JP3387937B2 - Method for producing grain-oriented silicon steel sheet excellent in both magnetic properties and insulating film quality - Google Patents

Method for producing grain-oriented silicon steel sheet excellent in both magnetic properties and insulating film quality

Info

Publication number
JP3387937B2
JP3387937B2 JP30898491A JP30898491A JP3387937B2 JP 3387937 B2 JP3387937 B2 JP 3387937B2 JP 30898491 A JP30898491 A JP 30898491A JP 30898491 A JP30898491 A JP 30898491A JP 3387937 B2 JP3387937 B2 JP 3387937B2
Authority
JP
Japan
Prior art keywords
oxidation
steel sheet
magnetic properties
degree
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30898491A
Other languages
Japanese (ja)
Other versions
JPH05148532A (en
Inventor
嘉明 飯田
哲也 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP30898491A priority Critical patent/JP3387937B2/en
Publication of JPH05148532A publication Critical patent/JPH05148532A/en
Application granted granted Critical
Publication of JP3387937B2 publication Critical patent/JP3387937B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、方向性電磁鋼板の脱炭
焼鈍方法に係わり、磁気特性と絶縁皮膜の品質が共に優
れた方向性電磁鋼板の製造方法に関するものである。 【0002】 【従来の技術】方向性珪素鋼板の製造工程中最終冷延
後、一次再結晶・脱炭・表面酸化を兼ねた、いわゆる脱
炭焼鈍が施される。この脱炭焼鈍を前部領域と後部領域
に分け、前部領域の雰囲気の酸化度(PH2O/PH2) を後
部領域のそれよりも高める方法が特公昭57−1575号公報
に提案されている。 【0003】一方、方向性珪素鋼板の磁気特性を向上さ
せる方法として、特公昭59-32526号公報に記載の素材成
分中のSi量を高めるとともに、それに応じてC量を高め
る方法や特公昭55-119126 号公報に記載の、熱延にてγ
相を3%以上析出させる方法──この方法を採るには、
素材C量を高める必要がある──などが知られている。 【0004】脱炭焼鈍前のC量が高い材料に、脱炭焼鈍
雰囲気に関する前記従来技術を適用すると、十分低い値
(0.003%以下) に脱炭される前に、前部領域の酸化度が
高いために、鋼板表面の酸化皮膜が厚く生成し、その後
の脱炭がほとんど進行しなくなる。脱炭焼鈍後のC量が
十分低くない状態で仕上焼鈍が施されると、二次再結晶
が不完全になり易く、良好な磁気特性を持つ製品が得ら
れないという問題がある。 【0005】 【発明が解決しようとする課題】本発明は、前記課題を
脱炭焼鈍方法の改良により解決し、磁気特性と絶縁皮膜
の品質が共に優れた方向性電磁鋼板の製造方法を提供す
ることを目的とするものである。 【0006】 【課題を解決するための手段】すなわち、本発明は、方
向性電磁鋼板素材を最終冷延後、脱炭焼鈍を施すに当
り、脱炭焼鈍工程の前部領域の雰囲気の露点(dp)を40〜
65℃に、かつ酸化度(PH2O/PH2) を 0.3以下とし、さ
らに後部領域の雰囲気の露点(dp)を40〜75℃に、かつ酸
化度(PH2O/PH2) を0.3 〜 0.6とすることを特徴とす
る磁気特性と絶縁皮膜の品質が共に優れた方向性電磁鋼
板の製造方法である。 【0007】 【作用】従来の脱炭焼鈍方法では、焼鈍工程の前部領域
の雰囲気の酸化度(PH2O/PH2) の高いことが、脱炭が
十分に進行しない原因であることから本発明は、先ず前
部領域の酸化度を低くし、かつ脱炭に必要な水分を所定
量確保するため、露点(dp)を比較的高目にし、表面酸化
皮膜の生成を極力抑制しながら、脱炭を十分に進行させ
るようにした。他方、脱炭焼鈍の全ヒートサイクルに亘
って、前部領域と同様の低い酸化度の雰囲気で処理する
と、表面酸化量が少なく、次工程の仕上焼鈍で形成され
るガラス質の絶縁皮膜の密着性と表面外観の均一性が劣
るので、後部領域の雰囲気の酸化度を前部領域より高め
て、所定量の酸化量を得るようにした。 【0008】次に本発明を、実験結果に基づいてさらに
詳細に説明する。図1は、脱炭焼鈍前の鋼板成分が、
C: 0.045%, Si:3.05%, Mn:0.05%,Se: 0.012%,
Sb:0.03%である0.23mm厚の鋼板を、同図中に示す条
件で焼鈍し、その途中で中断して、炉から引出した鋼板
のC濃度を調査した結果である。同図から、焼鈍前部の
雰囲気の酸化度が低くかつ、dpの高い本発明例では、前
部焼鈍時点で、好適範囲に脱炭しているのに比し、前部
雰囲気の酸化度が高いか、あるいは、酸化度, dp共に低
い比較例では、前部焼鈍終了後はもちろん、後部焼鈍終
了後でも、好適範囲まで脱炭が進行していないことが判
る。 【0009】図2は、図1と同様に、C:0.07%, Si:
3.20%, Mn:0.06%, Se: 0.015%, Sb: 0.020%, A
l:0.03%, N: 0.007%を含有する鋼板( 0.23mm厚)
の脱炭焼鈍後の表面酸化増量を鋼板両面合計の1m2当り
の量で示したもので、後部雰囲気の酸化度の高い発明例
では、好適範囲の酸化増量が得られるのに比し、酸化度
の低い比較例では、酸化増量が小さいことが判る。 【0010】次に脱炭焼鈍雰囲気の限定理由を述べる。
前部領域については、酸化度が 0.3を超えるとき、およ
びdpが40℃より低いとき脱炭焼鈍後のC濃度が好適範囲
まで低下しないため、またdpが65℃を超えると酸化度が
0.3より大となるため、酸化度を 0.3以下dpを40〜65℃
に限定する。後部領域については、酸化度が 0.6を超え
ると、酸化増量が過大となり、成品の磁気特性を劣化さ
せる。また酸化度が 0.3未満またはdpが40℃を下回ると
きには、好適範囲の酸化増量が得られない。またdpが75
℃を超えると酸化度が 0.6を超えるため、酸化度を 0.3
〜 0.6、dpを40〜75℃に限定する。 【0011】前部領域、後部領域の焼鈍時間としては雰
囲気の酸化度の程度に応じて、前部領域では、好適範囲
の鋼中C濃度が、後部領域では、好適範囲の表面酸化増
量が得られる時間を選べばよい。本発明の対象とする鋼
板は、成分としてC:0.03〜0.10%、Si: 2.8〜 4.5%
を含有する方向性珪素鋼板用素材であり、結晶粒成長抑
制のために含有させる元素のいかんを問わない。 【0012】酸化度の調整は、雰囲気をH2−N2またはH2
−Arの混合ガスとし、混合比率の調整とdpの調整によっ
て行う。 【0013】 【実施例】表1に示す成分を含有する方向性珪素鋼板を
鋳造, 熱延, 焼鈍, 冷延の工程を経て、0.23mm厚に仕上
げた後、H2−N2混合ガス中、表2に示す雰囲気条件で84
0℃の脱炭焼鈍を施し、次いで MgOを主体とする分離剤
を塗布し、仕上焼鈍を施した。 【0014】仕上焼鈍に際して、素材 No.1〜4に対し
ては、Arガス中で 870℃ 30Hr 保定後、H2ガス中で1200
℃ 10Hr 、素材 No.5〜10に対しては、N2ガス中で 750
℃ 20Hr 保定後、H2ガス中で1200℃ 10Hr の焼鈍条件を
適用した。得られた成品の磁気特性と絶縁皮膜評価を表
3に示す。同表からいずれの素材についても成品の磁気
特性、絶縁皮膜評価が良好な条件は、本発明に対応する
D,E,Fのみであることが明らかである。 【0015】 【表1】【0016】 【表2】 【0017】 【表3】【0018】 【発明の効果】本発明により、磁気特性,絶縁皮膜共に
良好な成品を安定して製造することが可能となった。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for decarburizing and annealing a grain-oriented electrical steel sheet, and to manufacture a grain-oriented electrical steel sheet having both excellent magnetic properties and insulating film quality. It is about the method. [0002] During the production process of grain-oriented silicon steel sheets, after the final cold rolling, so-called decarburization annealing, which also serves as primary recrystallization, decarburization and surface oxidation, is performed. Japanese Patent Publication No. Sho 57-1575 proposes a method in which the decarburizing annealing is divided into a front region and a rear region, and the degree of oxidation of the atmosphere in the front region (PH 2 O / PH 2 ) is made higher than that in the rear region. ing. On the other hand, as a method for improving the magnetic properties of a grain-oriented silicon steel sheet, there is a method disclosed in Japanese Patent Publication No. 59-32526 in which the amount of Si in the material component is increased and the C amount is increased accordingly. -119126, γ in hot rolling
Method of precipitating 3% or more phase. To use this method,
It is necessary to increase the amount of material C, for example. [0004] If the above-mentioned prior art relating to the decarburizing annealing atmosphere is applied to a material having a high C content before decarburizing annealing, a sufficiently low value is obtained.
Before decarburization (less than 0.003%), the degree of oxidation in the front region is high, so that a thick oxide film is formed on the surface of the steel sheet, and decarburization hardly proceeds thereafter. If the finish annealing is performed in a state where the carbon content after the decarburizing annealing is not sufficiently low, there is a problem that secondary recrystallization tends to be incomplete, and a product having good magnetic properties cannot be obtained. [0005] The present invention solves the above-mentioned problems by improving the decarburizing annealing method, and provides a method for producing a grain-oriented electrical steel sheet having both excellent magnetic properties and insulating film quality. The purpose is to do so. That is, according to the present invention, when the grain-oriented electrical steel sheet material is subjected to decarburization annealing after final cold rolling, the dew point of the atmosphere in the front region of the decarburization annealing step ( dp) 40 ~
65 ° C., the degree of oxidation (PH 2 O / PH 2 ) is 0.3 or less, the dew point (dp) of the atmosphere in the rear region is 40 to 75 ° C., and the degree of oxidation (PH 2 O / PH 2 ) is 0.3. This is a method for producing a grain-oriented electrical steel sheet having both excellent magnetic properties and excellent quality of an insulating film, characterized by being set to 0.6. In the conventional decarburization annealing method, the high degree of oxidation (PH 2 O / PH 2 ) in the atmosphere in the front region of the annealing step is a cause of insufficient decarburization. The present invention firstly lowers the degree of oxidation in the front region, and in order to secure a predetermined amount of water required for decarburization, while keeping the dew point (dp) relatively high, while suppressing the formation of a surface oxide film as much as possible. The decarburization was advanced sufficiently. On the other hand, when the treatment is carried out in the same low oxidation degree atmosphere as in the front region over the entire heat cycle of the decarburization annealing, the amount of surface oxidation is small, and the adhesion of the vitreous insulating film formed by the finish annealing in the next step is reduced. Since the properties and the uniformity of the surface appearance are inferior, the degree of oxidation of the atmosphere in the rear region is set higher than that in the front region to obtain a predetermined amount of oxidation. Next, the present invention will be described in more detail based on experimental results. Figure 1 shows that the steel sheet components before decarburization annealing
C: 0.045%, Si: 3.05%, Mn: 0.05%, Se: 0.012%,
This is the result of examining the C concentration of the steel sheet drawn out of the furnace after annealing a 0.23 mm-thick steel sheet with Sb: 0.03% under the conditions shown in FIG. From the figure, the oxidation degree of the atmosphere in the front part of the annealing is low and the dp is high in the example of the present invention. In the comparative examples where the degree of oxidation is high or the degree of oxidation and dp are both low, it can be seen that decarburization has not progressed to a suitable range not only after the end of the front annealing but also after the end of the rear annealing. FIG. 2 shows, similarly to FIG. 1, C: 0.07%, Si:
3.20%, Mn: 0.06%, Se: 0.015%, Sb: 0.020%, A
l: Steel sheet containing 0.03%, N: 0.007% (0.23mm thickness)
The surface oxidation weight gain after decarburization annealing which was indicated by an amount per 1 m 2 of steel sheet both sides total, the higher the invention examples of degree of oxidation of the rear atmosphere, compared to oxidation weight gain of the preferred range can be obtained, oxide It can be seen that the comparative example having a low degree of oxidation has a small amount of increase in oxidation. Next, the reasons for limiting the decarburizing annealing atmosphere will be described.
Regarding the front region, when the degree of oxidation exceeds 0.3, and when dp is lower than 40 ° C., the C concentration after decarburization annealing does not decrease to a suitable range, and when dp exceeds 65 ° C., the degree of oxidation decreases.
Since it is larger than 0.3, the oxidation degree should be 0.3 or less.
Limited to. In the rear region, when the degree of oxidation exceeds 0.6, the amount of oxidation increases excessively, deteriorating the magnetic properties of the product. On the other hand, when the degree of oxidation is less than 0.3 or dp is less than 40 ° C., it is not possible to obtain a suitable range of increase in oxidation. Dp is 75
If the temperature exceeds ℃, the oxidation degree exceeds 0.6.
~ 0.6, dp limited to 40-75 ° C. According to the degree of oxidation of the atmosphere, the annealing time in the front region and the rear region is determined to be within a suitable range for the C concentration in steel in the front region and in a suitable range for the surface oxidation increase in the rear region. You just have to choose the time you want. The steel sheet targeted by the present invention has C: 0.03 to 0.10% and Si: 2.8 to 4.5% as components.
This is a material for grain-oriented silicon steel sheets containing, regardless of the element to be contained for suppressing crystal grain growth. To adjust the degree of oxidation, the atmosphere is H 2 -N 2 or H 2
This is performed by adjusting the mixture ratio and adjusting the dp as a mixed gas of -Ar. EXAMPLE A grain-oriented silicon steel sheet containing the components shown in Table 1 was cast, hot-rolled, annealed, and cold-rolled to a thickness of 0.23 mm, and then mixed in an H 2 -N 2 mixed gas. , 84 under the atmospheric conditions shown in Table 2.
Decarburization annealing at 0 ° C. was performed, and then a separating agent mainly composed of MgO was applied and finish annealing was performed. At the time of finish annealing, materials Nos. 1 to 4 were maintained at 870 ° C. for 30 hours in Ar gas and then 1200 hours in H 2 gas.
℃ 10Hr, for material No.5-10, 750 in N 2 gas
After holding at 20 ° C for 20 ° C, annealing conditions of 1200 ° C for 10 hours in H 2 gas were applied. Table 3 shows the magnetic properties and the evaluation of the insulating film of the obtained product. From the table, it is clear that the conditions for favorable evaluation of the magnetic properties of the product and the evaluation of the insulating film are D, E and F corresponding to the present invention. [Table 1] [Table 2] [Table 3] According to the present invention, it is possible to stably produce a product having good magnetic properties and insulating film.

【図面の簡単な説明】 【図1】脱炭焼鈍中の鋼中C%の変化を示す図である。 【図2】脱炭焼鈍後の酸化増量を示す図である。[Brief description of the drawings] FIG. 1 is a diagram showing a change in C% in steel during decarburizing annealing. FIG. 2 is a diagram showing an increase in oxidation after decarburization annealing.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C21D 1/26 C21D 1/76 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) C21D 1/26 C21D 1/76

Claims (1)

(57)【特許請求の範囲】 【請求項1】 方向性電磁鋼板素材を最終冷延後、脱炭
焼鈍を施すに当り、脱炭焼鈍工程の前部領域の雰囲気の
露点(dp)を40〜65℃に、かつ酸化度(PH2O/PH2) を
0.3以下とし、さらに後部領域の雰囲気の露点(dp)を40
〜75℃に、かつ酸化度(PH2O/PH2) を0.3 〜 0.6とす
ることを特徴とする磁気特性と絶縁皮膜の品質が共に優
れた方向性電磁鋼板の製造方法。
(57) [Claims] [Claim 1] When performing decarburization annealing after final cold rolling of grain-oriented electrical steel sheet material, the dew point (dp) of the atmosphere in the front region of the decarburization annealing step is set to 40. Up to 65 ° C and the degree of oxidation (PH 2 O / PH 2 )
0.3 or less, and the dew point (dp) of the atmosphere in the rear area is 40
To to 75 ° C., and the oxidation degree (PH 2 O / PH 2) of 0.3-0.6 and a manufacturing method are both excellent grain-oriented electrical steel sheet quality magnetic properties and the insulating film, characterized by.
JP30898491A 1991-11-25 1991-11-25 Method for producing grain-oriented silicon steel sheet excellent in both magnetic properties and insulating film quality Expired - Fee Related JP3387937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30898491A JP3387937B2 (en) 1991-11-25 1991-11-25 Method for producing grain-oriented silicon steel sheet excellent in both magnetic properties and insulating film quality

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30898491A JP3387937B2 (en) 1991-11-25 1991-11-25 Method for producing grain-oriented silicon steel sheet excellent in both magnetic properties and insulating film quality

Publications (2)

Publication Number Publication Date
JPH05148532A JPH05148532A (en) 1993-06-15
JP3387937B2 true JP3387937B2 (en) 2003-03-17

Family

ID=17987554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30898491A Expired - Fee Related JP3387937B2 (en) 1991-11-25 1991-11-25 Method for producing grain-oriented silicon steel sheet excellent in both magnetic properties and insulating film quality

Country Status (1)

Country Link
JP (1) JP3387937B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11450460B2 (en) 2017-07-13 2022-09-20 Nippon Steel Corporation Grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JPH05148532A (en) 1993-06-15

Similar Documents

Publication Publication Date Title
JP2000204450A (en) Grain oriented silicon steel sheet excellent in film characteristic and magnetic property and its production
JPH10259424A (en) Production of silicon-chromium grain-oriented silicon steel
JPH07122096B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent magnetic and film properties
JP3387937B2 (en) Method for producing grain-oriented silicon steel sheet excellent in both magnetic properties and insulating film quality
JP2002363713A (en) Semiprocess nonoriented silicon steel sheet having extremely excellent core loss and magnetic flux density and production method therefor
JP2603130B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
JP4205816B2 (en) Method for producing unidirectional electrical steel sheet with high magnetic flux density
JP2002241906A (en) Grain-oriented silicon steel sheet having excellent coating film characteristic and magnetic property
JP3271654B2 (en) Manufacturing method of ultra-thin silicon steel sheet and ultra-thin silicon steel sheet
JP3389402B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP2002356752A (en) Nonoriented silicon steel sheet having excellent core loss and magnetic flux density, and production method therefor
JP2781524B2 (en) Method for manufacturing grain-oriented electrical steel sheet with extremely excellent glass coating and magnetic properties
JP3443151B2 (en) Method for producing grain-oriented silicon steel sheet
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JPH0832928B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties and glass film properties
JP2634801B2 (en) High magnetic flux density directional silicon iron plate with excellent iron loss characteristics
JP3463417B2 (en) Method for producing grain-oriented silicon steel sheet stably obtaining excellent magnetic properties
JPH0897023A (en) Manufacture of nonoriented silicon steel plate of excellent iron-loss characteristics
JPS5913030A (en) Manufacture of cold rolled al killed steel plate with superior deep drawability
JPH06336611A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
KR920008692B1 (en) Making process for electric steel plates
JP3271655B2 (en) Method for producing silicon steel sheet and silicon steel sheet
JPH07310124A (en) Production of thick grain-oriented silicon steel plate excellent in magnetic characteristic and film coating characteristic
JPS6044377B2 (en) Method for producing soft cold-rolled steel sheets for drawing with excellent aging resistance through continuous annealing
JP2698513B2 (en) Method for manufacturing high magnetic flux density grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100110

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110110

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees