second power storage device 12 based on charge rate change amount ΔSOC1 of first power storage device 11, and charge rate change amount ΔSOC2 of second power storage device 12 based on the current integration method. The corrected open end voltage-charge ratio map of the second power storage device 12 of the second power storage device 12 is corrected.

図3にリチウムイオンキャパシタ及びリチウムイオン二次電池の開放端電圧−充電率特性を示す。リチウムイオンキャパシタ(LiC)の開放端電圧は、充電率に応じて線形的に変化する。具体的には、リチウムイオンキャパシタの開放端電圧は、充電率の減少量に比例して減少する。   The open end voltage-charge rate characteristic of a lithium ion capacitor and a lithium ion secondary battery is shown in FIG. The open end voltage of the lithium ion capacitor (LiC) linearly changes in accordance with the charging rate. Specifically, the open-circuit voltage of the lithium ion capacitor decreases in proportion to the reduction amount of the charging rate.

また、正極材料としてニッケルマンガンコバルトを用い、負極材料として炭素を用いたリチウムイオン二次電池(NMC/C系)や、正極材料としてリン酸鉄リチウムを用い、負極材料として、チタン酸リチウム用いたリチウムイオン二次電池(LFP,LTO系)では、開放端電圧は、充電率に応じて非線形的に変化する。具体的には、リチウムイオン二次電池(NMC/C)では、充電率が0%近くなる領域で急激に開放端電圧が減少し、リチウムイオン二次電池(LFP,LTO系)では、充電率が10%〜90%の領域において開放端電圧がほぼ変化しないプラトー領域を有する。   Also, a lithium ion secondary battery (NMC / C type) using nickel manganese cobalt as a positive electrode material and carbon as a negative electrode material, lithium iron phosphate as a positive electrode material, and lithium titanate as a negative electrode material In a lithium ion secondary battery (LFP, LTO system), the open end voltage changes non-linearly according to the charging rate. Specifically, in the lithium ion secondary battery (NMC / C), the open end voltage sharply decreases in the region where the charge rate approaches 0%, and in the lithium ion secondary battery (LFP, LTO system), the charge rate In the region of 10% to 90%, the open end voltage has a plateau region where it hardly changes.

本実施形態の電池セル15として、NMC/C系のリチウムイオン二次電池を用いているが、LFP,LTO系のリチウムイオン二次電池を用いてもよい。電池セル15は、充電率と端子間電圧との相関係数が0.8より低いものである。一方、リチウムイオンキャパシタ13は、充放電時において、正極及び負極の少なくとも一方において、アニオン又はカチオンが吸着するものであり、充電率と端子間電圧との相関係数が0.8以上のものである。   As the battery cell 15 of the present embodiment, an NMC / C lithium ion secondary battery is used, but an LFP or LTO lithium ion secondary battery may be used. The battery cell 15 has a correlation coefficient between the charging rate and the voltage between terminals lower than 0.8. On the other hand, the lithium ion capacitor 13 is one in which an anion or a cation is adsorbed on at least one of the positive electrode and the negative electrode during charge and discharge, and the correlation coefficient between the charge ratio and the voltage between terminals is 0.8 or more. is there.

また、リチウムイオンキャパシタの充電率の変化に対する開放端電圧の変化量は、リチウムイオン二次電池より大きい。さらに、リチウムイオンキャパシタの内部抵抗は、リチウムイオン二次電池より小さい。このため、リチウムイオン二次電池より構成される第2蓄電装置12と比較して、リチウムイオンキャパシタ13により構成される第1蓄電装置11の充電率の変化量ΔSOC1は、第1蓄電装置11の端子間電圧V1に基づいて精度よく算出することができる。   Moreover, the amount of change in the open-circuit voltage with respect to the change in the charging rate of the lithium ion capacitor is larger than that of the lithium ion secondary battery. Furthermore, the internal resistance of the lithium ion capacitor is smaller than that of the lithium ion secondary battery. Therefore, compared to the second power storage device 12 formed of the lithium ion secondary battery, the change amount ΔSOC1 of the charging rate of the first power storage device 11 formed of the lithium ion capacitor 13 is equivalent to that of the first power storage device 11. It can be accurately calculated based on the inter-terminal voltage V1.

また、満充電状態の第2蓄電装置12の開放端電圧OCV2を満充電状態の第1蓄電装置11の開放端電圧OCV1より高く設定する。ここで、充電率の減少に伴う開放端電圧の減少量は、電池セル15(リチウムイオン二次電池)に比較して、リチウムイオンキャパシタ13が大きいため、第2蓄電装置12の開放端電圧OCV2は、第1蓄電装置11の開放端電圧OCV1より高くなる。これにより、スイッチング素子SWa,SWbをオン状態とすることで第1蓄電装置11と第2蓄電装置12とを導通状態にした場合に、昇圧回路などを用いることなく第2蓄電装置12から第1蓄電装置11に対する放電を行うことが可能になる。   Further, the open end voltage OCV2 of the second power storage device 12 in the fully charged state is set higher than the open end voltage OCV1 of the first power storage device 11 in the fully charged state. Here, since the lithium ion capacitor 13 is larger than the battery cell 15 (lithium ion secondary battery), the open end voltage OCV2 of the second power storage device 12 is reduced due to the decrease in the charging rate. Becomes higher than the open end voltage OCV1 of the first power storage device 11. Thereby, when the first power storage device 11 and the second power storage device 12 are brought into the conductive state by turning on the switching elements SWa and SWb, the first power storage device 12 is not used and the first power storage device 12 is used. It is possible to discharge the power storage device 11.

図4に電流積算法による第2蓄電装置12の充電率SOC2の算出処理を表すフローチャートを示す。当該算出処理は、制御装置30によって所定周期毎に実施される。   FIG. 4 is a flowchart showing a calculation process of the charging rate SOC2 of the second power storage device 12 by the current integration method. The calculation process is performed by the control device 30 at predetermined intervals.

ステップS01において、第2蓄電装置12の充放電が停止されているか否かを判定する。第2蓄電装置12の充放電が停止されているか否かの判定は、第2蓄電装置12の充放電電流I2が0になっていることや、第2蓄電装置12の端子間電圧V2の変化が停止していることや、スイッチング素子SWbがオフ状態とされていることに基づいて判定するとよい。   In step S01, it is determined whether charging / discharging of the 2nd electrical storage apparatus 12 is stopped. It is determined whether the charge / discharge current I2 of the second power storage device 12 is 0 or the change in the voltage V2 across the terminals of the second power storage device 12 as to whether or not the charge / discharge of the second power storage device 12 is stopped. May be determined based on whether or not the switching element SWb is turned off and that the switching element SWb is turned off.

第2蓄電装置12の充放電が停止されている場合(S01:YES)、ステップS02において、第2蓄電装置12の温度T2の検出値を取得するとともに、第2蓄電装置12の端子間電圧V2の検出値を第2蓄電装置12の開放端電圧OCV2として取得する。ステップS03において、第2蓄電装置12の開放端電圧OCV2と、第2蓄電装置12の開放端電圧−充電率マップとに基づいて、第2蓄電装置12の充電率SOC2を算出し、処理を終了する。開放端電圧OCV2に基づいて算出された第2蓄電装置12の充電率SOC2は、電流積算法における初期値として用いられる。   When charge / discharge of second power storage device 12 is stopped (S01: YES), in step S02, a detected value of temperature T2 of second power storage device 12 is acquired, and voltage V2 across terminals of second power storage device 12 is obtained. Is detected as the open end voltage OCV2 of the second power storage device 12. In step S03, charging rate SOC2 of second power storage device 12 is calculated based on open end voltage OCV2 of second power storage device 12 and open end voltage-charging rate map of second power storage device 12, and the process is ended. Do. The charging rate SOC2 of the second power storage device 12 calculated based on the open-circuit voltage OCV2 is used as an initial value in the current integration method.

第2蓄電装置12の開放端電圧OCV2と第2蓄電装置12の充電率SOC2との対応関係は第2蓄電装置12の温度T2に応じて変化するものである。このため、制御装置30は、第2蓄電装置12の開放端電圧−充電率マップを第2蓄電装置12の温度T2と対応付けて複数記憶しており、第2蓄電装置12の温度T2に基づいて、当該マップを切り替えて用いる。   The correspondence relationship between the open end voltage OCV2 of the second power storage device 12 and the charging rate SOC2 of the second power storage device 12 changes in accordance with the temperature T2 of the second power storage device 12. Therefore, control device 30 stores a plurality of open end voltage-charge ratio maps of second power storage device 12 in association with temperature T2 of second power storage device 12, and based on temperature T2 of second power storage device 12. The map is used by switching.

第2蓄電装置12の充放電が実施されている場合(S01:NO)、ステップS04において、第2蓄電装置12の充放電電流I2の検出値を取得する。ステップS05において、第2蓄電装置12の充放電電流I2の検出値の積算値(ΣI2・Δt)を算出し、その積算値を第2蓄電装置12の満充電容量Ahf2で除算することで、第2蓄電装置12の充電率の変化量ΔSOC2を算出する。そして、第2蓄電装置12の充電率SOC2の前回値に、充電率の変化量ΔSOC2を加算することで、第2蓄電装置12の充電率SOC2の今回値を算出し、処理を終了する。   When charge / discharge of second power storage device 12 is performed (S01: NO), in step S04, the detected value of charge / discharge current I2 of second power storage device 12 is acquired. In step S05, the integrated value (ΣI2 · Δt) of the detected values of the charge / discharge current I2 of the second power storage device 12 is calculated, and the integrated value is divided by the full charge capacity Ahf2 of the second power storage device 12 The amount of change ΔSOC2 of the state of charge of the power storage device 12 is calculated. Then, the current value of the charging rate SOC2 of the second power storage device 12 is calculated by adding the change amount ΔSOC2 of the charging rate to the previous value of the charging rate SOC2 of the second power storage device 12, and the process is ended.

図5に第2蓄電装置12の開放端電圧−充電率マップを補正する補正処理を表すフローチャートを示す。当該補正処理は、制御装置30によって所定周期毎に実施される。   FIG. 5 is a flowchart showing a correction process for correcting the open-circuit voltage-charge rate map of the second power storage device 12. The correction process is performed by the control device 30 at predetermined intervals.

ステップS11において、電源装置10が充放電停止中であるか否かを判定する。電源装置10が充放電中である場合(S11:NO)、そのまま処理を終了する。電源装置10が充放電中であるか否かの判定は、電源装置10の端子間電圧に変化が生じているか否か、電源装置10の充放電電流が0であるか否か、又は、スイッチング素子SWcがオフ状態であるか否かに基づいて判定することができる。電源装置10が充放電停止中である場合(S11:YES)、ステップS12において、図4のステップS05において算出された第2蓄電装置12の充電率SOC2を、蓄電装置11,12間での充放電の開始前の第2蓄電装置12の充電率SOC2として取得する。   In step S11, it is determined whether or not the power supply device 10 is in the process of stopping charging and discharging. If the power supply device 10 is charging / discharging (S11: NO), the process ends. It is determined whether or not the voltage across the terminals of the power supply 10 changes, whether the charge / discharge current of the power supply 10 is zero, or whether the power supply 10 is charging or discharging. It can be determined based on whether the element SWc is in the off state. When power supply device 10 is in the process of stopping charging and discharging (S11: YES), in step S12, charging rate SOC2 of second power storage device 12 calculated in step S05 of FIG. It is acquired as the charging rate SOC2 of the second power storage device 12 before the start of discharge.

次に、ステップS13において、第1蓄電装置11の端子間電圧V1の検出値、第2蓄電装置12の端子間電圧V2の検出値、第1蓄電装置11の温度T1の検出値、及び第2蓄電装置12の温度T2の検出値をそれぞれ取得する。ステップS14において、第2蓄電装置12の端子間電圧V2から第1蓄電装置11の端子間電圧V1を引いた値が、所定の閾値Th1以上か否かを判定する。端子間電圧V2から端子間電圧V1を引いた値が閾値Th1より小さい場合(S14:NO)、第1蓄電装置11と第2蓄電装置12とを接続しても第1蓄電装置11と第2蓄電装置12との間での充放電容量が小さく、精度よく充電率SOC1,SOC2の変化量を算出することが困難なため、蓄電装置11,12間での充放電を実施することなく処理を終了する。   Next, in step S13, the detected value of the terminal voltage V1 of the first power storage device 11, the detected value of the terminal voltage V2 of the second power storage device 12, the detected value of the temperature T1 of the first power storage device 11, and the second The detected value of temperature T2 of power storage device 12 is acquired. In step S14, it is determined whether or not a value obtained by subtracting the inter-terminal voltage V1 of the first power storage device 11 from the inter-terminal voltage V2 of the second power storage device 12 is equal to or greater than a predetermined threshold Th1. If the value obtained by subtracting the inter-terminal voltage V1 from the inter-terminal voltage V2 is smaller than the threshold Th1 (S14: NO), the first storage device 11 and the second storage device 12 are connected even if the first storage device 11 and the second storage device 12 are connected. Since the charge / discharge capacity with respect to power storage device 12 is small and it is difficult to accurately calculate the amount of change in charging rates SOC1, SOC2, processing is performed without carrying out charge / discharge between power storage devices 11, 12. finish.

端子間電圧V2から端子間電圧V1を引いた値が閾値Th1以上である場合(S14:YES)、ステップS15において、ステップS13で取得した第1蓄電装置11の端子間電圧V1の検出値を第1蓄電装置11の開放端電圧とみなし、当該開放端電圧と、第1蓄電装置11の開放端電圧−充電率マップとに基づいて、蓄電装置11,12間での充放電の開始前の第1蓄電装置11の充電率SOC1を取得する。   If the value obtained by subtracting the inter-terminal voltage V1 from the inter-terminal voltage V2 is greater than or equal to the threshold Th1 (S14: YES), the detected value of the inter-terminal voltage V1 of the first power storage device 11 obtained in step S13 is First, before the start of charging and discharging between the power storage devices 11 and 12 based on the open end voltage of the power storage device 11 and the open end voltage-charge ratio map of the first power storage device 11 1 Charge rate SOC1 of power storage device 11 is acquired.

ここで、第1蓄電装置11の開放端電圧OCV1と第1蓄電装置11の充電率SOC1との対応関係は第1蓄電装置11の温度T1に応じて変化するものである。このため、制御装置30は、第1蓄電装置11の開放端電圧−充電率マップを第1蓄電装置11の温度T1と対応付けて複数記憶しており、第1蓄電装置11の温度T1に基づいて、当該マップを切り替えて用いる。   Here, the correspondence relationship between the open-circuit voltage OCV1 of the first power storage device 11 and the charging rate SOC1 of the first power storage device 11 changes according to the temperature T1 of the first power storage device 11. For this reason, the control device 30 stores a plurality of open-circuit voltage-charge rate maps of the first power storage device 11 in association with the temperature T1 of the first power storage device 11, and is based on the temperature T1 of the first power storage device 11. The map is used by switching.

ステップS16において、スイッチング素子SWa,SWbをともにオン状態とする。これにより、第1蓄電装置11と第2蓄電装置12との間での充放電が開始される。ステップS17において、第1蓄電装置11の端子間電圧V1の検出値、及び第2蓄電装置12の端子間電圧V2の検出値、第1蓄電装置11の温度T1の検出値、及び第2蓄電装置12の温度T2の検出値をそれぞれ取得する。   In step S16, both switching elements SWa and SWb are turned on. Thereby, charging / discharging between the 1st electrical storage apparatus 11 and the 2nd electrical storage apparatus 12 is started. In step S17, the detected value of inter-terminal voltage V1 of first power storage device 11, the detected value of inter-terminal voltage V2 of second power storage device 12, the detected value of temperature T1 of first power storage device 11, and the second power storage device 12 detected values of the temperature T2 are obtained.

ステップS18において、第1蓄電装置11の端子間電圧V1の検出値と、第2蓄電装置12の端子間電圧V2の検出値とが等しいか否かに基づいて、第1蓄電装置11と第2蓄電装置12との間での充放電が停止されているか否かを判定する。蓄電装置11,12間での充放電が停止されていない場合(S18:NO)、再度ステップS17,S18を実施する。蓄電装置11,12間で充放電が実施されているか否かの判定は、蓄電装置11,12の充放電電流I1,I2に基づいて判定を行ってもよい。   In step S18, based on whether or not the detected value of inter-terminal voltage V1 of first power storage device 11 is equal to the detected value of inter-terminal voltage V2 of second power storage device 12, It is determined whether charge and discharge with the storage device 12 are stopped. When charging / discharging between the electrical storage apparatuses 11 and 12 is not stopped (S18: NO), step S17 and S18 are implemented again. It may be determined based on the charge / discharge currents I1, I2 of the power storage devices 11, 12 whether the charge / discharge is performed between the power storage devices 11, 12 or not.

蓄電装置11,12間での充放電が停止されていると判定されると(S18:YES)、ステップS19において、スイッチング素子SWa,SWbをともにオフ状態とする。その後、ステップS20において、第2蓄電装置12の端子間電圧V2を開放端電圧OCV2とみなして、その開放端電圧OCV2と、第2蓄電装置12の開放端電圧−充電率マップと、に基づいて、第2蓄電装置12の充電率SOC2を算出する。ステップS21において、第1蓄電装置11の端子間電圧V1を開放端電圧OCV1とみなして、その開放端電圧OCV1と、第1蓄電装置11の開放端電圧−充電率マップと、に基づいて、第1蓄電装置11の充電率SOC1を算出する。   If it is determined that charge and discharge between power storage devices 11 and 12 are stopped (S18: YES), switching elements SWa and SWb are both turned off in step S19. Thereafter, in step S20, the inter-terminal voltage V2 of the second power storage device 12 is regarded as the open end voltage OCV2, and based on the open end voltage OCV2 and the open end voltage-charge ratio map of the second power storage device 12. The charge rate SOC2 of the second power storage device 12 is calculated. In step S21, the voltage V1 across the terminals of the first power storage device 11 is regarded as the open end voltage OCV1, and based on the open end voltage OCV1 and the open end voltage-charge ratio map of the first power storage device 11, 1 Charge rate SOC1 of power storage device 11 is calculated.

ステップS22において、蓄電装置11,12間での充放電による第1蓄電装置11の充電率変化量ΔSOC1を算出する。具体的には、ステップS15で算出した第1蓄電装置11の充電率SOC1と、ステップS21で算出した第1蓄電装置11の充電率SOC1との差を充電率変化量ΔSOC1として算出する。ステップS23において、蓄電装置11,12間での充放電による第2蓄電装置12の充電率変化量ΔSOC2を算出する。具体的には、ステップS12で取得した第2蓄電装置12の充電率SOC2と、ステップS20で算出した第2蓄電装置12の充電率SOC2との差を充電率変化量ΔSOC2として算出する。   In step S22, the charging rate change amount ΔSOC1 of the first power storage device 11 due to charging / discharging between the power storage devices 11 and 12 is calculated. Specifically, the difference between the charging rate SOC1 of the first power storage device 11 calculated in step S15 and the charging rate SOC1 of the first power storage device 11 calculated in step S21 is calculated as the charging rate change amount ΔSOC1. In step S23, the charging rate change amount ΔSOC2 of the second power storage device 12 due to charging / discharging between the power storage devices 11 and 12 is calculated. Specifically, the difference between the charging rate SOC2 of the second power storage device 12 acquired in step S12 and the charging rate SOC2 of the second power storage device 12 calculated in step S20 is calculated as the charging rate change amount ΔSOC2.

そして、ステップS24において、充電率変化量ΔSOC1と充電率変化量ΔSOC2との比較に基づいて、第2蓄電装置12の開放端電圧−充電率マップを補正する。より具体的には、第1蓄電装置11の充電率変化量ΔSOC1に基づく第2蓄電装置12の充電率変化量ΔSOC2と、電流積算法に基づく第2蓄電装置12の充電率変化量ΔSOC2とを比較することで、第2蓄電装置12の第2蓄電装置12の開放端電圧−充電率マップを補正する。ステップS25において、第2蓄電装置12の満充電容量Afh2の変化に基づいて、第2蓄電装置12の劣化度を算出し、処理を終了する。   Then, in step S24, the open end voltage-charge ratio map of second power storage device 12 is corrected based on the comparison between charge ratio change amount ΔSOC1 and charge ratio change amount ΔSOC2. More specifically, the charging rate change amount ΔSOC2 of the second power storage device 12 based on the charging rate change amount ΔSOC1 of the first power storage device 11 and the charging rate change amount ΔSOC2 of the second power storage device 12 based on the current integration method By comparing, the open end voltage-charge rate map of the second power storage device 12 of the second power storage device 12 is corrected. In step S25, the degree of deterioration of the second power storage device 12 is calculated based on the change in the full charge capacity Afh2 of the second power storage device 12, and the process is ended.

図6に電源装置10の電力供給処理を表すフローチャートを示す。当該処理は、所定周期毎に制御装置30によって実施される。   FIG. 6 is a flowchart showing power supply processing of the power supply device 10. This process is performed by the control device 30 at predetermined intervals.

ステップS31において、電源装置10の放電電力が所定の閾値以上であるか否かを判定する。具体的には、第1蓄電装置11の放電電流I1と第2蓄電装置12の放電電流I2の和である電源装置10の放電電流が所定の閾値Th2以上であるか否かを判定する。こ電源装置10の放電電力が所定の閾値以上であるか否かの判定は、放電電流I1,I2の検出値に基づいて判定してもよし、回転電機20を含む電気負荷の動作状態に基づいて判定してもよい。   In step S31, it is determined whether the discharge power of the power supply device 10 is equal to or greater than a predetermined threshold. Specifically, it is determined whether or not the discharge current of the power supply device 10 that is the sum of the discharge current I1 of the first power storage device 11 and the discharge current I2 of the second power storage device 12 is equal to or greater than a predetermined threshold Th2. The determination as to whether or not the discharge power of the power supply device 10 is greater than or equal to a predetermined threshold value may be made based on the detected values of the discharge currents I1 and I2, or based on the operating state of the electric load including the rotating electrical machine 20. May be determined.

電源装置10の放電電力が所定の閾値以上である場合(S31:YES)、ステップS32において、スイッチング素子SWaをオン状態、スイッチング素子SWbをそれぞれオフ状態にする。ステップS32の制御により、第2蓄電装置12から電気負荷への電力出力より優先して、第1蓄電装置11から電気負荷への電力出力が実施される。電源装置10から電気負荷への電力供給は第1蓄電装置11が負担することになる。また、電源装置10の放電電力が所定の閾値未満である場合(S31:NO)、ステップS33において、スイッチング素子SWaをオフ状態、スイッチング素子SWbをそれぞれオン状態にする。ステップS33の制御により、第1蓄電装置11から電気負荷への電力出力より優先して、第2蓄電装置12から電気負荷への電力出力が実施される。   When the discharge power of the power supply device 10 is equal to or greater than the predetermined threshold (S31: YES), in step S32, the switching element SWa is turned on and the switching element SWb is turned off. By the control of step S32, power output from the first power storage device 11 to the electric load is implemented with priority over power output from the second power storage device 12 to the electric load. The first power storage device 11 bears the power supply from the power supply device 10 to the electric load. When the discharge power of the power supply device 10 is less than the predetermined threshold (S31: NO), the switching element SWa is turned off and the switching element SWb is turned on in step S33. By the control of step S33, power output from the second power storage device 12 to the electric load is implemented with priority over power output from the first power storage device 11 to the electric load.

以下、本実施形態の効果を述べる。   The effects of this embodiment will be described below.

本構成の制御装置30は、「第1算出部」として、電流積算法に基づき第2蓄電装置12の充電率SOC2の算出を行うとともに、「第2算出部」として、第1蓄電装置11と第2蓄電装置12との間での充放電を行い、当該充放電に伴う第1蓄電装置11の充電率の変化量ΔSOC1を算出する。そして、第2蓄電装置12の充電率SOC2の算出値と、第1蓄電装置11の充電率の変化量ΔSOC1の算出値とに基づいて、「第1算出部」による電流積算法に基づく第2蓄電装置12の充電率SOC2の算出を補正する。   The control device 30 of this configuration calculates the charge rate SOC2 of the second power storage device 12 based on the current integration method as the “first calculation unit”, and the first power storage device 11 as the “second calculation unit”. Charge and discharge with the second power storage device 12 are performed, and change amount ΔSOC1 of the charging rate of the first power storage device 11 accompanying the charge and discharge is calculated. Then, based on the calculated value of the state of charge SOC2 of the second power storage device 12 and the calculated value of the amount of change ΔSOC1 of the state of charge of the first power storage device 11, a second based on the current integration method by the “first calculator” The calculation of the charging rate SOC2 of the power storage device 12 is corrected.

ここで、第1蓄電装置11の充電率SOC1と端子間電圧V1との相関係数が高いため、制御装置30は、第1蓄電装置11の端子間電圧V1に基づいて精度よく第1蓄電装置11の充電率SOC1を算出することができる。その結果、蓄電装置11,12間で充放電を実施した場合の充放電の開始時及び終了時における第1蓄電装置11の端子間電圧V1のそれぞれに基づく、第1蓄電装置11の充電率変化量ΔSOC1の算出値の精度は高いものとなる。このため、第2蓄電装置12の充電率SOC2の算出値と、第1蓄電装置11の充電率の変化量ΔSOC1の算出値とに基づいて、「第1算出部」による電流積算法に基づく第2蓄電装置12の充電率SOC2の算出を補正することで、第2蓄電装置12の充電率SOC2の算出精度を向上させることができる。   Here, since the correlation coefficient between state of charge SOC1 of first power storage device 11 and inter-terminal voltage V1 is high, control device 30 accurately determines the first power storage device based on inter-terminal voltage V1 of first power storage device 11. 11 charging rate SOC1 can be calculated. As a result, the change in the charging rate of the first power storage device 11 based on the voltage V1 between the terminals of the first power storage device 11 at the start and end of charge / discharge when charging / discharging between the power storage devices 11 and 12 is performed. The accuracy of the calculated value of the amount ΔSOC1 is high. Therefore, based on the calculated value of state of charge SOC2 of second power storage device 12 and the calculated value of amount of change ΔSOC1 of the state of charge of first power storage device 11, the first calculation unit By correcting the calculation of the charging rate SOC2 of the two power storage device 12, the calculation accuracy of the charging rate SOC2 of the second power storage device 12 can be improved.

制御装置30は、電流積算法に基づき、第2蓄電装置12の充電率SOC2を算出する。具体的には、所定時点における第2蓄電装置12の開放端電圧OCV2と、第2蓄電装置12の開放端電圧−充電率マップとを用いて所定時点における第2蓄電装置12の充電率SOC2を算出する。そして、その所定時点における第2蓄電装置12の充電率SOC2に対し、充放電電流I2の検出値の積算値に基づく充電率変化量ΔSOC2を加算することで、第2蓄電装置12の充電率SOC2を算出する。ここで、第2蓄電装置12の劣化に伴い、開放端電圧OCV2と充電率SOC2との対応は変化する。開放端電圧OCV2と充電率SOC2との対応が変化することで、第2蓄電装置12の充電率SOC2の算出値に誤差が含まれることになる。   Control device 30 calculates charging rate SOC2 of second power storage device 12 based on the current integration method. Specifically, using the open end voltage OCV2 of the second power storage device 12 at a predetermined time and the open end voltage-charge ratio map of the second power storage 12, the charging rate SOC2 of the second power storage 12 at a predetermined time is calculated. calculate. Then, charging rate SOC2 of second power storage device 12 is added by adding charging rate change amount ΔSOC2 based on the integrated value of detected values of charging / discharging current I2 to charging rate SOC2 of second power storage device 12 at the predetermined time. Calculate Here, with the deterioration of the second power storage device 12, the correspondence between the open end voltage OCV2 and the charging rate SOC2 changes. By changing the correspondence between the open-circuit voltage OCV2 and the charging rate SOC2, the calculated value of the charging rate SOC2 of the second power storage device 12 includes an error.

そこで、制御装置30は、電流積算法に基づき算出される第2蓄電装置12の充電率変化量ΔSOC2と、第1蓄電装置11の充電率変化量ΔSOC1と、に基づいて、第2蓄電装置12の開放端電圧−充電率マップを補正する。当該補正によって、制御装置30による第2蓄電装置12の充電率SOC2の算出精度を向上させることができる。   Therefore, control device 30 selects second power storage device 12 based on charge rate change amount ΔSOC2 of second power storage device 12 calculated based on the current integration method and charge rate change amount ΔSOC1 of first power storage device 11. The open-circuit voltage-charging rate map of is corrected. By the correction, the calculation accuracy of the charging rate SOC2 of the second power storage device 12 by the control device 30 can be improved.

「第2算出部」としての制御装置30は、具体的には、第1蓄電装置11の開放端電圧−充電率マップと、充放電の前後における第1蓄電装置11の端子間電圧V2の検出値とに基づいて、第1蓄電装置11の充電率変化量ΔSOC1を算出する。ここで、第1蓄電装置11の開放端電圧OCV1と充電率SOC1との対応は、第1蓄電装置11の温度T1に応じて変化するものである。そこで、第1蓄電装置11の温度T1の検出値に基づいて、開放端電圧−充電率マップを切り替える構成とすることで、充電率変化量ΔSOC1を算出することが可能になり、精度よく第2蓄電装置12の充電率SOC2の算出の補正を行うことが可能になる。   Specifically, the control device 30 as the “second calculation unit” detects the open-circuit voltage-charge rate map of the first power storage device 11 and the voltage V2 between the terminals of the first power storage device 11 before and after charging and discharging. Based on the value, the charging rate change amount ΔSOC1 of the first power storage device 11 is calculated. Here, the correspondence between the open-circuit voltage OCV <b> 1 of the first power storage device 11 and the charging rate SOC <b> 1 changes according to the temperature T <b> 1 of the first power storage device 11. Therefore, by switching the open end voltage-charging rate map based on the detected value of temperature T1 of first power storage device 11, it becomes possible to calculate charging rate change amount .DELTA.SOC1, and the second It becomes possible to correct the calculation of the state of charge SOC2 of the power storage device 12.

満充電状態の第2蓄電装置12の開放端電圧OCV2を満充電状態の第1蓄電装置11の開放端電圧OCV1より高く設定する。これにより、第1蓄電装置11と第2蓄電装置12とを導通状態にした場合に、昇圧回路などを用いることなく第2蓄電装置12から第1蓄電装置11に対する放電を行うことが可能になる。また、例えば、第2蓄電装置12としてプラトー領域を有するような二次電池を採用すると、プラトー領域全域にわたって第2蓄電装置12の開放端電圧が第1蓄電装置11の開放端電圧より高い状況にし易くなり、昇圧回路などを用いることなく第2蓄電装置12から第1蓄電装置11に対する放電を行うことが可能になる。   The open end voltage OCV2 of the fully charged second power storage device 12 is set higher than the open end voltage OCV1 of the fully charged first power storage device 11. Thereby, when the first power storage device 11 and the second power storage device 12 are brought into conduction, it is possible to discharge the first power storage device 11 from the second power storage device 12 without using a booster circuit or the like. . Also, for example, when a secondary battery having a plateau region is adopted as the second power storage device 12, the open end voltage of the second power storage device 12 is higher than the open end voltage of the first power storage device 11 over the entire plateau region. This facilitates the discharge from the second power storage device 12 to the first power storage device 11 without using a booster circuit or the like.

第1蓄電装置11から電気負荷(回転電機20)への電力出力より優先して、第2蓄電装置12から電気負荷への電力出力を実施する構成とする。本構成によれば、第1蓄電装置11の満充電容量Ahf1が第2蓄電装置12の満充電容量Ahf2より小さい場合であっても、安定して電気負荷に電力供給を継続することができる。また、第1蓄電装置11の開放端電圧OCV1と、第2蓄電装置12の開放端電圧OCV2とが異なる状況が生じるため、第1蓄電装置11と第2蓄電装置12との間で充放電を実施することが可能になる。   The power output from the second power storage device 12 to the electric load is prioritized over the power output from the first power storage device 11 to the electric load (the rotating electrical machine 20). According to this configuration, even when the full charge capacity Ahf1 of the first power storage device 11 is smaller than the full charge capacity Ahf2 of the second power storage device 12, power supply can be stably continued to the electric load. In addition, since a situation occurs in which the open end voltage OCV1 of the first power storage device 11 and the open end voltage OCV2 of the second power storage device 12 are different, charge and discharge are performed between the first power storage device 11 and the second power storage device 12 It becomes possible to carry out.

第1蓄電装置11を構成する蓄電素子としてリチウムイオンキャパシタを用い、第2蓄電装置12を構成する蓄電素子としてリチウムイオン二次電池などの二次電池を用いた場合、第2蓄電装置12の出力電力が一時的に増加した場合に、第2蓄電装置12において分極が発生し、第2蓄電装置12の充電率SOC2の算出精度が低下したり、第2蓄電装置12の出力可能電力が低下したり、第2蓄電装置12が劣化したりするなどの問題が生じる。   When a lithium ion capacitor is used as the power storage element constituting the first power storage device 11 and a secondary battery such as a lithium ion secondary battery is used as the power storage element constituting the second power storage device 12, the output of the second power storage device 12 When the power temporarily increases, polarization occurs in the second power storage device 12, and the calculation accuracy of the charging rate SOC2 of the second power storage device 12 decreases, or the available output power of the second power storage device 12 decreases. Problems such as deterioration of the second power storage device 12 or the like.

そこで、第1蓄電装置11から電気負荷への電力出力より優先して、第2蓄電装置12から電気負荷への電力出力を実施する構成において、電源装置10から電気負荷への出力電力が閾値電力より大きいことを条件として、第2蓄電装置12から電気負荷への電力出力より優先して、第1蓄電装置11から電気負荷への電力出力を実施する構成とした。本構成によれば、第2蓄電装置12の出力電力が一時的に増加することを抑制し、第2蓄電装置12において生じる分極の悪影響を抑制することができる。   Therefore, in the configuration in which power output from the second power storage device 12 to the electric load is performed with priority over power output from the first power storage device 11 to the electric load, the output power from the power supply device 10 to the electric load is threshold power. The power output from the first power storage device 11 to the electric load is prioritized over the power output from the second power storage device 12 to the electric load on the condition that the power is larger. According to this configuration, it is possible to suppress a temporary increase in the output power of the second power storage device 12 and to suppress the adverse effect of polarization that occurs in the second power storage device 12.

第2蓄電装置12が劣化すると、第2蓄電装置12における開放端電圧−充電率特性や満充電容量Ahf2などが変化する。そこで、本実施形態では、第2蓄電装置12の開放端電圧−充電率特性に基づいて、第2蓄電装置12の劣化度を算出する。   When the second power storage device 12 is deteriorated, the open end voltage-charge rate characteristic of the second power storage device 12, the full charge capacity Ahf2, and the like change. Therefore, in the present embodiment, the degree of deterioration of the second power storage device 12 is calculated based on the open end voltage-charge rate characteristic of the second power storage device 12.

第2蓄電装置は、複数の組電池14と、複数の組電池14をそれぞれ互いに並列接続するスイッチSWbと、を備え、複数の組電池14のそれぞれの開放端電圧は互いに略同一に設定されている。本構成によれば、第2蓄電装置12における蓄電素子間での充放電を抑制することが可能となる。また、組電池14のそれぞれと第1蓄電装置11との間で充放電を行う構成とすれば、各組電池14の充電率の算出を補正することが可能になる。   The second power storage device includes a plurality of assembled batteries 14 and switches SWb that connect the plurality of assembled batteries 14 to each other in parallel, and the open-circuit voltages of the plurality of assembled batteries 14 are set to be substantially the same. There is. According to this configuration, it is possible to suppress charging / discharging between power storage elements in the second power storage device 12. Moreover, if it is set as the structure which charges / discharges between each of the assembled batteries 14 and the 1st electrical storage apparatus 11, it will become possible to correct | amend calculation of the charging rate of each assembled battery 14. FIG.

(第2実施形態)
第1実施形態の構成では、第2蓄電装置12の開放端電圧−充電率マップを補正する構成としたが、これを変更し、第2実施形態の構成では、充電率変化量ΔSOC1,ΔSOC2の比較に基づいて、第2蓄電装置12の満充電容量Ahf2を補正する。第2蓄電装置12の満充電容量Ahf2は電池セル15の劣化に応じて減少するため、第2蓄電装置12の満充電容量Ahf2を第1蓄電装置11の充電率変化量ΔSOC1に基づき補正する構成とすることで、第2蓄電装置12を構成する電池セル15の劣化に伴う満充電容量Ahf2の変化に応じた制御を実施することが可能になる。
Second Embodiment
In the configuration of the first embodiment, the open end voltage-charge rate map of the second power storage device 12 is corrected. However, this is changed, and in the configuration of the second embodiment, the charging rate change amounts ΔSOC1 and ΔSOC2 are changed. Based on the comparison, the full charge capacity Ahf2 of the second power storage device 12 is corrected. Since the full charge capacity Ahf2 of the second power storage device 12 decreases in accordance with the deterioration of the battery cell 15, the full charge capacity Ahf2 of the second power storage device 12 is corrected based on the charge rate change amount ΔSOC1 of the first power storage device 11. By setting it, it becomes possible to implement control according to change of full charge capacity Ahf2 accompanying degradation of battery cell 15 which constitutes the 2nd electricity storage device 12.

図6に第2蓄電装置12の満充電容量Ahf2を補正する補正処理を表すフローチャートを示す。当該補正処理は、制御装置30によって所定周期毎に実施される。なお、図5に示す処理と同一の処理については同一の符号を付し、適宜説明を省略する。   FIG. 6 is a flowchart showing a correction process for correcting the full charge capacity Ahf2 of the second power storage device 12. The correction process is performed by the control device 30 at predetermined intervals. The same processing as the processing shown in FIG. 5 is denoted by the same reference numeral, and the description will not be repeated.

図6に示す処理ではステップS12における第2蓄電装置12の充電率SOC2の取得処理を省略する。また、ステップS18において否定的な判断が行われた場合、即ち、蓄電装置11,12間での充放電が実施されている場合に、ステップS41において第2蓄電装置12の充放電電流I2の検出値を取得する。そして、ステップS42において、第2蓄電装置12の充放電電流I2の検出値に基づいて、第2蓄電装置12の充電率変化量ΔSOC2を算出する。   In the process illustrated in FIG. 6, the process of acquiring the charging rate SOC2 of the second power storage device 12 in step S12 is omitted. In addition, if a negative determination is made in step S18, that is, if charge and discharge are performed between power storage devices 11 and 12, detection of charge / discharge current I2 of second power storage device 12 in step S41. Get the value. In step S42, the charging rate change amount ΔSOC2 of the second power storage device 12 is calculated based on the detected value of the charge / discharge current I2 of the second power storage device 12.

その後、ステップS42の後のステップS43において、第1蓄電装置11の充電率変化量ΔSOC1と、第2蓄電装置12の充電率変化量ΔSOC2とに基づいて、第2蓄電装置12の満充電容量Ahf2の補正を行う。より具体的には、第1蓄電装置11の充電率変化量ΔSOC1に基づいて、第1蓄電装置11から第2蓄電装置12に放電された放電容量を算出する。そして、その放電容量の算出値を第2蓄電装置12の充電率変化量ΔSOC2で除算することで、第2蓄電装置12の満充電容量Ahf2を新たに算出する。ステップ43の後のステップS25において、第2蓄電装置12の満充電容量Afh2の変化に基づいて、第2蓄電装置12の劣化度を算出し、処理を終了する。   Thereafter, in step S43 after step S42, based on the charging rate change amount ΔSOC1 of the first power storage device 11 and the charging rate change amount ΔSOC2 of the second power storage device 12, the full charge capacity Ahf2 of the second power storage device 12 Make corrections for More specifically, the discharge capacity discharged from first power storage device 11 to second power storage device 12 is calculated based on charge rate change amount ΔSOC1 of first power storage device 11. Then, by dividing the calculated value of the discharge capacity by the charging rate change amount ΔSOC2 of the second power storage device 12, the full charge capacity Ahf2 of the second power storage device 12 is newly calculated. In step S25 after step 43, the degree of deterioration of the second power storage device 12 is calculated based on the change in the full charge capacity Afh2 of the second power storage device 12, and the process is ended.

(他の実施形態)
・第1蓄電装置11を対象とする温度センサ33による温度T1の検出、及び、制御装置30による温度T1の検出値に基づく第1蓄電装置11の開放端電圧−充電率マップの切り替えを省略する構成としてもよい。同様に、第2蓄電装置12を対象とする温度センサ36による温度T2の検出、及び、制御装置30による温度T2の検出値に基づく第2蓄電装置12の開放端電圧−充電率マップの切り替えを省略する構成としてもよい。
(Other embodiments)
The detection of the temperature T1 by the temperature sensor 33 targeting the first power storage device 11 and the switching of the open-end voltage-charge rate map of the first power storage device 11 based on the detected value of the temperature T1 by the control device 30 are omitted. It is good also as composition. Similarly, the detection of the temperature T2 by the temperature sensor 36 targeting the second power storage device 12 and the switching of the open-circuit voltage-charge rate map of the second power storage device 12 based on the detected value of the temperature T2 by the control device 30 are performed. It may be omitted.

・第1蓄電装置11を構成する蓄電素子は、充放電時において、正極及び負極の少なくとも一方において、アニオン又はカチオンが吸着する、即ち、正極及び負極の少なくとも一方において吸着型反応をするものである。当該吸着型反応をする蓄電素子は、上述した通り、リチウムイオンキャパシタである。これを変更し、リチウムイオンキャパシタに代えて、電気二重層キャパシタや、ナノハイブリッドキャパシタを用いてもよい。電気二重層キャパシタは、一般に、正極及び負極において、炭素(活性炭電極)がそれぞれ用いられている。ナノハイブリッドキャパシタは、一般に、負極にナノ結晶チタン酸リチウム、正極に炭素(活性炭電極)が用いられている。   The electricity storage element constituting the first electricity storage device 11 adsorbs an anion or cation in at least one of the positive electrode and the negative electrode during charge and discharge, that is, performs an adsorption type reaction in at least one of the positive electrode and the negative electrode . The storage element that performs the adsorption type reaction is a lithium ion capacitor as described above. By changing this, an electric double layer capacitor or a nano hybrid capacitor may be used instead of the lithium ion capacitor. In an electric double layer capacitor, carbon (activated carbon electrode) is generally used for a positive electrode and a negative electrode. In a nanohybrid capacitor, generally, nanocrystalline lithium titanate is used for the negative electrode, and carbon (activated carbon electrode) is used for the positive electrode.

・第2蓄電装置12を構成する蓄電素子は、二次電池であり、具体的にはリチウムイオン二次電池である。これを変更し、リチウムイオン二次電池に代えて、ニッケル水素蓄電池や鉛蓄電池を用いてもよい。   The storage element that constitutes the second storage device 12 is a secondary battery, and more specifically, a lithium ion secondary battery. This may be changed, and a nickel metal hydride storage battery or a lead storage battery may be used instead of the lithium ion secondary battery.

・「第1接続回路」及び「第2接続回路」として、スイッチング素子を用いたが、「第1接続回路」又は「第2接続回路」として、当該スイッチング素子に代えて、電圧変換回路(DCDCコンバータ)を用いてもよいし、抵抗素子から構成されるバイパス回路を用いてもよい。   Switching elements are used as the “first connection circuit” and the “second connection circuit”, but a voltage conversion circuit (DCDC) is used instead of the switching element as the “first connection circuit” or the “second connection circuit”. A converter) may be used, or a bypass circuit composed of resistance elements may be used.

11…第1蓄電装置、12…第2蓄電装置、30…制御装置。   11: first power storage device, 12: second power storage device, 30: control device.

Claims (11)

第1蓄電装置(11)と第2蓄電装置(12)と、前記第1蓄電装置と前記第2蓄電装置とを並列接続する第1接続回路(SWa,SWb)と、を備えて構成される電源システムにおいて、
前記第1蓄電装置は、充電率と端子間電圧との相関係数が0.8以上のものであるとともに、前記第2蓄電装置は、充電率と端子間電圧との相関係数が0.8より低いものであって、
前記第2蓄電装置に流れる充放電電流の検出値の積算値に基づいて、前記第2蓄電装置の充電率を算出する第1算出部(30)と、
前記電源システムの充放電が停止されている状況において、前記第1接続回路を介して前記第1蓄電装置と前記第2蓄電装置との間で充放電を行い、前記第1蓄電装置と前記第2蓄電装置との間での充放電の開始時及び終了時における前記第1蓄電装置の端子間電圧の検出値のそれぞれに基づいて、前記第1蓄電装置と前記第2蓄電装置との間での充放電に伴う前記第1蓄電装置の充電率の変化量を算出する第2算出部(30)と、
前記第1算出部により算出される前記第2蓄電装置の充電率、及び、前記第2算出部により算出される前記第1蓄電装置の充電率の変化量に基づいて、前記第1算出部による前記第2蓄電装置の充電率の算出を補正する補正部(30)と、
を備える電源システム。
A first power storage device (11), a second power storage device (12), and a first connection circuit (SWa, SWb) that connects the first power storage device and the second power storage device in parallel. In the power supply system
The first power storage device has a correlation coefficient of 0.8 or more between the charging rate and the voltage across the terminals, and the second power storage device has a correlation coefficient between charging rate and the voltage across the terminals of 0.. Less than 8,
A first calculation unit (30) that calculates a charging rate of the second power storage device based on an integrated value of detected values of charge and discharge currents flowing through the second power storage device;
In a situation where charging / discharging of the power supply system is stopped, charging / discharging is performed between the first power storage device and the second power storage device via the first connection circuit, and the first power storage device and the first power storage device Between the first power storage device and the second power storage device based on the detected values of the voltage across the terminals of the first power storage device at the start and end of charging / discharging between the two power storage devices. A second calculation unit (30) that calculates the amount of change in the charging rate of the first power storage device associated with charging and discharging of
Based on the charge rate of the second power storage device calculated by the first calculation unit and the change amount of the charge rate of the first power storage device calculated by the second calculation unit, the first calculation unit A correction unit (30) that corrects the calculation of the charging rate of the second power storage device;
Power supply system comprising:
前記第1算出部は、
前記第2蓄電装置の開放端電圧と前記第2蓄電装置の充電率とを対応付けるマップと、前記第1蓄電装置と前記第2蓄電装置との間での充放電より前の所定時点における前記第2蓄電装置の開放端電圧と、に基づいて、その所定時点における前記第2蓄電装置の充電率を算出し、
前記所定時点における前記第2蓄電装置の充電率に対し、前記第2蓄電装置に流れる充放電電流の検出値の積算値に基づく前記第2蓄電装置の充電率の変化量を加算することで、前記第1蓄電装置と前記第2蓄電装置との間での充放電の開始時における前記第2蓄電装置の充電率を算出し、
前記第2蓄電装置の開放端電圧と前記第2蓄電装置の充電率とを対応付ける前記マップと、前記第1蓄電装置と前記第2蓄電装置との間での充放電の終了時における前記第2蓄電装置の開放端電圧と、に基づいて、前記第1蓄電装置と前記第2蓄電装置との間での充放電の終了時における前記第2蓄電装置の充電率を算出するものであって、
前記補正部は、前記第1算出部により算出される前記第1蓄電装置と前記第2蓄電装置との間での充放電の開始時における前記第2蓄電装置の充電率と、前記第1蓄電装置と前記第2蓄電装置との間での充放電の終了時における前記第2蓄電装置の充電率との差、及び、前記第2算出部により算出される前記第1蓄電装置の充電率の変化量に基づいて、前記第2蓄電装置の開放端電圧と前記第2蓄電装置の充電率とを対応付けるマップを補正する請求項1に記載の電源システム。
The first calculation unit is
A map for correlating the open end voltage of the second power storage device with the charging rate of the second power storage device, and the second at a predetermined time before charging and discharging between the first power storage device and the second power storage device. (2) The charging rate of the second power storage device at a predetermined time point is calculated based on the open end voltage of the power storage device,
By adding the amount of change in the charging rate of the second power storage device based on the integrated value of the detected values of the charge / discharge current flowing through the second power storage device to the charging rate of the second power storage device at the predetermined time point, Calculating a charging rate of the second power storage device at the start of charging / discharging between the first power storage device and the second power storage device;
The map that associates the open-circuit voltage of the second power storage device with the charging rate of the second power storage device, and the second at the end of charging / discharging between the first power storage device and the second power storage device. Calculating a charging rate of the second power storage device at the end of charging / discharging between the first power storage device and the second power storage device based on an open end voltage of the power storage device;
The correction unit is a charging rate of the second power storage device at the start of charging / discharging between the first power storage device and the second power storage device calculated by the first calculation unit, and the first power storage. A difference between the charge ratio of the second power storage device at the end of charge / discharge between the device and the second power storage device, and the charge rate of the first power storage device calculated by the second calculation unit The power supply system according to claim 1, wherein a map that correlates an open-end voltage of the second power storage device and a charging rate of the second power storage device is corrected based on a change amount.
前記第1算出部は、前記第2蓄電装置に流れる充放電電流の検出値の積算値に基づき、前記第1蓄電装置と前記第2蓄電装置との間での充放電の開始時から終了時までの前記第2蓄電装置の充電率の変化量を算出し、
前記補正部は、前記第1算出部により算出される前記第2蓄電装置の充電率の変化量、及び、前記第2算出部により算出される前記第1蓄電装置の充電率の変化量に基づいて、前記第2蓄電装置の満充電容量を補正する請求項1に記載の電源システム。
The first calculation unit is based on an integrated value of detection values of charge / discharge currents flowing through the second power storage device, and from the start to the end of charge / discharge between the first power storage device and the second power storage device. Calculating the amount of change in the charging rate of the second power storage device until
The correction unit is based on the change amount of the charge rate of the second power storage device calculated by the first calculation unit and the change amount of the charge rate of the first power storage device calculated by the second calculation unit. The power supply system according to claim 1, wherein the full charge capacity of the second power storage device is corrected.
前記第2算出部は、前記第1蓄電装置の開放端電圧と前記第1蓄電装置の残存容量とを対応付けるマップと、前記第1蓄電装置と前記第2蓄電装置との間での充放電の開始時と終了時における前記第1蓄電装置の端子間電圧の検出値とに基づいて、前記第1蓄電装置の充電率の変化量を算出するものであって、前記第1蓄電装置の温度の検出値に基づいて、前記第1蓄電装置の開放端電圧と前記第1蓄電装置の残存容量とを対応付けるマップを切り替える請求項1乃至3のいずれか1項に記載の電源システム。   The second calculation unit is a map that associates the open end voltage of the first power storage device with the remaining capacity of the first power storage device, charge and discharge between the first power storage device and the second power storage device. The amount of change in the charging rate of the first power storage device is calculated based on the detected value of the voltage across the terminals of the first power storage device at the start and end, and the temperature of the first power storage device is calculated. The power supply system according to any one of claims 1 to 3, wherein a map for associating an open-ended voltage of the first power storage device and a remaining capacity of the first power storage device is switched based on a detection value. 満充電状態の前記第2蓄電装置の開放端電圧は、満充電状態の前記第1蓄電装置の開放端電圧より高い請求項1乃至4のいずれか1項に記載の電源システム。   The power supply system according to any one of claims 1 to 4, wherein the open end voltage of the fully charged second power storage device is higher than the open end voltage of the fully charged first power storage device. 電気負荷が接続され、
前記第1蓄電装置から前記電気負荷への電力出力より優先して、前記第2蓄電装置から前記電気負荷への電力出力を実施する請求項1乃至5のいずれか1項に記載の電源システム。
Electrical load is connected,
The power supply system according to any one of claims 1 to 5, wherein power output from the second power storage device to the electric load is performed in priority to power output from the first power storage device to the electric load.
前記電源システムから前記電気負荷への出力電力が所定の閾値電力より大きいことを条件として、前記第2蓄電装置から前記電気負荷への電力出力より優先して、前記第1蓄電装置から前記電気負荷への電力出力を実施する請求項6に記載の電源システム。   On condition that the output power from the power supply system to the electric load is larger than a predetermined threshold power, the electric power output from the first electric storage device to the electric load is prioritized over the electric power output from the second electric storage device to the electric load The power supply system according to claim 6, wherein the power output to the power supply is performed. 前記第1算出部により算出される前記第2蓄電装置の充電率と、前記第2算出部により算出される前記第1蓄電装置と前記第2蓄電装置との間での充電率と、に基づいて、前記第2蓄電装置の劣化度を算出する劣化度算出部を備える請求項1乃至7のいずれか1項に記載の電源システム。   Based on the charging rate of the second power storage device calculated by the first calculation unit and the charging rate between the first power storage device and the second power storage device calculated by the second calculation unit. The power supply system according to any one of claims 1 to 7, further comprising a deterioration degree calculation unit that calculates a deterioration degree of the second power storage device. 第2蓄電装置は、複数の蓄電素子(14)と、前記複数の蓄電素子をそれぞれ互いに並列接続する第2接続回路(SWb)と、を備え、
前記複数の蓄電素子のそれぞれの開放端電圧は互いに略同一である請求項1乃至8のいずれか1項に記載の電源システム。
The second power storage device includes a plurality of power storage elements (14) and a second connection circuit (SWb) connecting the plurality of power storage elements in parallel with each other,
The power supply system according to any one of claims 1 to 8, wherein open end voltages of the plurality of storage elements are substantially equal to one another.
前記第1蓄電装置は、充放電時において、正極及び負極の少なくとも一方において、アニオン又はカチオンが吸着する蓄電素子を備えて構成されている請求項1乃至9のいずれか1項に記載の電源システム。   The power supply system according to any one of claims 1 to 9, wherein the first power storage device includes a power storage element that adsorbs an anion or a cation in at least one of a positive electrode and a negative electrode during charge and discharge. . 前記第2蓄電装置は、二次電池を備えて構成されている請求項1乃至10のいずれか1項に記載の電源システム。   The power supply system according to any one of claims 1 to 10, wherein the second power storage device includes a secondary battery.
JP2016206195A 2016-10-20 2016-10-20 Power supply system Active JP6551362B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016206195A JP6551362B2 (en) 2016-10-20 2016-10-20 Power supply system
DE112017005306.4T DE112017005306T5 (en) 2016-10-20 2017-10-12 Power system
PCT/JP2017/037065 WO2018074331A1 (en) 2016-10-20 2017-10-12 Power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016206195A JP6551362B2 (en) 2016-10-20 2016-10-20 Power supply system

Publications (2)

Publication Number Publication Date
JP2018066682A JP2018066682A (en) 2018-04-26
JP6551362B2 true JP6551362B2 (en) 2019-07-31

Family

ID=62018444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016206195A Active JP6551362B2 (en) 2016-10-20 2016-10-20 Power supply system

Country Status (3)

Country Link
JP (1) JP6551362B2 (en)
DE (1) DE112017005306T5 (en)
WO (1) WO2018074331A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021065077A (en) * 2019-10-15 2021-04-22 モリ電子工業株式会社 Power supply device and motor unit
EP4079556A4 (en) * 2019-12-18 2023-06-14 Honda Motor Co., Ltd. Electric power device, display device, charging rate calculation method, program, and memory medium

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001086604A (en) * 1999-09-14 2001-03-30 Honda Motor Co Ltd Set-battery and remaining capacity detector
JP2006189385A (en) * 2005-01-07 2006-07-20 Toyota Motor Corp Storage system, and residual capacity calculation method for secondary battery
JP4706648B2 (en) * 2007-03-06 2011-06-22 トヨタ自動車株式会社 Electric vehicle, charging state estimation method, and computer-readable recording medium recording a program for causing a computer to execute the charging state estimation method
JP6485001B2 (en) 2014-11-06 2019-03-20 コニカミノルタ株式会社 Electronic device, built-in power supply deterioration estimation system, and built-in power supply deterioration estimation method
EP3086130B1 (en) 2015-04-21 2019-02-06 LEM Intellectual Property SA Current transducer with integrated primary conductor bar
JP6459913B2 (en) * 2015-11-11 2019-01-30 株式会社デンソー Power system controller

Also Published As

Publication number Publication date
DE112017005306T5 (en) 2019-07-11
WO2018074331A1 (en) 2018-04-26
JP2018066682A (en) 2018-04-26

Similar Documents

Publication Publication Date Title
CN108819731B (en) Charge rate estimation method and vehicle-mounted battery system
JP5009223B2 (en) Secondary battery remaining capacity estimation method and apparatus
JP5888315B2 (en) Power storage system
JP6414460B2 (en) Battery deterioration state determination device and deterioration state determination method
JP6500789B2 (en) Control system of secondary battery
JP5738784B2 (en) Power storage system
US10935607B2 (en) Control device for secondary battery, control method of secondary battery, battery system, and motor-driven vehicle
JP6482901B2 (en) Degradation detection apparatus and degradation detection method
JP6740844B2 (en) Battery resistance calculator
CN102934314B (en) Power brick
JP5565276B2 (en) Method for correcting the amount of charge in a lithium ion battery
JP6855835B2 (en) Battery full charge capacity estimation device
US10439405B2 (en) Power storage apparatus, transport device, and control method
CN108631383B (en) Charging control device for vehicle-mounted battery
CN104977538A (en) Battery control device
JP6551362B2 (en) Power supply system
JP6500795B2 (en) Vehicle battery SOC management system
JP2014169937A (en) Charge state calculation device
JP7244189B2 (en) BATTERY STATE OF CHARGE ESTIMATION METHOD AND BATTERY MANAGEMENT SYSTEM USING THE SAME
JP5432034B2 (en) Secondary battery current / voltage detector
JP6713283B2 (en) Power storage device, transportation device, and control method
JP5609807B2 (en) Hysteresis reduction system for battery device
JP2020079764A (en) Secondary-battery state determination method
WO2014171453A1 (en) Vehicle power supply system
JP7325910B2 (en) Detection voltage correction device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190617

R151 Written notification of patent or utility model registration

Ref document number: 6551362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250