JP3385306B2 - Wastewater treatment equipment - Google Patents

Wastewater treatment equipment

Info

Publication number
JP3385306B2
JP3385306B2 JP04471598A JP4471598A JP3385306B2 JP 3385306 B2 JP3385306 B2 JP 3385306B2 JP 04471598 A JP04471598 A JP 04471598A JP 4471598 A JP4471598 A JP 4471598A JP 3385306 B2 JP3385306 B2 JP 3385306B2
Authority
JP
Japan
Prior art keywords
tank
wastewater treatment
wastewater
nitrification
denitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04471598A
Other languages
Japanese (ja)
Other versions
JPH1142497A (en
Inventor
栄治 田中
民雄 東
隆範 北村
武 松田
弘明 藤井
直 中川
愼次 小森
唯夫 塩谷
匡信 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27522419&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3385306(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP04471598A priority Critical patent/JP3385306B2/en
Publication of JPH1142497A publication Critical patent/JPH1142497A/en
Application granted granted Critical
Publication of JP3385306B2 publication Critical patent/JP3385306B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、有機物及び/又は
無機物を含む排水を効率的に処理するための排水処理装
置に関する。さらに詳しくは、少なくとも、微生物を固
定化した担体粒子を投入した脱窒槽及び/又は硝化槽か
らなる排水処理槽と膜モジュ−ルから構成されるコンパ
クトな排水処理装置に関する。
TECHNICAL FIELD The present invention relates to a wastewater treatment device for efficiently treating wastewater containing organic substances and / or inorganic substances. More particularly, at least, the waste water treatment tank and the membrane module comprising a denitrification tank and / or the nitrification tank was charged carrier particles with immobilized microorganisms - relates to a compact waste water treatment apparatus constituted by Le.

【0002】[0002]

【従来の技術】従来、農村集落排水、家庭雑排水、都市
下水、養魚排水、各種産業排水などの窒素化合物を含む
有機性排水は、一般的に、好気性微生物及び嫌気性微生
物を使用して汚濁物質を浄化する活性汚泥法により処理
されてきた。例えば、図12に示すように、排水1を嫌
気槽32に流入し、次いで好気槽33で好気条件下にB
OD成分の酸化と硝化菌による窒素化合物の硝化を行
い、好気槽33から流出する処理水の一部を嫌気槽32
に循環し、嫌気条件下に脱窒菌を使用して脱窒除去し、
残りの好気槽からの流出水は沈殿槽34で汚泥を沈降分
離した後、上澄水26を放流していた。
2. Description of the Related Art Conventionally, organic wastewater containing nitrogen compounds, such as rural village wastewater, domestic wastewater, urban sewage, fish farm wastewater, various industrial wastewater, generally uses aerobic and anaerobic microorganisms. It has been treated by an activated sludge method to purify pollutants. For example, as shown in FIG. 12, the wastewater 1 is introduced into the anaerobic tank 32, and then in the aerobic tank 33 under the aerobic condition.
Oxidation of OD components and nitrification of nitrogen compounds by nitrifying bacteria, and part of the treated water flowing out from the aerobic tank 33 is removed from the anaerobic tank 32.
And denitrifying using denitrifying bacteria under anaerobic conditions.
The runoff water from the remaining aerobic tank was subjected to sedimentation and separation of sludge in the settling tank 34, and then the supernatant water 26 was discharged.

【0003】従来の活性汚泥法の場合、曝気槽での排水
の滞留時間は6〜8時間に設計されているが、昨今、工
業や生活の多様化に伴って上記排水の量は増加傾向にあ
り、大量の排水を既存の処理槽を使用して活性汚泥法に
より処理しようとすると、滞留時間が短くなるので、バ
ルキングなどの異常がおこり、満足な処理ができなくな
る。したがって、多量の排水処理に対処するには新たな
装置が必要であり、そのための広大な土地と莫大な建設
費用が必要となる。
In the case of the conventional activated sludge method, the retention time of wastewater in the aeration tank is designed to be 6 to 8 hours, but the amount of wastewater tends to increase with the recent diversification of industry and life. Therefore, if a large amount of waste water is to be treated by the activated sludge method using an existing treatment tank, the residence time will be shortened and abnormalities such as bulking will occur, making it impossible to perform satisfactory treatment. Therefore, new equipment is required to deal with a large amount of wastewater treatment, which requires vast land and huge construction cost.

【0004】一方、窒素除去の観点からみると、従来の
窒素除去は、被処理水を脱窒槽、硝化槽の順に導入し、
硝化槽から流出する硝化処理水の一部を脱窒槽に返送・
循環するとともに、残りの硝化処理水を最終沈殿池に送
って処理する方法、又は硝化槽、脱窒槽の順に導入し、
脱窒槽から流出する脱窒処理水の全量を最終沈殿池に送
って処理する方法によって行われている。このとき、硝
化槽ではケルダール窒素が亜硝酸性窒素又は硝酸性窒素
に酸化され、脱窒槽では亜硝酸性窒素又は硝酸性窒素が
窒素ガスに変換されて除去されるが、これらの方法にお
いては、活性汚泥により硝化及び脱窒を行って窒素を除
去するのが一般的である。
On the other hand, from the viewpoint of nitrogen removal, in the conventional nitrogen removal, the water to be treated is introduced into the denitrification tank and the nitrification tank in this order.
Part of the nitrification-treated water flowing out of the nitrification tank is returned to the denitrification tank.
With circulation, the remaining nitrification water is sent to the final settling tank for treatment, or the nitrification tank and denitrification tank are introduced in this order.
This is done by a method in which the entire amount of denitrification treated water flowing out of the denitrification tank is sent to the final sedimentation tank for treatment. At this time, in the nitrification tank, Kjeldahl nitrogen is oxidized to nitrite nitrogen or nitrate nitrogen, and in the denitrification tank, nitrite nitrogen or nitrate nitrogen is converted to nitrogen gas and removed, but in these methods, Nitrogenation and denitrification are generally performed by activated sludge to remove nitrogen.

【0005】排水をこのような窒素除去方法で処理する
場合でも硝化槽と脱窒槽での合計滞留時間は流入水ベー
スで12〜24時間必要であり、滞留時間が6〜8時間
程度で設計されている既設のBOD除去のみを目的とし
た下水処理場では滞留時間が不足し、満足な窒素除去は
できない。多量の排水処理に対処するには、前記と同
様、新たな処理装置が必要であり、そのための広大な土
地と莫大な建設費用が必要となる。
Even when the waste water is treated by such a nitrogen removing method, the total residence time in the nitrification tank and the denitrification tank is required to be 12 to 24 hours on the basis of inflow water, and the residence time is designed to be about 6 to 8 hours. In existing sewage treatment plants only for removing BOD, the retention time is insufficient and nitrogen cannot be removed satisfactorily. In order to deal with a large amount of wastewater treatment, a new treatment device is required as described above, which requires vast land and huge construction cost.

【0006】一方、処理時間の短縮や処理の安定・高度
化のために、排水処理槽内の微生物濃度を高め、微生物
の滞留時間を増大させることを目的として、微生物担体
を利用して処理する方法や装置が開発されている。この
ような例として、特公昭59−16516号公報に、微
生物を粒状担体に付着させ、この担体を流動させること
によって排水中の有機物を除去する流動床式の生物処理
方法と装置が開示されており、特公昭63−52556
号公報に、活性汚泥を高分子担体に包括固定した担体を
排水処理槽に充填し、好気性条件下に接触させることに
より、排水を生物学的に処理する方法が開示されてい
る。
On the other hand, in order to shorten the treatment time and stabilize / advance the treatment, the treatment is carried out by utilizing a microbial carrier for the purpose of increasing the concentration of microorganisms in the wastewater treatment tank and increasing the residence time of the microorganisms. Methods and devices are being developed. As such an example, Japanese Patent Publication No. 59-16516 discloses a fluidized bed type biological treatment method and apparatus in which microorganisms are attached to a granular carrier and the carrier is fluidized to remove organic substances in waste water. Or, Japanese Examined Japanese Patent Publication Sho 63-52556
The publication discloses a method for biologically treating wastewater by filling a wastewater treatment tank with a carrier in which activated sludge is entrapped and fixed on a polymer carrier and contacting the wastewater treatment tank under aerobic conditions.

【0007】別の例として、特公平1−37988号公
報、特公平2−7716号公報、特開平4−31029
8号公報、特開平7−68282号公報、特開平7−6
8287号公報などに、脱窒菌及び硝化菌を各々高分子
担体に包括固定した担体を嫌気槽及び好気槽に充填して
使用する排水の処理方法や装置が開示されている。
As another example, Japanese Patent Publication No. 1-37988, Japanese Patent Publication No. 2-7716, and Japanese Patent Laid-Open No. 4-31029.
No. 8, JP-A-7-68282, and JP-A-7-6.
Japanese Patent No. 8287 discloses a method and an apparatus for treating wastewater in which a carrier in which a denitrifying bacterium and a nitrifying bacterium are entrapped and fixed in a polymer carrier is filled in an anaerobic tank and an aerobic tank and used.

【0008】近年、微生物が付着増殖する担体を処理槽
に充填して排水処理装置の小型化を図る検討が進められ
ており、担体として各種のセラミックス、プラスチック
スなどの粒状体やハニカム状の構造体などが開発されて
いる。排水処理に使用する担体としては、含水率が高い
こと、酸素や基質の透過性に優れていること、生体との
親和性が高いことなどが要求され、このような観点か
ら、例えば、ポリビニルアルコ−ル水溶液(以下、ポリ
ビニルアルコ−ルをPVAと略称する)を鋳型に注入
後、凍結部分脱水を行う方法(特開昭58−36630
号公報)、PVA水溶液を飽和ホウ酸水溶液に接触させ
てゲル化する方法(下水道協会誌、第23巻(198
6)p41;用水と廃水、第30巻(1986)p3
6)、PVAとアルギン酸ナトリウムの混合水溶液を塩
化カルシウム水溶液に接触させて球状化した後、凍結解
凍を行う方法(特開昭64−43188号公報)、さら
にホルムアルデヒドでアセタール化する方法(特開平7
−41516号)などにより得られる含水ゲルが知られ
ている。
[0008] In recent years, studies have been made to fill a treatment tank with a carrier on which microorganisms adhere and proliferate to reduce the size of a wastewater treatment device. As a carrier, various ceramics, granular materials such as plastics, or a honeycomb structure is used. The body is being developed. The carrier used for wastewater treatment is required to have a high water content, excellent permeability to oxygen and substrates, and high affinity with living organisms. From such a viewpoint, for example, polyvinyl alcohol -Water solution (hereinafter polyvinyl alcohol is abbreviated as PVA) is poured into a mold and then frozen and partially dehydrated (Japanese Patent Laid-Open No. 58-36630).
Japanese Patent Publication No.), a method in which an aqueous solution of PVA is brought into contact with a saturated aqueous solution of boric acid to form a gel (Sewerage Society Journal, Volume 23 (198).
6) p41; Water and Wastewater, Volume 30 (1986) p3
6), a method in which a mixed aqueous solution of PVA and sodium alginate is brought into contact with an aqueous calcium chloride solution to be spheroidized, followed by freeze-thawing (JP-A-64-43188), and further acetalization with formaldehyde (JP-A-7-74).
-41516) and the like are known.

【0009】一方、膜分離技術の進歩とともに、処理水
の高品質化を図る目的で分離膜を使用することも多くな
ってきている。一例をあげれば、特公昭64−5960
号公報には、中空糸膜モジュ−ルを処理槽の底面に連通
させて濾過処理する排水処理装置が開示されており、特
公昭64−9071号公報には、中空糸膜モジュ−ルを
処理槽の上部に配置して濾過処理する排水処理装置が開
示されている。
On the other hand, with the progress of the membrane separation technology, the separation membrane is often used for the purpose of improving the quality of treated water. For example, Japanese Examined Patent Publication 64-5960
Japanese Patent Laid-Open Publication No. 64-9071 discloses a waste water treatment device for communicating a hollow fiber membrane module with the bottom surface of a treatment tank for filtration treatment. Japanese Patent Publication No. 64-9071 discloses a treatment of a hollow fiber membrane module. There is disclosed a wastewater treatment device which is disposed on the upper part of a tank and performs a filtering process.

【0010】さらに、処理水を循環することによって効
率的に排水処理を実施する方式も検討されており、例え
ば、特公昭64−9074号公報には、嫌気槽と曝気手
段の上部に膜モジュ−ルを設けた好気槽とからなる処理
槽で、好気槽からの処理水の一部を嫌気槽に戻すように
構成された排水処理装置が開示されている。
Further, a method for efficiently performing wastewater treatment by circulating treated water has been studied. For example, Japanese Patent Publication No. 64-9074 has a membrane module above the anaerobic tank and aeration means. Disclosed is a wastewater treatment device configured to return a part of the treated water from the aerobic tank to the anaerobic tank in a treatment tank including an aerobic tank provided with a tank.

【0011】しかしながら、これらはいずれも、膜モジ
ュ−ルが処理槽の内部に設置されているため、高分子担
体で処理された沈降汚泥が膜の表面や中空糸膜束の間に
付着しやすく、膜の孔を閉塞するため、排水流量負荷を
あまり大きくとることができず、装置のコンパクト化に
限界があった。また、沈降汚泥の膜表面への付着と瀑気
用空気による振動や担体粒子の衝突の相乗効果により、
膜に亀裂や折損が起こりやすかった。
However, in all of these, since the membrane module is installed inside the treatment tank, the settled sludge treated with the polymer carrier easily adheres to the surface of the membrane or between the hollow fiber membrane bundles, and Since the hole of No. 1 is closed, the drainage flow load cannot be taken very large, and there is a limit to downsizing of the device. Also, due to the synergistic effect of the deposition of the settled sludge on the membrane surface and the vibration of the water for water vapor and the collision of carrier particles,
The film was apt to crack or break.

【0012】一方、処理水を循環する方式で、膜モジュ
−ルを処理槽の外部に設けた装置も開示されており、例
えば特公平6−45035号公報には、廃液を、まず脱
窒菌を用いたバイオリアクタ−(I)で処理し、次にB
OD酸化菌、硝化菌を用いたバイオリアクタ−(II)
で処理し、さらにこの処理液を膜分離装置に導入し、膜
を透過しなかった非透過液を前記バイオリアクタ−(I
I)に、膜を透過した透過液をバイオリアクタ−(I)
にそれぞれ循環する排水処理方法が開示されている。
On the other hand, there is also disclosed an apparatus in which a membrane module is provided outside the treatment tank by a method in which treated water is circulated. For example, in Japanese Patent Publication No. 6-45035, waste liquid is first denitrifying bacteria. Bioreactor used (I), then B
Bioreactor using OD oxidizing bacteria and nitrifying bacteria (II)
And then the treated liquid was introduced into a membrane separation device, and the non-permeated liquid that did not permeate the membrane was treated with the bioreactor (I
The permeated liquid that has permeated the membrane is transferred to the bioreactor (I) in (I).
Disclosed is a wastewater treatment method that circulates each.

【0013】また、特開平4−200697号公報に
は、粒状の微生物担体を流動させて処理を行うエアリフ
ト式流動槽及び膨脹式流動槽からなる循環式生物処理装
置と、限外濾過膜装置とからなり、限外濾過膜装置の循
環水の一部又は全部を膨脹式流動槽の底部から圧入する
有機性排水の処理装置が開示されている。
Further, in Japanese Patent Laid-Open No. 4-200697, a circulation type biological treatment apparatus comprising an air-lift type flow tank and an expansion type flow tank for flowing a granular microbial carrier for treatment, and an ultrafiltration membrane device are disclosed. Disclosed is an apparatus for treating organic waste water, which comprises a part or all of the circulating water of the ultrafiltration membrane device, which is press-fitted from the bottom of the expansion type flow tank.

【0014】しかしながら、特公平6−45035号公
報に開示された方法では、膜モジュ−ルは処理槽の外部
に設置されているものの、硝化菌を含有する浮遊活性汚
泥の濃度が高く、依然として膜の目づまりが起こりやす
い欠点がある。また、特開平4−200697号公報に
開示された処理装置では、限外濾過装置の循環水の一部
又は全部を膨脹式流動槽(脱窒槽)の底部から圧入する
が、微生物担体が溢流しないように流量が制限されるた
め、担体の流動性が不足し、脱窒性能の低下を招く欠点
がある。また、液の循環量が多い場合は、槽の溶存酸素
濃度が高くなって脱窒性能が低下する。
However, in the method disclosed in Japanese Patent Publication No. 6-45035, although the membrane module is installed outside the treatment tank, the concentration of floating activated sludge containing nitrifying bacteria is high and the membrane still remains. It has a drawback that it is apt to cause clogging. Further, in the treatment device disclosed in Japanese Patent Laid-Open No. 4-200697, a part or all of the circulating water of the ultrafiltration device is pressed from the bottom of the expansion type flow tank (denitrification tank), but the microorganism carrier overflows. Since the flow rate is limited so as not to occur, there is a drawback in that the fluidity of the carrier is insufficient and the denitrification performance is deteriorated. In addition, when the circulation amount of the liquid is large, the concentration of dissolved oxygen in the tank becomes high and the denitrification performance deteriorates.

【0015】[0015]

【発明が解決しようとする課題】上記のような膜を使用
した排水処理装置はいずれも、ある程度装置の小型化に
寄与するものではあるが、この種の装置は、合併浄化槽
に代表されるように、極めてコンパクトで耐久性に優
れ、しかも処理水の高品質化が可能なものが要求されて
きており、かかる点を満足する排水処理装置は未だ見当
たらない。
All of the above wastewater treatment apparatuses using membranes contribute to downsizing of the apparatus to some extent, but this type of apparatus is typified by a combined septic tank. In addition, there is a demand for an extremely compact and highly durable product that is capable of improving the quality of treated water, and no waste water treatment device that satisfies this point has yet been found.

【0016】また、排水処理においては悪臭が発生する
ことが多く、新たな環境上の問題として指摘されてい
る。従来の担体を使用した排水処理方法では、排水処理
能力はあるものの臭気の除去はできないため、別途悪臭
処理装置を設けるなどの対策が必要であった。したがっ
て、悪臭という観点からも、装置が大型化せず、経済的
にも有利な担体が待望されている。したがって、本発明
の目的は、コンパクトで耐久性に優れ、しかも処理能力
が高く、膜寿命が長い排水処理装置を提供することにあ
る。本発明のもう一つの目的は、コンパクトで耐久性に
優れ、しかも処理能力が高い排水処理装置を提供するこ
とにある。本発明の他の目的は、コンパクトで耐久性に
優れ、しかも処理能力が高く、悪臭を発生する排水にも
適用可能な排水処理装置を提供することにある。
[0016] In addition, a bad odor is often generated in wastewater treatment, and it has been pointed out as a new environmental problem. The conventional wastewater treatment method using a carrier has a wastewater treatment capacity but cannot remove odors, so that it is necessary to take measures such as providing a separate malodor treatment device. Therefore, also from the viewpoint of a bad odor, there is a demand for a carrier that does not increase in size and is economically advantageous. Therefore, an object of the present invention is to provide a wastewater treatment device which is compact, has excellent durability, has a high treatment capacity, and has a long membrane life. Another object of the present invention is to provide a wastewater treatment device that is compact, has excellent durability, and has a high treatment capacity. Another object of the present invention is to provide a wastewater treatment device which is compact, has excellent durability, has a high treatment capacity, and can be applied to wastewater that produces a foul odor.

【0017】[0017]

【課題を解決するための手段】本発明者らは、鋭意検討
を重ね、少なくとも、微生物を固定化した担体粒子を投
入した排水処理槽、及び該処理槽から流出する処理水を
濾過する膜モジュールを有する排水処理装置で、膜モジ
ュールを透過しなかった非透過水を前記処理槽へ返送・
循環するように構成した排水処理装置により、上記課題
が解決されることを見出だし、本発明に至った。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies, and at least a wastewater treatment tank into which carrier particles having immobilized microorganisms are added, and a membrane module for filtering treated water flowing out from the treatment tank. In the wastewater treatment equipment with, the non-permeated water that did not permeate the membrane module is returned to the treatment tank.
It has been found that the above problems can be solved by a wastewater treatment device configured to circulate, and the present invention has been completed.

【0018】すなわち本発明は、少なくとも、微生物を
固定化した担体粒子を投入し、排水中の有機物及び/又
は無機物を分解除去する排水処理槽、及び該処理槽から
流出する処理水を濾過する膜モジュールを有する排水処
理装置において、膜モジュールを透過しなかった非透過
水を前記処理槽へ返送・循環するように構成したことを
特徴とする排水処理装置である。
That is, according to the present invention, at least a effluent treatment tank for introducing carrier particles on which microorganisms are immobilized and decomposing and removing organic matter and / or inorganic matter in wastewater, and a membrane for filtering treated water flowing out from the treatment tank. In a wastewater treatment device having a module, the non-permeated water that has not permeated the membrane module is configured to be returned and circulated to the treatment tank.

【0019】[0019]

【0020】[0020]

【0021】[0021]

【発明の実施の形態】以下、本発明の排水処理装置を図
によりさらに具体的に説明する。図1は本発明の排水処
理装置の一例を示すフロ−チャ−トであり、排水中の有
機物及び/又は無機物を分解除去するための微生物を固
定化した担体粒子が投入された排水処理槽と膜モジュー
ルから構成される。排水処理槽は、脱窒菌を固定化した
担体粒子を投入して嫌気条件下で排水と接触させる脱窒
槽、及び/又は硝化菌を固定化した担体粒子を投入して
好気条件下で排水と接触させる硝化槽である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the wastewater treatment apparatus of the present invention will be described more specifically with reference to the drawings. FIG. 1 is a flow chart showing an example of the wastewater treatment apparatus of the present invention, which is a wastewater treatment tank in which carrier particles having immobilized microorganisms for decomposing and removing organic substances and / or inorganic substances in wastewater are introduced. Composed of membrane module. The wastewater treatment tank may be a denitrification tank in which carrier particles having denitrifying bacteria immobilized therein are brought into contact with wastewater under anaerobic conditions, and / or carrier particles having nitrifying bacteria immobilized therein are introduced into wastewater under aerobic conditions. It is a nitrification tank to be contacted.

【0022】図1に示す排水処理装置において、有機物
及び/又は無機物を含む排水1は、排水処理槽2に流入
する。排水処理槽2には、微生物を固定化した担体粒子
3が投入され、排水は嫌気条件下又は好気条件下で処理
される。図1の排水処理槽2には、散気装置4が設けら
れた例である。5は散気するためのブロワーである。微
生物固定化担体の流出を防ぐために、排水処理槽にスク
リーン6を設けるのが好ましい。排水処理槽2から流出
する処理水はポンプ7により膜モジュール8へクロスフ
ロー方式で導入され、膜を透過しなかった非透過水は返
送ライン9から前記処理槽へ返送・循環される。非透過
水の透過水に対する割合は、膜の特性に依存するので一
概に決められないが、通常は5〜10倍程度である。膜
を透過した処理水は必要に応じさらに消毒などの処理を
して処理済水10として放流される。
In the wastewater treatment equipment shown in FIG. 1, wastewater 1 containing organic substances and / or inorganic substances flows into a wastewater treatment tank 2. The carrier particles 3 on which microorganisms are immobilized are put into the wastewater treatment tank 2, and the wastewater is treated under anaerobic conditions or aerobic conditions. The waste water treatment tank 2 of FIG. 1 is an example in which an air diffuser 4 is provided. 5 is a blower for aeration. In order to prevent the outflow of the microorganism-immobilized carrier, it is preferable to provide the screen 6 in the wastewater treatment tank. The treated water flowing out of the wastewater treatment tank 2 is introduced into the membrane module 8 by the pump 7 in a cross-flow system, and the non-permeated water that has not permeated the membrane is returned and circulated from the return line 9 to the treatment tank. The ratio of the non-permeated water to the permeated water cannot be determined unconditionally because it depends on the characteristics of the membrane, but it is usually about 5 to 10 times. The treated water that has permeated the membrane is further subjected to treatment such as sterilization and discharged as treated water 10.

【0023】図2は、前記処理槽が、脱窒菌を固定化し
た担体粒子を投入して嫌気条件下で排水と接触させる脱
窒槽11、及び硝化菌を固定化した担体粒子を投入して
好気条件下で排水と接触させる硝化槽16から構成さ
れ、これらの処理槽を排水の導入側からこの順に配列
し、硝化槽から流出する硝化処理水を膜モジュ−ル8へ
供給するとともに、該処理水の一部を前記脱窒槽へ返送
・循環し、かつ膜モジュ−ルを透過しなかった非透過水
を硝化槽及び/又は脱窒槽へ返送・循環するように構成
した例を示したフローチャートである。
FIG. 2 shows that the treatment tank is preferably charged with denitrifying tank 11 in which carrier particles having denitrifying bacteria immobilized thereon are brought into contact with waste water under anaerobic conditions, and carrier particles having nitrifying bacteria immobilized therein. It is composed of a nitrification tank 16 that is brought into contact with wastewater under atmospheric conditions, and these treatment tanks are arranged in this order from the introduction side of the wastewater so that the nitrification-treated water flowing out from the nitrification tank is supplied to the membrane module 8 and A flow chart showing an example in which a part of the treated water is returned and circulated to the denitrification tank, and the non-permeated water that has not permeated the membrane module is returned and circulated to the nitrification tank and / or the denitrification tank. Is.

【0024】図2に示す排水処理装置において、有機物
及び/又は無機物を含む排水1は、脱窒槽11に流入す
る。脱窒槽11には、脱窒菌を固定化した担体粒子12
が投入され、排水は嫌気条件下で処理される。脱窒槽に
は担体粒子や汚泥の流出を防ぐために邪魔板13を設け
るのがよく、邪魔板の槽内における先端部は屈曲させて
おくのが効果的であり、好ましい。脱窒槽11におい
て、脱窒菌が固定化された担体粒子は脱窒槽11の底部
に設けられた撹拌装置14で流動されるので、十分な担
体の流動が確保されるうえ、必要以上の液の流入もない
ので滞留時間を大きくすることができる。
In the wastewater treatment equipment shown in FIG. 2, the wastewater 1 containing organic substances and / or inorganic substances flows into the denitrification tank 11. The denitrification tank 11 has carrier particles 12 on which denitrifying bacteria are immobilized.
Is put in, and the wastewater is treated under anaerobic conditions. The denitrification tank is preferably provided with a baffle plate 13 to prevent outflow of carrier particles and sludge, and it is effective and preferable to bend the tip of the baffle plate in the tank. In the denitrification tank 11, the carrier particles on which the denitrifying bacteria are immobilized are flown by the stirring device 14 provided at the bottom of the denitrification tank 11, so that sufficient carrier flow is ensured and inflow of more liquid than necessary. Therefore, the residence time can be increased.

【0025】次いで、脱窒処理水は硝化槽16に流入
し、好気条件下で処理される。4は散気装置であり、5
は散気するためのブロワーである。また、15は硝化菌
を固定化した担体粒子である。担体粒子が流出するのを
防ぐために各槽にスクリーンを設けるのが好ましいこと
は前述したとおりである。硝化槽16から流出する硝化
処理水はポンプ7により膜モジュール8へ導入され、膜
を透過しなかった非透過水は返送ライン17から脱窒槽
及び/又は硝化槽へ返送・循環される。また、硝化処理
水の一部は硝化処理水返送ライン18から脱窒槽11へ
返送・循環される。硝化処理水には硝酸性窒素が含まれ
るので、このように一部を脱窒槽に返送して脱窒処理を
行うと排水を効率よく処理することができる。硝化処理
水を脱窒槽へ返送するにはエアリフトポンプ(図示せ
ず)を使用するのが便利である。その場合、脱窒槽へ返
送する硝化処理水を硝化槽へも返送できるようにしてお
くと流量調整の操作が容易となる。
Next, the denitrification treated water flows into the nitrification tank 16 and is treated under aerobic conditions. 4 is an air diffuser, 5
Is a blower for aeration. Further, 15 is carrier particles on which nitrifying bacteria are immobilized. As described above, it is preferable to provide each tank with a screen in order to prevent carrier particles from flowing out. The nitrification-treated water flowing out from the nitrification tank 16 is introduced into the membrane module 8 by the pump 7, and the non-permeated water that has not permeated the membrane is returned and circulated from the return line 17 to the denitrification tank and / or the nitrification tank. Further, part of the nitrification-treated water is returned and circulated from the nitrification-treated water return line 18 to the denitrification tank 11. Since nitrification-treated water contains nitrate nitrogen, if a part of the nitrification-treated water is returned to the denitrification tank for denitrification treatment, the wastewater can be efficiently treated. It is convenient to use an air lift pump (not shown) to return the nitrification-treated water to the denitrification tank. In that case, if the nitrification-treated water returned to the denitrification tank can be returned to the nitrification tank, the operation of adjusting the flow rate becomes easy.

【0026】硝化処理水の脱窒槽への返送割合は、処理
する排水の性状に応じて適宜変更すればよいが、通常は
膜モジュール透過水の1〜5倍程度で実施される。非透
過水の透過水に対する割合は、膜の特性に依存するので
一概に決められないが、通常は5〜10倍程度である。
また、非透過水の脱窒槽と硝化槽への返送割合は排水の
性状に応じて適宜実施され、例えば等分でもよい。以
下、膜モジュールを使用する本発明の排水処理装置にお
けるこれらの返送割合は同様である。膜を透過した処理
水は必要に応じさらに消毒などの処理をして処理済水1
0として放流される。
The rate of returning the nitrification-treated water to the denitrification tank may be appropriately changed according to the properties of the wastewater to be treated, but it is usually about 1 to 5 times the permeated water of the membrane module. The ratio of the non-permeated water to the permeated water cannot be determined unconditionally because it depends on the characteristics of the membrane, but it is usually about 5 to 10 times.
Further, the rate of returning the non-permeated water to the denitrification tank and the nitrification tank is appropriately carried out depending on the nature of the drainage, and may be equally divided, for example. Hereinafter, in the waste water treatment equipment of the present invention using the membrane module, the return ratios thereof are the same. Treated water that has permeated the membrane is further treated as necessary, such as disinfection, and treated water 1
Released as 0.

【0027】本発明の排水処理装置において、脱窒槽の
前に嫌気性処理を行うための嫌気濾過装置又は最初沈殿
槽を設けるとさらに効果的である。図3は、脱窒槽の前
に嫌気濾過装置19又は最初沈殿槽20を設けた例であ
る。硝化処理水には硝酸性窒素が含まれるので、膜モジ
ュ−ルへの負荷とならないように一部の液を嫌気濾過装
置に返送して、嫌気濾過処理及び脱窒処理を行う。この
場合、膜モジュ−ルは硝化槽の外部に設置する方が膜寿
命が延びる傾向にあり、望ましい。硝化処理水は返送ラ
イン21により脱窒槽11又は嫌気濾過装置19もしく
は最初沈殿槽20へ返送され、膜モジュールを透過しな
かった非透過水は非透過水返送ライン22により硝化槽
16へ返送される。
In the wastewater treatment equipment of the present invention, it is more effective to provide an anaerobic filtration device or an initial settling tank for anaerobic treatment before the denitrification tank. FIG. 3 shows an example in which the anaerobic filtration device 19 or the first settling tank 20 is provided in front of the denitrification tank. Since nitrification-treated water contains nitrate nitrogen, a part of the liquid is returned to the anaerobic filtration device so as not to load the membrane module, and anaerobic filtration treatment and denitrification treatment are performed. In this case, it is preferable to install the membrane module outside the nitrification tank because the membrane life tends to be extended. The nitrification-treated water is returned by the return line 21 to the denitrification tank 11, the anaerobic filtration device 19 or the first settling tank 20, and the non-permeated water that has not permeated the membrane module is returned to the nitrification tank 16 by the non-permeated water return line 22. .

【0028】処理液をこのように返送・循環することに
より、固定化担体の機能を十分引き出すことができ、一
層コンパクトな装置とすることができる。かかる装置に
よれば、余剰汚泥も通常の活性汚泥法による場合の数分
の1となるので、膜モジュ−ルへの汚泥負荷が下がり、
外部に膜モジュ−ルを置くメリットを十分生かすことが
でき、膜の寿命を延ばすことが可能となるのである。通
常硝化槽から嫌気濾過装置への返送割合は排水の性状に
より適宜変更することができるが、通常、膜モジュ−ル
での透過液の1〜5倍であり、膜モジュ−ルでの非透過
液の硝化槽への返送割合は処理透過液の1〜10倍程度
である。
By returning and circulating the treatment liquid in this manner, the function of the immobilization carrier can be sufficiently brought out, and a more compact device can be obtained. According to such an apparatus, since the excess sludge is also reduced to a fraction of that in the case of the usual activated sludge method, the sludge load on the membrane module is reduced,
The merit of placing the membrane module on the outside can be fully utilized, and the life of the membrane can be extended. The rate of return from the nitrification tank to the anaerobic filtration device can be appropriately changed depending on the nature of the wastewater, but it is usually 1 to 5 times that of the permeate in the membrane module, and non-permeate in the membrane module. The ratio of the liquid returned to the nitrification tank is about 1 to 10 times that of the treated permeate.

【0029】嫌気濾過装置19において、排水中の浮遊
物などが除かれるが、濾過材に嫌気性菌が付着するの
で、嫌気濾過装置で同時に嫌気性処理も行われる。加え
て、硝化処理水の一部が循環されるため、脱窒工程の一
部を担うことになり、硝化処理水を脱窒槽に循環する場
合よりも脱窒槽の容量が小さくてすむ。嫌気濾過装置に
使用される濾過材は、前記浮遊物を除くことができれ
ば、とくに制限はなく、例えば繊維、プラスチック、こ
れらの成型物などが使用される。これらの濾過材は圧力
損失が少なく、かつ微生物の付着が多くなる形態が好ま
しく、格子状に成型されたものを使用するのが好まし
い。
In the anaerobic filtration device 19, suspended matters in the waste water are removed, but since anaerobic bacteria adhere to the filter material, the anaerobic filtration device also performs anaerobic treatment. In addition, since a part of the nitrification-treated water is circulated, the nitrification-treated water is responsible for a part of the denitrification process, and the capacity of the denitrification tank can be smaller than that when the nitrification-treated water is circulated to the denitrification tank. The filter material used in the anaerobic filtration device is not particularly limited as long as the suspended matter can be removed, and for example, fibers, plastics, and molded products thereof can be used. It is preferable that these filter materials have a small pressure loss and a large amount of adherence of microorganisms, and it is preferable to use a filter material molded in a lattice shape.

【0030】図3において、嫌気濾過装置を使用する場
合、排水1はまず嫌気濾過装置19に導入され、浮遊物
などが除かれる。嫌気濾過装置19では、前述したよう
に、濾過材に嫌気性菌が付着するので、同時に嫌気性処
理も行われる。本発明の排水処理装置において、脱窒槽
の前に最初沈殿槽を設置してもよい。この場合は、排水
1は最初沈殿槽20に導入され、ここで排水中の浮遊物
などが予め沈殿される。
In FIG. 3, when the anaerobic filtration device is used, the wastewater 1 is first introduced into the anaerobic filtration device 19 to remove suspended matters and the like. As described above, in the anaerobic filtration device 19, since anaerobic bacteria adhere to the filter material, anaerobic treatment is also performed at the same time. In the wastewater treatment equipment of the present invention, a precipitation tank may be installed first before the denitrification tank. In this case, the wastewater 1 is first introduced into the settling tank 20, where the suspended solids in the wastewater are settled in advance.

【0031】図4は、排水処理槽を、硝化槽及び脱窒槽
とし、排水の導入側からこの順に配列した例である。こ
の場合は脱窒菌の生育のために脱窒槽に有機炭素源を補
給する必要がある。近年、し尿や家庭の雑排水を同時に
処理する合併処理が広がりつつあるが、BOD成分の処
理だけでなく、水域の富栄養化対策として窒素成分の除
去が大きな課題となっている。本発明の排水処理装置
は、このような課題を解決するものであり、しかも設置
スペ−スが小さくて済むので、合併浄化槽として使用す
るのに好適である。図5は、図3の排水処理装置を合併
浄化槽として一体化した例である。図5は、膜モジュー
ルを硝化槽の外部に設け、硝化処理水を膜モジュ−ルへ
ポンプで圧入する例であるが、吸引濾過や重力濾過で実
施してよいことは勿論である。硝化槽へ散気するための
ブロワーは図示を省略している。
FIG. 4 shows an example in which the wastewater treatment tanks are a nitrification tank and a denitrification tank, which are arranged in this order from the wastewater introduction side. In this case, it is necessary to supplement the denitrification tank with an organic carbon source for the growth of denitrifying bacteria. In recent years, merger processing for simultaneously treating human waste and household wastewater has been spreading, but removal of nitrogen components has become a major issue as a measure for eutrophication of water bodies as well as treatment of BOD components. The waste water treatment apparatus of the present invention solves such a problem, and since it requires a small installation space, it is suitable for use as a combined septic tank. FIG. 5 is an example in which the wastewater treatment device of FIG. 3 is integrated as a combined septic tank. FIG. 5 shows an example in which the membrane module is provided outside the nitrification tank and the nitrification-treated water is pumped into the membrane module by a pump, but it goes without saying that suction filtration or gravity filtration may be used. The blower for aerating to the nitrification tank is not shown.

【0032】脱窒槽及び/又は硝化槽には、脱窒菌、硝
化菌などの微生物を固定化した担体が投入されるが、こ
のような担体を使用することにより、SS成分の負荷が
減少する。微生物として脱窒菌又は硝化菌を固定化する
ための担体としては、ビニルアルコ−ル系樹脂、アクリ
ル系樹脂、アクリルアミド系樹脂、オレフィン系樹脂、
スチレン系樹脂、ポリウレタン系樹脂、多糖類、ポリエ
−テル、多孔質無機化合物などをあげることができ、具
体的にはPVA系、ポリエチレングリコ−ル系、ポリア
クリルアミド系、アルギン酸カルシウム、カラギ−ナ
ン、寒天、光硬化性樹脂などの高分子ゲル、活性炭、ポ
リウレタンスポンジ、ポリアクリロニトリル、ポリエチ
レン、ポリプロピレン、ポリスチレン、セルロ−ス誘導
体、ポリエステルなどを例示することができる。
A carrier on which microorganisms such as denitrifying bacteria and nitrifying bacteria are immobilized is introduced into the denitrification tank and / or the nitrification tank. By using such a carrier, the load of the SS component is reduced. As a carrier for immobilizing denitrifying bacteria or nitrifying bacteria as microorganisms, vinyl alcohol resin, acrylic resin, acrylamide resin, olefin resin,
Examples thereof include styrene-based resins, polyurethane-based resins, polysaccharides, polyethers, porous inorganic compounds, and the like. Specifically, PVA-based, polyethylene glycol-based, polyacrylamide-based, calcium alginate, carrageenan, Examples thereof include agar, polymer gels such as photocurable resins, activated carbon, polyurethane sponge, polyacrylonitrile, polyethylene, polypropylene, polystyrene, cellulose derivatives, and polyester.

【0033】担体としては、菌を付着させた場合、BO
D除去能力、硝化能力及び脱窒能力の点で高分子含水ゲ
ルが好ましく、含水ゲルを使用する場合、含水ゲルが処
理槽で流動することにより、膜表面に接触し、膜の表面
をクリ−ニングする効果が大きい。なかでも、PVA系
含水ゲルは、担体表面及び内部に網目構造を有している
ため微生物が生息しやすく、かつ有機化合物の捕捉性に
優れており、しかも機械的強度にも優れているので、好
ましい。また、PVAの平均重合度及び/又はケン化度
は高い方がPVAの濃度を低下することができるので、
ゲルの含水率を上げることができ、したがって、微生物
の生息性がよくなり好ましい。かかる点から、PVAの
平均重合度は1000以上のものが好ましく、とくに1
500以上のものがさらに好ましい。また、PVAのケ
ン化度は95モル%以上のものが好ましく、とくに98
モル%以上のものがさらに好ましい。
As the carrier, when bacteria are attached, BO
D A high molecular weight hydrogel is preferable from the viewpoints of removal ability, nitrification ability and denitrification ability. When a hydrogel is used, the hydrogel flows in a treatment tank to come into contact with the membrane surface and clear the membrane surface. The effect of training is great. Among them, since the PVA-based hydrogel has a network structure on the surface and inside of the carrier, microorganisms can easily inhabit it, and it is excellent in capturing organic compounds, and is also excellent in mechanical strength. preferable. Moreover, since the higher the average degree of polymerization and / or the degree of saponification of PVA, the lower the concentration of PVA,
The water content of the gel can be increased, and thus the habitability of microorganisms is improved, which is preferable. From this point, the average degree of polymerization of PVA is preferably 1000 or more, and particularly 1
It is more preferably 500 or more. The degree of saponification of PVA is preferably 95 mol% or more, and particularly 98
More preferably, it is at least mol%.

【0034】PVAの濃度は担体の強度面から大きい方
が好ましく、微生物の生息性からは小さい方が好ましい
ので、1wt%〜40wt%が好ましく、3wt%〜2
0wt%がさらに好ましい。
The concentration of PVA is preferably high from the viewpoint of the strength of the carrier, and is preferably low from the habitability of microorganisms, so 1 wt% to 40 wt% is preferable, and 3 wt% to 2 wt%.
0 wt% is more preferable.

【0035】PVAの溶出や劣化を防止するために、P
VAをアセタ−ル化するのが望ましい。アセタ−ル化剤
としては、ホルマリン、グルタルアルデヒド、グリオキ
ザ−ル、テレフタルアルデヒド、ω,ω´−ノナンジア
−ルなどを例示することができる。ポリビニルホルマ−
ルはこのようなアセタ−ル化PVAの好ましい例であ
る。アセタ−ル化度は、あまり低いと耐水性が低くな
り、またあまり高いと疎水化されて微生物の生息が悪く
なるので、10〜60モル%が好ましく、20〜55モ
ル%がさらに好ましい。
In order to prevent elution and deterioration of PVA, P
It is desirable to acetalize the VA. Examples of the acetalizing agent include formalin, glutaraldehyde, glyoxal, terephthalaldehyde, ω, ω′-nonanedial and the like. Polyvinyl polymer
Are preferred examples of such acetalized PVA. If the degree of acetalization is too low, the water resistance will be low, and if it is too high, it will be hydrophobized and the habitation of microorganisms will be impaired, so 10 to 60 mol% is preferable, and 20 to 55 mol% is more preferable.

【0036】アセタ−ル化するための酸としては、硫
酸、塩酸、リン酸、硝酸、酢酸、シュウ酸などの酸や、
硫酸水素ナトリウム、硫酸水素アンモニウムなどの酸性
塩が使用されるが、アルデヒド化合物や酸の存在下で
は、含水ゲルが過膨潤したり、溶解する可能性があるこ
とから、アセタ−ル化液にはその抑制剤として、PVA
の離液作用のある硫酸ナトリウムなどを添加してもよ
い。
Acids for acetalization include acids such as sulfuric acid, hydrochloric acid, phosphoric acid, nitric acid, acetic acid and oxalic acid, and
Acid salts such as sodium hydrogensulfate and ammonium hydrogensulfate are used. However, in the presence of an aldehyde compound or an acid, the hydrous gel may swell or dissolve. As its inhibitor, PVA
You may add sodium sulfate etc. which have the synergic action.

【0037】PVAのアセタ−ル化を阻害しない範囲
で、例えばアルギン酸ナトリウム、カラギ−ナン、ホウ
酸などの成型助剤や炭酸イオン、炭酸水素イオン、硫酸
イオン、リン酸イオンなどの2種以上の高分子を相分離
させるような1価又は多価アニオンを添加してもよい。
アセタ−ル化PVA系ゲルは、表面が凹凸構造であると
ともに、表面から中心部にフィンガー状の連通孔を有し
ているので、微生物が生息するのに好適である。
Within a range that does not inhibit the acetalization of PVA, for example, a molding aid such as sodium alginate, carrageenan, boric acid, or two or more kinds of carbonate ion, hydrogen carbonate ion, sulfate ion, phosphate ion and the like. A monovalent or polyvalent anion that causes phase separation of the polymer may be added.
The acetalized PVA-based gel has an uneven structure on the surface and has finger-shaped communication holes from the surface to the central portion, and is suitable for inhabiting microorganisms.

【0038】本発明に使用されるアセタール化PVA系
含水ゲルは、分子内に水酸基を有するため親水性を示
し、微生物の棲息性が高い。このアセタール化PVA系
含水ゲルは、好気性条件下に有機性の排水を処理する排
水処理槽、並びに嫌気性条件下に生物学的に脱窒を行う
脱窒槽及び/又は好気性条件下に生物学的に硝化を行う
硝化槽に投入されることにより、被処理水中に存在する
微生物が担体の外部表面および内部に効果的に付着・結
合固定化される。アセタール化PVA系含水ゲルは、槽
内において微生物の付着・結合固定化が定常状態に達し
たときに比重が1.00〜1.05となるので槽内を均
一に流動することができ、比重の点からも好ましい。
The acetalized PVA hydrogel used in the present invention has hydrophilicity because it has a hydroxyl group in the molecule, and has high habitability for microorganisms. This acetalized PVA-based hydrogel is a wastewater treatment tank for treating organic wastewater under aerobic conditions, and a denitrification tank for biological denitrification under anaerobic conditions and / or organisms under aerobic conditions. The microorganisms existing in the water to be treated are effectively attached / bonded and immobilized on the outer surface and the inside of the carrier by being placed in a nitrification tank that performs nitrification. The acetalized PVA-based hydrogel has a specific gravity of 1.00 to 1.05 when the attachment and binding of microorganisms reaches a steady state in the tank, so that it can flow uniformly in the tank. From the viewpoint of, it is also preferable.

【0039】アセタ−ル化したPVAゲル状担体は、ア
セタ−ル化液と分離し、水洗や中和などの処理をして、
排水処理や脱臭に使用できる担体となる。ゲル状担体
は、一旦乾燥させてもよい。水に浸漬すると再び含水ゲ
ルとなる。含水率は高い方が好ましく、湿潤重量基準で
50〜99%が好ましく、さらに好ましくは、60〜9
8%である。湿潤重量基準の含水率の測定方法は、担体
を25℃の水に24時間以上浸漬した後、表面付着水を
除いた担体の重量を測定し(湿重量)、これを105℃
で4時間乾燥後、重量を測定する(乾重量)。湿潤重量
基準の含水率は、(湿重量−乾重量)/湿重量×100
(%)で表される。
The acetalized PVA gel-like carrier is separated from the acetalized liquid, and is subjected to treatments such as washing with water and neutralization,
It becomes a carrier that can be used for wastewater treatment and deodorization. The gel carrier may be dried once. When immersed in water, it becomes a hydrogel again. The higher the water content is, the more preferable is 50 to 99% on a wet weight basis, and the more preferable is 60 to 9%.
8%. The water content based on wet weight is measured by immersing the carrier in water at 25 ° C for 24 hours or more, and then measuring the weight of the carrier excluding water adhering to the surface (wet weight).
After drying for 4 hours, the weight is measured (dry weight). Moisture content based on wet weight is (wet weight-dry weight) / wet weight x 100
It is represented by (%).

【0040】最も好ましい含水ゲルは、出願人によりす
でに特願平9−11057号として出願された、表面に
平均径10〜100μm及び深さ10〜100μmの凹
部を表面の長さ1mm当たり10個以上有し、含水率が
50重量%以上であるアセタ−ル化PVA系含水ゲルで
あり、該出願をさらに補充して、特願平9−34204
7号として出願された、直径0.1〜50μmの繊維状
物が絡み合って形成された網状構造を表面層とするPV
A系含水ゲルである。この含水ゲルを製造する方法は、
上記明細書に詳述されているが、一例をあげれば、平均
重合度1700、ケン化度99.8モル%のPVA8w
t%、アルギン酸ナトリウム1wt%、炭酸水素ナトリ
ウム0.3wt%の混合水溶液を調製し、該水溶液を
0.1モル/リットルの塩化カルシウム水溶液に滴下す
ることにより、球状成形物として得、しかる後、ホルム
アルデヒド20g/リットル、硫酸200g/リット
ル、硫酸ナトリウム100g/リットルのアセタ−ル化
用水溶液に浸漬し、水洗して得ることができる。
The most preferred hydrogel is the one already filed by the applicant as Japanese Patent Application No. 9-11057, in which 10 or more concave portions having an average diameter of 10 to 100 μm and a depth of 10 to 100 μm are formed on the surface per 1 mm of the surface length. An acetalized PVA-based hydrogel having a water content of 50% by weight or more, the content of which is further supplemented by Japanese Patent Application No. 9-34204.
PV having a net-like structure formed by intertwining fibrous materials having a diameter of 0.1 to 50 μm, applied as No. 7, as a surface layer
It is an A-type hydrous gel. The method for producing this hydrous gel is
As described in detail in the above specification, as an example, PVA8w having an average polymerization degree of 1700 and a saponification degree of 99.8 mol% is used.
t%, sodium alginate 1 wt%, sodium hydrogen carbonate 0.3 wt% was prepared, and the aqueous solution was added dropwise to a 0.1 mol / liter calcium chloride aqueous solution to obtain a spherical molded product. It can be obtained by immersing in formaldehyde 20 g / liter, sulfuric acid 200 g / liter and sodium sulfate 100 g / liter in an aqueous solution for acetalization and washing with water.

【0041】担体の形状はとくに限定されるものではな
く、繊維状、サイコロ状、フィルム状、円柱状、中空円
筒状、球状、円盤状など任意の形状に成形したものを使
用することができるが、担体の流動性の点で球状のもの
が好ましい。
The shape of the carrier is not particularly limited, and any shape such as a fibrous shape, a dice shape, a film shape, a cylindrical shape, a hollow cylindrical shape, a spherical shape, or a disc shape can be used. From the viewpoint of the fluidity of the carrier, the spherical one is preferable.

【0042】活性炭は、本来有している難分解性有機物
の吸着除去能、脱臭能はもとより、活性炭に付着して増
殖した微生物によるBOD除去能、脱窒能、硝化能に優
れているので、好ましい担体である。活性炭を担体とし
て使用すると、活性炭が吸着した有機物を微生物が分解
除去することによって活性炭の生物再生が行われ、吸着
能力を長く維持することができ、またSS成分の負荷も
減少する。さらに、活性炭は、耐久性、耐機械摩耗性も
良好である。活性炭を浮遊流動させて使用する場合は、
膜の表面をクリ−ニングする効果が大きい。しかしなが
ら、活性炭は他の含水ゲルに比較して流動性があまりよ
くなく、しかも急激な流動により毀れ易いので、活性炭
の性能を充分引き出すには、排水処理槽に固定して使用
するのが好ましい。担体として、担体の一部に活性炭を
含むものであってもよい。
Activated carbon is excellent not only in its ability of adsorbing and removing deodorant organic substances which it originally has, but also in its ability to remove BOD, denitrification and nitrifying ability of microorganisms attached to activated carbon and proliferated. It is a preferred carrier. When activated carbon is used as a carrier, the organic matter adsorbed by activated carbon is decomposed and removed by microorganisms, whereby activated carbon is bioregenerated, the adsorption capacity can be maintained for a long time, and the load of SS components is also reduced. Furthermore, activated carbon has good durability and mechanical abrasion resistance. When using activated carbon in a floating flow,
The effect of cleaning the surface of the film is great. However, activated carbon is not so good in fluidity as other water-containing gels and is liable to be aggravated by a rapid flow. Therefore, in order to fully bring out the performance of activated carbon, it is preferable to fix it to a waste water treatment tank. The carrier may include activated carbon as part of the carrier.

【0043】活性炭としては、木炭、石炭、コ−クス、
ヤシガラ、樹脂、石油ピッチなどを原料として製造され
たものが使用されるが、これら木質系、石炭系、樹脂
系、ピッチ系などの各種原料炭化物を、ガス賦活法、水
蒸気賦活法、薬品賦活法などの方法により賦活したもの
が好ましい。賦活法としては、塩化亜鉛やリン酸で賦活
する方法によるものが効果があり好ましい。
As the activated carbon, charcoal, coal, coke,
Those produced by using coconut husk, resin, petroleum pitch, etc. as raw materials are used, but various raw material carbides such as wood-based, coal-based, resin-based, pitch-based, etc. are gas activated, steam activated, and chemical activated. Those activated by the method described above are preferred. As an activation method, a method of activation with zinc chloride or phosphoric acid is effective and preferable.

【0044】活性炭の品質は、充填比重0.10〜0.
70g/cm3 、好ましくは0.15〜0.60g/c
3 、比表面積300〜2800m2 /g、好ましくは
600〜2500m2 /g、細孔半径10nm〜500
μの範囲の細孔容積0.1〜2.5ml/g、好ましく
は0.5〜2.0ml/g、粒子径0.1〜8mmのも
のが好適である。なかでも、木質系のものは担体表面及
び内部に網目構造を有しているため微生物が付着しやす
く、かつ有機化合物や臭い成分の捕捉に優れているので
好ましい。活性炭は流動すると壊れやすいので、活性炭
の機能を充分引き出すためには、固定層などの形式で使
用するのが好ましい。
The quality of activated carbon has a packing specific gravity of 0.10 to 0.
70 g / cm 3 , preferably 0.15 to 0.60 g / c
m 3 , specific surface area 300 to 2800 m 2 / g, preferably 600 to 2500 m 2 / g, pore radius 10 nm to 500
The pore volume in the range of μ is 0.1 to 2.5 ml / g, preferably 0.5 to 2.0 ml / g, and the particle diameter is 0.1 to 8 mm. Among them, the wood-based one is preferable because it has a network structure on the surface and inside of the carrier, and thus microorganisms are easily attached to it and it is excellent in capturing organic compounds and odorous components. Since activated carbon is easily broken when it flows, it is preferable to use it in the form of a fixed bed or the like in order to fully bring out the function of activated carbon.

【0045】排水は悪臭を発生することが多く、このよ
うな場合には、活性炭を含有する担体を使用するのが好
ましい。このような担体を製造するには、例えば、PV
Aなどの担体原料、アルギン酸ナトリウムなどの成型助
剤及び活性炭の混合水懸濁液を調製し、ゲル化すればよ
い。水懸濁液の濃度はとくに限定されるものではない
が、ゲル化し易さの点から、通常、担体原料1〜40w
t%、成型助剤0.1〜5wt%及び活性炭0.1〜5
wt%で実施される。この水懸濁液をノズルから塩化カ
ルシウム水溶液に摘下すると球状のゲルを得ることがで
きる。
Waste water often gives off a bad odor, and in such a case, it is preferable to use a carrier containing activated carbon. To produce such a carrier, for example, PV
A mixed water suspension of a carrier raw material such as A, a molding aid such as sodium alginate, and activated carbon may be prepared and gelled. The concentration of the aqueous suspension is not particularly limited, but from the viewpoint of easy gelation, the carrier raw material is usually 1 to 40 w.
t%, molding aid 0.1 to 5 wt% and activated carbon 0.1 to 5
It is carried out at wt%. A spherical gel can be obtained by dropping this aqueous suspension into a calcium chloride aqueous solution from a nozzle.

【0046】担体の表面及び/又は内部における活性炭
の分布状態はとくに限定されるものではないが、均一に
分布している方が好ましいのは勿論である。担体におけ
る活性炭の含有割合は、あまり少ないと脱臭効果が小さ
いので、0.5〜5wt%のものが好ましい。PVA系
ゲルがアセタ−ル化PVA系ゲルの場合、表面が凹凸構
造であるとともに、表面から中心部に連通孔を有してい
るので、表面の活性炭のみならず、内部の活性炭の効果
を有効に引き出すことができるので、好適である。
The distribution state of the activated carbon on the surface and / or inside of the carrier is not particularly limited, but it is of course preferable that the activated carbon is uniformly distributed. If the content ratio of the activated carbon in the carrier is too small, the deodorizing effect is small, so that the content ratio of 0.5 to 5 wt% is preferable. When the PVA-based gel is an acetalized PVA-based gel, since the surface has an uneven structure and has a communication hole from the surface to the center, the effect of not only the activated carbon on the surface but also the activated carbon inside is effective. It is suitable because it can be pulled out to the outside.

【0047】担体原料に含有される活性炭の品質は、充
填比重0.10〜0.70g/cm3 、好ましくは0.
15〜0.60g/cm3 、比表面積300〜2800
2/g、好ましくは600〜2500m2 /g、細孔
半径10nm〜1μmの範囲の細孔容積0.1〜2.5
ml/g、好ましくは0.5〜2.0ml/g、粒子径
1μm〜100μmのものが好適である。なかでも、木
質系のものは担体表面及び内部に網目構造を有している
ため微生物が付着しやすく、かつ有機化合物や臭い成分
の捕捉に優れているので好ましい。
The quality of the activated carbon contained in the carrier raw material has a packing specific gravity of 0.10 to 0.70 g / cm 3 , preferably 0.
15-0.60 g / cm 3 , specific surface area 300-2800
m 2 / g, preferably 600~2500m 2 / g, a pore volume in the range of pore radius 10 nm to 1 m 0.1 to 2.5
ml / g, preferably 0.5 to 2.0 ml / g, and a particle size of 1 μm to 100 μm are suitable. Among them, the wood-based one is preferable because it has a network structure on the surface and inside of the carrier, and thus microorganisms are easily attached to it and it is excellent in capturing organic compounds and odorous components.

【0048】活性炭の形状としては、粒状、粉末状、繊
維状など種々の形状のものが使用可能であるが、担体に
均一に存在させるためには粉末状のものが好ましい。活
性炭の一例をあげれば、クラレケミカル(株)製の商品
名クラレコ−ルKW、東洋カルゴン(株)製の商品名F
400、呉羽化学工業(株)製の商品名BAC、東邦レ
−ヨン(株)製の商品名FX−300などをあげること
ができる。
As the shape of the activated carbon, various shapes such as granular shape, powder shape and fibrous shape can be used, but the powder shape is preferable in order to make it uniformly exist in the carrier. As an example of activated carbon, Kuraray Chemical Co., Ltd., trade name Kuraray Kol, Toyo Calgon Co., Ltd., trade name F
400, trade name BAC manufactured by Kureha Chemical Industry Co., Ltd., trade name FX-300 manufactured by Toho Rayon Co., Ltd., and the like.

【0049】脱窒槽及び硝化槽には、脱窒菌又は硝化菌
を固定化した担体粒子が充填されるが、担体粒子は各槽
で同じものを使用してもよく、別のものであってもよ
い。例えば、脱窒槽、硝化槽ともにPVAなどの含水ゲ
ルを使用するケ−ス、脱窒槽、硝化槽ともに活性炭を使
用するケ−ス、脱窒槽に活性炭を使用し、硝化槽に含水
ゲルを使用するケ−ス、脱窒槽に含水ゲルを使用し、硝
化槽に活性炭を使用するケ−スなど種々のケ−スがあ
り、所望に応じて適宜実施可能である。脱窒菌及び硝化
菌は予め担体粒子に固定化して使用してもよいが、担体
粒子を槽に投入し、菌が自然に付着するのを利用しても
よい。
The denitrification tank and the nitrification tank are filled with carrier particles on which denitrifying bacteria or nitrifying bacteria are immobilized. The same carrier particles may be used in each tank, or different carrier particles may be used. Good. For example, a case using hydrous gel such as PVA for both the denitrification tank and the nitrification tank, a case using activated carbon for both the denitrification tank and the nitrification tank, activated carbon for the denitrification tank, and hydrous gel for the nitrification tank. There are various cases such as a case in which a hydrogel is used in a case and a denitrification tank and a case in which activated carbon is used in a nitrification tank, which can be appropriately implemented as desired. The denitrifying bacteria and the nitrifying bacteria may be used after being immobilized on carrier particles in advance, but it is also possible to put the carrier particles in a tank and use that the bacteria naturally adhere.

【0050】膜モジュ−ルに使用される分離膜の素材は
耐久性があればよく、例えば、ポリスルホン系、ポリア
クリロニトリル系、ポリオレフィン系、セルロ−ス系、
ポリアミド系、ポリエステル系、ポリビニルアルコ−ル
系、ポリ(メタ)アクリル酸エステル系、ポリイミド系
などの樹脂があげられる。分離性能の点からは精密濾過
膜又は限外濾過膜を使用するのが好ましい。
The material of the separation membrane used in the membrane module should be durable, for example, polysulfone type, polyacrylonitrile type, polyolefin type, cellulose type,
Examples thereof include polyamide-based, polyester-based, polyvinyl alcohol-based, poly (meth) acrylic acid ester-based, and polyimide-based resins. From the viewpoint of separation performance, it is preferable to use a microfiltration membrane or an ultrafiltration membrane.

【0051】膜モジュ−ルに親水性の膜又は親水化され
た膜を使用すると、SS成分が膜に付着しにくく、SS
成分が付着しても、空気や透過液などによる逆洗で容易
に剥離するため好ましい。ポリビニルアルコ−ルなどの
ビニルアルコ−ル系の樹脂は親水性膜の好ましい例であ
る。また、ポリスルホン系、ポリオレフィン系など疎水
性の樹脂をポリビニルアルコ−ルなどのビニルアルコ−
ル系の樹脂などで親水化した膜を使用してもよい。ビニ
ルアルコ−ル系の樹脂をアセタ−ル化して使用してよい
ことは勿論である。
When a hydrophilic or hydrophilized membrane is used for the membrane module, SS components are less likely to adhere to the membrane,
Even if the components adhere, they are preferable because they are easily peeled off by backwashing with air or a permeate. Vinyl alcohol-based resins such as polyvinyl alcohol are preferred examples of hydrophilic membranes. In addition, hydrophobic resins such as polysulfone type and polyolefin type are used for vinyl alcohol such as polyvinyl alcohol.
You may use the film hydrophilized by the resin of a resin type. Needless to say, a vinyl alcohol-based resin may be used in the form of acetal.

【0052】これらの膜は、中空糸、平膜などいずれの
形状のものも使用されるが、中空糸形状のものを使用す
るのが、取扱性、コンパクト性などの点で好ましく、例
えば内径200〜2500μm程度のものが好ましく使
用される。中空糸膜モジュ−ルは処理量に応じて所要の
本数を直列又は並列にして使用される。
As these membranes, any shape such as hollow fiber or flat membrane can be used. However, it is preferable to use the hollow fiber shape from the viewpoint of handleability and compactness, for example, an inner diameter of 200. Those having a thickness of about 2,500 μm are preferably used. The hollow fiber membrane module is used in a required number in series or in parallel according to the amount of treatment.

【0053】膜モジュ−ルは硝化槽内部に浸漬して使用
しても、硝化槽の外部に設置して使用してもよい。膜モ
ジュ−ルを硝化槽内部に浸漬して使用する場合、硝化処
理水は通常吸引濾過や重力濾過で実施される。膜モジュ
−ルを硝化槽の外部に設置して使用する場合、硝化処理
水はポンプで圧入しても、吸引濾過や重力濾過で実施し
てもよい。図1は膜モジュ−ルを硝化槽の外部に設け、
硝化処理水をポンプで圧入する例である。膜モジュ−ル
として、中空糸膜モジュ−ルを使用する場合、処理水を
中空糸の内側に通す内圧濾過方式でも、処理水を中空糸
の外側に通す外圧濾過方式でもよいが、クロスフロー方
式を採用すると、膜の目詰まりを少なくすることがで
き、好ましい。
The membrane module may be used by immersing it inside the nitrification tank or installed outside the nitrification tank. When the membrane module is immersed in the nitrification tank for use, the nitrification-treated water is usually subjected to suction filtration or gravity filtration. When the membrane module is installed outside the nitrification tank and used, the nitrification-treated water may be injected by a pump, suction filtration or gravity filtration. In Fig. 1, the membrane module is installed outside the nitrification tank,
This is an example of press-fitting nitrification-treated water with a pump. When a hollow fiber membrane module is used as the membrane module, an internal pressure filtration method in which treated water is passed inside the hollow fiber or an external pressure filtration method in which treated water is passed outside the hollow fiber may be used. The use of is preferable because clogging of the film can be reduced.

【0054】図6は、本発明の、少なくとも、微生物を
固定化した担体粒子を投入し、排水中の有機物及び/又
は無機物を分解除去する排水処理槽からなる排水処理装
置において、排水処理槽にアセタ−ル化PVA系含水ゲ
ルに微生物を固定化したものを担体として使用した排水
処理装置の例であり、排水中の有機物を好気性条件下で
分解除去する場合のフローチャートである。2は排水処
理槽、24は最終沈殿槽である。まず、最初沈殿槽(図
示せず)から排水1を排水処理槽2に供給する。排水処
理槽2には、運転下限の排水中に予めアセタール化PV
A含水ゲル23が投入されており、排水処理槽2の底部
に設けられた散気装置4により流動化されている。5は
散気装置4に接続されたブロワーであり、散気装置4の
駆動手段である。排水は排水処理槽2で生物学的に処理
される。
FIG. 6 shows a wastewater treatment apparatus according to the present invention, which is a wastewater treatment apparatus comprising a wastewater treatment tank in which at least carrier particles on which microorganisms are immobilized are charged and organic substances and / or inorganic substances in wastewater are decomposed and removed. 1 is an example of a waste water treatment apparatus using a carrier in which microorganisms are immobilized on an acetalized PVA-based hydrogel, and is a flowchart in the case of decomposing and removing organic substances in waste water under aerobic conditions. 2 is a wastewater treatment tank, and 24 is a final settling tank. First, the wastewater 1 is first supplied to the wastewater treatment tank 2 from a settling tank (not shown). In the wastewater treatment tank 2, the acetalized PV was previously added to the drainage at the lower limit of operation.
A water-containing gel 23 is put in and fluidized by an air diffuser 4 provided at the bottom of the wastewater treatment tank 2. A blower 5 is connected to the air diffuser 4, and is a drive unit of the air diffuser 4. The wastewater is biologically treated in the wastewater treatment tank 2.

【0055】排水処理槽2内に排水1を導入しつつ、散
気装置4より空気を吹き出すと、排水処理槽2内の混合
液に酸素が供給されるとともに、このときの上昇気泡流
により該処理槽に循環流が生じる。この循環流により、
アセタール化PVA含水ゲル23が排水処理槽2内を流
動する過程で、有機物を分解・除去する微生物が該含水
ゲル23に付着・結合固定化される。したがって、微生
物と有機物が十分接触する結果、混合液中の有機物は、
極めて効率的かつ高速度に分解・除去される。また、担
体内部に固定化された微生物は、アセタール化PVA含
水ゲル23が混合液中で流動するときも剥離しにくい。
処理槽内には、アセタール化PVA系含水ゲルが溢流す
るのを防ぐために各種のスクリーンなどを適宜設けても
よい。
When the air is blown from the air diffuser 4 while introducing the wastewater 1 into the wastewater treatment tank 2, oxygen is supplied to the mixed liquid in the wastewater treatment tank 2, and the rising bubble flow causes Circulating flow occurs in the processing tank. By this circulating flow,
In the process in which the acetalized PVA hydrogel 23 flows in the wastewater treatment tank 2, microorganisms that decompose and remove organic substances are attached, bonded and immobilized to the hydrogel 23. Therefore, as a result of sufficient contact between the microorganisms and the organic matter, the organic matter in the mixed solution is
It is decomposed and removed very efficiently and at high speed. In addition, the microorganisms immobilized inside the carrier do not easily peel off when the acetalized PVA water-containing gel 23 flows in the mixed solution.
Various screens and the like may be appropriately provided in the treatment tank in order to prevent the acetalized PVA-based hydrogel from overflowing.

【0056】生物学的に処理された処理水は最終沈殿槽
24に送られ、ここで沈降物を汚泥排出管25から除去
し、上澄水26を放流する。本発明の排水処理装置に使
用される排水処理槽は、アセタール化PVA系含水ゲル
を使用することにより、排水処理の効率を上げることが
できるが、さらに上記のような条件を相互に組み合わせ
た含水ゲルを用いることにより排水処理効果を飛躍的に
高めることができる。
The biologically treated treated water is sent to the final settling tank 24, where the sediment is removed from the sludge discharge pipe 25, and the supernatant water 26 is discharged. The wastewater treatment tank used in the wastewater treatment apparatus of the present invention can improve the efficiency of wastewater treatment by using an acetalized PVA-based hydrogel, but a water-containing solution obtained by mutually combining the above conditions. The use of gel can dramatically improve the wastewater treatment effect.

【0057】図7は、被処理水導入側から、脱窒槽、硝
化槽の順に配置した本発明の他の態様を示すフローチャ
ートである。11は脱窒槽、16は硝化槽である。排水
1を脱窒槽11に供給すると、排水1は嫌気条件下(無
酸素条件下)で脱窒槽内の微生物により生物学的に脱窒
処理され、脱窒処理水27として硝化槽16に送られ
る。硝化槽16に送られた脱窒処理水は、好気条件下で
硝化槽内の微生物により生物学的に硝化処理される。硝
化処理水28の一部は硝化処理水返送ライン29により
脱窒槽11に循環・返送されるとともに、残りの硝化処
理水は最終沈殿槽24に送られて、沈降物を除去した後
に上澄水26として放流される。硝化処理水28の脱窒
槽11への返送割合は、上澄水26に対して1〜5倍程
度である。生成する汚泥は汚泥排出管25により系外へ
抜き出される。
FIG. 7 is a flow chart showing another embodiment of the present invention in which the denitrification tank and the nitrification tank are arranged in this order from the side of introducing the water to be treated. Reference numeral 11 is a denitrification tank, and 16 is a nitrification tank. When the wastewater 1 is supplied to the denitrification tank 11, the wastewater 1 is biologically denitrified by the microorganisms in the denitrification tank under anaerobic conditions (oxygen-free conditions) and sent to the nitrification tank 16 as denitrification water 27. . The denitrification-treated water sent to the nitrification tank 16 is biologically nitrified by the microorganisms in the nitrification tank under aerobic conditions. A part of the nitrification-treated water 28 is circulated and returned to the denitrification tank 11 by the nitrification-treated water return line 29, and the remaining nitrification-treated water is sent to the final settling tank 24 to remove the sediment, and then the supernatant water 26. Released as. The rate of returning the nitrification-treated water 28 to the denitrification tank 11 is about 1 to 5 times that of the supernatant water 26. The generated sludge is taken out of the system by the sludge discharge pipe 25.

【0058】脱窒槽11内には、攪拌装置14が設置さ
れており、脱窒槽11内の微生物を含む混合液内に球状
のアセタール化PVA含水ゲル23が投入される。脱窒
槽には、必要に応じて有機炭素源が供給される。
A stirrer 14 is installed in the denitrification tank 11, and a spherical acetalized PVA water-containing gel 23 is put into the mixed solution containing microorganisms in the denitrification tank 11. An organic carbon source is supplied to the denitrification tank as needed.

【0059】硝化槽16内の底部には、酸素を含有する
空気などの気体を供給する散気装置4がブロワー5に接
続して設置されており、硝化槽16内の微生物を含む混
合液には、脱窒槽に使用したものと同じ球状のアセター
ル化PVA含水ゲル23が投入される。アセタール化P
VA系含水ゲルは、脱窒槽及び硝化槽の両方に投入して
使用しても、いずれか一方に投入して使用してもよい
が、両方に投入して使用する方が効率的であるので、通
常は両方の槽に投入して使用される。各槽に種類の異な
るアセタール化PVAを投入してもよい。
At the bottom of the nitrification tank 16, an air diffuser 4 for supplying a gas such as air containing oxygen is connected to a blower 5 and installed in the nitrification tank 16 for mixing a mixture containing microorganisms. The same spherical acetalized PVA water-containing gel 23 as that used in the denitrification tank is charged. Acetalized P
The VA-based hydrogel may be put into both the denitrification tank and the nitrification tank for use, or may be put into either one, but it is more efficient to put it in both. , It is usually used by putting it in both tanks. Different types of acetalized PVA may be added to each tank.

【0060】この装置において、脱窒槽11内に排水1
を導入しつつ脱窒処理水27を硝化槽16に流出させる
状態で攪拌装置14を作動させると、脱窒槽11内に混
合液の循環流が生じ、この循環流によりアセタール化P
VA含水ゲル23が脱窒槽11内を流動し、その間に混
合液に存在する脱窒菌を主体とする微生物が該含水ゲル
23に付着・結合固定化される。槽内の混合液はこの固
定化脱窒菌と浮遊脱窒菌とにより脱窒処理される。混合
液中の有機物は、脱窒菌のための呼吸基質又は細胞合成
の炭素源として利用されるが、上述のように、炭素源を
必要に応じて系外から添加してもよい。
In this device, drainage 1 is placed in the denitrification tank 11.
When the stirrer 14 is operated in a state where the denitrification treated water 27 is allowed to flow into the nitrification tank 16 while introducing P, a circulating flow of the mixed liquid is generated in the denitrifying tank 11, and this circulating flow causes acetalization P
The VA hydrous gel 23 flows in the denitrification tank 11, and microorganisms mainly in the denitrifying bacterium existing in the mixed liquid adhere to, bond to and be immobilized on the hydrous gel 23 during the period. The mixed liquid in the tank is denitrified by the immobilized denitrifying bacteria and the floating denitrifying bacteria. The organic matter in the mixed solution is used as a respiratory substrate for denitrifying bacteria or as a carbon source for cell synthesis, but as described above, the carbon source may be added from outside the system as necessary.

【0061】硝化槽16において、脱窒槽11より脱窒
処理水27が供給され、かつ硝化槽16内の硝化処理水
28が流出する状態で散気装置4より空気を吹き出す
と、硝化槽16内の混合液に酸素が供給されるととも
に、このときの上昇気泡流によって混合液の循環流が生
じる間に、混合液中に存在する硝化菌を主体とする微生
物がアセタール化PVA含水ゲル23に付着・結合固定
化される。この固定化硝化菌と浮遊硝化菌により槽内の
混合液は生物学的に硝化処理される。
In the nitrification tank 16, when the denitrification-treated water 27 is supplied from the denitrification tank 11 and the nitrification-treated water 28 in the nitrification tank 16 flows out from the air diffuser 4, the inside of the nitrification tank 16 is changed. While oxygen is supplied to the mixed solution of (1) and a circulating flow of the mixed solution is generated by the rising bubble flow at this time, microorganisms mainly composed of nitrifying bacteria present in the mixed solution adhere to the acetalized PVA hydrogel 23. -It is fixed by binding. The immobilized nitrifying bacteria and floating nitrifying bacteria biologically nitrify the mixed solution in the tank.

【0062】これにより、アセタール化PVA含水ゲル
23の表面及び/又は内部に微生物が付着・結合固定化
されることにより、被処理成分と微生物が十分接触する
ことになる。また、担体内部に固定化された微生物は、
アセタール化PVA含水ゲル23が各槽内で流動すると
きも剥離しにくい。その結果、被処理水中の窒素は、極
めて効率的かつ高速度に分解・除去される。含水ゲルが
槽外に溢流するのを防ぐために、脱窒槽及び/又は硝化
槽にスクリーンなどを設けてよいのは勿論である。
As a result, the microorganisms adhere to, bond to and are immobilized on the surface and / or the inside of the acetalized PVA hydrogel 23, so that the components to be treated and the microorganisms come into sufficient contact with each other. In addition, the microorganisms immobilized inside the carrier are
Even when the acetalized PVA hydrogel 23 flows in each tank, it does not easily peel off. As a result, nitrogen in the water to be treated is decomposed and removed extremely efficiently and at high speed. Of course, a screen or the like may be provided in the denitrification tank and / or the nitrification tank in order to prevent the hydrous gel from overflowing outside the tank.

【0063】図8は、排水導入側から、脱窒槽、硝化槽
の順に配置し、脱窒槽の前に嫌気濾過装置又は最初沈殿
槽を設けた本発明の別のフローチャートである。排水1
は嫌気条件下で脱窒槽内の微生物により生物学的に脱窒
処理され、次いで脱窒処理水27は好気条件下で硝化槽
内の微生物により生物学的に硝化処理される。硝化処理
水28の一部は脱窒槽11及び嫌気濾過装置19又は最
初沈殿槽20に循環・返送されるとともに、残りの硝化
処理水は最終沈殿槽24に送られて、沈降物を除去した
後に上澄水26として放流される。上澄水26に対する
脱窒槽11及び嫌気濾過装置19又は最初沈殿槽20へ
返送される硝化処理水28の割合は1〜5倍程度で実施
される。脱窒槽11と嫌気濾過装置19又は最初沈殿槽
20への返送割合は排水の性状に応じて適宜実施すれば
よい。これらの返送割合は、本発明の膜モジュールを使
用しない排水処理装置においても同様である。生成する
汚泥は汚泥排出管25により系外へ抜き出される。
FIG. 8 is another flow chart of the present invention in which a denitrification tank and a nitrification tank are arranged in this order from the waste water introduction side, and an anaerobic filter or a first precipitation tank is provided in front of the denitrification tank. Drainage 1
Is biologically denitrified by the microorganisms in the denitrification tank under anaerobic conditions, and then the denitrified water 27 is biologically nitrified by the microorganisms in the nitrification tank under aerobic conditions. A part of the nitrification-treated water 28 is circulated and returned to the denitrification tank 11 and the anaerobic filtration device 19 or the first settling tank 20, and the rest of the nitrification-treated water is sent to the final settling tank 24 to remove the sediment. It is discharged as clear water 26. The ratio of the denitrification tank 11 and the anaerobic filtration device 19 to the supernatant water 26 or the nitrification-treated water 28 returned to the first precipitation tank 20 is about 1 to 5 times. The rate of return to the denitrification tank 11 and the anaerobic filtration device 19 or the first settling tank 20 may be appropriately performed according to the properties of the wastewater. These return ratios are the same in the wastewater treatment equipment that does not use the membrane module of the present invention. The generated sludge is taken out of the system by the sludge discharge pipe 25.

【0064】図9は、排水導入側から、硝化槽、脱窒槽
の順に配置した本発明の別のフローチャートである。排
水1は好気条件下で硝化槽内の微生物により生物学的に
硝化処理され、次いで硝化処理水30は嫌気条件下で脱
窒槽内の微生物により生物学的に脱窒処理される。脱窒
処理水31は最終沈殿槽24に送られて、沈降物を除去
した後に上澄水26として放流される。生成する汚泥は
汚泥排出管25により系外へ抜き出される。上記した排
水処理装置は合併浄化槽として好適であり、図10は、
最初沈殿槽槽を使用して図6に示す排水処理装置を合併
浄化槽とした例であり、図11は、最初沈殿槽槽を使用
して図8に示す排水処理装置を合併浄化槽とした例であ
る。なお、図示していないが、最終沈殿槽に堆積する汚
泥は適宜最初沈殿槽槽に返送し、最初沈殿槽槽から排出
すればよい。
FIG. 9 is another flow chart of the present invention in which the nitrification tank and the denitrification tank are arranged in this order from the waste water introduction side. The waste water 1 is biologically nitrified by the microorganisms in the nitrification tank under aerobic conditions, and then the nitrification-treated water 30 is biologically denitrified by the microorganisms in the denitrification tank under anaerobic conditions. The denitrification-treated water 31 is sent to the final settling tank 24, and after removing the sediment, it is discharged as the supernatant water 26. The generated sludge is taken out of the system by the sludge discharge pipe 25. The wastewater treatment device described above is suitable as a combined septic tank, and FIG.
6 is an example in which the wastewater treatment equipment shown in FIG. 6 is used as a combined purification tank using the first settling tank, and FIG. 11 is an example in which the wastewater treatment apparatus shown in FIG. 8 is used as a combined purification tank using the first settling tank. is there. Although not shown, the sludge accumulated in the final settling tank may be appropriately returned to the first settling tank and discharged from the first settling tank.

【0065】[0065]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明はこれらに限定されるものではない。 参考実験例1 PVA(平均重合度1700、ケン化度99.8モル
%)8重量%、アルギン酸ナトリウム(紀文フ−ドケミ
ファ社製「ダックアルギンNSPL」)1重量%、炭酸
水素ナトリウム0.3重量%の混合水溶液を調製した。
混合水溶液は懸濁状に相分離を起こし白濁していた。こ
の相分離液を、先端に内径3mmのノズルを取り付けた
内径4mmのシリコンチューブを装着したローラーポン
プを用いて5ミリリットル/分の速度で送液し、スター
ラーで撹拌した濃度0.1モル/リットルの塩化カルシ
ウム水溶液に滴下した。滴下した液滴は塩化カルシウム
水溶液中で少なくとも表面のアルギン酸ナトリウムが固
化して沈降した。得られた固化物は球状であった。
EXAMPLES The present invention will now be described in detail with reference to examples, but the present invention is not limited thereto. Reference Experimental Example 1 PVA (average degree of polymerization: 1700, saponification degree: 99.8 mol%) 8% by weight, sodium alginate (Kibun Fudochemifa "Duck Algin NSPL") 1% by weight, sodium hydrogencarbonate 0.3% by weight % Mixed aqueous solution was prepared.
The mixed aqueous solution was phase-separated into a suspension and was cloudy. This phase-separated liquid was sent at a rate of 5 ml / min using a roller pump equipped with a silicon tube having an inner diameter of 4 mm and a nozzle having an inner diameter of 3 mm attached to the tip thereof, and was stirred with a stirrer to a concentration of 0.1 mol / liter. Was added dropwise to the aqueous calcium chloride solution. At least the sodium alginate on the surface of the dropped liquid droplets solidified and settled in the calcium chloride aqueous solution. The solidified product obtained was spherical.

【0066】この球状固化物を、ホルムアルデヒド20
g/リットル、硫酸200g/リットル、硫酸ナトリウ
ム100g/リットルを含む水溶液に40℃で60分間
浸漬することにより、凝固させてゲル化すると同時にア
セタ−ル化処理を行った。得られたアセタ−ル化ゲルを
水洗し、直径約5mmの柔軟性に富んだ球状の含水ゲル
を製造した。
This spherical solidified product was treated with formaldehyde 20
By dipping in an aqueous solution containing g / liter, 200 g / liter of sulfuric acid, and 100 g / liter of sodium sulfate at 40 ° C. for 60 minutes, coagulation and gelation were performed, and at the same time, acetalization treatment was performed. The obtained acetalized gel was washed with water to produce a flexible spherical hydrogel having a diameter of about 5 mm.

【0067】得られたゲルの構造を観察すると、表面層
は直径0.3〜10μm程度の繊維状物が絡み合って形
成された網状構造を有しており、表面層の厚さは5%/
ゲル最大直径程度であった。また、ゲル内部には孔径が
1〜10μm程度の多孔を有する緻密な内部層が形成さ
れており、内部層の厚さは75%/ゲル最大直径程度で
あった。さらに、表面層と内部層の間には、表面層から
内部層へ配向した孔径が100μm程度のフィンガー状
のボイドが多数形成された中間層が形成されており、中
間層の厚さは20%程度/ゲル最大直径であった。
Observing the structure of the obtained gel, the surface layer has a net-like structure formed by intertwining fibrous substances having a diameter of about 0.3 to 10 μm, and the thickness of the surface layer is 5% /
It was about the maximum diameter of the gel. In addition, a dense inner layer having pores with a pore diameter of about 1 to 10 μm was formed inside the gel, and the thickness of the inner layer was about 75% / gel maximum diameter. Further, between the surface layer and the inner layer, there is formed an intermediate layer in which a large number of finger-shaped voids having a pore diameter of about 100 μm oriented from the surface layer to the inner layer are formed, and the thickness of the intermediate layer is 20%. Degree / maximum gel diameter.

【0068】実施例1 1m3の好気槽に、参考実験例1で作製したPVA含水
ゲルを20容量%投入し、中空糸内径2mm、膜面積1
0m2、分画分子量13000のポリスルホン製UF膜
(株式会社クラレ製6304膜)からなる膜モジュール
と組み合わせて図1に示すような排水処理装置を構成し
た。BOD2500mg/リットル(L)の排水を1m
3/日で好気槽に供給し、好気処理水を中空糸膜の内側
に導入し、クロスフロー方式で濾過した。膜モジュール
を透過しなかった非透過液を、膜モジュールを透過した
透過液の10倍の流量で好気槽に返送するようにして6
ケ月間連続処理したところ、処理済水のBODは200
〜300mg/L、SSは0mg/Lで安定していた。
膜の目詰まりは殆どなく、膜モジュールの洗浄操作は全
く不要であった。
Example 1 20% by volume of the PVA water-containing gel prepared in Reference Experimental Example 1 was placed in a 1 m 3 aerobic tank, and the hollow fiber inner diameter was 2 mm and the membrane area was 1
0 m 2, was combined with membrane module made of polysulfone UF membrane having a cut-off molecular weight 13000 (manufactured by Kuraray Co. 6304 film) constitute a waste water treatment apparatus as shown in FIG. BOD2500mg / liter (L) drainage 1m
It was supplied to the aerobic tank at 3 / day, the aerobic treated water was introduced into the inside of the hollow fiber membrane, and the mixture was filtered by a cross flow method. The non-permeate that did not permeate the membrane module was returned to the aerobic tank at a flow rate 10 times that of the permeate that permeated the membrane module.
After continuous treatment for 6 months, the BOD of the treated water is 200
˜300 mg / L, SS was stable at 0 mg / L.
The membrane was hardly clogged and the membrane module cleaning operation was completely unnecessary.

【0069】実施例2 0.2m3の脱窒槽及び0.2m3の硝化槽に実施例1で
使用したPVA含水ゲルを20容量%投入し、実施例1
と同じ膜モジュールと組み合わせて排水導入側からこの
順に配列し、図2に示すような排水処理装置を構成し
た。BOD200mg/L、総窒素50mg/Lの排水
を1.3m3/日で脱窒槽に供給し、硝化処理水を中空
糸膜の内側に導入し、クロスフロー方式で濾過した。硝
化処理水を、膜モジュールを透過した透過水の3倍の流
量で脱窒槽へ返送し、モジュールを透過しなかった非透
過液を透過水の10倍の流量で硝化槽へ返送して1年間
連続処理したところ、処理済水のBODは6〜9mg/
L、SSは0〜3mg/Lと安定していた。また、膜の
目詰まりは殆ど認められなかった。
[0069] Example 2 0.2 m 3 of the PVA hydrogel used in Example 1 to nitrification tank denitrification and 0.2 m 3 was charged 20% by volume, Example 1
The same wastewater treatment equipment as shown in FIG. 2 was constructed by combining the same membrane modules as above and arranging them in this order from the wastewater introduction side. Waste water containing 200 mg / L of BOD and 50 mg / L of total nitrogen was supplied to the denitrification tank at 1.3 m 3 / day, the nitrification-treated water was introduced into the inside of the hollow fiber membrane, and the mixture was filtered by a cross flow method. The nitrification-treated water was returned to the denitrification tank at a flow rate three times that of the permeate that passed through the membrane module, and the non-permeate that did not permeate the module was returned to the nitrification tank at a flow rate of ten times that of the permeate, for one year. After continuous treatment, the BOD of the treated water was 6-9 mg /
L and SS were stable at 0 to 3 mg / L. Further, the clogging of the film was hardly recognized.

【0070】実施例3 実施例2の脱窒槽の前に0.5m3の最初沈殿槽槽を設
け、硝化処理水を脱窒槽及び最初沈殿槽槽に返送するよ
うにし、図3に示すような排水処理装置を構成した。硝
化処理水を、膜モジュールを透過した透過水の3倍の流
量で脱窒槽及び最初沈殿槽槽へ50:50の割合で返送
する以外は実施例2と同様に1年間連続処理したとこ
ろ、処理済水のBODは2〜6mg/L、SSは0〜3
mg/Lと安定していた。また、膜の目詰まりは殆ど認
められなかった。
Example 3 A 0.5 m 3 first settling tank was provided in front of the denitrifying tank of Example 2, and the nitrification-treated water was returned to the denitrifying tank and the first settling tank, as shown in FIG. Configured wastewater treatment equipment. The nitrification-treated water was continuously treated for 1 year in the same manner as in Example 2 except that it was returned to the denitrification tank and the first settling tank at a ratio of 50:50 at a flow rate three times that of the permeated water that passed through the membrane module. BOD of finished water is 2-6 mg / L, SS is 0-3
It was stable at mg / L. Further, the clogging of the film was hardly recognized.

【0071】実施例4 硝化槽、脱窒槽及び膜モジュールを排水の導入側からこ
の順に配列して図4に示す排水処理装置を構成した。硝
化槽及び脱窒槽に、実施例1で使用したものと同じPV
Aゲルを20容量%投入し、総窒素200mg/Lの排
水を0.4m3/日で硝化槽へ供給した。膜モジュール
を透過しなかった非透過液を、膜モジュールを透過した
透過水の10倍の流量で硝化槽へ返送して1年間連続処
理したところ、処理済水の総窒素は10〜15mg/
L、SSは0〜3mg/Lと安定していた。また、膜の
目詰まりは殆ど認められなかった。
Example 4 A nitrification tank, a denitrification tank and a membrane module were arranged in this order from the side where the waste water was introduced to construct the waste water treatment apparatus shown in FIG. The same PV used in Example 1 for the nitrification tank and the denitrification tank
20% by volume of gel A was added, and waste water containing 200 mg / L of total nitrogen was supplied to the nitrification tank at 0.4 m 3 / day. The non-permeate that did not permeate the membrane module was returned to the nitrification tank at a flow rate of 10 times the permeate that permeated the membrane module and continuously treated for 1 year. The total nitrogen in the treated water was 10 to 15 mg /
L and SS were stable at 0 to 3 mg / L. Further, the clogging of the film was hardly recognized.

【0072】実施例5 0.5m3の最初沈殿槽槽、0.2m3の脱窒槽、0.2
3の硝化槽及び実施例1と同じ膜モジュールを使用し
て図5に示すような合併浄化槽を構成した。脱窒槽及び
硝化槽に、参考実験例1で作製したポリビニルホルマー
ル化含水ゲルを20容量%投入し、5人家族の生活排水
を1.3m3/日で最初沈殿槽槽へ供給した。硝化処理
水を、膜モジュールを透過した透過水の3倍の流量で最
初沈殿槽槽及び脱窒槽へ50:50の割合で返送した。
また、膜モジュールを透過しなかった非透過水を、膜モ
ジュールを透過した透過水の10倍の流量で硝化槽へ返
送して、1年間連続処理したところ、処理済水のBOD
は7〜10mg/L、SSは0〜3mg/Lと安定して
いた。また、膜の目詰まりは殆ど認められなかった。
Example 5 0.5 m 3 first settling tank, 0.2 m 3 denitrification tank, 0.2
Using the m 3 nitrification tank and the same membrane module as in Example 1, a combined septic tank as shown in FIG. 5 was constructed. 20% by volume of the polyvinyl formalized hydrous gel prepared in Reference Experimental Example 1 was added to the denitrification tank and the nitrification tank, and domestic wastewater of a family of 5 was supplied to the first precipitation tank at 1.3 m 3 / day. The nitrification-treated water was first returned to the settling tank and the denitrification tank at a ratio of 50:50 at a flow rate three times as high as the permeated water that passed through the membrane module.
In addition, non-permeated water that did not permeate the membrane module was returned to the nitrification tank at a flow rate of 10 times the permeated water that permeated the membrane module, and was continuously treated for 1 year.
Was stable at 7 to 10 mg / L, and SS was stable at 0 to 3 mg / L. Further, the clogging of the film was hardly recognized.

【0073】比較例1 好気処理水を膜モジュールで全濾過する以外は実施例1
と同様にして運転したところ、8日目に膜が目詰まり
し、運転が困難となった。膜の洗浄操作を行わずにその
まま運転を継続したところ、好気槽から処理水がオーバ
ーフローしたため運転を停止した。
Comparative Example 1 Example 1 except that the aerobic treated water was totally filtered through a membrane module.
When operated in the same manner as above, the membrane became clogged on the 8th day, and the operation became difficult. When the operation was continued without cleaning the membrane, the operation was stopped because the treated water overflowed from the aerobic tank.

【0074】実施例6 1m3の好気槽に、参考実験例1で作製したアセタール
化PVA含水ゲルを20容量%投入し、0.6m3の最
終沈殿槽と組み合わせて図6に示すような排水処理装置
を構成した。BOD2500mg/リットル(L)の排
水を1m3/日で好気槽に供給し、6ケ月間連続処理し
たところ、処理済水のBODは200〜300mg/
L、SSは20〜30mg/Lで安定していた。
Example 6 20% by volume of the acetalized PVA water-containing gel prepared in Reference Experimental Example 1 was added to a 1 m 3 aerobic tank and combined with a 0.6 m 3 final precipitation tank as shown in FIG. Configured wastewater treatment equipment. BOD 2500 mg / liter (L) of waste water was supplied to the aerobic tank at 1 m 3 / day and continuously treated for 6 months. The BOD of the treated water was 200 to 300 mg / day.
L and SS were stable at 20 to 30 mg / L.

【0075】実施例7 0.2m3の脱窒槽及び0.2m3の硝化槽に実施例6で
使用したものと同じPVA含水ゲルを20容量%投入
し、0.6m3の最終沈殿槽と組み合わせて図7に示す
ような排水処理装置を構成した。BOD200mg/
L、総窒素50mg/Lの排水を1.3m3/日で脱窒
槽に供給し、硝化処理水を、上澄水の3倍の流量で脱窒
槽へ返送して1年間連続処理したところ、処理済水のB
ODは8〜10mg/L、SSは10〜15mg/Lと
安定していた。
[0075] Example 7 0.2 m 3 and that used in Example 6 to nitrification denitrification tank and 0.2 m 3 of the same PVA hydrogel was charged 20% by volume, and a final sedimentation tank of 0.6 m 3 By combining them, a wastewater treatment device as shown in FIG. 7 was constructed. BOD 200mg /
L, total nitrogen 50 mg / L wastewater was supplied to the denitrification tank at 1.3 m 3 / day, and the nitrification-treated water was returned to the denitrification tank at a flow rate three times that of the supernatant water and continuously treated for 1 year. Jishui B
The OD was stable at 8 to 10 mg / L and the SS was stable at 10 to 15 mg / L.

【0076】実施例8 実施例7の脱窒槽の前に0.5m3の最初沈殿槽槽を設
け、硝化処理水を脱窒槽及び最初沈殿槽槽に返送するよ
うにし、図8に示すような排水処理装置を構成した。硝
化処理水を、上澄水の3倍の流量で脱窒槽及び最初沈殿
槽槽へ50:50の割合で返送する以外は実施例7と同
様に1年間連続処理したところ、処理済水のBODは6
〜9mg/L、SSは6〜8mg/Lと安定していた。
Example 8 A 0.5 m 3 first settling tank was provided in front of the denitrifying tank of Example 7, and the nitrification-treated water was returned to the denitrifying tank and the first settling tank, as shown in FIG. Configured wastewater treatment equipment. The nitrification-treated water was continuously treated for 1 year in the same manner as in Example 7 except that it was returned to the denitrification tank and the first settling tank at a ratio of 50:50 at a flow rate three times that of the supernatant water. 6
-9 mg / L, SS was stable at 6-8 mg / L.

【0077】実施例9 硝化槽、脱窒槽及び最終沈殿槽を排水の導入側からこの
順に配列して図9に示すような排水処理装置を構成し
た。総窒素200mg/Lの排水を0.4m3/日の速
度で硝化槽へ供給して1年間連続処理したところ、処理
済水の総窒素は10〜15mg/L、SSは10〜20
mg/Lと安定していた。
Example 9 A nitrification tank, a denitrification tank, and a final precipitation tank were arranged in this order from the waste water introduction side to construct a waste water treatment apparatus as shown in FIG. When the wastewater containing 200 mg / L of total nitrogen was supplied to the nitrification tank at a rate of 0.4 m 3 / day and continuously treated for 1 year, the total nitrogen of the treated water was 10 to 15 mg / L and the SS was 10 to 20.
It was stable at mg / L.

【0078】実施例10 0.5m3の最初沈殿槽槽、0.2m3の好気槽及び0.
3m3の最終沈殿槽を使用して図10に示すような合併
浄化槽を構成した。好気槽に実施例6で使用したものと
同じPVA含水ゲルを20容量%投入し、5人家族の生
活排水を1.3m3/日で最初沈殿槽槽へ供給した。1
年間連続処理したところ、処理済水のBODは8〜10
mg/L、SSは10〜15mg/Lと安定していた。
Example 10 0.5 m 3 of first settling tank, 0.2 m 3 of aerobic tank and 0.
A combined septic tank as shown in Fig. 10 was constructed using a final settling tank of 3 m 3 . The same PVA water-containing gel as used in Example 6 was added to the aerobic tank in an amount of 20% by volume, and domestic wastewater of a family of 5 was first supplied to the precipitation tank at 1.3 m 3 / day. 1
After continuous treatment for a year, the BOD of treated water is 8-10
The mg / L and SS were stable at 10 to 15 mg / L.

【0079】実施例11 0.5m3の最初沈殿槽槽、0.2m3の脱窒槽、0.2
3の硝化槽及び0.3m3の最終沈殿槽を使用して図1
1に示すような合併浄化槽を構成した。脱窒槽及び硝化
槽に、実施例6で使用したものと同じPVA含水ゲルを
20容量%投入し、5人家族の生活排水を1.3m3
日で最初沈殿槽槽へ供給した。硝化処理水を、上澄水の
3倍の流量で脱窒槽及び最初沈殿槽槽へ50:50の割
合で返送し、1年間連続処理したところ、処理済水のB
ODは6〜9mg/L、SSは6〜8mg/Lと安定し
ていた
Example 11 0.5 m 3 first settling tank, 0.2 m 3 denitrification tank, 0.2
Figure 1 using m 3 nitrification tank and 0.3 m 3 final settling tank
A combined septic tank as shown in 1 was constructed. 20% by volume of the same PVA water-containing gel as used in Example 6 was put into the denitrification tank and the nitrification tank, and the domestic wastewater of a family of 5 was 1.3 m 3 /
It was first supplied to the settling tank in the day. The nitrification-treated water was returned to the denitrification tank and the first sedimentation tank at a ratio of 50:50 at a flow rate three times that of the supernatant water, and continuously treated for 1 year.
OD was stable at 6-9 mg / L and SS was stable at 6-8 mg / L.

【0080】比較例2 0.2m3の脱窒槽及び0.2m3の硝化槽に、活性汚泥
を6000mg/Lとなるように投入し、0.3m3
沈殿槽と組み合わせて図12に示されるような排水処理
装置を構成した。硝化処理水を、上澄水の3倍の流量で
脱窒槽に返送するようにし、BOD200mg/L、総
窒素50mg/Lの排水を1.3m3/日で連続処理し
たところ、処理済水のBODは90〜120mg/L、
総窒素は25〜35mg/Lと不十分な水質であった。
また、処理済水のSS濃度も150〜250mg/Lと
高く、この水質を維持するために一週間毎に沈殿槽から
余剰汚泥を引き抜く必要があった。
[0080] The nitrification tank denitrification and 0.2 m 3 of Comparative Example 2 0.2 m 3, the activated sludge was introduced so that 6000 mg / L, shown in Figure 12 in combination with the settling tank of 0.3 m 3 The wastewater treatment equipment was constructed as follows. The nitrification-treated water was returned to the denitrification tank at a flow rate three times that of the supernatant water, and the wastewater containing 200 mg / L of BOD and 50 mg / L of total nitrogen was continuously treated at 1.3 m 3 / day. Is 90 to 120 mg / L,
Total nitrogen had an insufficient water quality of 25 to 35 mg / L.
Further, the SS concentration of the treated water is as high as 150 to 250 mg / L, and it was necessary to pull out excess sludge from the settling tank every week in order to maintain this water quality.

【0081】参考実験例2 株式会社クラレ製のPVA(平均重合度1700、ケン
化度99.8モル%)8wt%、アルギン酸ナトリウム
1wt%、クラレケミカル株式会社製の活性炭(P−6
0)1wt%からなる水懸濁液を作製した。この水懸濁
液を、先端に内径3mmのノズルを取り付けた内径4m
mのシリコンチュ−ブを装着したロ−ラ−ポンプによ
り、5ml/分の速度で送液し、スタ−ラ−で撹拌した
濃度0.1モル/lの塩化カルシウム水溶液に滴下し
た。滴下した液滴は塩化カルシウム水溶液中で球状化し
て沈降した。
Reference Experimental Example 2 PVA (average degree of polymerization: 1700, saponification degree: 99.8 mol%) 8 wt%, sodium alginate 1 wt%, activated carbon (P-6 manufactured by Kuraray Chemical Co., Ltd.)
0) An aqueous suspension containing 1 wt% was prepared. This water suspension has an inner diameter of 4 m with a 3 mm inner diameter nozzle attached to the tip.
A roller pump equipped with an m silicon tube was used to feed the solution at a rate of 5 ml / min, and the solution was added dropwise to a 0.1 mol / l calcium chloride aqueous solution stirred by a stirrer. The dropped droplets were spheroidized and settled in an aqueous calcium chloride solution.

【0082】この球状成型物を、ホルムアルデヒド20
g/l、硫酸200g/l、硫酸ナトリウム100g/
lの40℃の水溶液に60分浸漬した後水洗し、直径約
5mmの柔軟性に富んだ球状の含水ゲルを得た。このゲ
ルのアセタ−ル化度は39モル%、含水率は93%であ
った。光学顕微鏡及び電子顕微鏡により観察した結果、
アセタ−ル化したPVA担体の表面から中心部に1μm
前後のフィンガー状の連通孔が無数に存在していた。
This spherical molded product was treated with formaldehyde 20
g / l, sulfuric acid 200 g / l, sodium sulfate 100 g /
It was immersed in 1 of 40 ° C. aqueous solution for 60 minutes and washed with water to obtain a flexible spherical hydrogel having a diameter of about 5 mm. This gel had an acetalization degree of 39 mol% and a water content of 93%. As a result of observing with an optical microscope and an electron microscope,
1 μm from the surface of the acetalized PVA carrier to the center
There were innumerable finger-shaped communication holes in the front and back.

【0083】参考実験例3 PVAとして、平均重合度4000、ケン化度99.8
モル%を使用し、PVA8wt%、アルギン酸ナトリウ
ム0.25wt%、クラレケミカル(株)製の活性炭
(P−60)1wt%からなる水懸濁液を使用した以外
は実施例1と同様にして直径約5mmの含水ゲルを得
た。この担体のアセタ−ル化度は37モル%、含水率は
92%であった。実施例1と同様に担体を顕微鏡で観察
した結果、同様の連通孔が見られた。
Reference Experimental Example 3 As PVA, the average degree of polymerization was 4000 and the degree of saponification was 99.8.
The diameter was the same as in Example 1 except that an aqueous suspension containing 8% by weight of PVA, 0.25% by weight of sodium alginate, and 1% by weight of activated carbon (P-60) manufactured by Kuraray Chemical Co. was used. A hydrogel of about 5 mm was obtained. The degree of acetalization of this carrier was 37 mol% and the water content was 92%. As a result of observing the carrier with a microscope in the same manner as in Example 1, similar communication holes were observed.

【0084】実施例12、実施例13 参考実験例2及び3で得られた担体1Lを10Lの曝気
槽に入れて曝気し、TOC100ppmの排水を42m
L/分で連続的に導入した。曝気槽の出口には目開き2
mmの金網を取り付け、担体の流出を防止した。10日
経過後の処理水のTOCは各々8.6ppm及び7.5
ppmであり、十分な処理がなされていた。その後、担
体を取り出し、20Lの密閉容器に入れ、さらに水を5
L入れた。この容器の気相に、硫化水素10ppmを含
む空気を10L/分で流し、5分後に通気を止め、密閉
した。15分間放置後、気相をマイクロシリンジで採取
し、ガスクロマトグラフで分析したところ、硫化水素濃
度は検出限界以下であった。
Example 12, Example 13 1 L of the carrier obtained in Reference Experimental Examples 2 and 3 was placed in a 10 L aeration tank for aeration, and the TOC 100 ppm drainage was 42 m.
It was introduced continuously at L / min. 2 openings at the exit of the aeration tank
mm wire mesh was attached to prevent the carrier from flowing out. The TOC of the treated water after 10 days was 8.6 ppm and 7.5, respectively.
It was ppm, and sufficient treatment was performed. After that, remove the carrier, put it in a 20 L closed container, and add water to
I put L. Air containing 10 ppm of hydrogen sulfide was caused to flow in the gas phase of this container at 10 L / min, and after 5 minutes, ventilation was stopped and the container was sealed. After standing for 15 minutes, the gas phase was collected with a microsyringe and analyzed by gas chromatography. The hydrogen sulfide concentration was below the detection limit.

【0085】参考実験例4 アクリルアミド18wt%、メチレンビスアクリルアミ
ド1wt%、クラレケミカル株式会社製の活性炭(P−
60)1wt%からなる水懸濁液に、重合開始剤とし
て、NNN´N´−テトラメチルエチレンジアミン0.
5wt%、過硫酸カリウム0.25wt%を添加し、撹
拌しながら、室温で重合し、流延して厚さ4mmのシ−
ト状物を得た。これを4mmのサイコロ状に切断し、担
体とした。この担体の含水率は80%であった。顕微鏡
で観察した結果、活性炭は担体の表面付近から中心部に
ほぼ均一に分散していたが、連通孔は認められなかっ
た。
Reference Experimental Example 4 18% by weight of acrylamide, 1% by weight of methylenebisacrylamide, activated carbon (P-
60) NNN'N'-tetramethylethylenediamine 0.
5 wt% and 0.25 wt% potassium persulfate were added, and the mixture was polymerized at room temperature with stirring and cast to form a sheet having a thickness of 4 mm.
A gourd was obtained. This was cut into 4 mm dice to obtain a carrier. The water content of this carrier was 80%. As a result of observing with a microscope, the activated carbon was almost uniformly dispersed from the vicinity of the surface of the carrier to the central part, but no communication hole was observed.

【0086】実施例14 実施例12及び13と同様に排水処理テストを実施した
ところ、TOCは43.2ppmであり、硫化水素濃度
は0.7ppmであった。
Example 14 A wastewater treatment test was conducted in the same manner as in Examples 12 and 13, and the TOC was 43.2 ppm and the hydrogen sulfide concentration was 0.7 ppm.

【0087】活性炭を有する微生物固定化担体の効果を
確認するために、活性炭を使用せずに、参考実験例2と
同様の方法で、アセタ−ル化度38モル%、含水率93
%の含水ゲルを得た。連通孔の存在は参考実験例2又は
3と同様であったが、実施例12と同様のテストを実施
したところ、硫化水素濃度は8.7ppmであり、殆ど
減少していなかった。
In order to confirm the effect of the microorganism-immobilized carrier having activated carbon, the same procedure as in Reference Experimental Example 2 was used without using activated carbon, and the degree of acetalization was 38 mol% and the water content was 93%.
% Hydrous gel was obtained. The presence of the communication holes was the same as in Reference Experimental Example 2 or 3, but when a test similar to that in Example 12 was performed, the hydrogen sulfide concentration was 8.7 ppm, which was hardly reduced.

【0088】[0088]

【発明の効果】本発明により、コンパクトで耐久性に優
れ、しかも処理能力が高く、長期に安定運転可能な排水
処理装置を提供することができる。また、脱窒槽及び/
又は硝化槽にアセタール化PVAゲルを担体とする微生
物担体を使用すると、担体の耐久性が優れるので、経済
的に有利に排水の処理を実施することができる。さらに
本発明によれば、脱臭能力を有する担体を使用した排水
処理装置を提供することができ、臭気を伴う有機性排水
の処理に好適に使用される。本発明の排水処理装置は、
極めてコンパクトで耐久性があり、排水を高品質に処理
することができるので、とくに合併浄化槽として使用す
るのに好適である。
Industrial Applicability According to the present invention, it is possible to provide a wastewater treatment apparatus which is compact, has excellent durability, has a high treatment capacity, and can be stably operated for a long period of time. Also, denitrification tank and /
Alternatively, when a microbial carrier having an acetalized PVA gel as a carrier is used in the nitrification tank, the durability of the carrier is excellent, so that the wastewater can be treated economically advantageously. Further, according to the present invention, it is possible to provide a wastewater treatment device using a carrier having a deodorizing ability, and it is preferably used for treating organic wastewater accompanied by odor. The wastewater treatment equipment of the present invention,
Since it is extremely compact and durable and can treat wastewater with high quality, it is particularly suitable for use as a combined septic tank.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の排水処理装置の一例を示すフロ−チャ
−トである。
FIG. 1 is a flow chart showing an example of a wastewater treatment apparatus of the present invention.

【図2】本発明の排水処理装置の排水処理槽を排水導入
側から脱窒槽、硝化槽の順に配列した例を示すフロ−チ
ャ−トである。
FIG. 2 is a flow chart showing an example in which the wastewater treatment tank of the wastewater treatment apparatus of the present invention is arranged in this order from the wastewater introduction side to a denitrification tank and a nitrification tank.

【図3】本発明の排水処理装置の排水処理槽を排水導入
側から脱窒槽、硝化槽の順に配列し、脱窒槽の前に嫌気
濾過装置又は最初沈殿槽槽を設けた例を示すフロ−チャ
−トである。
FIG. 3 is a flow diagram showing an example in which the wastewater treatment tanks of the wastewater treatment apparatus of the present invention are arranged in this order from the wastewater introduction side to a denitrification tank and a nitrification tank, and an anaerobic filter or a first settling tank is provided in front of the denitrification tank. It is a chart.

【図4】本発明の排水処理装置の排水処理槽を排水導入
側から硝化槽、脱窒槽の順に配列した例を示すフロ−チ
ャ−トである。
FIG. 4 is a flow chart showing an example in which the wastewater treatment tanks of the wastewater treatment apparatus of the present invention are arranged in this order from the wastewater introduction side to a nitrification tank and a denitrification tank.

【図5】本発明の排水処理装置を小型合併浄化槽とした
例である。
FIG. 5 is an example in which the wastewater treatment device of the present invention is used as a small combined septic tank.

【図6】本発明の排水処理装置の他の例を示すフロ−チ
ャ−トである。
FIG. 6 is a flowchart showing another example of the wastewater treatment equipment of the present invention.

【図7】本発明の排水処理装置の排水処理槽を排水導入
側から脱窒槽、硝化槽の順に配列した例を示すフロ−チ
ャ−トである。
FIG. 7 is a flow chart showing an example in which the wastewater treatment tank of the wastewater treatment apparatus of the present invention is arranged in this order from the wastewater introduction side to a denitrification tank and a nitrification tank.

【図8】本発明の排水処理装置の排水処理槽を排水導入
側から脱窒槽、硝化槽の順に配列し、脱窒槽の前に嫌気
濾過装置又は最初沈殿槽槽を設けた例を示すフロ−チャ
−トである。
FIG. 8 is a flow diagram showing an example in which the wastewater treatment tanks of the wastewater treatment apparatus of the present invention are arranged in this order from the wastewater introduction side to a denitrification tank and a nitrification tank, and an anaerobic filter or a first settling tank is provided in front of the denitrification tank. It is a chart.

【図9】本発明の排水処理装置の排水処理槽を排水導入
側から硝化槽、脱窒槽の順に配列した例を示すフロ−チ
ャ−トである。
FIG. 9 is a flow chart showing an example in which the wastewater treatment tank of the wastewater treatment apparatus of the present invention is arranged in this order from the wastewater introduction side to a nitrification tank and a denitrification tank.

【図10】本発明の排水処理装置を小型合併浄化槽とし
た他の例である。
FIG. 10 is another example in which the wastewater treatment device of the present invention is used as a small combined septic tank.

【図11】本発明の排水処理装置を小型合併浄化槽とし
た他の例である。
FIG. 11 is another example in which the wastewater treatment device of the present invention is used as a small combined septic tank.

【図12】従来の有機性排水処理装置を示すフロ−チャ
−トである。
FIG. 12 is a flowchart showing a conventional organic wastewater treatment device.

【符号の説明】[Explanation of symbols]

1 排水 2 排水処理槽 3 微生物固定化担体 4 散気装置 5 ブロワー 6 スクリ−ン 7 ポンプ 8 膜モジュ−ル 9 非透過水返送ライン 10 処理済水 11 脱窒槽 12 脱窒菌固定化担体 13 邪魔板 14 攪拌装置 15 硝化菌固定化担体 16 硝化槽 17 非透過水返送ライン 18 硝化処理水返送ライン 19 嫌気濾過装置 20 最初沈殿槽槽 21 硝化処理水返送ライン 22 非透過水返送ライン 23 アセタール化PVA含水ゲル 24 最終沈殿槽 25 汚泥排出管 26 上澄水 27 脱窒処理水 28 硝化処理水 29 硝化処理水返送ライン 30 硝化処理水 31 脱窒処理水 32 嫌気槽 33 好気槽 34 沈殿槽 1 drainage 2 Wastewater treatment tank 3 Microorganism immobilization carrier 4 Air diffuser 5 blowers 6 screen 7 pumps 8 membrane module 9 Non-permeate water return line 10 treated water 11 denitrification tank 12 Denitrifying bacterium immobilization carrier 13 baffle 14 Stirrer 15 Nitrifying bacteria immobilization carrier 16 Nitrification tank 17 Non-permeate water return line 18 Nitrification treated water return line 19 Anaerobic filter 20 First settling tank 21 Nitrification treated water return line 22 Non-permeate water return line 23 Acetalized PVA hydrogel 24 Final settling tank 25 Sludge discharge pipe 26 Clear water 27 Denitrification treated water 28 Nitrification treated water 29 Nitrification treated water return line 30 Nitrification treated water 31 Denitrification treated water 32 Anaerobic tank 33 aerobic tank 34 Settling tank

───────────────────────────────────────────────────── フロントページの続き (31)優先権主張番号 特願平9−141305 (32)優先日 平成9年5月30日(1997.5.30) (33)優先権主張国 日本(JP) (72)発明者 藤井 弘明 岡山県岡山市海岸通1丁目2番1号 株 式会社クラレ内 (72)発明者 中川 直 岡山県倉敷市酒津2045番地の1 株式会 社クラレ内 (72)発明者 小森 愼次 東京都中央区日本橋3丁目8番2号 株 式会社クラレ内 (72)発明者 塩谷 唯夫 大阪市北区梅田1丁目12番39号 株式会 社クラレ内 (72)発明者 阿部 匡信 岡山県岡山市海岸通1丁目2番1号 株 式会社クラレ内 (56)参考文献 特開 平3−275197(JP,A) 特開 平4−48995(JP,A) 特開 平7−41516(JP,A) 特開 平7−68287(JP,A) 実開 平2−86700(JP,U) 特公 平6−45035(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C02F 3/00 C02F 3/02 - 3/10 C02F 3/34 101 ─────────────────────────────────────────────────── ─── Continuation of front page (31) Priority claim number Japanese Patent Application No. 9-141305 (32) Priority date May 30, 1997 (May 30, 1997) (33) Priority claim country Japan (JP) (72) Inventor Hiroaki Fujii 1-2-1, Kaigan-dori, Okayama City, Okayama Prefecture Kuraray Co., Ltd. (72) Inventor Nao Nakagawa 1 2045 Sakata, Kurashiki City, Okayama Prefecture Kuraray Co., Ltd. (72) Inventor Shinji Komori 3-8-2 Nihonbashi, Chuo-ku, Tokyo Inside Kuraray Co., Ltd. (72) Inventor Yuio Shiotani 1-1239 Umeda, Kita-ku, Osaka City Kuraray Co., Ltd. (72) Inventor Masanobu Abe Okayama 1-2-1 Kaigan-dori, Okayama, Japan (56) References Japanese Patent Laid-Open No. 3-275197 (JP, A) Japanese Patent Laid-Open No. 4-48995 (JP, A) Japanese Patent Laid-Open No. 7-41516 ( JP, A) JP 7-68287 (JP, A) Flat 2-86700 (JP, U) Japanese Patent 6-45035 (JP, B2) (58) Fields surveyed (Int.Cl. 7 , DB name) C02F 3/00 C02F 3/02-3/10 C02F 3 / 34 101

Claims (12)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 少なくとも、微生物を固定化した担体粒
子を投入し、排水中の有機物及び/又は無機物を分解除
去する排水処理槽、及び該処理槽から流出する処理水を
濾過する膜モジュールを有する排水処理装置において、
膜モジュールを透過しなかった非透過水を前記処理槽へ
返送・循環するように構成したことを特徴とする排水処
理装置。
1. A waste water treatment tank for at least introducing carrier particles on which microorganisms are immobilized to decompose and remove organic matter and / or inorganic matter in waste water, and a membrane module for filtering treated water flowing out from the treatment tank. In wastewater treatment equipment,
A wastewater treatment device configured to return and circulate non-permeated water that has not passed through the membrane module to the treatment tank.
【請求項2】 該排水処理槽が、脱窒菌を固定化した担
体粒子を投入して嫌気条件下で排水と接触させる脱窒
槽、及び硝化菌を固定化した担体粒子を投入して好気条
件下で排水と接触させる硝化槽であって、これらの排水
処理槽を、排水の導入側からこの順に配列し、硝化槽か
ら流出する硝化処理水を膜モジュ−ルへ供給するととも
に、該処理水の一部を前記脱窒槽へ返送・循環し、かつ
膜モジュ−ルを透過しなかった非透過水を硝化槽及び/
又は脱窒槽へ返送・循環するように構成した請求項1の
排水処理装置。
2. A denitrification tank in which carrier particles having denitrifying bacteria immobilized therein are introduced into the wastewater treatment tank for contact with wastewater under anaerobic conditions, and carrier particles having nitrifying bacteria immobilized therein are introduced into the wastewater treatment tank under aerobic conditions. A nitrification tank that is brought into contact with wastewater below, and these wastewater treatment tanks are arranged in this order from the wastewater introduction side, and the nitrification-treated water flowing out from the nitrification tank is supplied to the membrane module and Part of the water is returned to the denitrification tank and circulated, and the non-permeated water that has not permeated the membrane module is converted into a nitrification tank and / or
Alternatively, the wastewater treatment device according to claim 1, which is configured to be returned and circulated to a denitrification tank.
【請求項3】 該脱窒槽の前に最初沈殿槽又は嫌気処理
を行うための嫌気濾過装置を設け、硝化槽から流出する
硝化処理水を膜モジュ−ルへ供給するとともに、該処理
水の一部を前記脱窒槽又は最初沈殿槽もしくは嫌気濾過
装置へ返送・循環し、かつ膜モジュ−ルを透過しなかっ
た非透過水を硝化槽へ返送・循環するように構成した請
求項2の排水処理装置。
3. A first settling tank or an anaerobic filtration device for performing anaerobic treatment is provided in front of the denitrification tank, and the nitrification-treated water flowing out from the nitrification tank is supplied to the membrane module, and one of the treated water is discharged. 3. The wastewater treatment system according to claim 2, wherein the part is returned and circulated to the denitrification tank, the first settling tank or the anaerobic filtration device, and the non-permeated water that has not permeated the membrane module is returned and circulated to the nitrification tank. apparatus.
【請求項4】 該排水処理槽が、硝化菌を固定化した担
体粒子を投入して好気条件下で排水と接触させる硝化
槽、及び脱窒菌を固定化した担体粒子を投入して嫌気条
件下で排水と接触させる脱窒槽であって、これらの排水
処理槽を、排水の導入側からこの順に配列し、脱窒槽か
ら流出する脱窒処理水を膜モジュ−ルへ供給するととも
に、膜モジュ−ルを透過しなかった非透過水を脱窒槽及
び/又は硝化槽へ返送・循環するように構成した請求項
1の排水処理装置。
4. The effluent treatment tank, into which nitrifying bacteria-immobilized carrier particles are introduced into contact with wastewater under aerobic conditions, and denitrifying bacteria-immobilized carrier particles are introduced into anaerobic conditions. The denitrification tanks to be brought into contact with the wastewater below, and these wastewater treatment tanks are arranged in this order from the introduction side of the wastewater, and the denitrification treated water flowing out of the denitrification tanks is supplied to the membrane module and -The wastewater treatment device according to claim 1, which is configured to return and circulate the non-permeated water that has not permeated through the degassing tank to the denitrification tank and / or the nitrification tank.
【請求項5】 該排水処理装置が合併浄化槽である請求
項1の排水処理装置。
5. The wastewater treatment equipment according to claim 1, wherein the wastewater treatment equipment is a combined septic tank.
【請求項6】 微生物を固定化した担体がポリビニルア
ルコ−ル系含水ゲルである請求項1記載の排水処理装
置。
6. The wastewater treatment device according to claim 1, wherein the carrier on which the microorganisms are immobilized is a polyvinyl alcohol-based hydrogel.
【請求項7】 微生物を固定化した担体がアセタ−ル化
ポリビニルアルコ−ル系含水ゲルである請求項1の排水
処理装置。
7. The wastewater treatment equipment according to claim 1, wherein the carrier on which the microorganisms are immobilized is an acetalized polyvinyl alcohol hydrogel.
【請求項8】 微生物を固定化した担体がポリビニルホ
ルマ−ル含水ゲルである請求項1記載の排水処理装置。
8. The wastewater treatment apparatus according to claim 1, wherein the carrier on which the microorganisms are immobilized is a polyvinyl formal hydrogel.
【請求項9】 微生物を固定化した担体が直径0.1〜
50μmの繊維状物が絡み合って形成された網状構造を
表面層とするポリビニルアルコール系含水ゲルである請
求項1の排水処理装置。
9. A carrier on which microorganisms are immobilized has a diameter of 0.1 to 10.
The waste water treatment apparatus according to claim 1, which is a polyvinyl alcohol-based hydrogel having a surface layer of a network structure formed by intertwining fibrous substances of 50 μm.
【請求項10】 微生物を固定化した担体が、表面及び
/又は内部に活性炭を含有する担体である請求項1の排
水処理装置。
10. The wastewater treatment equipment according to claim 1, wherein the carrier on which microorganisms are immobilized is a carrier containing activated carbon on the surface and / or inside.
【請求項11】 膜モジュ−ルに使用する膜が精密濾過
膜又は限外濾過膜である請求項1の排水処理装置。
11. The wastewater treatment equipment according to claim 1, wherein the membrane used in the membrane module is a microfiltration membrane or an ultrafiltration membrane.
【請求項12】 膜モジュ−ルに使用する膜が親水性の
膜又は親水化された膜である請求項1の排水処理装置。
12. The wastewater treatment equipment according to claim 1, wherein the membrane used in the membrane module is a hydrophilic membrane or a hydrophilized membrane.
JP04471598A 1997-02-28 1998-02-26 Wastewater treatment equipment Expired - Fee Related JP3385306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04471598A JP3385306B2 (en) 1997-02-28 1998-02-26 Wastewater treatment equipment

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP4563597 1997-02-28
JP4826097 1997-03-03
JP8643597 1997-04-04
JP14130597 1997-05-30
JP9-141305 1997-05-30
JP9-86435 1997-05-30
JP9-45635 1997-05-30
JP9-48260 1997-05-30
JP04471598A JP3385306B2 (en) 1997-02-28 1998-02-26 Wastewater treatment equipment

Publications (2)

Publication Number Publication Date
JPH1142497A JPH1142497A (en) 1999-02-16
JP3385306B2 true JP3385306B2 (en) 2003-03-10

Family

ID=27522419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04471598A Expired - Fee Related JP3385306B2 (en) 1997-02-28 1998-02-26 Wastewater treatment equipment

Country Status (1)

Country Link
JP (1) JP3385306B2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001005877A1 (en) * 1999-07-15 2001-01-25 Kuraray Co., Ltd. Aqueous polyvinyl alcohol gel, process for producing the same, and wastewater treatment apparatus
JP4667583B2 (en) * 1999-11-19 2011-04-13 株式会社クラレ Waste water treatment apparatus and waste water treatment method
JP2002136991A (en) * 2000-11-07 2002-05-14 Taisei Corp Denitrification treatment method
KR20010016525A (en) * 2000-12-04 2001-03-05 성기달 Technology for cleaning river equipped with bio carrier filter
WO2006009125A1 (en) * 2004-07-16 2006-01-26 Kuraray Co., Ltd. Method of wastewater treatment with excess sludge withdrawal reduced
KR100953288B1 (en) * 2004-07-16 2010-04-20 가부시키가이샤 구라레 Method of wastewater treatment with excess sludge withdrawal reduced
KR101298290B1 (en) * 2006-01-25 2013-08-20 가부시키가이샤 구라레 Advanced method for wastewater treatment and method for excessive sludge degradation treatment, using immobilized carrier
MY159071A (en) * 2007-12-19 2016-12-15 Saudi Arabian Oil Co Suspended media granular activated carbon membrane biological reactor system and process
JP4994265B2 (en) * 2008-02-25 2012-08-08 シャープ株式会社 Water treatment apparatus and water treatment method
JP4879925B2 (en) * 2008-02-25 2012-02-22 シャープ株式会社 Water treatment apparatus and water treatment method
JP4870707B2 (en) * 2008-03-26 2012-02-08 シャープ株式会社 Water treatment apparatus and water treatment method
JP4870708B2 (en) * 2008-03-26 2012-02-08 シャープ株式会社 Water treatment apparatus and water treatment method
NL2001974C (en) * 2008-09-10 2010-03-15 Ipstar B V DEVICE FOR TREATMENT OF UREA-WATER, TOILET, STABLE AND METHOD.
TWI568687B (en) * 2009-06-15 2017-02-01 沙烏地阿拉伯油品公司 Suspended media membrane biological reactor system and process including suspension system and multiple biological reactor zones
EA025298B1 (en) * 2009-07-08 2016-12-30 Сауди Арабиан Ойл Компани Low concentration wastewater treatment system and process
CN102548912B (en) 2009-07-08 2015-06-17 沙特阿拉伯石油公司 Wastewater treatment system and process including irradiation of primary solids
DE102011001962A1 (en) * 2011-04-11 2012-10-11 Thyssenkrupp Uhde Gmbh Process and plant for biological treatment of coking plant wastewater
CN102826647B (en) * 2012-08-15 2014-03-12 哈尔滨工业大学宜兴环保研究院 Aerobic denitrification reactor with mycelium pellet as carrier and method for synchronous operation of nitrification and denitrification
KR101421800B1 (en) * 2012-08-24 2014-07-22 삼성물산 주식회사 Compact Energy-saving wastewater treatment system hybridizing sieving-membrane bioreactor and highly thickened sludge anaerobic digester by biosorption
JP6151578B2 (en) * 2013-06-03 2017-06-21 パナソニック株式会社 Wastewater treatment equipment
CN103951050B (en) * 2014-04-04 2016-03-02 北京工业大学 A kind of denitrifying bacterium immobilization straight-tube shape biological active filling material preparations and applicatio based on mesh carrier
JP6619156B2 (en) * 2015-05-20 2019-12-11 株式会社クラレ Microbial carrier

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645035B2 (en) * 1985-09-19 1994-06-15 三菱重工業株式会社 High-concentration wastewater treatment method
JPH0286700U (en) * 1988-12-23 1990-07-09
JPH0729115B2 (en) * 1990-03-23 1995-04-05 荏原インフイルコ株式会社 Treatment method for human waste
JPH0448995A (en) * 1990-06-15 1992-02-18 Tosoh Corp Water treatment
JP3466236B2 (en) * 1993-07-30 2003-11-10 株式会社クラレ Polyvinyl acetal gel molding
JP3019127B2 (en) * 1993-09-02 2000-03-13 株式会社クボタ Nitrogen removal equipment

Also Published As

Publication number Publication date
JPH1142497A (en) 1999-02-16

Similar Documents

Publication Publication Date Title
JP3385306B2 (en) Wastewater treatment equipment
EP0861808B1 (en) Waste water treatment apparatus
JP3722696B2 (en) Wastewater treatment method for removal of organic matter and nitrogen
US7879239B2 (en) Wastewater treatment method using immobilized carrier
JPH11165200A (en) Method for treating sludge
JPS633680B2 (en)
JPH1052268A (en) Carrier for microorganism and its production
JPH10296297A (en) Hot water purifying device
EP1440944A1 (en) Waste water treatment method
JPS6329997B2 (en)
JP3686215B2 (en) Water treatment carrier, production method thereof, and nitrification denitrification method using the same
JP5523800B2 (en) Organic wastewater treatment method and treatment equipment
JPH11104698A (en) Drainage treatment method
JP4006750B2 (en) Immobilized microorganism carrier and environmental purification method using the same
CN101798158A (en) Advanced treatment method of refractory organic industrial sewage
CN219429820U (en) Combined equipment for sewage treatment
JPH03275197A (en) Treatment of night soil type sewage
JPH1190499A (en) Method for treatment of sludge
CN109095640A (en) A kind of sewage disposal device and its sewage water treatment method
CN211712730U (en) Sewage treatment device with double aeration biological membranes
JP2009119324A (en) Polymer molding for water treatment
JPH0138557B2 (en)
JPH0768282A (en) Wastewater treatment apparatus
JPH1177074A (en) Device and method for treating wastewater
JP2000301197A (en) Waste water treatment method and apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071227

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111227

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121227

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121227

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131227

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees