JP3388892B2 - Wastewater treatment method - Google Patents

Wastewater treatment method

Info

Publication number
JP3388892B2
JP3388892B2 JP18955794A JP18955794A JP3388892B2 JP 3388892 B2 JP3388892 B2 JP 3388892B2 JP 18955794 A JP18955794 A JP 18955794A JP 18955794 A JP18955794 A JP 18955794A JP 3388892 B2 JP3388892 B2 JP 3388892B2
Authority
JP
Japan
Prior art keywords
seawater
alkaline agent
neutralized
volume
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18955794A
Other languages
Japanese (ja)
Other versions
JPH0852478A (en
Inventor
平安 中川
和雄 福永
秀起 神吉
貞雄 佐藤
昌尾 秋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP18955794A priority Critical patent/JP3388892B2/en
Publication of JPH0852478A publication Critical patent/JPH0852478A/en
Application granted granted Critical
Publication of JP3388892B2 publication Critical patent/JP3388892B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、染色工業における染
料、染色助剤、顔料、窒素化合物等を含む廃水分解の難
しい廃水の処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of treating wastewater containing dyes, dyeing assistants, pigments, nitrogen compounds, etc., which is difficult to decompose in the dyeing industry.

【0002】[0002]

【従来の技術】浮遊物質やCOD、BOD成分を含む廃
水は、一般には凝集沈殿処理、活性汚泥処理、活性炭吸
着処理、酸化処理等を施して処理した後放流されるが、
このうち廃水中に着色物質や窒素化合物等の難分解成分
を含有する場合、このような単独処理によって処理でき
ない場合が多く、処理水中に着色成分が微量残留するこ
とによって著しく目立つことがあるため美観上の点から
好ましくない。また、各種産業より排出される着色廃液
中の着色成分の種類はその排出源によって千差万別であ
り、さらに同一排出源であっても複数の廃水経路から合
流する場合は多種類の着色成分が混在することがあり、
特に化学的安定性の高い着色成分を含有する場合は甚だ
処理が困難であった。
2. Description of the Related Art Wastewater containing suspended solids, COD and BOD components is generally discharged after being subjected to coagulation sedimentation treatment, activated sludge treatment, activated carbon adsorption treatment, oxidation treatment, etc.
Of these, if the waste water contains coloring substances or hardly decomposable components such as nitrogen compounds, it cannot be treated by such a single treatment in many cases, and a trace amount of the coloring component remains in the treated water, which may be noticeable. It is not preferable from the above point. In addition, the types of coloring components in colored waste liquids discharged from various industries vary widely depending on the emission source, and even if the same emission source is merged from multiple wastewater routes, there are many types of coloring components. May be mixed,
Particularly, when a coloring component having high chemical stability is contained, it is extremely difficult to treat.

【0003】[0003]

【発明が解決しようとする課題】従来の廃水の処理方法
には、次のような問題があった。 (1)多量の酸化剤が必要であるうえ、処理に長時間を
要し、特に懸濁物質や有機性物質が共存すると脱色効果
が低下し易かった。 (2)使用する酸化剤、例えば塩素ガス、さらし粉、次
亜塩素酸ナトリウム、オゾン等は一般に高価であり、単
独で多量に使用する際の処理費用がかなり割り高となっ
ていた。
The conventional wastewater treatment methods have the following problems. (1) In addition to requiring a large amount of oxidizing agent, it takes a long time to perform the treatment, and especially when a suspended substance or an organic substance coexists, the decolorizing effect is likely to decrease. (2) The oxidizing agents used, such as chlorine gas, bleaching powder, sodium hypochlorite, ozone, etc., are generally expensive, and the treatment cost when used in large amounts alone is considerably high.

【0004】(3)一般的に着色廃水中に着色成分以外
の汚濁成分を含んでいることが多く、特に染色廃水と他
工程からの廃水とが混入しているような場合、単独処理
では期待する処理効果が得られず必然的に複数の処理方
式を組み合わせなければならなかった。すなわち、排水
基準を達成させつつ十分な脱色効果を得るためには、処
理方式が非常に複雑となって処理コストが高くなること
が避けられなかった。
(3) Generally, the colored waste water often contains pollutant components other than the coloring component, and in particular, when the dyeing waste water and the waste water from other processes are mixed, it is expected to be treated by a single treatment. Therefore, it was necessary to combine a plurality of processing methods without obtaining the processing effect. That is, in order to achieve a sufficient decolorizing effect while achieving the wastewater standard, it is inevitable that the treatment method becomes very complicated and the treatment cost becomes high.

【0005】本発明は、以上の問題点を解決できる廃水
の処理方法を提供しようとするものである。
The present invention is intended to provide a method for treating wastewater which can solve the above problems.

【0006】[0006]

【課題を解決するための手段】本発明は、廃水の処理方
法における前記課題を解決するために、海水成分含有液
を鉱酸によってpH1〜5に調整し電解処理して静置し
た後、この電解液に対し下部電解液を0.5〜20v/
v%量(体積/体積百分率)を分取してアルカリ剤によ
りpH5〜9に中和し、該中和水を廃水1容に対し0.
1〜1容混合して酸化処理し、さらにこの酸化処理液を
アルカリ剤によってpH9以上に調整し、凝集生成物を
分離する方法を提供する。
In order to solve the above-mentioned problems in the method for treating wastewater, the present invention adjusts the pH of the seawater component-containing liquid to 1 to 5 with mineral acid, electrolytically treats it, and leaves it at rest. 0.5 to 20 v / lower electrolyte for electrolyte
v% amount (volume / volume percentage) was fractionated and neutralized to pH 5 to 9 with an alkaline agent, and the neutralized water was adjusted to 0.
A method is provided in which 1 to 1 volume is mixed and subjected to an oxidation treatment, and the oxidation treatment liquid is adjusted to pH 9 or higher with an alkaline agent to separate an aggregated product.

【0007】上記本発明の方法において、分取した下部
電解液を、そのままアルカリ剤によりpH5〜9に中和
する以外に、上部電解液を抜き出し新たに海水成分含有
液を混合してから再度電解処理した後、同様にアルカリ
剤によって中和する工程に付してもよい。この場合は、
電解後の経時変化によって消失した次亜塩素酸ナトリウ
ム等の塩素系酸化剤量をある程度復活させ酸化作用を向
上させる効果と、また電解槽に下部電解液を常時蓄積さ
せ、必要量ずつ取り出し後続の工程へ供給することによ
って連続的な処理を可能とするという効果が付加的に奏
せられる。なお上記本発明の方法において、凝集生成物
を分離した処理水のpHが9以上のアルカリ性を呈する
ため、適宜中和剤を添加若しくは他の廃水と混合し、中
性付近に調整することによって放流可能となる。
In the above method of the present invention, the separated lower electrolytic solution is neutralized to pH 5 to 9 with an alkaline agent as it is, and the upper electrolytic solution is extracted and a seawater component-containing solution is newly mixed and then electrolyzed again. After the treatment, it may be similarly subjected to a step of neutralizing with an alkaline agent. in this case,
The effect of improving the oxidizing effect by recovering the amount of chlorine-based oxidizer such as sodium hypochlorite, which has disappeared due to the change with time after electrolysis, and also the lower electrolytic solution is constantly accumulated in the electrolytic cell, and the required amount is taken out in succession. The effect of enabling continuous processing is additionally exerted by supplying to the process. In the above-mentioned method of the present invention, since the pH of the treated water from which the agglomerated product is separated exhibits an alkalinity of 9 or more, a neutralizing agent is appropriately added or mixed with other waste water, and the neutralized water is adjusted to near neutrality for discharge. It will be possible.

【0008】以下に本発明の具体化例を図1のフローシ
ートに沿って説明する。工場内の各工程から排出される
廃水11を混合槽3に入れる。一方、海水成分含有液1
2を電解槽1に入れて塩酸等の鉱酸13aを注入してp
H1〜5好ましくはpH3以下に調整して電解処理する
ことによりハロゲン系酸化剤を生成させて静置した後、
この電解液に対し下部電解液を0.5〜20v/v%
量、好ましくは2〜10v/v%、更に好ましくは0.
5〜1v/v%量以下を分取し、中和槽2においてアル
カリ剤14aによりpH5〜9、好ましくはpH6〜8
に中和する。次に前記混合槽3に貯留する廃水11にそ
の1容に対して中和液を0.1〜1容混合して酸化処理
をする。さらにこの酸化処理液をpH調整槽4または分
離槽5に移してアルカリ剤、14bを加え、pH9以
上、好ましくはpH10〜12に調整する。このときア
ルカリ剤14bは、pH調整槽4で加えた場合には分離
槽5では加える必要はなく、pH調整槽4をバイパスし
て分離槽5に酸化処理液を移した場合には分離槽5の段
階で加える(図1中、pH調整槽4をバイパスした場合
を破線で示す)。
An embodiment of the present invention will be described below with reference to the flow sheet of FIG. Waste water 11 discharged from each process in the factory is put into the mixing tank 3. On the other hand, liquid containing seawater component 1
2 into the electrolytic cell 1 and pour mineral acid 13a such as hydrochloric acid into the p
H1 to 5 preferably adjusted to pH 3 or less and subjected to electrolytic treatment to generate a halogen-based oxidant and allowed to stand,
0.5 to 20 v / v% of lower electrolytic solution to this electrolytic solution
Amount, preferably 2-10 v / v%, more preferably 0.
An amount of 5 to 1 v / v% or less is sampled, and the pH of the neutralizing tank 2 is adjusted to 5 to 9, preferably 6 to 8 by the alkaline agent 14a.
Neutralize to. Next, 0.1 to 1 volume of the neutralization liquid is mixed with 1 volume of the waste water 11 stored in the mixing tank 3 to perform oxidation treatment. Further, this oxidation treatment liquid is transferred to the pH adjusting tank 4 or the separating tank 5 and the alkali agent and 14b are added to adjust the pH to 9 or more, preferably 10 to 12. At this time, the alkaline agent 14b does not need to be added in the separation tank 5 when it is added in the pH adjustment tank 4, and the separation tank 5 is bypassed when the oxidation treatment liquid is transferred to the separation tank 5 by bypassing the pH adjustment tank 4. Is added at the stage (in FIG. 1, the case where the pH adjusting tank 4 is bypassed is indicated by a broken line).

【0009】またpH調整時に、水酸化マグネシウムの
フロックが生成し、残存する未反応成分の殆どがこの沈
殿物に吸着されて汚泥16として排出され、処理水15
中からこうした成分が除去される。該フロック生成時に
有機系の高分子凝集剤を添加することにより汚泥の沈殿
を促進して一層の分離効果を得ることができる。分離槽
5でpH調整された処理水が、放出基準を超える高pH
の場合には必要に応じて鉱酸13b、若しくは他工程か
ら排出される酸性の廃水等により中和処理して放出する
ことができる。この場合、鉱酸13bとしては塩酸、硫
酸等が用いられるが、中和時にカルシウム化合物を使用
する場合は、汚泥成分を生成しない塩酸等の鉱酸が好ま
しい。
Further, during pH adjustment, flocs of magnesium hydroxide are produced, and most of the remaining unreacted components are adsorbed by this precipitate and discharged as sludge 16, and treated water 15
These components are removed from the inside. By adding an organic polymer flocculant during the formation of the flocs, sludge precipitation can be promoted and a further separation effect can be obtained. The treated water whose pH has been adjusted in the separation tank 5 has a high pH exceeding the release standard.
In this case, if necessary, it can be neutralized with the mineral acid 13b, or acidic wastewater discharged from other steps, and then discharged. In this case, hydrochloric acid, sulfuric acid or the like is used as the mineral acid 13b, but when a calcium compound is used during neutralization, a mineral acid such as hydrochloric acid that does not produce a sludge component is preferable.

【0010】また前記海水成分含有液12は、自然海水
のほか市販されている海水成分を含む粉粒物を任意の濃
度に溶解した人工海水を用いてもよい。電解槽1に用い
る電極の材質は、炭素製のもので充分であるが、そのほ
か通常用いられる材料から適宜に選択使用することがで
きる。電解時の電圧は、DC10V前後、電流密度は1
〜2A/dm2 程度、また極間短離は5〜10mm程度
が好ましい。
The seawater component-containing liquid 12 may be natural seawater or artificial seawater obtained by dissolving a commercially available powdery material containing a seawater component in an arbitrary concentration. The material of the electrode used in the electrolytic cell 1 is sufficient to be made of carbon, but it can be appropriately selected and used from other commonly used materials. The voltage during electrolysis is around 10V DC and the current density is 1
It is preferable that the distance between the electrodes is about 2 A / dm 2 , and the short distance between the electrodes is about 5 to 10 mm.

【0011】[0011]

【作用】本発明による廃水の処理方法において、海水中
には20000mg/l程度の塩素イオン(Cl- )を
含む塩類が存在するため電解すると次のとおり反応す
る。
[Action] In the processing method of waste water according to the present invention, the seawater is 20000 mg / l approximately chloride - reacts as follows: When the electrolyte due to the presence of salts containing (Cl).

【化1】〔陽極側〕 2Cl- → Cl2 +2e 4OH- → O2 +2H2 O+4e 〔陰極側〕 2H2 O+2e→H2 +2OH- Na+ +OH- →NaOH ここで、陰極側で発生したNaOHは、酸性溶液中で次
のとおり直ちに反応してNa塩を生成する〔次式は塩酸
酸性とした場合〕。
Embedded image [Anode side] 2Cl → Cl 2 + 2e 4OH → O 2 + 2H 2 O + 4e [Cathode side] 2H 2 O + 2e → H 2 + 2OH Na + + OH → NaOH Here, the NaOH generated on the cathode side is , Reacts immediately in an acidic solution as follows to produce Na salt [the following formula is obtained when hydrochloric acid is acidified].

【化2】NaOH+HCl→NaCl+H2 O 一方、陽極側で発生したCl2 は、海水中に共存するM
gBr2 と次のとおり反応してBr2 を遊離し、静置す
ることにより過飽和のBr2 が沈降する。
Embedded image NaOH + HCl → NaCl + H 2 O On the other hand, Cl 2 generated on the anode side is M coexisting in seawater.
By reacting with gBr 2 as follows, Br 2 is released, and upon standing, supersaturated Br 2 is precipitated.

【化3】Cl2 +MgBr2 →MgCl2 +Br2 Embedded image Cl 2 + MgBr 2 → MgCl 2 + Br 2

【0012】すなわち前記操作による電解液中、電解液
上部はBr2 が希薄となり、電解液下部はBr2 は濃厚
となるので、所定時間静置後デカンテーション等によっ
て、電解液上部を排出したり、または電解液下部の帯域
のみ分取することにより、Br2 の豊富な電解液が得ら
れる。こうして得たBr2 の豊富な電解液にNaOH等
のアルカリ剤を加えてpH5〜9に中和すると次のとお
り反応して臭素塩となり、さらに残存する塩素系酸化剤
(例えば、NaOCl等)によって一部が臭素系酸化剤
(例えば、NaOBr)となる。
That is, in the electrolytic solution obtained by the above operation, Br 2 is diluted in the upper portion of the electrolytic solution and Br 2 is concentrated in the lower portion of the electrolytic solution. Therefore, the upper portion of the electrolytic solution is discharged by decantation after standing for a predetermined time. , Or by collecting only the zone below the electrolytic solution, an electrolytic solution rich in Br 2 can be obtained. When an alkaline agent such as NaOH is added to the thus obtained Br 2 -rich electrolytic solution and the mixture is neutralized to pH 5 to 9, the reaction proceeds as follows to form a bromine salt, and the chlorine-based oxidizing agent (for example, NaOCl) remaining A part becomes a brominated oxidant (for example, NaOBr).

【化4】Br2 +2NaOH→2NaBr+2OH- NaBr+NaOCl→NaOBr+NaClEmbedded image Br 2 + 2NaOH → 2NaBr + 2OH -- NaBr + NaOCl → NaOBr + NaCl

【0013】ここで、溶存する塩素系酸化剤(NaOC
l等)と臭素系酸化剤(NaOBr)は徐々に分解して
原子状の酸素(O)が発生し、その強力な酸化性によ
り、廃水中の酸化しやすい特定の成分が分解する。こう
して電解後、活性度が消失しない時点における海水成分
含有液を廃水中に添加することにより、酸化還元に関与
する多くの成分が分解するが、反応に関与しない残留成
分は後述の処理によって分離する。すなわち、海水成分
含有液を添加した廃水にアルカリ剤、例えば水酸化ナト
リウム、炭酸ナトリウム、水酸化カリウム等を添加して
pH9以上、好ましくはpH10〜12に調整する。こ
のpH調整により、海水成分中のマグネシウムは水酸化
物となって凝集する。その際、液中に可溶化もしくはコ
ロイド状に分散している残留物質が水酸化マグネシウム
に吸着し沈殿物とともに除去される。本発明は、染色工
業における染料、染色助剤、顔料、窒素化合物等を含む
廃水の他、リグニン、カラメル、ラノリン等生物処理の
みでは分解の難しい廃水や重金属を含む廃水等にも適用
できる。
Here, the dissolved chlorine-based oxidizer (NaOC
1) and the bromine-based oxidant (NaOBr) are gradually decomposed to generate atomic oxygen (O), and due to its strong oxidizability, a specific component which is easily oxidized in the waste water is decomposed. Thus, after electrolysis, many components involved in redox are decomposed by adding the seawater component-containing liquid at the time when the activity does not disappear into the wastewater, but the residual components not involved in the reaction are separated by the treatment described below. . That is, an alkaline agent such as sodium hydroxide, sodium carbonate or potassium hydroxide is added to the wastewater containing the seawater component-containing liquid to adjust the pH to 9 or more, preferably 10 to 12. By this pH adjustment, magnesium in the seawater component becomes a hydroxide and aggregates. At that time, the residual substance which is solubilized or colloidally dispersed in the liquid is adsorbed on magnesium hydroxide and removed together with the precipitate. INDUSTRIAL APPLICABILITY The present invention can be applied not only to wastewater containing dyes, dyeing assistants, pigments, nitrogen compounds and the like in the dyeing industry, but also to wastewater such as lignin, caramel and lanolin that is difficult to decompose by biological treatment only, wastewater containing heavy metals and the like.

【0014】[0014]

【実施例】以下本発明を実施例により更に詳細に説明す
る。着色廃水を酸化処理する際に使用する添加剤の原料
となる海水の組成は次の表1のとおりである。以下の実
施例1〜6において海水とはすべて該海水をいう。な
お、この海水は市販の人工海水用結晶粉末を純水に溶解
した人工海水であるが、各成分の含有量はほぼ自然海水
に相当するものである。
EXAMPLES The present invention will now be described in more detail with reference to examples. Table 1 below shows the composition of seawater used as a raw material for additives used in the oxidation treatment of colored wastewater. In the following Examples 1 to 6, all seawater refers to the seawater. Although this seawater is artificial seawater obtained by dissolving commercially available crystal powder for artificial seawater in pure water, the content of each component is almost equivalent to natural seawater.

【表1】 [Table 1]

【0015】(実施例1)着色物質として反応性染料を
次の割合で純水に溶解し、70℃で30分間温浴中で加
熱後放冷して模擬廃水を調製した。 反応性染料 2g/l 炭酸ナトリウム(Na2 CO3 ) 20g/l 硫酸ナトリウム(Na2 SO4 ) 50g/l ここに、反応性染料は次の2種類とし、各々の反応性染
料を混ぜた2種類の模擬廃水を調製した。 試料(1):反応性染料 [住友化学製、商品名:Sumifix Su
pra Red 3BF] 試料(2):反応性染料 [チバ化学製、商品名:Cibacron R
ed F-B] 以下の実施例1〜6において着色廃水とは、該模擬廃水
をいう。
Example 1 As a coloring substance, a reactive dye was dissolved in pure water in the following proportions, heated in a hot bath at 70 ° C. for 30 minutes and then allowed to cool to prepare simulated waste water. Reactive dye 2g / l Sodium carbonate (Na 2 CO 3 ) 20g / l Sodium sulphate (Na 2 SO 4 ) 50g / l Here, 2 kinds of reactive dyes are used, and 2 kinds of reactive dyes are mixed. Different kinds of simulated wastewater were prepared. Sample (1): Reactive dye [Sumitomo Chemical, trade name: Sumifix Su
pra Red 3BF] Sample (2): Reactive dye [Ciba Chemical, trade name: Cibacron R
ed FB] Colored wastewater in Examples 1 to 6 below refers to the simulated wastewater.

【0016】前記組成の海水に、鉱酸として塩酸(0.
1N HCl)を添加してpHを、各々0.5,1,
1.5,2,3,4,5に調整した後、電解装置に入れ
て次の表2の条件により電解した。
Hydrochloric acid (0.
1N HCl) to adjust the pH to 0.5, 1,
After adjusting to 1.5, 2, 3, 4, 5 and put in an electrolysis device, electrolysis was performed under the conditions of the following Table 2.

【表2】 [Table 2]

【0017】電解後、直ちにこの電解液を揺動させない
よう緩やかにして分液ろ斗へ移し20分間静置した後,
電解液より下部電解液10v/v%を分取し、水酸化ナ
トリウム(0.1N NaOH)によってpH8.0に
中和した後、前記2種類の各着色廃水中に、その廃水量
に対して10v/v%混合し、5分間攪拌して反応さ
せ、この溶液を酸化処理液とした。該処理によって廃水
中の着色成分のうちの多くが脱色するが、酸化還元に関
与しない一部の着色成分は処理液中に残留する。比較例
1として、海水をpH調整することなくそのまま前記と
同様に電解した後、静置および分取をすることなく任意
の部分より取り出した電解液を、前記各着色廃水に10
v/v%混合し、5分間攪拌して反応させ酸化処理液と
した。実施例1と比較例1によって処理した各酸化処理
液の、波長540nmでの透過率を表3に示す。
Immediately after electrolysis, the electrolytic solution was gently moved so as not to rock, transferred to a separating funnel, and allowed to stand for 20 minutes.
A lower electrolyte solution (10 v / v%) was collected from the electrolyte solution and neutralized to pH 8.0 with sodium hydroxide (0.1 N NaOH). 10 v / v% was mixed and stirred for 5 minutes for reaction, and this solution was used as an oxidation treatment liquid. Most of the coloring components in the wastewater are decolorized by the treatment, but some coloring components not involved in the redox remain in the treatment liquid. As Comparative Example 1, after electrolyzing seawater in the same manner as above without adjusting the pH, an electrolytic solution taken out from any portion without standing and fractionation was added to each of the colored wastewaters.
v / v% was mixed, and the mixture was stirred for 5 minutes for reaction to obtain an oxidation treatment liquid. Table 3 shows the transmittances of the respective oxidation treatment liquids treated in Example 1 and Comparative Example 1 at a wavelength of 540 nm.

【0018】[0018]

【表3】 (注)*1のpHは海水のpH(0.1N HClで調整)[Table 3] (Note) * 1 pH is seawater pH (adjusted with 0.1N HCl)

【0019】その結果、本実施例では比較例1に対して
良好な脱色効果を得られることが判明した。特に海水を
pH3以下として電解処理した場合にその効果が顕著と
なることから、電解処理して静置する際、電解処理液の
下部に遊離臭素(Br2 )が沈降して豊富な帯域を生
じ、これを中和することによって臭素化合物および次亜
臭素酸塩等を生成し、次亜塩素酸塩等塩素系酸化剤によ
る酸化作用を助長するためであると考えられる。
As a result, it was found that a good decolorizing effect can be obtained in this example as compared with the comparative example 1. In particular, when the electrolysis treatment is performed with seawater at a pH of 3 or less, the effect becomes remarkable. Therefore, when the electrolysis treatment is allowed to stand still, free bromine (Br 2 ) precipitates in the lower part of the electrolysis treatment liquid to form a rich zone. It is considered that this is because the bromine compound and the hypobromite are produced by neutralizing this, and the oxidative action of the chlorine-based oxidizing agent such as hypochlorite is promoted.

【0020】(実施例2)次に、前記組成の海水を塩酸
でpH2に調整して実施例1と同様の条件で電解を行
い、静置20分後の下部電解液を、電解液全体の各々
0.5,1,2,5,10,20,50v/v%相当量
分取して中和後、前記着色廃水のそれぞれに、該中和液
を10v/v%添加して5分間攪拌し酸化処理液とし
た。なお、比較例2は海水を塩酸でpH2に調整して実
施例1と同様の条件で電解を行い、静置20分後分取す
ることなく任意の部分より取り出した電解液を中和後、
前記各着色廃水に10v/v%添加して5分間攪拌し酸
化処理液とした。実施例2と比較例2によって処理した
各酸化処理液の波長540mmでの透過率を表4に示
す。
(Example 2) Next, seawater of the above composition was adjusted to pH 2 with hydrochloric acid and electrolyzed under the same conditions as in Example 1, and the lower electrolytic solution after standing for 20 minutes was replaced with the entire electrolytic solution. 0.5,1,2,5,10,20,50 v / v% equivalent amount was separately collected and neutralized, and then 10 v / v% of the neutralization liquid was added to each of the colored wastewaters for 5 minutes. The mixture was stirred to give an oxidation treatment liquid. In Comparative Example 2, the pH of seawater was adjusted to 2 with hydrochloric acid, electrolysis was performed under the same conditions as in Example 1, and after 20 minutes of standing, the electrolytic solution taken out from an arbitrary portion without preparative separation was neutralized,
10 v / v% was added to each of the colored wastewaters, and the mixture was stirred for 5 minutes to prepare an oxidation treatment liquid. Table 4 shows the transmittance of each oxidation treatment liquid treated in Example 2 and Comparative Example 2 at a wavelength of 540 mm.

【0021】[0021]

【表4】 (注)*2の横欄は下部電解液の分取割合 (v/v%) [Table 4] (Note) * 2: Horizontal column shows fractionation ratio of lower electrolyte (v / v%)

【0022】その結果比較例と比べて、本実施例で着色
廃水に添加する静置後の下部電解液の分取割合による脱
色効果への影響は、20v/v%付近から表れはじめ、
10v/v%付近で急上昇し2v/v%付近ないし1v
/v%付近でほぼ上限に達することが判明した。
As a result, as compared with the comparative example, the influence of the fractionation ratio of the lower electrolytic solution added to the colored wastewater after standing in the present example on the decolorizing effect begins to appear from around 20 v / v%.
A sharp increase around 10v / v% and around 2v / v% or 1v
It was found that the upper limit was almost reached around / v%.

【0023】(実施例3〜4)実施例1または2より少
し規模の大きい電解槽を用いて前記組成の海水をやや多
量に用い、これを塩酸でpH2に調整して実施例1と同
様の条件で電解を行い、静置20分後の下部電解液を、
電解液全体の10v/v%相当量分取した後、さらに同
様の条件で再度10分間電解して中和した後、前記着色
廃水に対し、該中和液をそれぞれ10v/v%添加して
5分間攪拌し酸化処理液とした。なお、実施例4として
前記実施例3と同様の操作により、再度電解することな
く中和後、各着色廃水に対し10v/v%添加して5分
間攪拌し酸化処理液とした。実施例3と実施例4によっ
て処理した各酸化処理液の、波長540nmでの透過率
を表5に示す。
(Examples 3 to 4) A large amount of seawater having the above composition was used in an electrolytic cell having a slightly larger scale than that of Example 1 or 2, and the pH was adjusted to 2 with hydrochloric acid, and the same procedure as in Example 1 was performed. Electrolysis is performed under the conditions, and the lower electrolytic solution after 20 minutes of standing is
After collecting 10 v / v% of the total amount of the electrolytic solution and further neutralizing by electrolyzing again for 10 minutes under the same conditions, 10 v / v% of the neutralizing solution was added to the colored wastewater. The mixture was stirred for 5 minutes to obtain an oxidation treatment liquid. In Example 4, the same operation as in Example 3 was performed to neutralize without re-electrolyzing, and then 10 v / v% was added to each colored wastewater and stirred for 5 minutes to prepare an oxidation treatment liquid. Table 5 shows the transmittance at a wavelength of 540 nm of each oxidation treatment liquid treated in Example 3 and Example 4.

【0024】[0024]

【表5】 [Table 5]

【0025】その結果、再度電解処理した場合は、電解
処理1回のものと比べて一層の脱色効果があった。これ
は電解後の経時変化によって消失した次亜塩素酸ナトリ
ウム等の塩素系酸化剤量がある程度復活するためと考え
られる。
As a result, when the electrolytic treatment was carried out again, there was a further decolorizing effect as compared with the case where the electrolytic treatment was carried out once. It is considered that this is because the amount of chlorine-based oxidizer such as sodium hypochlorite, which has disappeared due to the change with time after electrolysis, is restored to some extent.

【0026】(実施例5)前記組成の海水を塩酸でpH
2に調整して実施例1と同様の条件で電解を行い、静置
20分後の下部溶液を、それぞれ電解液全体の10v/
v%に相当する量を分取して中和した後、前記着色廃水
に対し10v/v%添加して5分間攪拌した酸化処理液
に、アルカリ剤として水酸化ナトリウム(1N NaO
H)を添加しpH10.5に調整したうえで5分間攪拌
した。ここで、海水中に含まれるマグネシウム化合物は
次式のとおり水酸化物となって沈殿する。
Example 5 The pH of seawater having the above composition was adjusted with hydrochloric acid.
2 was electrolyzed under the same conditions as in Example 1, and the lower solution after standing for 20 minutes was treated with 10 v /
An amount corresponding to v% was collected and neutralized, and then 10 v / v% was added to the coloring wastewater and the mixture was stirred for 5 minutes.
H) was added to adjust the pH to 10.5, and the mixture was stirred for 5 minutes. Here, the magnesium compound contained in seawater is precipitated as a hydroxide according to the following formula.

【化5】Mg2++2(OH- )→Mg(OH)2 また、その際海水中に含有され臭化マグネシウムも次式
に従って反応する。
Embedded image Mg 2+ +2 (OH ) → Mg (OH) 2 Magnesium bromide contained in seawater also reacts according to the following formula.

【化6】 MgBr2 +2NaOH→Mg(OH)2 +2NaBrEmbedded image MgBr 2 + 2NaOH → Mg (OH) 2 + 2NaBr

【0027】なお、この凝集処理の際に有機高分子凝集
剤を必要量添加することは、凝集粒子を粗大化し沈殿を
促進するうえで大いに意義のあるところである。以上の
ようにして、沈殿物を生成した懸濁液を約20分間静置
し、その上澄液をろ紙(No.5A)によりろ過した
後、鉱酸として塩酸(0.1N HCl)によりpH8
に中和したものを凝集処理液とした。また、比較例3と
して前記実施例5と同様の操作により電解処理をして分
取しpH5〜9に中和後、アルカリ剤によるpH9以上
での凝集処理を行わない酸化処理液を用いた。実施例5
と比較例3によって処理した各酸化処理液の、波長54
0nmでの透過率を表6に示す。
The addition of a necessary amount of the organic polymer coagulant during the coagulation treatment is of great significance in coarsening the coagulated particles and promoting the precipitation. The suspension in which the precipitate was formed as described above was allowed to stand for about 20 minutes, the supernatant was filtered through filter paper (No. 5A), and the pH was adjusted to 8 with hydrochloric acid (0.1N HCl) as a mineral acid.
What was neutralized to be the coagulation treatment liquid. Further, as Comparative Example 3, an oxidation treatment liquid was used, which was subjected to electrolytic treatment by the same operation as in Example 5 above, fractionated, neutralized to pH 5 to 9, and then not subjected to aggregation treatment with an alkaline agent at pH 9 or higher. Example 5
And the wavelength of each oxidation treatment liquid treated according to Comparative Example 3 was 54
Table 6 shows the transmittance at 0 nm.

【0028】[0028]

【表6】 [Table 6]

【0029】(実施例6)アンモニア態窒素として塩化
アンモニウムを、次の割合で純水に溶解して模擬廃水を
調製した。 試料(1) 塩化アンモニウム(NH4 Cl) 250
g/l 試料(2) 塩化アンモニウム(NH4 Cl) 500
g/l 前記組成の海水を塩酸でpH2に調整して実施例1と同
様の条件で電解を行い、静置20分後の下部電解液を電
解液全体の10v/v%相当量分取して中和後、前記各
模擬廃水に5,10,20v/v%添加し5分間攪拌し
たものを酸化処理液とし、また同酸化処理液をアルカリ
剤でpH10.5に調整して20分間静置し、その上澄
液をろ紙(No.5A)によりろ過した後pH8に中和
し、5分間攪拌したものを凝集処理液とした。
Example 6 Ammonium chloride as ammoniacal nitrogen was dissolved in pure water in the following proportions to prepare simulated waste water. Sample (1) Ammonium chloride (NH 4 Cl) 250
g / l Sample (2) Ammonium chloride (NH 4 Cl) 500
g / l Seawater having the above composition was adjusted to pH 2 with hydrochloric acid and electrolyzed under the same conditions as in Example 1, and the lower electrolytic solution after standing 20 minutes was collected in an amount equivalent to 10 v / v% of the entire electrolytic solution. After neutralization by addition, 5,10,20 v / v% of each simulated waste water was added and stirred for 5 minutes as an oxidation treatment liquid, and the oxidation treatment liquid was adjusted to pH 10.5 with an alkaline agent and allowed to stand for 20 minutes. Then, the supernatant was filtered through a filter paper (No. 5A), neutralized to pH 8, and stirred for 5 minutes to obtain an aggregation treatment liquid.

【0030】なお、比較例4は海水を塩酸でpH2に調
整して実施例1と同様の条件で電解を行い、静置20分
後分取することなく任意の部分より取り出した電解液を
中和後、前記各着色廃水に5,10,20v/v%添加
して以下同様に酸化処理液と凝集処理液をつくったもの
である。実施例6と比較例4によって処理した各酸化処
理液と、凝集処理液とに含まれる全窒素(T−N)およ
びアンモニア態窒素(NH4 −N)を表7に示す。
In Comparative Example 4, seawater was adjusted to pH 2 with hydrochloric acid and electrolysis was carried out under the same conditions as in Example 1, and after 20 minutes of standing, the electrolytic solution taken out from an arbitrary part without preparation was used. After the addition, 5,10,20 v / v% was added to each of the colored wastewaters to prepare an oxidation treatment liquid and an aggregation treatment liquid in the same manner. Table 7 shows the total nitrogen (TN) and ammonia nitrogen (NH 4 -N) contained in each of the oxidation treatment liquids treated in Example 6 and Comparative Example 4, and the aggregation treatment liquid.

【0031】[0031]

【表7】 [Table 7]

【0032】実施例5の実験条件により、臭素化合物が
濃縮された状態の電解液を廃水中に添加した場合、アン
モニア態窒素をはじめとする窒素化合物の除去効果が飛
躍的に向上し、廃水に対して電解液を10〜20v/v
%添加することでほぼ完全に窒素化合物を除去し得るこ
とが判明した。これに対して比較例5の場合もある程度
の処理効果が認められるが、自然海水中の臭素化合物が
低く本実施例と同等の処理効果を得るためには、電解前
の海水に別途臭素化合物を添加する必要があるものと考
えられる。なお、酸化処理液と凝集処理液に残留する窒
素化合物量を比較すると大差はなく、主として酸化処理
の際に窒素化合物が分解されるものと考えられる。
According to the experimental conditions of Example 5, when the electrolytic solution in which the bromine compound was concentrated was added to the waste water, the effect of removing nitrogen compounds such as ammonia nitrogen was dramatically improved, and In contrast, 10 to 20 v / v electrolytic solution
It has been found that the nitrogen compound can be almost completely removed by adding 100%. On the other hand, although the treatment effect of Comparative Example 5 is recognized to some extent, a bromine compound is separately added to the seawater before electrolysis in order to obtain a treatment effect equivalent to that of this example because the bromine compound in natural seawater is low. It is considered necessary to add. It should be noted that when the amounts of nitrogen compounds remaining in the oxidation treatment liquid and the aggregation treatment liquid are compared, there is no great difference, and it is considered that the nitrogen compounds are mainly decomposed during the oxidation treatment.

【0033】[0033]

【発明の効果】以上説明したとおり、本発明による廃水
の処理方法を用いれば次の効果が得られる。 (1)塩素系酸化剤と臭素化合物との相乗効果により廃
水中の着色成分を強力に酸化分解してほぼ完全に脱色す
ることができ、またそれに続いて凝集沈殿処理を併合す
ることが可能であり、残存する着色成分を吸着して脱色
処理を確実なものとすることができる。 (2)安価かつ無尽蔵に存在する海水成分を有効利用す
ることができ、廃水中の着色成分の分解に必要な次亜塩
素塩素酸ナトリウム等の酸化剤が得られるだけでなく、
同酸化剤と相乗効果によって脱色反応を有効に促進させ
ることのできる高価な臭素化合物も同時に得られるため
薬品費用を著しく節減することができる。 (3)酸化処理後、pH調整するのみで水酸化マグネシ
ウムが生成し凝集剤として作用するため外部から無機凝
集剤を供給する必要がなく、さらに薬品費用を大幅に節
減することができる。
As described above, the following effects can be obtained by using the method for treating wastewater according to the present invention. (1) Due to the synergistic effect of the chlorine-based oxidant and the bromine compound, the coloring components in the wastewater can be strongly oxidatively decomposed to almost completely decolorize, and subsequently the coagulation-precipitation treatment can be combined. Therefore, the remaining coloring component can be adsorbed to ensure the decolorization treatment. (2) Inexpensive and inexhaustibly existing seawater components can be effectively used, and not only an oxidizing agent such as sodium hypochlorite, which is necessary for decomposition of coloring components in wastewater, can be obtained.
Since an expensive bromine compound which can effectively accelerate the decolorization reaction by a synergistic effect with the same oxidizing agent is also obtained, the chemical cost can be remarkably reduced. (3) After the oxidation treatment, magnesium hydroxide is generated only by adjusting the pH and acts as a coagulant, so that it is not necessary to supply an inorganic coagulant from the outside, and the chemical cost can be significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例に係る廃水の処理方法の模式
図。
FIG. 1 is a schematic diagram of a wastewater treatment method according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1. 電解槽 2. 中和槽 3. 混合槽 4. pH調整槽 5. 分離槽 6. 処理水槽 11.廃水 12.海水成分含有液 13a.13b.鉱酸 14a.14b.アルカリ剤 15.処理水 16.汚泥 1. Electrolyzer 2. Neutralization tank 3. Mixing tank 4. pH adjusting tank 5. Separation tank 6. Treated water tank 11. Wastewater 12. Liquid containing seawater components 13a. 13b. Mineral acid 14a. 14b. Alkaline agent 15. Treated water 16. Sludge

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C02F 9/00 502 C02F 9/00 502R 504B 504 1/46 101Z (72)発明者 佐藤 貞雄 兵庫県神戸市兵庫区小松通五丁目1番16 号 株式会社神菱ハイテック内 (72)発明者 秋本 昌尾 兵庫県神戸市兵庫区小松通五丁目1番16 号 株式会社神菱ハイテック内 (56)参考文献 特開 平7−299475(JP,A) 特開 平7−299474(JP,A) 特開 平2−290989(JP,A) 特開 昭62−182293(JP,A) 実開 平3−41851(JP,U) (58)調査した分野(Int.Cl.7,DB名) C02F 1/52 - 1/56 C02F 1/46 C02F 1/76 C02F 9/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI C02F 9/00 502 C02F 9/00 502R 504B 504 1/46 101Z (72) Inventor Sadao Sato Kogomatsu, Hyogo-ku, Kobe-shi, Hyogo Inc. 1-16 Shinryo Hi-Tech Co., Ltd. (72) Inventor Masao Akimoto 5-16-16 Komatsu-dori, Koyo-ku, Kobe, Hyogo Pref. (56) Reference Kokai 7-299475 (JP, A) JP-A-7-299474 (JP, A) JP-A-2-290989 (JP, A) JP-A-62-182293 (JP, A) Actual development 3-41851 (JP, U) (JP, A) 58) Fields investigated (Int.Cl. 7 , DB name) C02F 1/52-1/56 C02F 1/46 C02F 1/76 C02F 9/00

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 自然海水または人工海水の海水成分含有
液を鉱酸によってpH1〜5に調整し、電解処理して静
置した後、この電解液に対し下部電解液を0.5〜20
v/v%量を分取してアルカリ剤によりpH5〜9に中
和し、該中和水を廃水1容に対し0.1〜1容混合して
酸化処理し、さらにこの酸化処理液をアルカリ剤によっ
てpH9以上に調整し、凝集生成物を分離することを特
徴とする廃水の処理方法。
1. A seawater component-containing liquid of natural seawater or artificial seawater is adjusted to pH 1 to 5 with a mineral acid, electrolyzed and allowed to stand, and then a lower electrolyte solution of 0.5 to 20 is added to this electrolyte.
An amount of v / v% was fractionated and neutralized to pH 5 to 9 with an alkaline agent, 0.1 to 1 volume of the neutralized water was mixed with 1 volume of waste water, and oxidation treatment was performed. A method for treating wastewater, which comprises adjusting the pH to 9 or more with an alkaline agent and separating a coagulation product.
【請求項2】 前記海水成分含有液が臭素化合物および
/またはマグネシウム化合物を含有するものである請求
項1に記載された廃水の処理方法。
2. The method for treating wastewater according to claim 1, wherein the seawater component-containing liquid contains a bromine compound and / or a magnesium compound.
【請求項3】 前記電解処理後静置し分取する下部電解
液量が、電解液全体の2〜10v/v%量である請求項
1に記載された廃水の処理方法。
3. The method for treating wastewater according to claim 1, wherein the amount of the lower electrolytic solution to be left to stand after the electrolytic treatment is 2 to 10 v / v% of the total amount of the electrolytic solution.
【請求項4】 自然海水または人工海水の海水成分含有
液を鉱酸によってpH1〜5に調整し、電解処理して静
置した後、この電解液に対し下部電解液0.5〜20v
/v%量を除く上部電解液を排出し、残存する下部電解
液へ新たに海水成分含有液を混合し、再度電解処理した
後アルカリ剤によりpH5〜9に中和し、該中和水を廃
水1容に対し0.1〜1容混合して酸化処理し、さらに
この酸化処理液をアルカリ剤によってpH9以上に調整
し、凝集生成物を分離することを特徴とする廃水の処理
方法。
4. A seawater component-containing liquid of natural seawater or artificial seawater is adjusted to pH 1 to 5 with a mineral acid, electrolyzed and allowed to stand, and then 0.5 to 20 v of lower electrolyte is added to this electrolyte.
/ V% amount of the upper electrolyte solution is discharged, the remaining lower electrolyte solution is newly mixed with a seawater component-containing solution, and electrolytically treated again, and then neutralized to pH 5 to 9 with an alkaline agent. A method for treating wastewater, which comprises mixing 0.1 to 1 volume of wastewater to perform an oxidation treatment, further adjusting the pH of the oxidation treatment liquid to 9 or more with an alkaline agent, and separating an aggregated product.
【請求項5】 自然海水または人工海水の海水成分含有
液を鉱酸によってpH1〜5に調整し、電解処理して静
置した後、この電解液に対し下部電解液を0.5〜20
v/v%量を分取してアルカリ剤によりpH5〜9に中
和し、該中和水を廃水1容に対し0.1〜1容混合して
酸化処理し、さらにこの酸化処理液をアルカリ剤によっ
てpH10〜12に調整し、有機高分子凝集剤を添加し
て凝集生成物を分離することを特徴とする廃水の処理方
法。
5. A seawater component-containing liquid of natural seawater or artificial seawater is adjusted to pH 1 to 5 with a mineral acid, electrolyzed and allowed to stand, and then a lower electrolyte solution of 0.5 to 20 is added to this electrolyte.
An amount of v / v% was fractionated and neutralized to pH 5 to 9 with an alkaline agent, 0.1 to 1 volume of the neutralized water was mixed with 1 volume of waste water, and oxidation treatment was performed. A method for treating wastewater, which comprises adjusting pH to 10 to 12 with an alkaline agent, and adding an organic polymer coagulant to separate coagulation products.
【請求項6】 自然海水または人工海水の海水成分含有
液を鉱酸によってpH1〜5に調整し、電解処理して静
置した後、この電解液に対し下部電解液を0.5〜20
v/v%量を分取してアルカリ剤によりpH5〜9に中
和し、該中和水を廃水1容に対し0.1〜1容混合して
酸化処理し、さらにこの酸化処理液をアルカリ剤によっ
てpH10〜12に調整し、凝集生成物を分離した後中
和処理する廃水の処理方法。
6. A seawater component-containing liquid of natural seawater or artificial seawater is adjusted to pH 1 to 5 with a mineral acid, electrolyzed and allowed to stand, and then 0.5 to 20 parts of the lower electrolyte is added to this electrolyte.
An amount of v / v% was fractionated and neutralized to pH 5 to 9 with an alkaline agent, 0.1 to 1 volume of the neutralized water was mixed with 1 volume of waste water, and oxidation treatment was performed. A method for treating wastewater, which comprises adjusting pH to 10 to 12 with an alkaline agent, separating a coagulation product, and then performing neutralization treatment.
JP18955794A 1994-08-11 1994-08-11 Wastewater treatment method Expired - Fee Related JP3388892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18955794A JP3388892B2 (en) 1994-08-11 1994-08-11 Wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18955794A JP3388892B2 (en) 1994-08-11 1994-08-11 Wastewater treatment method

Publications (2)

Publication Number Publication Date
JPH0852478A JPH0852478A (en) 1996-02-27
JP3388892B2 true JP3388892B2 (en) 2003-03-24

Family

ID=16243321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18955794A Expired - Fee Related JP3388892B2 (en) 1994-08-11 1994-08-11 Wastewater treatment method

Country Status (1)

Country Link
JP (1) JP3388892B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1167298B1 (en) 1999-02-10 2004-09-15 Ebara Corporation Method and apparatus for treating aqueous medium
JP6191070B2 (en) * 2012-05-25 2017-09-06 三菱重工環境・化学エンジニアリング株式会社 Ammonia treatment system
CN103539248B (en) * 2013-11-15 2015-01-07 陕西延长石油油田化学科技有限责任公司 Method for preparing environment-friendly flocculating agent from waste fruit peels and application of environment-friendly flocculating agent
CN103553196A (en) * 2013-11-15 2014-02-05 西安石油大学 Method for preparing environment-friendly water treatment agent by using pomace as well as application thereof

Also Published As

Publication number Publication date
JPH0852478A (en) 1996-02-27

Similar Documents

Publication Publication Date Title
US5266210A (en) Process for removing heavy metals from water
JP2007117965A (en) Method and apparatus for removing metal from drainage
US4208283A (en) Process for treatment of waste waters
US5262063A (en) Multiple-stage precipitation process for heavy metals in aqueous solution
JP2506032B2 (en) Wastewater treatment method
JP2018035024A (en) Method for producing sodium hypochlorite, and sodium hypochlorite production device
JP3388892B2 (en) Wastewater treatment method
JP4920932B2 (en) Treatment method for wastewater containing heavy metals
JPS5834197B2 (en) High speed inosyoriho
CN110697998B (en) Treatment method of copper oxide production wastewater
JP4165637B2 (en) Method for treating wastewater containing harmful substances without producing sludge and chemicals used therefor
US4073706A (en) Brine treatment for trace metal removal
CN108545803B (en) Method for degrading copper complex and synchronously removing copper by combining photo-induced complex breaking composite medicament and UV (ultraviolet)
JPH0631298A (en) Sophisticated treatment method for waste chemical plating liquid
JP3642516B2 (en) Method and apparatus for removing COD components in water
JPS59203692A (en) Treatment of pulp mill waste liquor
JP3495420B2 (en) Treatment of colored wastewater
DE19624023B4 (en) Process for the remediation of acidic, iron-containing open cast mining water
JPH1133561A (en) Flocculation and sedimentation treatment equipment
WO2009101744A1 (en) Process for treatment of waste water
JPH07299474A (en) Treatment of waste water
JP2601441B2 (en) Wastewater treatment method
JP3788782B2 (en) Method for removing and recovering copper by treating waste water and chemicals used therefor
JP2000263049A (en) Method and apparatus for cleaning barn effluent
KR102652947B1 (en) System and method for treating water

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021210

LAPS Cancellation because of no payment of annual fees