JP3150523B2 - Method for producing hypoeutectoid graphite deposited steel wire - Google Patents

Method for producing hypoeutectoid graphite deposited steel wire

Info

Publication number
JP3150523B2
JP3150523B2 JP02693994A JP2693994A JP3150523B2 JP 3150523 B2 JP3150523 B2 JP 3150523B2 JP 02693994 A JP02693994 A JP 02693994A JP 2693994 A JP2693994 A JP 2693994A JP 3150523 B2 JP3150523 B2 JP 3150523B2
Authority
JP
Japan
Prior art keywords
cooling
graphite
graphitization
steel wire
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02693994A
Other languages
Japanese (ja)
Other versions
JPH07233419A (en
Inventor
昌 片山
賢一郎 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP02693994A priority Critical patent/JP3150523B2/en
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to CN95192203A priority patent/CN1046555C/en
Priority to CA002183441A priority patent/CA2183441C/en
Priority to US08/700,355 priority patent/US5830285A/en
Priority to PCT/JP1995/000276 priority patent/WO1995023241A1/en
Priority to KR1019960704638A priority patent/KR100210867B1/en
Priority to DE69514340T priority patent/DE69514340T2/en
Priority to EP95909974A priority patent/EP0751232B1/en
Publication of JPH07233419A publication Critical patent/JPH07233419A/en
Application granted granted Critical
Publication of JP3150523B2 publication Critical patent/JP3150523B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は炭化物の黒鉛化を容易に
する亜共析黒鉛析出鋼線の製造方法に係わるものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hypoeutectoid graphite-precipitated steel wire which facilitates graphitization of carbide.

【0002】[0002]

【従来の技術】鋼中炭化物を黒鉛化すると、黒鉛の潤滑
作用により被削性が向上すること、フェライト+黒鉛の
2相組織となり素地が軟らかくなるために冷間加工性が
著しく向上することはよく知られている。たとえば、日
本金属学会誌、No. 12, vol. 52 (1988) P. 1285によれ
ば、黒鉛化率が大きくなると切削抵抗が低減し、また切
り屑のカール半径が小さくなり処理性が良好になること
が報告されている。日本金属学会誌、No. 2, vol. 53
(1989), P. 206 によれば黒鉛率を上げても、冷間加工
性能は硫黄快削鋼のそれよりも優れており被削性と冷間
加工性を兼ね備えた性能の得られることが報告されてい
る。
2. Description of the Related Art Graphitization of carbides in steel improves machinability by the lubricating action of graphite, and the two-phase structure of ferrite and graphite makes the base material softer, thereby significantly improving cold workability. well known. For example, according to the Journal of the Japan Institute of Metals, No. 12, vol. 52 (1988), p. 1285, as the graphitization rate increases, the cutting resistance decreases, and the curl radius of the chips decreases, improving the processability. It has been reported that Journal of the Japan Institute of Metals, No. 2, vol. 53
According to (1989), p. 206, even if the graphite ratio is increased, the cold workability is superior to that of sulfur free-cutting steel, and it is possible to obtain a performance that combines machinability and cold workability. It has been reported.

【0003】黒鉛化は原理的には純安定相のセメンタイ
トが安定相である黒鉛と鉄に分解する反応である。安定
相であるにもかかわらず体積膨張を伴うために黒鉛化は
容易ではない。そこで、黒鉛核発生サイトを導入して黒
鉛化を促進させるための知見が、日本金属学会誌、No.
3, vol. 30 (1966), P. 279 及びNo. 7, vol. 43 (197
9), P. 640 に紹介されている。即ち、黒鉛核発生サイ
トとなる析出物の存在、加工歪、およびマルテンサイト
変態歪が黒鉛サイトとして有効であることを述べてい
る。上記知見を応用した先行技術を以下に紹介する。
[0003] Graphitization is a reaction in which cementite, which is a pure stable phase, is decomposed into graphite and iron, which are stable phases, in principle. Graphitization is not easy due to the accompanying volume expansion despite being a stable phase. Therefore, the knowledge for promoting the graphitization by introducing a graphite nucleation site is described in Journal of the Japan Institute of Metals, No.
3, vol. 30 (1966), p. 279 and No. 7, vol. 43 (197
9), p. 640. In other words, it states that the existence of precipitates serving as graphite nucleation sites, working strain, and martensitic transformation strain are effective as graphite sites. The prior art applying the above findings is introduced below.

【0004】黒鉛核発生サイトとなる析出物を分散させ
る方法として、特開平2−111842号公報がある。
BN析出物を核生成サイトとする方法で、熱延後、焼鈍
して黒鉛化させることを特徴としている。すなわち、
C:0.1〜1.5%,Mn:0.05〜2.0%,
O:30ppm 以下、B:5〜80ppm, N:5〜80pp
m,Si:0.5〜2.0%を含有すると共に、Ni:
0.1〜3.0%,Cu:0.1〜1.0%の1種また
は2種、Ca:0.0008〜0.008%,REM:
0.001〜0.005%の1種か2種を含み、かつ、
フェライト−黒鉛またはフェライト−黒鉛−セメンタイ
トの組織を有することを特徴とする被削性、焼入れ性に
優れた熱間圧延鋼材である。しかし、この製造方法では
黒鉛化率100%を得るためには焼鈍時間が著しく長く
なり、製造コストに問題がある。
[0004] As a method of dispersing a precipitate serving as a graphite nucleus generation site, there is JP-A-2-111842.
It is characterized in that BN precipitates are used as nucleation sites, and after hot rolling, they are annealed to be graphitized. That is,
C: 0.1-1.5%, Mn: 0.05-2.0%,
O: 30 ppm or less, B: 5 to 80 ppm, N: 5 to 80 pp
m, Si: 0.5 to 2.0%, and Ni:
0.1 to 3.0%, one or two kinds of Cu: 0.1 to 1.0%, Ca: 0.0008 to 0.008%, REM:
Contains 0.001 to 0.005% of one or two kinds, and
A hot-rolled steel material excellent in machinability and hardenability, having a ferrite-graphite or ferrite-graphite-cementite structure. However, in this manufacturing method, the annealing time is extremely long in order to obtain a graphitization rate of 100%, and there is a problem in manufacturing cost.

【0005】加工歪を利用する方法として、特公昭63
−9580号公報がある。これによると、C:0.01
5〜0.140%,Mn:0.3%以下、Sol.A
l:0.02〜0.30%,N:0.006%以下、
P:0.01%以下、S:0.010%以下を含有する
と共に式P(%)×S(%)≦10×10-6を満足し、
さらにSi:0.03〜2.50%,Ni:0.1〜
4.0%,Cu:0.03〜1.00%のうち1種以上
を含み、残部がFe及び不純物からなる鋼を熱間圧延し
た後、圧下率30%以上で冷間圧延して加工歪を導入
し、次いで焼鈍する製造方法である。しかし、熱間圧延
後の鋼線を圧下率30%で冷間圧延できる工程を新たに
必要とするために現実的な製造方法とは言えない。同じ
く加工歪を利用する方法は特公平5−79743号公報
にも紹介されている。
As a method utilizing processing distortion, Japanese Patent Publication No. Sho 63
No. -9580. According to this, C: 0.01
5 to 0.140%, Mn: 0.3% or less, Sol. A
l: 0.02 to 0.30%, N: 0.006% or less,
P: not more than 0.01%, S: not more than 0.010%, and satisfy the formula P (%) × S (%) ≦ 10 × 10 −6 ,
Further, Si: 0.03 to 2.50%, Ni: 0.1 to
4.0%, Cu: After the hot rolling of steel containing at least one of 0.03 to 1.00% and the balance being Fe and impurities, cold rolling is performed at a rolling reduction of 30% or more. This is a manufacturing method in which strain is introduced and then annealed. However, this method cannot be said to be a realistic manufacturing method because a new step of cold rolling the steel wire after hot rolling at a rolling reduction of 30% is required. Similarly, a method utilizing the processing strain is introduced in Japanese Patent Publication No. Hei 5-79743.

【0006】マルテンサイト変態歪を利用する方法とし
て、特開昭49−67817号公報がある。これによる
と、C(Total):0.45〜1.5%、黒鉛:
0.45〜1.50%,Si:0.5〜2.5%,M
n:0.1〜2.0%,P:0.02〜0.15%,
S:0.001〜0.015%,N:0.008〜0.
02%,Ni:0.1〜2.0%,Al,Tiの1種又
は2種で0.015〜0.5%,Ca:0.0005〜
0.030%を含有する鋼を、熱延後、750〜950
℃に再加熱して焼入れしてマルテンサイト変態させ、こ
れを再々加熱して600〜750℃で焼鈍する製造方法
である。この製造方法は加工歪を付加していないために
黒鉛化のための焼鈍時間が著しく長くなる欠点がある上
に熱延後に加熱工程を2回必要とするために製造コスト
が高くなる欠点がある。
Japanese Patent Application Laid-Open No. 49-67817 discloses a method utilizing the martensitic transformation strain. According to this, C (Total): 0.45 to 1.5%, graphite:
0.45 to 1.50%, Si: 0.5 to 2.5%, M
n: 0.1 to 2.0%, P: 0.02 to 0.15%,
S: 0.001 to 0.015%, N: 0.008 to 0.
02%, Ni: 0.1 to 2.0%, one or two of Al and Ti, 0.015 to 0.5%, Ca: 0.0005 to
After hot rolling, a steel containing 0.030% is 750-950.
This is a production method of reheating to ℃ and quenching to transform to martensite, heating this again and annealing at 600 to 750 ° C. This manufacturing method has a drawback that the annealing time for graphitization becomes extremely long because no processing strain is added, and also has a drawback that the manufacturing cost becomes high because two heating steps are required after hot rolling. .

【0007】また、黒鉛核発生サイトとなる析出物を分
散させる方法と加工歪を利用する方法とを組み合わせた
製造方法に特公平5−79743号公報がある。この方
法においても上述の欠点は解消されていない。以上に述
べたように黒鉛化のための製造方法に問題があり、未だ
に工業的規模で利用されるに至っていない。短時間熱処
理で黒鉛化率100%にし得る工業的に有効な製造方法
の開発が工業界から強く望まれている。
[0007] Japanese Patent Publication No. Hei 5-79743 discloses a manufacturing method combining a method of dispersing a precipitate serving as a graphite nucleus generation site and a method of utilizing a processing strain. Even with this method, the above-mentioned disadvantages have not been solved. As described above, there is a problem in the production method for graphitization, and it has not yet been used on an industrial scale. The development of an industrially effective manufacturing method capable of achieving a graphitization ratio of 100% by a short-time heat treatment is strongly desired by the industry.

【0008】[0008]

【発明が解決しようとする課題】本発明はこれらの問題
点を解決することを目的とし、具体的には短時間焼鈍で
黒鉛化率100%にし得る亜共析黒鉛析出鋼線の製造方
法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve these problems, and more specifically, to provide a method for producing a hypoeutectoid graphite-precipitated steel wire which can be graphitized to 100% by short-time annealing. The purpose is to provide.

【0009】[0009]

【課題を解決するための手段】本発明は前記の問題を解
決するためになされ、その要旨は、質量%で、C:0.
3〜0.80%、Si:0.4〜1.0%、Mn:0.
3〜1.0%、P:0.02%以下、S:0.015〜
0.035%、B:0.001〜0.004%、Ti:
0.001〜0.02%、Al:0.01〜0.03%
を含有し、残部Fe及び不可避的不純物からなる熱間圧
延直後の線材を、その熱間圧延ラインの後面に設置した
冷却装置により、冷却開始温度をAr1点以上、冷却終了
温度をMs点以下、平均冷却速度を5℃〜30℃/sとし
て強制冷却後、さらに自然冷却し、次いで加熱温度61
0℃〜710℃で黒鉛化処理することを特徴とする亜共
析黒鉛析出鋼線の製造方法である。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problem, and its gist is that the content of C: 0.
3 to 0.80%, Si: 0.4 to 1.0%, Mn: 0.
3 to 1.0%, P: 0.02% or less, S: 0.015 to
0.035%, B: 0.001 to 0.004%, Ti:
0.001 to 0.02%, Al: 0.01 to 0.03%
, A wire rod immediately after hot rolling consisting of the balance Fe and unavoidable impurities, the cooling start temperature is Ar 1 point or more, the cooling end temperature is Ms point or less by a cooling device installed on the rear surface of the hot rolling line. After forced cooling with an average cooling rate of 5 ° C. to 30 ° C./s, further natural cooling was performed,
A method for producing a hypoeutectoid graphite-precipitated steel wire, wherein the graphitization treatment is performed at 0 ° C to 710 ° C.

【0010】前述したようにマルテンサイト変態歪が黒
鉛核発生サイトになると言われている。マルテンサイト
が内包する歪の総量はマルテンサイト変態歪と、熱間圧
延後の急冷によりマルテンサイトに残留する圧延歪の和
であると考えた。即ち本発明者らは黒鉛化に及ぼす熱間
圧延後の冷却条件について種々検討を重ねた結果、亜共
析黒鉛析出鋼の新しい製造方法を開発することに成功し
て本発明をなした。
As described above, it is said that the martensitic transformation strain becomes a graphite nucleation site. The total amount of strain included in martensite was considered to be the sum of the martensite transformation strain and the rolling strain remaining in martensite due to rapid cooling after hot rolling. That is, the present inventors have conducted various studies on the cooling conditions after hot rolling on the graphitization, and as a result, have succeeded in developing a new method for producing hypoeutectoid graphite-precipitated steel and made the present invention.

【0011】[0011]

【作用】本発明鋼の請求範囲を上記のように定めた理由
を以下に示す。Cは黒鉛を生成させるために不可欠の元
素であり、黒鉛を一定量確保する観点から、また、マル
テンサイト変態量を確保するためにその下限値を0.3
%に限定した。上限は熱処理時の焼き割れを防止するた
めに0.8%以下とした。
The reasons for defining the scope of the steel of the present invention as described above will be described below. C is an indispensable element for producing graphite. From the viewpoint of securing a certain amount of graphite, the lower limit is set to 0.3 in order to secure the amount of martensite transformation.
%. The upper limit is set to 0.8% or less in order to prevent burning cracks during heat treatment.

【0012】Siは鋼中の炭素原子との結合力が小さ
く、黒鉛化を促進する有力な元素の1つであるために必
須の元素である。しかし、フェライトに固溶して硬さを
大きくし切削工具及び冷間加工冶具の寿命を低下させる
短所がある。焼入+焼鈍処理をする場合に黒鉛化率を1
00%とするためにはSiを添加することが必要であ
り、その下限値は0.4%に限定しなければならない。
上限値を1.0%に限定した理由はフェライトの固溶硬
化による硬さ増加を防止するためである。
Si is an essential element because it has a small bonding force with carbon atoms in steel and is one of the powerful elements that promote graphitization. However, there is a disadvantage in that the solid solution of the ferrite increases the hardness and shortens the life of the cutting tool and the cold working jig. Graphite rate of 1 when quenching + annealing
It is necessary to add Si in order to make it 00%, and its lower limit must be limited to 0.4%.
The reason for limiting the upper limit to 1.0% is to prevent an increase in hardness due to solid solution hardening of ferrite.

【0013】Mnは鋼中硫黄をMnSとして固定・分散
させるために必要な量及びマトリックスに固溶させて強
度を確保するために必要な量を加算した量が必要であ
り、その下限値は0.3%である。Mn量が大きくなる
と黒鉛化を阻害するので上限値は1.0%とした。Pは
鋼中において粒界に析出した燐化合物、フェライトに固
溶したPとして存在するために、被削性を改善すると同
時に熱間加工性を著しく損なうので、その上限を0.0
2%とした。
Mn needs to be added to the amount necessary for fixing and dispersing sulfur in the steel as MnS and the amount necessary for securing the strength by dissolving it in the matrix and securing the strength. 0.3%. If the amount of Mn increases, graphitization is inhibited, so the upper limit is set to 1.0%. Since P is present in the steel as a phosphorus compound precipitated at the grain boundaries and as P dissolved in ferrite, the machinability is improved and the hot workability is significantly impaired.
2%.

【0014】SはMnと結合してMnS介在物として存
在する。鋼中MnS介在物の量が増えると工具とMnS
介在物とが接触する機会が増加し、MnS介在物が工具
すくい面上で塑性変形して被膜を形成する。その結果、
フェライトと工具との接触する機会が減少するために凝
着は抑制され切削仕上げ面の性状は向上する。凝着を抑
制するためには、Sの下限値は0.015%必要であ
る。Sは黒鉛化を阻害するので上限値は0.035%と
した。
S bonds with Mn and exists as MnS inclusions. When the amount of MnS inclusions in steel increases, tool and MnS
The chance of contact with inclusions increases, and the MnS inclusions plastically deform on the tool rake face to form a coating. as a result,
Since the chance of contact between the ferrite and the tool is reduced, adhesion is suppressed and the properties of the cut surface are improved. In order to suppress the adhesion, the lower limit of S needs to be 0.015%. Since S inhibits graphitization, the upper limit is set to 0.035%.

【0015】Bはフェライト結晶粒界に偏析して黒鉛の
析出サイトになり、黒鉛化焼鈍時間を短縮させる効果が
ある。短縮効果を充分得るためには0.001%以上の
Bを添加しなければならない。Bが0.004%を越え
ると短縮効果は飽和するので、その上限を0.004%
とした。Tiは不可避的に混入するN:0.002〜
0.008%を固定して、Bによる黒鉛化促進を効果あ
らしめるに必要な量を添加すればよい。その下限値は
0.001%であり、上限値は0.02%である。
B segregates at the ferrite crystal grain boundary to become a graphite precipitation site, and has the effect of shortening the graphitizing annealing time. In order to obtain a sufficient shortening effect, 0.001% or more of B must be added. If B exceeds 0.004%, the shortening effect is saturated, so the upper limit is 0.004%.
And Ti is inevitably mixed N: 0.002
It is sufficient to fix 0.008% and to add an amount necessary to make the graphitization promotion by B effective. The lower limit is 0.001% and the upper limit is 0.02%.

【0016】Alは脱酸元素で、鋼の炭素含有量が高い
場合には0.01%以上、低い場合には0.03%を上
限として添加する必要がある。熱間仕上圧延した直後の
鋼線を、その熱延ラインの延長線上に設置した冷却装置
により強制冷却するのは、熱間圧延による圧延歪を焼入
れマルテンサイト組織に残存させるためである。この方
法によると熱延後の赤熱状態の鋼線の熱エネルギーを焼
入れに利用でき再加熱を必要としないので、結果として
熱処理コストの低減をはかることができる。
Al is a deoxidizing element, and it is necessary to add 0.01% or more when the carbon content of steel is high, and 0.03% when the carbon content is low. The reason why the steel wire immediately after hot finish rolling is forcibly cooled by a cooling device installed on an extension of the hot rolling line is to leave rolling strain due to hot rolling in the quenched martensitic structure. According to this method, the heat energy of the red-hot steel wire after hot rolling can be used for quenching and reheating is not required, and as a result, the heat treatment cost can be reduced.

【0017】鋼線表面で測定した冷却開始温度は、マル
テンサイト変態歪と圧延歪とを同時に発生させて黒鉛化
率を高めるために、Ar1点以上でなければならない。冷
却終了温度は充分なマルテンサイト変態組織を得て黒鉛
化を容易にするためにMS 点以下でなければならない。
平均冷却速度の下限値を5℃/sとしたのは、マルテン
サイト変態組織を得るためと加工歪を残留させて黒鉛化
を容易にするためであり、上限値を30℃/sとしたの
は、これ以上に急冷却してもマルテンサイト変態量は増
加しないためである。焼鈍温度の下限値を610℃、上
限値を710℃に限定したのはこの温度範囲における黒
鉛化時間が最も短いためである。
The cooling start temperature measured on the surface of the steel wire must be equal to or higher than the Ar1 point in order to increase the degree of graphitization by simultaneously generating martensitic transformation strain and rolling strain. The cooling end temperature must be below the MS point in order to obtain a sufficient martensitic transformation structure and facilitate graphitization.
The lower limit of the average cooling rate was set at 5 ° C./s in order to obtain a martensitic transformation structure and to maintain the processing strain to facilitate graphitization, and set the upper limit to 30 ° C./s. The reason for this is that the amount of martensite transformation does not increase even if cooling is performed more rapidly. The lower limit of the annealing temperature is limited to 610 ° C. and the upper limit is set to 710 ° C. because the graphitization time in this temperature range is the shortest.

【0018】ここで本発明鋼の製造手段について言及す
る。熱間仕上圧延した直後の直径5.5〜19mmの鋼線
を、その熱延ラインの後面に設置した水温20℃〜10
0℃の水槽に20〜200秒間滞留させ、その後自然冷
却して、さらにオフラインの焼鈍炉で黒鉛化処理した。
冷却開始温度は圧延終了から水槽にいたるまでの時間制
御により、冷却終了温度は水槽内における滞留時間を制
御することにより調整した。
Here, means for producing the steel of the present invention will be described. A steel wire having a diameter of 5.5 to 19 mm immediately after hot finish rolling was placed on the rear surface of the hot rolling line at a water temperature of 20 ° C to 10 ° C.
The sample was kept in a water bath at 0 ° C. for 20 to 200 seconds, then cooled naturally, and further graphitized in an offline annealing furnace.
The cooling start temperature was adjusted by controlling the time from the end of rolling to the water tank, and the cooling end temperature was adjusted by controlling the residence time in the water tank.

【0019】次に実施例により本発明の効果をさらに具
体的に示す。
Next, the effects of the present invention will be described more specifically by way of examples.

【0020】[0020]

【実施例】表1および表2に供試鋼の化学成分と製造条
件を示す。
EXAMPLES Tables 1 and 2 show the chemical composition and production conditions of the test steel.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】本試験に使用した鋼線は直径5.5〜19
mmで、熱延ラインの延長線上に設置した水槽内で冷却し
た。仕上げ圧延スタンドから水槽までの距離は約45
m、圧延速度は10〜100m/sで、圧延終了から水
槽にいたるまでの所用時間は約1〜3秒である。線材を
コイル状に巻いて水温20〜100℃の水槽に挿入し
た。水槽内の滞留時間は20〜200秒である。冷却開
始温度、冷却終了温度は鋼材の表面温度を放射温度計で
測定した値であり、平均冷却速度は、冷却開始温度と冷
却終了温度との差を冷却時間で除すことにより求めた。
The steel wire used in the test was 5.5 to 19 in diameter.
In mm, it was cooled in a water tank installed on an extension of the hot rolling line. The distance from the finishing mill stand to the water tank is about 45
m, the rolling speed is 10 to 100 m / s, and the required time from the end of rolling to the water tank is about 1 to 3 seconds. The wire was wound into a coil and inserted into a water bath having a water temperature of 20 to 100 ° C. The residence time in the water tank is between 20 and 200 seconds. The cooling start temperature and the cooling end temperature are values obtained by measuring the surface temperature of the steel material with a radiation thermometer, and the average cooling rate was determined by dividing the difference between the cooling start temperature and the cooling end temperature by the cooling time.

【0024】表3に焼鈍時間と黒鉛化率を示す。Table 3 shows the annealing time and the graphitization rate.

【0025】[0025]

【表3】 [Table 3]

【0026】黒鉛化率は次式により算出した。 (鋼中黒鉛含有量/鋼の炭素含有量)×100(%) 鋼の炭素含有量は化学分析により定量した。黒鉛含有量
は平均黒鉛粒子径、密度及び黒鉛粒子数から算出した。
本発明法による鋼線の黒鉛化率は焼鈍時間が10時間前
後と短いにも係わらず、100%と著しく優れた結果で
ある。比較法の場合には黒鉛化率は70%程度と低い。
The graphitization ratio was calculated by the following equation. (Graphite content in steel / Carbon content of steel) × 100 (%) The carbon content of steel was quantified by chemical analysis. The graphite content was calculated from the average graphite particle diameter, the density and the number of graphite particles.
The graphitization rate of the steel wire obtained by the method of the present invention is 100%, which is a remarkably excellent result, although the annealing time is as short as about 10 hours. In the case of the comparative method, the graphitization rate is as low as about 70%.

【0027】ここで、表1の比較法Fは平均冷却速度お
よび黒鉛化焼鈍温度が、比較法GはB,Ti,Al成分
および黒鉛化焼鈍温度が、比較法HはSi,Mn,Ti
成分および冷却速度がそれぞれ本発明範囲外であり、比
較法IおよびJは熱間圧延後の直接焼入れを行わず、オ
フライン焼入れしたものである。なお、本発明における
熱間圧延ライン後面の冷却装置は、本実施例の水槽に限
定されるものではない。平均冷却速度が5〜30℃/
s、好ましくは6〜26℃/sで冷却終了温度をMS
以下に冷却可能なる液体および/または気体冷媒による
冷却装置であればよい。その際、冷却開始温度は、Ar1
点以上、好ましくはAr1点+50の温度であればよい。
本発明では次に自然冷却するものであるが、その自然冷
却終了温度はMS 点−200℃であればよい。また、次
の処理の黒鉛化焼鈍の加熱温度は610〜710℃、好
ましくは630〜700℃の温度範囲である。
Here, the comparative method F in Table 1 shows the average cooling rate and the graphitizing annealing temperature, the comparative method G shows the B, Ti, Al component and the graphitizing annealing temperature, and the comparative method H shows Si, Mn, Ti.
The components and cooling rates were outside the scope of the present invention, and Comparative Methods I and J were off-line quenching without direct quenching after hot rolling. The cooling device on the rear side of the hot rolling line in the present invention is not limited to the water tank of the present embodiment. Average cooling rate of 5-30 ° C /
s, preferably may be a cooling device according to possible Naru liquid and / or gaseous refrigerant cooled cooling end temperature below M S point 6 to 26 ° C. / s. At that time, the cooling start temperature is A r1
The temperature may be equal to or higher than the temperature, preferably the temperature of Ar1 point + 50.
In the present invention is to then naturally cooled, the natural cooling end temperature may be a M S point -200 ° C.. Further, the heating temperature of the graphitizing annealing in the next treatment is in the range of 610 to 710 ° C, preferably 630 to 700 ° C.

【0028】[0028]

【発明の効果】以上の実施例からも明かなごとく本発明
によれば、著しく短い焼鈍時間で黒鉛化率100%を実
現できる優れた製造方法を提供することが可能であり、
産業上の効果は極めて顕著なものがある。
As is clear from the above embodiments, according to the present invention, it is possible to provide an excellent production method capable of realizing a graphitization ratio of 100% with an extremely short annealing time.
The industrial effects are very significant.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C21D 8/06,9/52 C22C 38/00,38/14 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) C21D 8/06, 9/52 C22C 38/00, 38/14

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 質量%で、C:0.3〜0.80%、S
i:0.4〜1.0%、Mn:0.3〜1.0%、P:
0.02%以下、S:0.015〜0.035%、B:
0.001〜0.004%、Ti:0.001〜0.0
2%、Al:0.01〜0.03%を含有し、残部Fe
及び不可避的不純物からなる熱間圧延直後の線材を、そ
の熱間圧延ラインの後面に設置した冷却装置により、冷
却開始温度をAr1点以上、冷却終了温度をMs点以下、
平均冷却速度を5℃〜30℃/sとして強制冷却後、さ
らに自然冷却し、次いで加熱温度610℃〜710℃で
黒鉛化処理することを特徴とする亜共析黒鉛析出鋼線の
製造方法。
(1) C: 0.3 to 0.80% by mass %, S:
i: 0.4 to 1.0%, Mn: 0.3 to 1.0%, P:
0.02% or less, S: 0.015 to 0.035%, B:
0.001 to 0.004%, Ti: 0.001 to 0.0
2%, Al: 0.01 to 0.03%, with the balance Fe
And the wire rod immediately after hot rolling consisting of unavoidable impurities, by a cooling device installed on the rear surface of the hot rolling line, the cooling start temperature is Ar 1 point or more, the cooling end temperature is Ms point or less,
A method for producing a hypoeutectoid graphite-precipitated steel wire, comprising forcibly cooling at an average cooling rate of 5 ° C. to 30 ° C./s, further natural cooling, and then graphitizing at a heating temperature of 610 ° C. to 710 ° C.
JP02693994A 1994-02-24 1994-02-24 Method for producing hypoeutectoid graphite deposited steel wire Expired - Fee Related JP3150523B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP02693994A JP3150523B2 (en) 1994-02-24 1994-02-24 Method for producing hypoeutectoid graphite deposited steel wire
CA002183441A CA2183441C (en) 1994-02-24 1995-02-24 Fine graphite uniform dispersion steel excellent in cold machinability, cuttability and hardenability, and production method for the same
US08/700,355 US5830285A (en) 1994-02-24 1995-02-24 Fine graphite uniform dispersion steel excellent in cold machinability, cuttability and hardenability, and production method for the same
PCT/JP1995/000276 WO1995023241A1 (en) 1994-02-24 1995-02-24 Steel material containing fine graphite particles uniformly dispersed therein and having excellent cold workability, machinability and hardenability, and method of manufacturing the same
CN95192203A CN1046555C (en) 1994-02-24 1995-02-24 Steel material containing fine graphite particles uniformly dispersed therein and having excellent cold workability, machinability and hardenability and method of manufacturing the same
KR1019960704638A KR100210867B1 (en) 1994-02-24 1995-02-24 Steel material containing fine graphite particles uniformly dispersed therein and having excellent cold workability machinability and hardenability and method of manufacturing the same
DE69514340T DE69514340T2 (en) 1994-02-24 1995-02-24 STEEL MATERIAL WITH EVENLY FINE DISTRIBUTED CARBON PARTICLES WITH OUTSTANDING WORKABILITY, COLD FORMABILITY AND TEMPERATURE PROPERTIES AND THEIR PRODUCTION PROCESS
EP95909974A EP0751232B1 (en) 1994-02-24 1995-02-24 Steel material containing fine graphite particles uniformly dispersed therein and having excellent cold workability, machinability and hardenability, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02693994A JP3150523B2 (en) 1994-02-24 1994-02-24 Method for producing hypoeutectoid graphite deposited steel wire

Publications (2)

Publication Number Publication Date
JPH07233419A JPH07233419A (en) 1995-09-05
JP3150523B2 true JP3150523B2 (en) 2001-03-26

Family

ID=12207127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02693994A Expired - Fee Related JP3150523B2 (en) 1994-02-24 1994-02-24 Method for producing hypoeutectoid graphite deposited steel wire

Country Status (1)

Country Link
JP (1) JP3150523B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105886727A (en) * 2016-05-05 2016-08-24 北京科技大学 Method for promoting graphitization of hypoeutectoid steel through adopting pulse current

Also Published As

Publication number Publication date
JPH07233419A (en) 1995-09-05

Similar Documents

Publication Publication Date Title
JP4609138B2 (en) Manufacturing method of oil well pipe steel excellent in sulfide stress cracking resistance and oil well seamless steel pipe
JP7049142B2 (en) Martensitic stainless steel sheet and its manufacturing method and spring members
JP2003073742A (en) Method for manufacturing high-carbon hot rolled steel sheet with high hardenability
WO1995023241A1 (en) Steel material containing fine graphite particles uniformly dispersed therein and having excellent cold workability, machinability and hardenability, and method of manufacturing the same
JP3150523B2 (en) Method for producing hypoeutectoid graphite deposited steel wire
JP3228986B2 (en) Manufacturing method of high strength steel sheet
JPH11124623A (en) Manufacture of boron-containing steel for cold forging
JP2999104B2 (en) Manufacturing method of graphite free-cutting steel
JP3474544B2 (en) Linear or rod-shaped steel with reduced deformation resistance at room temperature and in the heating area
JPH0222140B2 (en)
JP3043505B2 (en) Manufacturing method of small diameter saw wire
JP3093577B2 (en) Fine graphite uniformly dispersed steel bar with excellent toughness and method for producing the same
JP3093576B2 (en) Fine graphite uniformly dispersed steel wire with excellent toughness and method for producing the same
JP3425288B2 (en) 400-800N / mm2 class high-strength hot-rolled steel sheet excellent in workability and method for producing the same
JP2955456B2 (en) Hypoeutectoid graphite precipitated steel with excellent fatigue strength and cold workability
JP2658706B2 (en) Manufacturing method of high strength and high ductility cold rolled steel sheet with excellent aging resistance
JP3267653B2 (en) Manufacturing method of high strength steel sheet
JP2001200313A (en) Method for producing electric resistance welded tube for cold forging excellent in workability
JP3237990B2 (en) Cold forging steel with excellent cold workability and hardenability
JP2829510B2 (en) Method for producing high-strength hot-rolled steel sheet with excellent ductility and workability
JP3032395B2 (en) Stainless steel for high-strength spring, high-strength stainless spring, and method of manufacturing the same
JP3429911B2 (en) Fine graphite uniformly dispersed steel excellent in machinability and hardenability and its manufacturing method
JPH0617122A (en) Production of non-heattreated steel excellent in durability ratio
JPH0445227A (en) Production of steel product with low yield ratio
JPH10280036A (en) Wire rod for high strength bolt excellent in strength and ductility and its production

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001212

LAPS Cancellation because of no payment of annual fees