JP3385145B2 - Low carbon free-cutting steel with excellent finished surface roughness and method for producing the same - Google Patents
Low carbon free-cutting steel with excellent finished surface roughness and method for producing the sameInfo
- Publication number
- JP3385145B2 JP3385145B2 JP00491396A JP491396A JP3385145B2 JP 3385145 B2 JP3385145 B2 JP 3385145B2 JP 00491396 A JP00491396 A JP 00491396A JP 491396 A JP491396 A JP 491396A JP 3385145 B2 JP3385145 B2 JP 3385145B2
- Authority
- JP
- Japan
- Prior art keywords
- steel
- cooling
- surface roughness
- finished surface
- cementite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は切削加工され各種の
自動車部品及び産業機械部品として使用される鋼材に関
し、特に仕上げ面粗さの優れた低炭素快削鋼に係るもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel material which is cut and used as various automobile parts and industrial machine parts, and more particularly to a low carbon free-cutting steel excellent in finished surface roughness.
【0002】[0002]
【従来の技術】鋼の被削性を向上させる方法には大別す
ると快削元素の添加と熱処理する方法とがある。快削元
素に関しては、硫黄、鉛、テルル及びカルシュウムなど
の元素を単独または複合添加した快削鋼が各種の自動車
部品及び産業機械部品に大量に使用されている。2. Description of the Related Art A method for improving the machinability of steel is roughly classified into a method of adding a free-cutting element and a heat treatment. Regarding free-cutting elements, free-cutting steel to which elements such as sulfur, lead, tellurium and calcium are added alone or in combination is used in large quantities in various automobile parts and industrial machine parts.
【0003】特に、低炭素快削鋼について言えば、AI
SI12L14鋼、SUM22L,SUM23L,SU
M24L等がAISI及びJISに規格化されている。
これらにはマンガン硫化物及び鉛粒子が複合添加されて
いるために工具寿命、切り屑処理性に優れているところ
から汎用されている。しかし、マンガン硫化物が機械的
性質、耐油漏れ性にとって有害であり、またプランジ切
削時の仕上げ面粗さにも問題を残しており、これらの欠
点は快削元素である硫黄を使用するかぎり避けることが
できない。[0003] Especially in the case of low carbon free cutting steel, AI
SI12L14 steel, SUM22L, SUM23L, SU
M24L and the like are standardized in AISI and JIS.
Since manganese sulfide and lead particles are added together, they are widely used because of their excellent tool life and chip disposability. However, manganese sulfide is detrimental to mechanical properties and oil leakage resistance, and it also leaves a problem with the surface roughness during plunge cutting.Avoid these drawbacks as long as sulfur, which is a free-cutting element, is used. I can't.
【0004】次に、熱処理法に関しては、球状化焼鈍に
よりパーライトを球状セメンタイト+フェライト組織に
変えて硬さを低減する方法がある。炭素含有量が0.5
%を越える高炭素鋼の場合に球状化焼鈍が被削性改善に
とって有効であり工具鋼などに利用されている。しか
し、低炭素鋼の場合には、例えば、「鋼の熱処理」(日
本鉄鋼協会編、1988,P46、丸善(株)発行)に
紹介されているように球状化処理すると軟らかくなりす
ぎること、セメンタイトが不均一分散することの2点か
ら、かえって仕上げ面粗さを損なうために利用されてい
ない。この点を改善し、硫黄を使用しない低炭素快削鋼
の開発が期待される。Next, regarding the heat treatment method, there is a method of reducing the hardness by converting pearlite into a spherical cementite + ferrite structure by spheroidizing annealing. Carbon content is 0.5
In the case of a high carbon steel exceeding 10%, spheroidizing annealing is effective for improving machinability and is used for tool steel and the like. However, in the case of low carbon steel, for example, as described in “Heat Treatment of Steel” (edited by the Iron and Steel Institute of Japan, 1988, P46, published by Maruzen Co., Ltd.), spheroidizing treatment causes excessive softening, cementite, and the like. Is not utilized for impairing the finished surface roughness, because of the non-uniform distribution. It is expected to improve this point and develop a low-carbon free-cutting steel that does not use sulfur.
【0005】[0005]
【発明が解決しようとする課題】本発明は、硫黄を使用
しないで熱処理法により、仕上げ面粗さの優れた低炭素
快削鋼を開発することを目的とする。そのために解決す
べき課題は微細球状セメンタイトをフェライト素地に均
一分散させるための鋼の化学成分と新しい熱処理法に関
する知見と手法を開発することである。SUMMARY OF THE INVENTION It is an object of the present invention to develop a low carbon free-cutting steel excellent in finished surface roughness by a heat treatment method without using sulfur. Therefore, the problem to be solved is to develop knowledge and methods on the chemical composition of steel and a new heat treatment method for uniformly dispersing fine spherical cementite in a ferrite matrix.
【0006】[0006]
【課題を解決するための手段】本発明は課題を解決する
ためになされ、その要旨は次のとおりである。
(1)質量%で、C:0.05〜0.40%,Si:
0.15〜1.5%,Mn:0.3〜0.8%,P:
0.03〜0.08%,S≦0.025%,Al:0.
01〜0.04%,Pb:0.01〜0.05%
を含有し、残部Fe及び不可避的不純物からなり、その
ミクロ組織は微細球状セメンタイトを均一分散したフェ
ライト素地からなることを特徴とする仕上げ面粗さの優
れた低炭素快削鋼。
(2)質量%で、C:0.05〜0.40%,Si:
0.15〜1.5%,Mn:0.3〜0.8%,P:
0.03〜0.08%,S≦0.025%,Al:0.
01〜0.04%,Pb:0.01〜0.05%
を含有し、残部Fe及び不可避的不純物からなる鋼材
を、その熱間圧延ラインの後面に設置した水冷却装置に
より、冷却開始温度をAr3点以上、冷却終了温度をMs
点以下、平均冷却速度を30〜100℃/sとして冷却
後、さらに自然冷却し、次いで加熱温度670℃〜72
0℃で焼鈍することにより、微細球状セメンタイトを均
一分散したフェライト素地からなるミクロ組織とするこ
とを特徴とする仕上げ面粗さの優れた低炭素快削鋼の製
造方法。The present invention has been made to solve the problems, and its gist is as follows. (1)% by mass , C: 0.05 to 0.40%, Si:
0.15-1.5%, Mn: 0.3-0.8%, P:
0.03 to 0.08%, S ≦ 0.025 %, Al: 0.
01-0.04%, Pb: 0.01-0.05%, balance Fe and unavoidable impurities, and its microstructure is composed of a ferrite matrix in which fine spherical cementite is uniformly dispersed. Low carbon free cutting steel with excellent finished surface roughness. (2) C: 0.05 to 0.40% by mass %, Si:
0.15-1.5%, Mn: 0.3-0.8%, P:
0.03 to 0.08%, S ≦ 0.025 %, Al: 0.
A steel material containing 01 to 0.04% and Pb: 0.01 to 0.05% and the balance Fe and unavoidable impurities was cooled by a water cooling device installed on the rear surface of the hot rolling line. Is A r3 point or more, the cooling end temperature is M s
Below the point, after cooling at an average cooling rate of 30 to 100 ° C./s, further natural cooling is performed, and then a heating temperature of 670 to 72 ° C.
By annealing at 0 ° C , the fine spherical cementite is made uniform.
One dispersed surface finish of excellent production method of low-carbon free cutting steel characterized by the this <br/> to microstructure comprising a ferrite matrix.
【0007】即ち、本発明者等は種々検討を重ねて、現
在提案されている球状化焼鈍した炭素鋼の仕上げ面粗さ
が不良となる原因をまず究明した。仕上げ面粗さを向上
させるためには1相組織またはそれに準じた組織が最良
で、フェライト+パーライトの2相組織になるとそれぞ
れの相の変形度の相違から界面で破断するため構成刃先
が生成して仕上げ面粗さが不良となることを見出した。
炭化物を微細均一分散させれば1相組織に準じた組織に
近ずき、フェライトと微細セメンタイト間では破断が生
じ難く従って構成刃先が生成し難くなるはずである。That is, the inventors of the present invention have made various investigations and have first clarified the cause of the poor finish surface roughness of the presently proposed spheroidized and annealed carbon steel. In order to improve the finished surface roughness, a one-phase structure or a structure equivalent thereto is the best, and in the case of a two-phase structure of ferrite + pearlite, fracture occurs at the interface due to the difference in the degree of deformation of each phase It was found that the finished surface roughness was poor.
If the carbide is finely and uniformly dispersed, the structure approaches a one-phase structure, and fracture is unlikely to occur between the ferrite and the fine cementite, so that the constituent cutting edge is unlikely to be formed.
【0008】ところが、現状の低炭素鋼の球状化焼鈍組
織はパーライト部のセメンタイトが溶解し球状化して、
フェライト+群落状微細セメンタイトになっている。切
削応力場では、微細セメンタイトの群落はパーライト組
織と同様の挙動をして、フェライトと群落との界面で破
断して構成刃先を生成する。そのために仕上げ面粗さが
劣化する。However, in the current spheroidized annealing structure of low carbon steel, cementite in the pearlite part is melted and spheroidized,
It is made of ferrite + finely divided cementite. In the cutting stress field, the community of fine cementite behaves similarly to the pearlite structure, and fractures at the interface between the ferrite and the community to form the constituent cutting edge. Therefore, the finished surface roughness deteriorates.
【0009】セメンタイトを微細化、均一分散させるた
めには製造方法に関する新しい知見が必要である。本発
明者らは、熱間圧延直後の鋼材を、その熱間圧延ライン
の後面に設置した水冷却装置により、冷却開始温度をA
r3点以上、冷却終了温度をM S 点以下、平均冷却速度を
30〜100℃/sとして冷却後、さらに自然冷却し、
次いで加熱温度650℃〜720℃で球状化焼鈍するこ
とによりセメンタイトが微細均一分散することを見出し
た。これはマルテンサイト変態歪に加えて熱間圧延後の
急冷によりマルテンサイトに残留する圧延歪が付加され
るために、マルテンサイトが内包する歪の総量が増え、
その結果、セメンタイト発生箇所が増加したためと考え
られる。[0009] Cementite was finely dispersed and uniformly dispersed.
In order to achieve this, new knowledge about manufacturing methods is needed. Starting
The authors decided that the steel material immediately after hot rolling was
The cooling start temperature is set to A by the water cooling device installed on the rear surface.
r3Above the point, the cooling end temperature is M SBelow the point, the average cooling rate
After cooling at 30 to 100 ° C./s, further natural cooling,
Then, spheroidizing annealing is performed at a heating temperature of 650 ° C to 720 ° C.
Found that the cementite is finely and uniformly dispersed by
It was In addition to the martensitic transformation strain,
The quenching adds rolling strain remaining in the martensite.
Therefore, the total amount of strain contained in martensite increases,
As a result, it is considered that the number of locations where cementite has occurred has increased.
To be
【0010】この球状化焼鈍の際、セメンタイトが黒鉛
化すると黒鉛が構成刃先生成の原因となる。これを防止
するための方法としてPbが有効であることを新しく見
出した。この知見を応用することにより本発明をなし、
仕上げ面粗さの優れた低炭素快削鋼を開発することに成
功した。During the spheroidizing annealing, if the cementite is graphitized, the graphite causes formation of the constituent cutting edge. It was newly found that Pb is effective as a method for preventing this. The present invention is made by applying this knowledge,
We succeeded in developing a low carbon free-cutting steel with excellent finished surface roughness.
【0011】[0011]
【発明の実施の形態】本発明項の限定理由を以下に説明
する。(1)項については、Cは強度を確保するために
下限値を0.05%とした。硬さが大きくなりすぎると
工具寿命が低下するので上限値を0.40%とした。BEST MODE FOR CARRYING OUT THE INVENTION The reasons for limiting the present invention will be described below. Regarding the item (1), C has a lower limit of 0.05% in order to secure strength. If the hardness becomes too large, the tool life will decrease, so the upper limit was made 0.40%.
【0012】Siは鋼中の炭素原子との結合力が小さ
く、パーライトの板状セメンタイトの分解を促進する有
力な元素の1つであるために必須の元素である。パーラ
イトの板状セメンタイトの分解を促進するためにその下
限値は0.15%でなければならない。1.5%超にな
るとフェライト相に固溶するSi含有量の増加により硬
さが大きくなるために工具寿命が劣化するので、上限値
を1.5%に限定した。Si is an essential element because it has a small bonding force with carbon atoms in steel and is one of the powerful elements that accelerates the decomposition of pearlite plate-like cementite. The lower limit must be 0.15% to promote the decomposition of pearlite plate-like cementite. If it exceeds 1.5%, the hardness increases due to an increase in the content of Si dissolved in the ferrite phase, and the tool life deteriorates. Therefore, the upper limit value is limited to 1.5%.
【0013】Mnは、鋼中硫黄をMnSとして固定・分
散させるために必要な量及びマトリックスに固溶させて
強度を確保するために必要な量を加算した量が必要であ
り、その下限値は0.3%である。Mn量が大きくなる
とパーライトの板状セメンタイトの分解を著しく阻害す
るので上限値は0.8%とした。Pは、鋼中において粒
界に析出した燐化合物、フェライトに固溶したPとして
存在する。鋼の剪断強度を低下させて仕上げ面粗さを改
善する効果があるので、その下限値は0.03%、素地
の硬さが大きくなりすぎると工具寿命が低下するので、
その上限は0.08%である。The amount of Mn is required to be the amount required to fix and disperse sulfur in the steel as MnS and the amount required to form a solid solution in the matrix to secure strength, and the lower limit value is It is 0.3%. If the amount of Mn increases, the decomposition of pearlite plate-like cementite is significantly impaired, so the upper limit was made 0.8%. P exists as a phosphorus compound precipitated at grain boundaries in steel, and as a solid solution in ferrite. Since it has the effect of reducing the shear strength of steel and improving the finished surface roughness, its lower limit is 0.03%, and if the hardness of the base material is too large, the tool life will decrease,
The upper limit is 0.08%.
【0014】Sは、Mnと結合してMnS介在物として
存在する。鋼中MnS介在物の量が増えると工具とMn
S介在物とが接触する機会が増加し、MnS介在物が工
具すくい面上で塑性変形して被膜を形成する。その結
果、フェライトと工具との接触する機会が減少するため
に凝着は抑制され切削仕上げ面の性状は向上する。被削
性の観点からは多量添加したほうが良いが機械的性質、
耐油漏れ性を損なうので上限値は0.025%とした。S is present as MnS inclusions in combination with Mn. When the amount of MnS inclusions in steel increases, the tool and Mn
The chances of contact with S inclusions increase, and the MnS inclusions plastically deform on the tool rake face to form a film. As a result, the chance of contact between the ferrite and the tool is reduced, so that the adhesion is suppressed and the quality of the finished surface is improved. From the viewpoint of machinability, it is better to add a large amount, but mechanical properties,
Since the oil leakage resistance is impaired, the upper limit was made 0.025 %.
【0015】Alは、鋼中酸素を酸化物系介在物として
除去する。また、結晶粒度を調整するために、0.01
%以上の添加が必要である。脱酸の効果は0.040%
で飽和するので上限値を0.040%とした。Pbは、
メカニズムは明らかでないが、微量の添加で、黒鉛化を
抑制する作用がある。黒鉛の析出防止のために0.01
%以上必要である。0.05%を超えるとパーライトの
板状セメンタイトの分解が遅滞するので、上限値を0.
05%とした。Al removes oxygen in the steel as oxide inclusions. Further, in order to adjust the grain size, 0.01
% Or more must be added. Deoxidizing effect is 0.040%
Therefore, the upper limit is set to 0.040%. Pb is
Although the mechanism is not clear, addition of a small amount has an effect of suppressing graphitization. 0.01 to prevent the precipitation of graphite
% Or more is required. If it exceeds 0.05%, the decomposition of pearlite plate-like cementite will be delayed, so the upper limit is set to 0.
It was set to 05%.
【0016】(2)項の発明の化学成分及び製造条件の
限定理由について述べる。C,Si,Mn,P,S,A
l,Pbについては(1)項と全く同じである。次に製
造条件について説明する。熱間仕上圧延した直後の鋼材
を、その熱延ラインの延長線上に設置した水冷却装置に
より強制冷却するのは、熱間圧延によって発生する圧延
歪をマルテンサイト変態歪に重畳させるためである。こ
れにより、セメンタイトの生成サイト数を多くし、セメ
ンタイトを微細化させる。マルテンサイト組織を得るた
めに鋼材表面で測定した冷却開始温度はAr3点以上、冷
却終了温度はMs 点以下でなければならない。平均冷却
速度の下限値を30℃/sとしたのは、マルテンサイト
変態組織を得るためと加工歪を残留させてセメンタイト
化を容易にするためであり、上限値を100℃/sとし
たのは、これ以上に急冷却してもマルテンサイト変態量
は増加しないためである。焼鈍温度の下限値を670℃
としたのは、セメンタイト化時間を短縮するためであ
る。上限値を720℃に限定したのはセメンタイトの成
長を防止するためである。The reasons for limiting the chemical components and manufacturing conditions of the invention of item (2) will be described. C, Si, Mn, P, S, A
l and Pb are exactly the same as in (1). Next, manufacturing conditions will be described. The steel material immediately after the hot finish rolling is forcibly cooled by the water cooling device installed on the extension line of the hot rolling line in order to superimpose the rolling strain generated by the hot rolling on the martensitic transformation strain. As a result, the number of sites for producing cementite is increased, and the cementite is refined. In order to obtain the martensitic structure, the cooling start temperature measured on the steel surface must be A r3 point or higher and the cooling end temperature must be M s point or lower. The lower limit of the average cooling rate is set to 30 ° C./s in order to obtain the martensitic transformation structure and to make the processing strain remain to facilitate cementite formation, and the upper limit is set to 100 ° C./s. This is because the amount of martensitic transformation does not increase even if it is rapidly cooled. Lower limit of annealing temperature is 670 ℃
The reason is that the cementitization time is shortened. The upper limit is limited to 720 ° C. to prevent the growth of cementite.
【0017】圧延直後に水冷する方法を採用することに
より、熱延後の赤熱状態の鋼材の熱エネルギーを焼入れ
に利用でき再加熱を必要としないので、結果として熱処
理コストの低減出来る利点がある。次に実施例により本
発明の効果をさらに具体的に示す。By adopting the method of cooling with water immediately after rolling, the heat energy of the red hot steel material after hot rolling can be utilized for quenching and reheating is not required, and as a result, there is an advantage that the heat treatment cost can be reduced. Next, the effects of the present invention will be more specifically shown by examples.
【0018】[0018]
【実施例】本発明の棒鋼の実施例として、表1に化学成
分と製造条件を示す。本試験に使用した棒鋼の直径は2
5mmである。棒鋼は熱延ラインの延長線上に設置した冷
却装置により棒鋼表面の全面に単位面積当たり0.5ト
ン/m2 の冷却水を均一に散水することにより冷却し
た。冷却装置は長さ20mで、円周上に多数の冷却水を
供給するための孔を有するパイプで、棒鋼はパイプの中
心線上を通過する際に冷却される。温度は鋼材の表面を
光温度計により測定した。冷却平均速度は、冷却開始温
度と冷却終了温度との差を冷却時間で除すことにより求
めた。その後、自然冷却させ、さらにオフラインの焼鈍
炉で球状セメンタイトを微細析出させた。EXAMPLES As an example of the steel bar of the present invention, Table 1 shows chemical components and production conditions. The diameter of the steel bar used in this test is 2
It is 5 mm. The steel bar was cooled by uniformly spraying 0.5 ton / m 2 of cooling water per unit area on the entire surface of the steel bar with a cooling device installed on the extension of the hot rolling line. The cooling device is a pipe having a length of 20 m and having holes for supplying a large number of cooling water on the circumference, and the steel bar is cooled when passing through the center line of the pipe. The temperature was measured on the surface of the steel material with an optical thermometer. The average cooling rate was obtained by dividing the difference between the cooling start temperature and the cooling end temperature by the cooling time. Then, it was naturally cooled, and spherical cementite was finely precipitated in an off-line annealing furnace.
【0019】[0019]
【表1】 [Table 1]
【0020】切削試験方法は次の通りである。切削方
法:プランジ切削、切削条件:V=80m/min,f=
0.03mm/rev 、工具形状:突切タイプ、工具材種:
TiCNを被覆した超硬合金工具、潤滑油:71/min
である。仕上げ面粗さは触針式粗さ計により測定した。
工具寿命は、前逃げ面の摩耗幅が200μmになるまで
の切削時間と定義した。工具寿命指数は比較鋼Jの工具
寿命との比でもって表示した。The cutting test method is as follows. Cutting method: Plunge cutting, Cutting conditions: V = 80 m / min, f =
0.03mm / rev, Tool shape: Cut-off type, Tool material type:
Cemented carbide tool coated with TiCN, lubricating oil: 71 / min
Is. The finished surface roughness was measured by a stylus type roughness meter.
The tool life was defined as the cutting time until the wear width of the front flank reaches 200 μm. The tool life index was expressed as a ratio to the tool life of Comparative Steel J.
【0021】表2に群落状セメンタイトの有り、無し、
仕上げ面粗さおよび工具寿命測定結果を示す。群落状セ
メンタイトがない本発明の仕上げ面粗さが著しく優れて
いることが立証された。In Table 2, presence or absence of community-like cementite,
The finish surface roughness and the tool life measurement result are shown. It has been proved that the finished surface roughness of the present invention having no lumpy cementite is remarkably excellent.
【0022】[0022]
【表2】 [Table 2]
【0023】[0023]
【発明の効果】以上の実施例からも明かなように本発明
によれば、仕上げ面粗さの優れた低炭素快削鋼を提供す
ることが可能であり、産業上の効果は極めて顕著なもの
がある。As is clear from the above examples, according to the present invention, it is possible to provide a low carbon free-cutting steel having an excellent finished surface roughness, and the industrial effect is extremely remarkable. There is something.
フロントページの続き (56)参考文献 特開 平3−264648(JP,A) 特開 平4−116125(JP,A) 特開 平6−279849(JP,A) 特開 平6−299240(JP,A) 特開 平6−212351(JP,A) 特開 平5−279793(JP,A) 特開 昭61−253343(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 C21D 6/00 C21D 8/00 - 8/10 Continuation of the front page (56) Reference JP-A-3-264648 (JP, A) JP-A-4-116125 (JP, A) JP-A-6-279849 (JP, A) JP-A-6-299240 (JP , A) JP-A-6-212351 (JP, A) JP-A-5-279793 (JP, A) JP-A-61-253343 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB) Name) C22C 38/00-38/60 C21D 6/00 C21D 8/00-8/10
Claims (2)
ミクロ組織は微細球状セメンタイトを均一分散したフェ
ライト素地からなることを特徴とする仕上げ面粗さの優
れた低炭素快削鋼。1. A mass%, C: 0.05~0.40%, Si : 0.15~1.5%, Mn: 0.3~0.8%, P: 0.03~0. 08%, S ≦ 0.025 %, Al: 0.01 to 0.04%, Pb: 0.01 to 0.05%, and the balance Fe and inevitable impurities. A low-carbon free-cutting steel with excellent finished surface roughness, which consists of a ferrite body in which spherical cementite is uniformly dispersed.
を、その熱間圧延ラインの後面に設置した水冷却装置に
より、冷却開始温度をAr3点以上、冷却終了温度をMs
点以下、平均冷却速度を30〜100℃/sとして冷却
後、さらに自然冷却し、次いで加熱温度670℃〜72
0℃で焼鈍することにより、微細球状セメンタイトを均
一分散したフェライト素地からなるミクロ組織とするこ
とを特徴とする仕上げ面粗さの優れた低炭素快削鋼の製
造方法。2. In mass %, C: 0.05 to 0.40%, Si: 0.15 to 1.5%, Mn: 0.3 to 0.8%, P: 0.03 to 0. A steel material containing 08%, S ≦ 0.025 %, Al: 0.01 to 0.04%, Pb: 0.01 to 0.05% and the balance Fe and unavoidable impurities is hot-rolled. With the water cooling device installed on the rear side of the line, the cooling start temperature is Ar 3 points or higher, and the cooling end temperature is M s.
Below the point, after cooling at an average cooling rate of 30 to 100 ° C./s, further natural cooling is performed, and then a heating temperature of 670 to 72 ° C.
By annealing at 0 ° C , the fine spherical cementite is made uniform.
One dispersed surface finish of excellent production method of low-carbon free cutting steel characterized by the this <br/> to microstructure comprising a ferrite matrix.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00491396A JP3385145B2 (en) | 1996-01-16 | 1996-01-16 | Low carbon free-cutting steel with excellent finished surface roughness and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00491396A JP3385145B2 (en) | 1996-01-16 | 1996-01-16 | Low carbon free-cutting steel with excellent finished surface roughness and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09194932A JPH09194932A (en) | 1997-07-29 |
JP3385145B2 true JP3385145B2 (en) | 2003-03-10 |
Family
ID=11596883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP00491396A Expired - Fee Related JP3385145B2 (en) | 1996-01-16 | 1996-01-16 | Low carbon free-cutting steel with excellent finished surface roughness and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3385145B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100342673B1 (en) * | 1997-12-29 | 2002-10-11 | 주식회사 포스코 | A method of manufacturing meduium carbon steel wire rods for spheroidization heat treatment |
-
1996
- 1996-01-16 JP JP00491396A patent/JP3385145B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09194932A (en) | 1997-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3764586B2 (en) | Manufacturing method of case-hardened steel with excellent cold workability and low carburizing strain characteristics | |
JPH08176671A (en) | Production of high-and low-pressure integral type turbine rotor | |
JPH11246939A (en) | Cold forging steel | |
JPH05214484A (en) | High strength spring steel and its production | |
JPH083720A (en) | Parts made of steel excellent in rolling fatigue life and its production | |
JPH083629A (en) | Carburizing and quenching method | |
JP2000328193A (en) | Non-refining steel for hot forging excellent in wear resistance | |
WO1995023241A1 (en) | Steel material containing fine graphite particles uniformly dispersed therein and having excellent cold workability, machinability and hardenability, and method of manufacturing the same | |
JP3385145B2 (en) | Low carbon free-cutting steel with excellent finished surface roughness and method for producing the same | |
JP4738028B2 (en) | Manufacturing method for medium and high carbon steel sheets with excellent machinability | |
CN113355595B (en) | Large-size high-strength prestressed steel, preparation process and application thereof | |
JP2001032044A (en) | Steel for high strength bolt and production of high strength bolt | |
JP3507723B2 (en) | Bi free cutting steel | |
JP2006283175A (en) | High carbon steel sheet having excellent machinability | |
JP3394439B2 (en) | Bearing steel with excellent machinability | |
JP3241748B2 (en) | Steel material excellent in workability and hardenability and its manufacturing method | |
JPH05171373A (en) | Powder high speed tool steel | |
JP2955456B2 (en) | Hypoeutectoid graphite precipitated steel with excellent fatigue strength and cold workability | |
CN117758155B (en) | Oil casing and preparation method thereof | |
WO2024169713A1 (en) | Bearing steel for vehicle hub and manufacturing method for bearing steel | |
JP2999104B2 (en) | Manufacturing method of graphite free-cutting steel | |
JP3217943B2 (en) | Method for producing steel for machine structural use having excellent machinability, cold forgeability and fatigue properties after quenching and tempering | |
JP2563164B2 (en) | High strength non-tempered tough steel | |
JP2001192762A (en) | High toughness non-heat treated steel for hot forging | |
JP3584726B2 (en) | High strength non-heat treated steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20021119 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081227 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081227 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091227 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101227 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101227 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111227 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111227 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121227 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121227 Year of fee payment: 10 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131227 Year of fee payment: 11 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131227 Year of fee payment: 11 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131227 Year of fee payment: 11 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |