JPH11165200A - Method for treating sludge - Google Patents

Method for treating sludge

Info

Publication number
JPH11165200A
JPH11165200A JP9336119A JP33611997A JPH11165200A JP H11165200 A JPH11165200 A JP H11165200A JP 9336119 A JP9336119 A JP 9336119A JP 33611997 A JP33611997 A JP 33611997A JP H11165200 A JPH11165200 A JP H11165200A
Authority
JP
Japan
Prior art keywords
sludge
tank
membrane
separation
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9336119A
Other languages
Japanese (ja)
Inventor
Naoya Tanakamaru
直也 田中丸
Wataru Fujii
渉 藤井
Kazuo Kuwabara
和夫 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diafloc Co Ltd
Mitsubishi Rayon Co Ltd
Nitto Chemical Industry Co Ltd
Mitsubishi Rayon Engineering Co Ltd
Original Assignee
Diafloc Co Ltd
Mitsubishi Rayon Co Ltd
Nitto Chemical Industry Co Ltd
Mitsubishi Rayon Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diafloc Co Ltd, Mitsubishi Rayon Co Ltd, Nitto Chemical Industry Co Ltd, Mitsubishi Rayon Engineering Co Ltd filed Critical Diafloc Co Ltd
Priority to JP9336119A priority Critical patent/JPH11165200A/en
Publication of JPH11165200A publication Critical patent/JPH11165200A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the generation of bad smell or the deterioration of sludge in a sludge storage tank and reduce the amount of the sludge by sufficiently utilizing the functions of a gravity sludge concentration tank. SOLUTION: Sludge generated when organic wastewater is biologically treated is stored in a sludge storage tank 48, and the sludge is supplied from the tank 48 to a membrane separation tank 12 of an immersion type membrane separation device 10 including a separation membrane module 14 to further separate the water contained in the sludge by means of the module 14 to concentrate it, while aeration is effected by an aeration device 30, and the concentrated sludge is returned to the tank 48. Thus the sludge is circulated between the tank 48 and the tank 12 to concentrate the sludge.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機性汚水の処理
方法に関するもので、特に生物処理により生じた汚泥を
重力濃縮後に更に高度に濃縮する方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating organic wastewater, and more particularly to a method for concentrating sludge generated by biological treatment after gravity concentration to a higher degree.

【0002】[0002]

【従来の技術】し尿や下水などの都市廃水、工場等から
の有機性廃水などは、そのなかに含まれる種々の懸濁物
質(SS)を取り除く処理が施されてから河川等に放流
される。そのような有機性廃水の処理システムにおいて
は、例えば図4に示すように、まず、廃液原水が最初沈
澱池40に導入され、ここで、比較的大きな懸濁物質が
沈澱分離される。次に、生物処理槽42にて、活性汚泥
により廃水中のBODやCOD等の水溶性成分を分解す
る生物処理がなされる。その後、最終沈澱池44にて活
性汚泥のフロックが沈澱分離され、放流される。また、
最終沈澱池44からの汚泥の一部は、余剰汚泥として、
重力式汚泥濃縮槽46にて濃縮される。ここでの脱離液
は最初沈澱池40に返送される。
2. Description of the Related Art Urban wastewater such as human waste and sewage, and organic wastewater from factories and the like are discharged to rivers and the like after being subjected to a treatment for removing various suspended substances (SS) contained therein. . In such an organic wastewater treatment system, for example, as shown in FIG. 4, firstly, raw wastewater is first introduced into a sedimentation basin 40, where a relatively large suspended solid is precipitated and separated. Next, in the biological treatment tank 42, biological treatment for decomposing water-soluble components such as BOD and COD in the wastewater with activated sludge is performed. Thereafter, flocs of the activated sludge are precipitated and separated in the final sedimentation basin 44 and discharged. Also,
Part of the sludge from the final sedimentation basin 44 is surplus sludge,
It is concentrated in the gravity type sludge concentration tank 46. The desorbed liquid here is first returned to the precipitation tank 40.

【0003】汚泥濃縮の為に遠心濃縮機を備えた施設に
おいては、遠心濃縮機の能力が大きい場合が多く、一
旦、汚泥を貯溜した後、間欠的な濃縮が行われる。濃縮
された汚泥は汚泥貯溜槽48に送られて貯溜される。
尚、最初沈澱池40での沈澱物も重力式汚泥濃縮槽46
を経て汚泥貯溜槽48にて貯溜される。汚泥貯溜槽48
に貯溜した汚泥は、適宜、脱水処理され、または脱水設
備のない施設においては他の処理施設へと搬送され処理
される。
[0003] In a facility provided with a centrifugal concentrator for sludge concentration, the capacity of the centrifugal concentrator is often large, and intermittent concentration is performed after once storing sludge. The concentrated sludge is sent to a sludge storage tank 48 and stored therein.
The sediment in the sedimentation basin 40 is also supplied to the gravity type sludge thickening tank 46 first.
And is stored in the sludge storage tank 48. Sludge storage tank 48
The sludge stored in the dewatering unit is appropriately dewatered, or, in a facility without a dewatering facility, transported to another processing facility for processing.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
たようなシステムにおいては、汚泥貯溜槽48内が嫌気
状態になり、悪臭が発生したり、汚泥が難脱水性に変質
することがあった。また、汚泥貯溜槽48に送給される
汚泥は重力式汚泥濃縮槽46にて濃縮されたものである
が、それでも汚泥貯溜槽48における濃度は通常、1〜
2%であり、汚泥貯溜槽48での汚泥量は莫大であり、
処理費用が嵩むものであった。従来より汚泥濃縮を好気
状態で実施する方法として、浸漬型汚泥濃縮装置を使用
した特開平9−92571号公報が開示されているが、
この方法では、浸漬型汚泥濃縮槽への汚泥供給は重力式
汚泥濃縮槽からなされるため、一般に汚泥濃縮度も不均
一で、重力式汚泥濃縮機構が充分活用されていない。
However, in the above-described system, the inside of the sludge storage tank 48 may become anaerobic, causing a bad smell or changing the sludge into a hardly dewaterable one. Further, the sludge fed to the sludge storage tank 48 is concentrated in the gravity type sludge concentration tank 46, but the concentration in the sludge storage tank 48 is still generally 1 to 1.
2%, the amount of sludge in the sludge storage tank 48 is enormous,
Processing costs were high. Conventionally, as a method of performing sludge concentration in an aerobic state, Japanese Patent Application Laid-Open No. 9-92571 using a immersion type sludge concentration device is disclosed.
In this method, the sludge is supplied to the immersion type sludge thickening tank from the gravity type sludge thickening tank. Therefore, the sludge thickening degree is generally uneven, and the gravity type sludge thickening mechanism is not fully utilized.

【0005】本発明は前記課題を解決するためになされ
たもので、重力式汚泥濃縮槽の機能を充分に活用した上
で、汚泥貯溜槽における悪臭の発生や汚泥の変質の低減
および汚泥量の低減を目的としてなされたものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and the present invention makes full use of the function of a gravity-type sludge thickening tank and reduces the generation of offensive odor and sludge alteration in the sludge storage tank, and reduces the amount of sludge. This was done for the purpose of reduction.

【0006】[0006]

【課題を解決するための手段】本発明の要旨は、有機性
汚水を生物処理する際に発生する汚泥を汚泥貯溜槽に貯
溜し、分離膜モジュールを備えた浸漬型膜分離装置の膜
分離槽に、前記汚泥貯溜槽から汚泥を供給し、散気しな
がら汚泥中に含まれる水分を更に分離して濃縮し、この
濃縮した汚泥を前記汚泥貯溜槽に返送することで、汚泥
貯溜槽と膜分離槽との間で汚泥を循環させながら濃縮す
る汚泥の処理方法にある。
SUMMARY OF THE INVENTION The gist of the present invention is to store sludge generated when biologically treating organic wastewater in a sludge storage tank, and to provide a membrane separation tank for a submerged membrane separation apparatus equipped with a separation membrane module. The sludge is supplied from the sludge storage tank, the water contained in the sludge is further separated and concentrated while diffusing, and the concentrated sludge is returned to the sludge storage tank, whereby the sludge storage tank and the membrane are separated. There is a method for treating sludge which is concentrated while circulating the sludge with a separation tank.

【0007】[0007]

【発明の実施の形態】図1は、本発明の汚泥の処理方法
の一例を示し、図2は浸漬型膜分離装置の一例を示す。
本発明の一形態例を図1、2を参照して説明すれば、有
機性汚水を生物処理する際に発生する汚泥を汚泥貯溜槽
48に貯溜し、分離膜モジュール14を備えた浸漬型膜
分離装置10の膜分離槽12に、前記汚泥貯溜槽48か
ら汚泥を供給し、散気しながら汚泥中に含まれる水分を
分離膜モジュール14により更に分離して濃縮し、この
濃縮した汚泥を汚泥貯溜槽48に返送することで、汚泥
貯溜槽48と膜分離槽12との間で汚泥を循環させなが
ら濃縮する汚泥の処理方法である。
FIG. 1 shows an example of a method for treating sludge of the present invention, and FIG. 2 shows an example of an immersion type membrane separation apparatus.
One embodiment of the present invention will be described with reference to FIGS. 1 and 2. An immersion type membrane provided with a separation membrane module 14 in which sludge generated when biologically treating organic wastewater is stored in a sludge storage tank 48. The sludge is supplied from the sludge storage tank 48 to the membrane separation tank 12 of the separation device 10, and the moisture contained in the sludge is further separated and concentrated by the separation membrane module 14 while diffusing, and the concentrated sludge is separated into sludge. By returning the sludge to the storage tank 48, the sludge is circulated and concentrated between the sludge storage tank 48 and the membrane separation tank 12, and the sludge is treated.

【0008】図1に示すように、この例では、まず、処
理する有機性汚水からなる廃液原水を最初沈澱池40に
導入する。この最初沈澱池40では、比較的大きな懸濁
物質を沈澱分離する。
[0010] As shown in FIG. 1, in this example, first, raw waste water composed of organic wastewater to be treated is first introduced into a sedimentation basin 40. In this initial settling basin 40, relatively large suspended solids are separated by settling.

【0009】そして、最初沈澱池40で処理された処理
水は生物処理槽42中で活性汚泥によってBODやCO
D等の水溶性成分を分解する生物処理がなされる。尚、
ここでは生物処理の代わりに嫌気・好気循環式硝化脱窒
槽のように種々の生物処理方法を適用しても良い。次い
で、最終沈澱池44に導かれて活性汚泥のフロックが分
離沈澱される。そして、最終沈澱池44での処理水は放
流され、最終沈澱池44で沈降した汚泥の一部は余剰汚
泥として重力式汚泥濃縮槽46に送給される。重力式汚
泥濃縮槽46での脱離液は最初沈澱池40に返送され
る。
[0009] The treated water first treated in the sedimentation basin 40 is subjected to BOD or CO
A biological treatment for decomposing water-soluble components such as D is performed. still,
Here, instead of the biological treatment, various biological treatment methods such as an anaerobic / aerobic circulation type nitrification denitrification tank may be applied. Next, the floc of the activated sludge is led to the final sedimentation basin 44 and separated and settled. The treated water in the final sedimentation basin 44 is discharged, and a part of the sludge settled in the final sedimentation basin 44 is sent to the gravity type sludge thickening tank 46 as surplus sludge. The desorbed liquid in the gravity type sludge concentration tank 46 is first returned to the sedimentation basin 40.

【0010】さらに、重力式汚泥濃縮槽46で軽度に重
力濃縮された余剰汚泥は汚泥貯溜槽48に送られて貯溜
される。尚、最初沈澱池40での沈澱物も重力式汚泥濃
縮槽46を経て汚泥貯溜槽48にて貯溜される。
Further, the excess sludge lightly concentrated by gravity in the gravity type sludge thickening tank 46 is sent to a sludge storage tank 48 and stored therein. Incidentally, the precipitate in the sedimentation basin 40 is first stored in the sludge storage tank 48 through the gravity type sludge concentration tank 46.

【0011】本発明においては、この汚泥貯溜槽48よ
り取り出した汚泥を、分離膜モジュール14を備えた浸
漬型膜分離装置10の膜分離槽12に供給し、散気しな
がら分離膜モジュール14により汚泥中に含有されてい
る水分を分離した後、オーバーフロー管23等を経て、
再び汚泥貯溜槽48に返送することに特徴がある。
In the present invention, the sludge taken out from the sludge storage tank 48 is supplied to the membrane separation tank 12 of the immersion type membrane separation apparatus 10 provided with the separation membrane module 14, and is diffused by the separation membrane module 14 while diffusing. After separating the water contained in the sludge, through the overflow pipe 23 and the like,
It is characterized in that it is returned to the sludge storage tank 48 again.

【0012】一般に、浸漬型膜分離装置の濃縮効率は汚
泥濃度が上昇すると低下する。浸漬型膜分離装置で一度
に高濃度まで濃縮する場合には装置内の汚泥濃度は濃縮
目的濃度で運転する必要があるため、効率は悪くなる。
しかしながら、本方法によれば、汚泥貯溜槽48中の汚
泥を膜分離槽12内に導き、濃縮した汚泥を返送するの
で、濃縮効率も高い。
Generally, the concentration efficiency of a submerged membrane separation device decreases as the sludge concentration increases. When the immersion type membrane separation device is used to concentrate to a high concentration at a time, the sludge concentration in the device needs to be operated at the concentration target concentration, so that the efficiency is deteriorated.
However, according to this method, the sludge in the sludge storage tank 48 is guided into the membrane separation tank 12 and the concentrated sludge is returned, so that the concentration efficiency is high.

【0013】膜分離に用いる為の分離膜モジュール14
としては、被処理水(汚泥)中の浮遊性微生物や懸濁物
質等が分離できればどのようなものでも良く、中空糸膜
の他、メンブレンフィルタ等の平膜等を利用したものが
適用できる。例えば、浸漬型膜分離装置としては、図2
に示す構成のものが適用できる。図2に示す浸漬型膜分
離装置10は、吸引ポンプ16と接続された分離膜モジ
ュール14と、圧空ポンプ32と接続した散気装置30
とから概略構成され、分離膜モジュール14と散気装置
30とは、膜分離槽12内の汚泥中に浸漬するように配
置されている。
Separation membrane module 14 for use in membrane separation
Any material can be used as long as it can separate floating microorganisms and suspended substances in the water to be treated (sludge), and those utilizing a flat membrane such as a membrane filter in addition to a hollow fiber membrane can be applied. For example, as an immersion type membrane separation device, FIG.
The structure shown in FIG. The immersion type membrane separation device 10 shown in FIG. 2 includes a separation membrane module 14 connected to a suction pump 16 and an air diffuser 30 connected to a compressed air pump 32.
The separation membrane module 14 and the air diffuser 30 are arranged so as to be immersed in the sludge in the membrane separation tank 12.

【0014】分離膜モジュール14として、例えば、中
空糸膜を有する中空糸膜モジュールを用いることができ
る。中空糸膜モジュールは例えば、図3に示すように、
複数の中空糸で構成される中空糸膜からなる分離膜18
と、該分離膜18の両端に設けられた管状支持体20と
を有して概略構成される。
As the separation membrane module 14, for example, a hollow fiber membrane module having a hollow fiber membrane can be used. The hollow fiber membrane module is, for example, as shown in FIG.
Separation membrane 18 composed of a hollow fiber membrane composed of a plurality of hollow fibers
And a tubular support 20 provided at both ends of the separation membrane 18.

【0015】中空糸には種々の多孔質かつ管状の中空糸
が使用でき、例えば、セルロース系、ポリオレフィン
系、ポリビニルアルコール系、PMMA系、ポリスルフ
ォン系等の各種材料からなるものが使用できる。中で
も、ポリエチレンやポリプロピレン等の屈曲性の高い材
質のものが好ましい。また、特に限定されるものではな
いが、中空糸の外径は20〜2000μm、孔径は0.
01〜1μm、空孔率は20〜90%、中空糸膜の膜厚
は5〜300μmのものが好ましい。
As the hollow fiber, various porous and tubular hollow fibers can be used. For example, those made of various materials such as cellulose, polyolefin, polyvinyl alcohol, PMMA, and polysulfone can be used. Among them, materials having high flexibility such as polyethylene and polypropylene are preferable. Further, although not particularly limited, the outer diameter of the hollow fiber is 20 to 2000 μm, and the pore diameter is 0.2 μm.
It is preferable that the thickness is from 01 to 1 μm, the porosity is from 20 to 90%, and the thickness of the hollow fiber membrane is from 5 to 300 μm.

【0016】また、疎水性の分離膜を用いる場合、表面
に親水基を有する所謂恒久親水化膜であることが望まし
い。分離膜の表面が疎水性であると、被処理水中の有機
物と分離膜表面の間に疎水性相互作用がはたらき、膜面
への有機物吸着が発生し、これが膜面閉塞につながり、
濾過寿命が短くなり易いからである。しかも、吸着に起
因する目詰りは膜面洗浄によっても濾過性能の回復は一
般に難しい。しかしながら、恒久親水膜を用いることに
より有機物と分離膜表面の疎水性相互作用を抑制するこ
とができ、有機物の吸着を抑えることができる。
When a hydrophobic separation membrane is used, a so-called permanent hydrophilization membrane having a hydrophilic group on the surface is desirable. If the surface of the separation membrane is hydrophobic, hydrophobic interaction acts between the organic matter in the water to be treated and the surface of the separation membrane, and organic matter adsorption to the membrane surface occurs, which leads to membrane surface blockage,
This is because the filtration life is likely to be short. In addition, clogging caused by adsorption is generally difficult to recover filtration performance even by membrane surface cleaning. However, by using a permanent hydrophilic membrane, hydrophobic interaction between an organic substance and the surface of the separation membrane can be suppressed, and adsorption of the organic substance can be suppressed.

【0017】管状支持体20は、図3に示すように、内
部に内部路24の形成された筒状のもので、その一端は
閉止され、他端は吸引ポンプ16と配管22によって接
続されている。尚、この図3に示した管状支持体20は
円筒状のものであるが、これに限られるものではなく、
例えば、外形が四角柱状のものであってもよい。さら
に、この管状支持体20の側壁26にはその長さ方向に
沿ったスリット28が形成されている。このスリット2
8には分離膜18の端部が挿入されつつ、充填される密
封材で閉塞され、分離膜18は強固に支持固定される。
即ち、分離膜モジュール14としては、分離膜18の両
端部が2本の管状支持体20によってそれぞれ支持され
る。この場合、分離膜18の端部とは中空糸の繊維方向
両端部であり、各中空糸の両端部は管状支持体20の内
部路24内に位置するようになる。
As shown in FIG. 3, the tubular support 20 is a tubular one having an internal passage 24 formed therein. One end of the tubular support 20 is closed, and the other end is connected to the suction pump 16 by a pipe 22. I have. The tubular support 20 shown in FIG. 3 is cylindrical, but is not limited to this.
For example, the outer shape may be a quadrangular prism. Further, a slit 28 is formed in the side wall 26 of the tubular support 20 along the length direction thereof. This slit 2
The end of the separation membrane 18 is inserted into 8 and closed with a sealing material to be filled, and the separation membrane 18 is firmly supported and fixed.
That is, in the separation membrane module 14, both ends of the separation membrane 18 are supported by the two tubular supports 20, respectively. In this case, the ends of the separation membrane 18 are both ends of the hollow fiber in the fiber direction, and both ends of each hollow fiber are located in the internal passage 24 of the tubular support 20.

【0018】密封材は、分離膜18の各中空糸をその端
部の開口状態を保ったまま、集束してスリット28に固
定するとともに、管状支持体20の内部路24を外部か
ら液密に仕切るもので、エポキシ樹脂、不飽和ポリエス
テル樹脂、ポリウレタン等を液状にしたものをスリット
28に充填、硬化させることにより形成される。
The sealing material converges and fixes each hollow fiber of the separation membrane 18 to the slit 28 while maintaining the open state of its end, and makes the internal passage 24 of the tubular support 20 liquid-tight from the outside. It is formed by filling a slit 28 with an epoxy resin, an unsaturated polyester resin, polyurethane or the like in a liquid state and curing the liquid.

【0019】また、1つのスリットに対して2列以上に
分離膜を挿入、固定すれば、または、1つの管状支持体
に対して2つ以上のスリットを形成し、各スリットに分
離膜を挿入、固定すれば、1つの分離膜モジュール当た
り複数の分離膜を形成することが可能となる。
Further, if two or more separation membranes are inserted and fixed in one slit, or two or more slits are formed in one tubular support, and the separation membrane is inserted into each slit. If fixed, a plurality of separation membranes can be formed per separation membrane module.

【0020】このような構成の分離膜モジュールは1つ
の膜分離槽内に複数個配置することが可能である。分離
膜モジュールを複数個配置することによって、全体とし
ての膜面積を増加させることができ、処理性能を向上さ
せることができる。このため、各分離膜モジュールの
数、管状支持体の太さを考慮して選択することが必要で
あり、その間隔は5〜100mmの範囲が好ましく、5〜
70mmの範囲がより好ましい。
A plurality of separation membrane modules having such a configuration can be arranged in one membrane separation tank. By arranging a plurality of separation membrane modules, the overall membrane area can be increased, and the processing performance can be improved. For this reason, it is necessary to select in consideration of the number of each separation membrane module and the thickness of the tubular support, and the interval is preferably in the range of 5 to 100 mm,
A range of 70 mm is more preferred.

【0021】各管状支持体20の内部路24は吸引ポン
プ16と配管22にて接続されており、吸引ポンプ16
を作動させることにより、内部路24内に入り込んだ透
過液は強制的に吸引される。したがって、膜分離槽12
内に流入した汚泥は、吸引ポンプ16の作動により、分
離膜18で吸引濾過され、汚泥のみが分離膜18の表面
に捕らえられ水分と汚泥とが分離される。こうして汚泥
の除去された水分(膜濾過水)は、吸引ポンプ16によ
り分離膜18を構成する各中空糸内を通り、その端部に
設けられている管状支持体20の内部路24及び配管2
2を経由して放流または最初沈殿池に送られる。こうし
て膜分離槽12内では高速で水分だけが除去されて汚泥
がより濃縮され、濃縮された汚泥はオーバーフロー管2
3等を経て、汚泥貯溜槽48に返送される。そして、汚
泥貯溜槽48に貯溜した汚泥は、適宜、脱水処理され、
または脱水設備のない施設においては他の処理施設へと
搬送され処理される。
The internal passage 24 of each tubular support 20 is connected to the suction pump 16 by a pipe 22.
, The permeated liquid that has entered the internal passage 24 is forcibly sucked. Therefore, the membrane separation tank 12
The sludge flowing into the inside is suction-filtered by the separation membrane 18 by the operation of the suction pump 16, only the sludge is captured on the surface of the separation membrane 18, and the water and the sludge are separated. The water (membrane filtered water) from which the sludge has been removed in this way passes through each hollow fiber constituting the separation membrane 18 by the suction pump 16, passes through the internal passage 24 of the tubular support 20 provided at the end thereof, and the pipe 2.
2 or discharged to the first settling basin. In this manner, only water is removed at high speed in the membrane separation tank 12, and the sludge is further concentrated.
After passing through 3 and the like, it is returned to the sludge storage tank 48. Then, the sludge stored in the sludge storage tank 48 is appropriately dehydrated,
Alternatively, in a facility without a dewatering facility, it is transported to another processing facility for processing.

【0022】更に本発明における膜分離装置には、気体
を発散する散気装置が配備される。散気装置は、図2に
示すように、分離膜18の下方に配置することが好まし
い。この例の散気装置30は、多数の細孔の形成された
管状体で、圧空ポンプ32と接続されている。この圧空
ポンプ32を作動させることにより、散気装置30から
は気泡が発散される。この散気装置30から空気を発散
させることにより、膜分離槽12内の汚泥が好気状態と
なり、悪臭の発生や汚泥の変質を抑制することができ
る。さらに、この散気装置30を利用することにより、
エアースクラビング処理による分離膜の洗浄により、分
離能力の低下を防止することができる。すなわち、散気
装置30から散気されて上昇する気泡により、中空糸膜
が揺動し、この揺動により中空糸どうしが擦れあったり
又は中空糸と水の相対的流動により、中空糸の表面に付
着した汚泥が取り除かれるようになる。
Further, the membrane separation device according to the present invention is provided with an air diffuser that emits gas. The air diffuser is preferably arranged below the separation membrane 18, as shown in FIG. The air diffuser 30 in this example is a tubular body having a large number of pores, and is connected to a pneumatic pump 32. By operating the compressed air pump 32, air bubbles are emitted from the air diffuser 30. By emitting air from the air diffuser 30, the sludge in the membrane separation tank 12 becomes aerobic, and it is possible to suppress generation of offensive odor and deterioration of the sludge. Furthermore, by using this air diffuser 30,
Washing of the separation membrane by air scrubbing treatment can prevent a decrease in separation ability. That is, the air bubbles diffused from the air diffuser 30 cause the hollow fiber membrane to oscillate, and the oscillation causes the hollow fibers to rub against each other or the relative flow of the hollow fiber and water to cause the surface of the hollow fiber to oscillate. Sludge that has adhered to the soil will be removed.

【0023】したがって、この散気装置30は、膜分離
槽12及び汚泥貯溜槽48内を好気状態にする機能と、
分離膜18の洗浄機能とを兼ね備えている。即ち、この
散気装置を備えた浸漬型膜分離装置を既設の汚泥処理設
備に追加配置すれば、従来の汚泥処理システム中の汚泥
貯溜槽中に汚泥を好気状態に保つために曝気装置を追加
設置するのに近い効果が、汚泥濃縮効果と同時に付加さ
れる。
Therefore, the air diffuser 30 has a function of making the inside of the membrane separation tank 12 and the sludge storage tank 48 aerobic,
It also has a function of cleaning the separation membrane 18. That is, if an immersion type membrane separation device equipped with this air diffuser is additionally arranged in the existing sludge treatment equipment, an aerator is installed in the sludge storage tank in the conventional sludge treatment system to keep the sludge in an aerobic state. The effect similar to additional installation is added simultaneously with the sludge thickening effect.

【0024】また、上記散気装置30によるエアースク
ラビング処理を考慮すると、図3に示すように、分離膜
18の膜面が鉛直方向に沿うように分離膜モジュール1
4を配置することが望ましい。膜面が鉛直方向に沿うよ
うに配置することで、その下方から上昇する気泡が全て
の分離膜18の膜面全体に対し均一に作用し、かつ円滑
に膜分離槽12の上方に通り抜け易くなるからである。
これに対して、分離膜18が水平に寝た状態に分離膜モ
ジュールを配置すると、散気によって生じた気泡は最下
部に配置された分離膜18に当たった後は、その分離膜
18に沿って水平方向外方に向かって散ってしまい、上
部に配置された分離膜18に対して有効にエアースクラ
ビング処理を施し難い。
In consideration of the air scrubbing process by the air diffuser 30, as shown in FIG. 3, the separation membrane module 1 is set so that the membrane surface of the separation membrane 18 extends along the vertical direction.
4 is desirably arranged. By arranging the membrane surface along the vertical direction, bubbles rising from below act uniformly on the entire membrane surface of all the separation membranes 18 and easily pass over the membrane separation tank 12 smoothly. Because.
On the other hand, if the separation membrane module is arranged in a state where the separation membrane 18 is lying horizontally, the air bubbles generated by the air diffusion hit the separation membrane 18 arranged at the bottom, and then follow the separation membrane 18. As a result, it is difficult to effectively perform the air scrubbing process on the separation membrane 18 disposed on the upper side.

【0025】また、汚泥貯溜槽48に流入される汚泥中
には活性汚泥の微細フロックが含まれているおそれがあ
る。このような活性汚泥を含む微細フロックは、分離膜
の膜表面への付着、分離膜どうし間への付着を起こし、
分離膜としての透過流束を低下させやすい。このような
場合、膜分離槽12に凝集剤を添加することが有効であ
る。被処理水に凝集剤を添加すると、被処理水中の微細
フロックは比較的大きく且つ強度の高いフロックを形成
するようになり、分離膜の表面上に緻密なケーキ層は形
成されず、分離膜からの剥離性が高まる。したがって、
分離膜の高い透過流束を維持することができるようにな
る。即ち、吸引濾過による膜分離を行うほど、膜分離槽
中の汚泥濃度は高まり、ひいては膜の透過流束が低下す
る傾向があるが、凝集剤の添加を行うことにより、汚泥
濃度が高くても低い膜間差圧で高い透過流束を維持する
ことができるようになる。
The sludge flowing into the sludge storage tank 48 may contain fine flocks of activated sludge. The fine floc containing such activated sludge causes adhesion of the separation membrane to the membrane surface and adhesion between the separation membranes,
It is easy to lower the permeation flux as a separation membrane. In such a case, it is effective to add a flocculant to the membrane separation tank 12. When the coagulant is added to the water to be treated, the fine flocs in the water to be treated become relatively large and have high strength, and a dense cake layer is not formed on the surface of the separation membrane. The peelability of is increased. Therefore,
High permeation flux of the separation membrane can be maintained. That is, the more the membrane separation is performed by suction filtration, the more the sludge concentration in the membrane separation tank tends to decrease, and thus the permeation flux of the membrane tends to decrease. A high permeation flux can be maintained at a low transmembrane pressure.

【0026】凝集剤は、カチオン系の合成高分子凝集剤
が適している。高分子凝集剤のみ添加する場合、高分子
凝集剤の使用量は余剰汚泥の性状にもよるが、余剰汚泥
中の懸濁物質(SS)100重量部に対して0.1〜1
重量部となる量が好ましく、0.1〜0.8重量部が特
に好ましい。0.1重量部未満ではフロックの形成が不
十分となる。また、1重量部より多いとフロックが再分
散したり、フロックの分離膜への付着性が増すおそれが
あるので好ましくない。
As the flocculant, a cationic synthetic polymer flocculant is suitable. When only the polymer flocculant is added, the amount of the polymer flocculant used depends on the properties of the excess sludge, but is preferably 0.1 to 1 with respect to 100 parts by weight of the suspended solid (SS) in the excess sludge.
The amount to be parts by weight is preferable, and 0.1 to 0.8 parts by weight is particularly preferable. If the amount is less than 0.1 part by weight, the formation of flocs becomes insufficient. On the other hand, if the amount is more than 1 part by weight, the floc may be re-dispersed or the adhesion of the floc to the separation membrane may increase, which is not preferable.

【0027】このように、凝集剤を添加することによ
り、分離膜を用いた吸引濾過における圧損の経時的な上
昇を著しく抑制し、圧損の小さい濾過条件で長時間透過
流束を高く保つことが可能となる。したがって、安定し
て水分の分離、除去を行えると共に、使用する分離膜の
膜面積の削減を図ることもできる。さらに、分離膜の負
担を軽減し、分離膜の寿命を延ばすこともできる。
As described above, by adding the coagulant, it is possible to remarkably suppress an increase in pressure loss over time in suction filtration using a separation membrane, and to maintain a high permeation flux for a long time under a filtration condition with a small pressure loss. It becomes possible. Therefore, it is possible to stably separate and remove moisture, and to reduce the area of the separation membrane to be used. Further, the load on the separation membrane can be reduced, and the life of the separation membrane can be extended.

【0028】本発明に用いる汚泥処理装置の好ましい形
態例を、図1と図2とに基づき説明すると、有機性汚水
を生物処理する際に発生する汚泥が貯溜される汚泥貯溜
槽48と、該汚泥貯溜槽48に接続されている浸漬型膜
分離装置10とを備えている汚泥処理装置であって、前
記浸漬型膜分離装置10は、汚泥中に含まれる水分を濃
縮するための分離膜モジュール14と、汚泥に空気等を
散気するための散気装置30とを膜分離槽12内に備
え、汚泥が汚泥貯溜槽48から膜分離槽12に供給さ
れ、該汚泥が分離膜モジュール14にて濃縮され、この
濃縮された汚泥が前記汚泥貯溜槽48に返送されること
で、汚泥貯溜槽48と膜分離槽12との間で汚泥が循環
させられる汚泥処理装置である。
A preferred embodiment of the sludge treatment apparatus used in the present invention will be described with reference to FIGS. 1 and 2. A sludge storage tank 48 for storing sludge generated when biologically treating organic wastewater is provided. 1. A sludge treatment apparatus comprising: a submerged membrane separation device 10 connected to a sludge storage tank 48. The submerged membrane separation device 10 includes a separation membrane module for concentrating moisture contained in sludge. 14 and an air diffuser 30 for diffusing air or the like into the sludge are provided in the membrane separation tank 12, and the sludge is supplied from the sludge storage tank 48 to the membrane separation tank 12, and the sludge is supplied to the separation membrane module 14. This is a sludge treatment apparatus in which sludge is circulated between the sludge storage tank 48 and the membrane separation tank 12 by returning the concentrated sludge to the sludge storage tank 48.

【0029】本発明においては、濃縮後の汚泥を貯溜す
る汚泥貯溜槽48が好気状態に近くなり、悪臭の発生
や、汚泥の変質による難脱水化を低減することができ
る。また、汚泥濃度が約2〜3%に濃縮されるので、処
理すべき汚泥量が大幅に減量され、搬送に要する費用を
削減することができる。また、脱水処理効率も高められ
る。さらに、膜分離装置によるものなので、運転やメン
テナンスが容易で管理負担も少なく、また、24時間以
上の連続運転もでき、かつ、既存の汚泥貯溜槽への付加
設置も容易で、低コストである。したがって、本発明に
よれば、好気状態とする為の特別な設備を要せずして、
汚泥貯溜槽内を好気状態に近い状態で汚泥が濃縮される
もので、悪臭の抑制と、汚泥の高度濃縮を容易かつ低コ
ストで実現することができる。
In the present invention, the sludge storage tank 48 for storing the sludge after concentration becomes close to an aerobic state, and it is possible to reduce the generation of offensive odor and the difficulty of dehydration due to the deterioration of the sludge. Further, since the sludge concentration is concentrated to about 2 to 3%, the amount of sludge to be treated is greatly reduced, and the cost required for transportation can be reduced. In addition, the efficiency of the dehydration treatment can be increased. Further, since the operation is performed by the membrane separation device, the operation and maintenance are easy, the management burden is small, the continuous operation can be performed for 24 hours or more, and the additional installation to the existing sludge storage tank is easy, and the cost is low. . Therefore, according to the present invention, there is no need for special equipment for making an aerobic state,
Since the sludge is concentrated in the sludge storage tank in a state close to the aerobic state, it is possible to suppress odor and highly concentrate the sludge easily and at low cost.

【0030】[0030]

【実施例】以下、本発明を詳しく説明する。上述した図
1、2、3に示す廃液処理システムを構築した。容量が
0.5m3の膜分離槽12の内部に、膜面積が40m2
中空糸分離膜モジュールを分離膜モジュール14として
浸漬した。そして、有効容量20m3の汚泥貯溜槽48
より汚泥を40L/分で膜分離槽12に供給すると共
に、中空糸膜モジュールの透過流速も2L/分になるよ
うに吸引濾過し、濾過水は最初沈澱池40にもどした。
したがって、オーバーフロー管23を経て、38L/分
で汚泥が汚泥貯溜槽48に返送された事になる。この分
離膜モジュール14の下方の膜分離槽12の底部に、散
気装置30として散気管を配置し、30m3/hrで空
気を気泡として発散させた。
Hereinafter, the present invention will be described in detail. The waste liquid treatment system shown in FIGS. A hollow fiber separation membrane module having a membrane area of 40 m 2 was immersed as a separation membrane module 14 in a membrane separation tank 12 having a capacity of 0.5 m 3 . And a sludge storage tank 48 having an effective capacity of 20 m 3.
More sludge was supplied to the membrane separation tank 12 at 40 L / min, and suction filtration was performed so that the permeation flow rate of the hollow fiber membrane module was 2 L / min.
Therefore, the sludge is returned to the sludge storage tank 48 at 38 L / min through the overflow pipe 23. At the bottom of the membrane separation tank 12 below the separation membrane module 14, an air diffuser is disposed as an air diffuser 30, and air is emitted as bubbles at 30 m 3 / hr.

【0031】この結果、汚泥貯溜槽48内の当初の汚泥
濃度は約1.5%であったが、重力式汚泥濃縮槽46か
らの汚泥も受け入れながら運転した所、汚泥濃度も徐徐
に増加し、10日後には、3%となった。その為、図4
に示される従来のシステムにおいては、約5日で汚泥貯
溜槽は満杯となり移動脱水車による引抜きが必要とされ
ていたが、本実施例によれば、高濃度に貯溜できるよう
になったので、引抜きは約10日間隔で済むようになっ
た。また、汚泥濃度が高まったことから、脱水処理時間
が短縮した。さらに、汚泥貯溜槽48内が好気状態に近
い状態になったため、汚泥の腐敗ないし脱水処理時の悪
臭も激減した。
As a result, the initial sludge concentration in the sludge storage tank 48 was about 1.5%, but when the operation was performed while receiving the sludge from the gravity type sludge thickening tank 46, the sludge concentration gradually increased. After 10 days, it was 3%. Therefore, FIG.
In the conventional system shown in (1), the sludge storage tank was full in about 5 days and had to be pulled out by a mobile dewatering vehicle.However, according to the present embodiment, since the sludge storage tank can be stored at a high concentration, Withdrawal can be done at intervals of about 10 days. In addition, since the sludge concentration was increased, the dewatering treatment time was shortened. Furthermore, since the inside of the sludge storage tank 48 was almost in the aerobic state, the decay of the sludge or the offensive odor at the time of the dehydration treatment was drastically reduced.

【0032】[0032]

【発明の効果】本発明によれば、有機性汚水を生物処理
する際に発生する汚泥を貯溜する汚泥貯溜槽より汚泥を
取り出し、散気装置を備えた浸漬型膜分離装置により汚
泥中に含有されている水分を更に分離した後、高度に濃
縮された汚泥を汚泥貯溜槽に返送する事により、汚泥の
腐敗防止と濃度濃縮が同時にしかも容易かつ低コストで
なされるもので、悪臭の発生や、汚泥の変質による難脱
水化を低減することができると共に、処理すべき汚泥量
が減少し、搬送に要する費用を削減することができる。
また、脱水処理効果も高められる。さらに、膜分離装置
によるものなので、運転やメンテナンスが容易で管理負
担も少なく、かつ、既存の汚泥貯溜槽への付加設置も容
易で、低コストである。
According to the present invention, sludge is taken out from a sludge storage tank for storing sludge generated during biological treatment of organic wastewater, and is contained in the sludge by a submerged membrane separation device equipped with a diffuser. By further separating the water that has been removed and returning the highly concentrated sludge to the sludge storage tank, sludge prevention and concentration can be performed simultaneously and easily and at low cost. In addition, it is possible to reduce the difficulty of dehydration due to the deterioration of sludge, reduce the amount of sludge to be treated, and reduce the cost required for transportation.
In addition, the dewatering effect can be enhanced. Furthermore, since it is based on a membrane separation device, operation and maintenance are easy, the management burden is small, and additional installation to an existing sludge storage tank is easy, and the cost is low.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の汚泥の処理方法の一例を示す工程図
である。
FIG. 1 is a process chart showing an example of a method for treating sludge of the present invention.

【図2】 浸漬型膜分離装置の一例を示す側断面図であ
る。
FIG. 2 is a side sectional view showing an example of an immersion type membrane separation device.

【図3】 分離膜モジュールの一例を示す斜視図であ
る。
FIG. 3 is a perspective view showing an example of a separation membrane module.

【図4】 従来例の汚泥処理方法の例を示す工程図であ
る。
FIG. 4 is a process chart showing an example of a conventional sludge treatment method.

【符号の説明】[Explanation of symbols]

10・・浸漬型膜分離装置、12・・膜分離槽、14・
・分離膜モジュール、16・・吸引ポンプ、18・・分
離膜、20・・管状支持体、22・・配管、23・・オ
ーバーフロー管、24・・内部路、26・・側壁、28
・・スリット、30・・散気装置、32・・圧空ポン
プ、40・・最初沈澱池、42・・生物処理槽、44・
・最終沈澱池、46・・重力式汚泥濃縮槽、48・・汚
泥貯溜槽
10 ・ ・ immersion type membrane separation device 、 12 ・ ・ ・ ・ membrane separation tank 、 14 ・
· Separation membrane module, 16 · · · Suction pump, 18 · · · Separation membrane, 20 · · · Tubular support, 22 · · Piping, 23 · · Overflow pipe, 24 · · · Internal passage, 26 · · Side wall, 28
..Slits, 30.Aerators, 32.Pneumatic pumps, 40.First sedimentation basin, 42.Biological treatment tank, 44.
・ Final sedimentation basin, 46 ・ ・ Gravity type sludge thickening tank, 48 ・ ・ Sludge storage tank

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中丸 直也 東京都中央区京橋二丁目3番19号 三菱レ イヨン株式会社内 (72)発明者 藤井 渉 神奈川県横浜市鶴見区大黒町10番1号 日 東化学工業株式会社中央研究所内 (72)発明者 桑原 和夫 神奈川県川崎市多摩区登戸3816 エムア− ルシ−・テクノリサ−チ株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Naoya Tanakamaru 2-3-19 Kyobashi, Chuo-ku, Tokyo Inside Mitsubishi Rayon Co., Ltd. (72) Inventor Wataru Fujii 10-1 Ogurocho, Tsurumi-ku, Yokohama, Kanagawa Prefecture No. Nitto Kagaku Kogyo Co., Ltd. (72) Inventor Kazuo Kuwahara 3816 Noto, Tama-ku, Kawasaki City, Kanagawa Prefecture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 有機性汚水を生物処理する際に発生する
汚泥を汚泥貯溜槽に貯溜し、分離膜モジュールを備えた
浸漬型膜分離装置の膜分離槽に、前記汚泥貯溜槽から汚
泥を供給し、散気しながら汚泥中に含まれる水分を更に
分離して濃縮し、この濃縮した汚泥を前記汚泥貯溜槽に
返送することで、汚泥貯溜槽と膜分離槽との間で汚泥を
循環させながら濃縮する汚泥の処理方法。
1. Sludge generated during biological treatment of organic wastewater is stored in a sludge storage tank, and the sludge is supplied from the sludge storage tank to a membrane separation tank of a submerged membrane separation device having a separation membrane module. Then, while diffusing, the water contained in the sludge is further separated and concentrated, and the concentrated sludge is returned to the sludge storage tank, whereby the sludge is circulated between the sludge storage tank and the membrane separation tank. A method for treating sludge that is concentrated while enriched.
JP9336119A 1997-12-05 1997-12-05 Method for treating sludge Withdrawn JPH11165200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9336119A JPH11165200A (en) 1997-12-05 1997-12-05 Method for treating sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9336119A JPH11165200A (en) 1997-12-05 1997-12-05 Method for treating sludge

Publications (1)

Publication Number Publication Date
JPH11165200A true JPH11165200A (en) 1999-06-22

Family

ID=18295897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9336119A Withdrawn JPH11165200A (en) 1997-12-05 1997-12-05 Method for treating sludge

Country Status (1)

Country Link
JP (1) JPH11165200A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6325928B1 (en) 1999-11-18 2001-12-04 Zenon Environmental Inc. Immersed membrane element and module
US6899811B2 (en) 2000-05-04 2005-05-31 Zenon Environmental Inc. Immersed membrane apparatus
US7160463B2 (en) 2002-06-18 2007-01-09 U.S. Filter Wastewater Group, Inc. Methods of minimizing the effect of integrity loss in hollow fibre membrane modules
US7361274B2 (en) 2002-08-21 2008-04-22 Siemens Water Technologies Corp. Aeration method
US7879229B2 (en) 2003-10-29 2011-02-01 Zenon Technology Partnership Water treatment plant with immersed membranes
US8057574B2 (en) 2003-07-08 2011-11-15 Siemens Industry, Inc. Membrane post treatment
US8114293B2 (en) 2003-10-29 2012-02-14 Zenon Technology Partnership Method of operating a water treatment plant with immersed membranes
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
US8852438B2 (en) 1995-08-11 2014-10-07 Zenon Technology Partnership Membrane filtration module with adjustable header spacing
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US9868834B2 (en) 2012-09-14 2018-01-16 Evoqua Water Technologies Llc Polymer blend for membranes
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8852438B2 (en) 1995-08-11 2014-10-07 Zenon Technology Partnership Membrane filtration module with adjustable header spacing
US6325928B1 (en) 1999-11-18 2001-12-04 Zenon Environmental Inc. Immersed membrane element and module
US6893568B1 (en) * 1999-11-18 2005-05-17 Zenon Environmental Inc. Immersed membrane filtration system and overflow process
US7052610B2 (en) 1999-11-18 2006-05-30 Zenon Environmental Inc. Immersed membrane filtration system and overflow process
US6899811B2 (en) 2000-05-04 2005-05-31 Zenon Environmental Inc. Immersed membrane apparatus
US7037426B2 (en) 2000-05-04 2006-05-02 Zenon Environmental Inc. Immersed membrane apparatus
US7300582B2 (en) 2000-11-15 2007-11-27 Zenon Technology Partnership Immersed membrane apparatus
US7160463B2 (en) 2002-06-18 2007-01-09 U.S. Filter Wastewater Group, Inc. Methods of minimizing the effect of integrity loss in hollow fibre membrane modules
US7344645B2 (en) 2002-06-18 2008-03-18 Siemens Water Technologies Corp. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
US7361274B2 (en) 2002-08-21 2008-04-22 Siemens Water Technologies Corp. Aeration method
US8057574B2 (en) 2003-07-08 2011-11-15 Siemens Industry, Inc. Membrane post treatment
US8262778B2 (en) 2003-07-08 2012-09-11 Siemens Industry, Inc. Membrane post treatment
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8114293B2 (en) 2003-10-29 2012-02-14 Zenon Technology Partnership Method of operating a water treatment plant with immersed membranes
US7879229B2 (en) 2003-10-29 2011-02-01 Zenon Technology Partnership Water treatment plant with immersed membranes
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8894858B1 (en) 2005-08-22 2014-11-25 Evoqua Water Technologies Llc Method and assembly for water filtration using a tube manifold to minimize backwash
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9206057B2 (en) 2007-05-29 2015-12-08 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US8372276B2 (en) 2007-05-29 2013-02-12 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US10507431B2 (en) 2007-05-29 2019-12-17 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US9573824B2 (en) 2007-05-29 2017-02-21 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US10441920B2 (en) 2010-04-30 2019-10-15 Evoqua Water Technologies Llc Fluid flow distribution device
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9630147B2 (en) 2010-09-24 2017-04-25 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US10391432B2 (en) 2011-09-30 2019-08-27 Evoqua Water Technologies Llc Manifold arrangement
US11065569B2 (en) 2011-09-30 2021-07-20 Rohm And Haas Electronic Materials Singapore Pte. Ltd. Manifold arrangement
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9868834B2 (en) 2012-09-14 2018-01-16 Evoqua Water Technologies Llc Polymer blend for membranes
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
US11173453B2 (en) 2013-10-02 2021-11-16 Rohm And Haas Electronic Materials Singapores Method and device for repairing a membrane filtration module
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system

Similar Documents

Publication Publication Date Title
JPH11165200A (en) Method for treating sludge
JPH07155758A (en) Waste water treating device
JP4059790B2 (en) Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method
KR100636577B1 (en) Apparatus and method for waste water treatment
US20040134856A1 (en) Waste water treatment method
KR20080087899A (en) Membrane filtration apparatus and its operating method
KR19980083279A (en) Treatment method of high concentration organic wastewater and nutrients using immersion type microfiltration membrane-activated sludge process
WO2003043941A1 (en) Apparatus and method for treating organic waste water
JPH1190499A (en) Method for treatment of sludge
WO2018051630A1 (en) Membrane-separation activated sludge treatment system
JPH10128400A (en) Method and apparatus for concentrating sludge
JP3773360B2 (en) Septic tank with membrane separation
JPH1190500A (en) Method for treatment of sludge
JPH11104698A (en) Drainage treatment method
JPH10277599A (en) Sludge concentrating method and apparatus
JP3083991B2 (en) Merger treatment purification equipment
JP3162339B2 (en) Sludge treatment method and treatment system
JP2938442B1 (en) Sludge treatment method and treatment system
JPH10277550A (en) Sludge thickening method and sludge thickening system
JP4104806B2 (en) Solid-liquid separation method and apparatus for organic wastewater treatment
JPH09108672A (en) Parallel two-stage membrane separation type septic tank
JP2753853B2 (en) Sewage treatment method and apparatus using hollow fiber membrane
JP2004154752A (en) Recycling type small-scaled combined septic tank
JP3726404B2 (en) Membrane separation device and operation method thereof, activated sludge treatment device and water treatment facility
JPH0938472A (en) Waste liquid treatment and waste liquid treating system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050301