JP3093577B2 - Fine graphite uniformly dispersed steel bar with excellent toughness and method for producing the same - Google Patents

Fine graphite uniformly dispersed steel bar with excellent toughness and method for producing the same

Info

Publication number
JP3093577B2
JP3093577B2 JP06220804A JP22080494A JP3093577B2 JP 3093577 B2 JP3093577 B2 JP 3093577B2 JP 06220804 A JP06220804 A JP 06220804A JP 22080494 A JP22080494 A JP 22080494A JP 3093577 B2 JP3093577 B2 JP 3093577B2
Authority
JP
Japan
Prior art keywords
graphite
steel bar
cooling
uniformly dispersed
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06220804A
Other languages
Japanese (ja)
Other versions
JPH0860296A (en
Inventor
昌 片山
正弘 戸田
敏三 樽井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP06220804A priority Critical patent/JP3093577B2/en
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to CN95192203A priority patent/CN1046555C/en
Priority to CA002183441A priority patent/CA2183441C/en
Priority to US08/700,355 priority patent/US5830285A/en
Priority to PCT/JP1995/000276 priority patent/WO1995023241A1/en
Priority to KR1019960704638A priority patent/KR100210867B1/en
Priority to DE69514340T priority patent/DE69514340T2/en
Priority to EP95909974A priority patent/EP0751232B1/en
Publication of JPH0860296A publication Critical patent/JPH0860296A/en
Application granted granted Critical
Publication of JP3093577B2 publication Critical patent/JP3093577B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は冷間加工(鍛造、切削)
後に焼入・焼戻して使用される棒鋼に係わり、特に黒鉛
を微細かつ均一に分散させることにより焼入・焼戻後の
靱性に優れた微細黒鉛均一分散棒鋼に係わるものであ
る。
The present invention relates to cold working (forging, cutting).
The present invention relates to a steel bar which is later quenched and tempered, and particularly to a fine graphite uniformly dispersed steel bar excellent in toughness after quenching and tempering by dispersing graphite finely and uniformly.

【0002】[0002]

【従来の技術】中炭素鋼中のフェライト+パーライト組
織をフェライト+黒鉛の2相組織にするとその硬さはビ
ッカース硬さでHv160からHv110程度にまで減
少する。そのために黒鉛率を上げると冷間鍛造性は硫黄
快削鋼のそれを上回ることが、例えば日本金属学会誌v
ol.53(1989)P.206の研究論文に報告さ
れている。工業的にも特公昭63−9580号公報に見
られるように、ミクロ組織をフェライト+黒鉛の2相組
織にすると冷間鍛造性は著しく向上することが紹介され
ている。
2. Description of the Related Art When a ferrite + pearlite structure in a medium carbon steel is changed to a two-phase structure of ferrite + graphite, its hardness decreases from Hv160 to Hv110 by Vickers hardness. Therefore, when the graphite ratio is increased, the cold forgeability exceeds that of sulfur free-cutting steel.
ol. 53 (1989) p. It has been reported in 206 research papers. Industrially, as disclosed in JP-B-63-9580, it is introduced that when the microstructure is made into a two-phase structure of ferrite + graphite, the cold forgeability is remarkably improved.

【0003】また、黒鉛の潤滑作用により被削性能が向
上することもよく知られている。日本金属学会誌vo
l.52(1988)P.1285によれば、黒鉛化率
が大きくなると切削抵抗主分力、切削抵抗送り分力がほ
ぼ半減すること、せん断角が大きくなりせん断応力が低
減すること、摩擦係数が小さくなること及び切り屑のカ
ール半径が小さくなり処理性が良好になるとされてい
る。工業的にも特公昭53−15450号、特公昭53
−15451号、特公昭53−46774号、特公昭5
3−5367号、特公昭54−11773号、特開平2
−111842号の各公報にみられるように被削性が向
上することが開示されている。
It is also well known that the machining performance is improved by the lubricating action of graphite. Journal of the Japan Institute of Metals vo
l. 52 (1988) p. According to 1285, when the graphitization rate increases, the main force of the cutting force and the cutting force feed force are almost halved, the shear angle increases to reduce the shear stress, the friction coefficient decreases, and It is said that the curl radius is reduced and the processability is improved. Industrially, JP-B-53-15450, JP-B-53
No.-15451, JP-B-53-46774, JP-B-5
No. 3-5367, Japanese Patent Publication No. 54-11773,
It is disclosed that the machinability is improved as seen in the publications of -111842.

【0004】一方、特開平2−111842号公報によ
ると、黒鉛分散鋼は、冷間鍛造性及び切削性は優れてい
るものの、焼入加熱時に黒鉛の分解速度が遅く十分にオ
ーステナイト中に溶解しないために焼入硬さが不足する
欠点があるとされている。そこで、同公報では、この欠
点を解決するためには、黒鉛を微細化すればよいこと、
その具体的な方法として、BNを黒鉛の析出核として利
用すること、及び酸素含有量を30ppm以下にするこ
とが有効であると開示されている。従来技術で得られる
黒鉛寸法は、微細化はされているものの、例えば、特公
昭53−46774号公報に述べられているように、黒
鉛の平均粒径はほぼ30μm程度である。しかし、この
程度の黒鉛粒径では、焼入れ加熱の際に黒鉛が未分解の
まま残存し、また、炭素が拡散して黒鉛の存在していた
箇所が30μm程度の空孔となって残存するという問題
があった。
On the other hand, according to Japanese Patent Application Laid-Open No. 2-111842, graphite-dispersed steel is excellent in cold forgeability and machinability, but has a low decomposition rate of graphite during quenching and heating and does not sufficiently dissolve in austenite. Therefore, there is a drawback that quenching hardness is insufficient. Therefore, the gazette states that in order to solve this drawback, it is only necessary to make graphite finer,
As a specific method, it is disclosed that it is effective to use BN as a precipitation nucleus of graphite and to reduce the oxygen content to 30 ppm or less. Although the size of graphite obtained by the prior art has been refined, for example, as described in JP-B-53-46774, the average particle size of graphite is approximately 30 μm. However, at such a graphite particle size, the graphite remains undecomposed during quenching and heating, and the place where graphite is present due to the diffusion of carbon remains as pores of about 30 μm. There was a problem.

【0005】また、焼入れ加熱時に均一なオーステナイ
ト組織とするためには、黒鉛が分解した後に炭素が拡散
して炭素濃度が均一化する必要があるが、この点でもB
Nを黒鉛の析出核とする黒鉛分散鋼には問題がある。す
なわち、よく知られているようにBNは黒鉛を微細析出
させるが、結晶粒界に偏析するために、BNを核発生サ
イトとする黒鉛も同様にフェライト粒界に偏析して不均
一に分散して、黒鉛間距離の変動が大きくなりその最大
値も大きくなる。特に、高周波加熱焼入れのような加熱
保持時間が数秒と短い場合には、黒鉛間距離の最大値が
大きくなると、炭素の拡散が不十分となり均一なオース
テナイト組織になりにくい。このような鋼では、たとえ
黒鉛粒径を小さくして黒鉛の分解時間を短くしても、拡
散律速となってマルテンサイト+フェライトの混在組織
となる。このような従来鋼は、混在組織と空孔が原因
で、破壊靱性値(衝撃値)が低い欠点がある。
In order to obtain a uniform austenite structure during quenching and heating, it is necessary to diffuse carbon after graphite is decomposed and to make the carbon concentration uniform.
There is a problem with graphite dispersed steel in which N is a precipitation nucleus of graphite. That is, as is well known, BN finely precipitates graphite. However, since BN segregates at crystal grain boundaries, graphite having BN as a nucleation site similarly segregates at ferrite grain boundaries and disperses unevenly. As a result, the variation in the distance between graphites increases, and the maximum value also increases. In particular, when the heating holding time is as short as several seconds, such as induction hardening, when the maximum value of the distance between graphites is large, diffusion of carbon becomes insufficient and a uniform austenite structure is hardly formed. In such a steel, even if the graphite particle size is reduced and the decomposition time of graphite is shortened, it becomes diffusion-controlled and becomes a mixed structure of martensite and ferrite. Such a conventional steel has a defect that the fracture toughness value (impact value) is low due to the mixed structure and the voids.

【0006】次に、微細な黒鉛を均一に分散させるため
の従来技術の製造方法について述べる。黒鉛核発生箇所
を導入して黒鉛化を促進させるための従来知見が、日本
金属学会誌vol.30(1966)P.279及びv
ol.43(1979)P.640に紹介されている。
即ち、フェライト中の炭素過飽和、マルテンサイト変態
歪、加工歪が、黒鉛析出箇所として有効であることを述
べている。
Next, a conventional manufacturing method for uniformly dispersing fine graphite will be described. Conventional findings for promoting graphitization by introducing graphite nucleation sites are described in Journal of the Japan Institute of Metals, vol. 30 (1966) p. 279 and v
ol. 43 (1979) p. 640.
That is, it is described that carbon supersaturation, martensitic transformation strain, and work strain in ferrite are effective as graphite deposition sites.

【0007】上記知見を応用した、炭素過飽和の状態
(マルテンサイト組織)とマルテンサイト変態歪を利用
する方法として、特開昭49−67817号公報があ
る。これによると、C(Total):0.45〜1.
5%、黒鉛:0.45〜1.50%、Si:0.5〜
2.5%、Mn:0.1〜2.0%、P:0.02〜
0.15%、S:0.001〜0.015%、N:0.
008〜0.02%、Ni:0.1〜2.0%、Al、
Tiの1種又は2種で0.015〜0.5%、Ca:
0.0005〜0.030%を含有する鋼を、熱延後、
750〜950℃に再加熱して焼入れしてマルテンサイ
ト変態させ、これを再々加熱して600〜750℃で焼
鈍する製造方法である。しかし、この製造方法は加工歪
を付加していないために黒鉛化のための焼鈍時間が長く
なり、また熱延後に加熱工程を2回必要とするために製
造コストに問題がある。
Japanese Patent Application Laid-Open No. 49-67817 discloses a method utilizing the above knowledge and utilizing a carbon supersaturation state (martensite structure) and a martensitic transformation strain. According to this, C (Total): 0.45-1.
5%, graphite: 0.45 to 1.50%, Si: 0.5 to
2.5%, Mn: 0.1-2.0%, P: 0.02-
0.15%, S: 0.001 to 0.015%, N: 0.
008-0.02%, Ni: 0.1-2.0%, Al,
0.015 to 0.5% of one or two kinds of Ti, Ca:
After hot rolling a steel containing 0.0005 to 0.030%,
This is a production method of reheating to 750 to 950 ° C. and quenching to transform to martensite, reheating it again and annealing at 600 to 750 ° C. However, this manufacturing method has a problem in manufacturing cost because the annealing time for graphitization is long because no processing strain is added, and the heating step is required twice after hot rolling.

【0008】加工歪を利用する方法として、特開昭63
−9580号公報がある。これによると、C:0.01
5〜0.140%、Mn:0.3%以下、Sol.A
l:0.02〜0.30%、N:0.006%以下、
P:0.01%以下、S:0.010%以下を含有する
と共に式P(%)×S(%)≦10×10-6を満足し、
さらにSi:0.03〜2.50%、Ni:0.1〜
4.0%、Cu:0.03〜1.00%のうち1種以上
を含み、残部がFe及び不純物からなる鋼を熱間圧延し
た後、圧下率30%以上で冷間圧延して加工歪を導入
し、次いで焼鈍する製造方法である。しかし、熱間圧延
後の棒鋼を圧下率30%で冷間圧延できる工程を新たに
必要とするために現実的な製造方法とは言えない。以上
に述べたように靱性に優れた微細黒鉛均一分散棒鋼を得
るための化学成分と製造方法にかかわる知見は見出され
ていないために、破壊靱性値を必要としない薄中板を除
いて、棒鋼では未だに工業的規模で利用されるに至って
いない。
Japanese Patent Application Laid-Open No. Sho 63
No. -9580. According to this, C: 0.01
5 to 0.140%, Mn: 0.3% or less, Sol. A
l: 0.02 to 0.30%, N: 0.006% or less,
P: not more than 0.01%, S: not more than 0.010%, and satisfy the formula P (%) × S (%) ≦ 10 × 10 −6 ,
Further, Si: 0.03 to 2.50%, Ni: 0.1 to
After hot-rolling a steel containing 4.0%, one or more of Cu: 0.03 to 1.00%, and the balance being Fe and impurities, cold rolling is performed at a rolling reduction of 30% or more. This is a manufacturing method in which strain is introduced and then annealed. However, it is not a realistic manufacturing method because a new step of cold rolling the steel bar after hot rolling at a rolling reduction of 30% is required. As described above, since knowledge on the chemical composition and production method for obtaining fine graphite uniformly dispersed steel bars with excellent toughness has not been found, except for thin and medium plates that do not require fracture toughness values, Steel bars have not yet been used on an industrial scale.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上記問題点
を解消すべく案出されたものであり、成分及び製造条件
に改良を加えることにより、黒鉛の平均粒径(焼入れ後
の空孔の平均寸法)を小さくし、かつ、粒界に留まらず
フェライト粒内にも黒鉛を均一に分散させた靱性に優れ
た微細黒鉛均一分散棒鋼とその製造方法を提供せんとす
るものである。
SUMMARY OF THE INVENTION The present invention has been devised to solve the above-mentioned problems. The present invention has been made to improve the average particle size (pores after quenching) by improving the components and production conditions. (Average size of graphite) is reduced, and graphite is uniformly dispersed in ferrite grains as well as in grain boundaries.

【0010】[0010]

【課題を解決するための手段】本発明は、上記のような
従来法の欠点を有利に排除しうる靱性に優れた微細黒鉛
均一分散棒鋼とその製造方法であり、その要旨とすると
ころは、 重量%で、C:0.30〜1.0%、Si:0.6
〜1.3%、Mn:0.4〜1.0%、P:≦0.02
0%、S:0.015〜0.055%、Al:0.01
〜0.10%、B:0.001〜0.004%、N:
0.002〜0.008%、Mo:0.05〜0.20
%を基本成分とし、残部Fe及び不可避的不純物からな
り、平均粒径4.0μm以下、粒数3000個/mm2
以上の黒鉛0.3〜1.0%を有することを特徴とする
靱性に優れた微細黒鉛均一分散棒鋼。 重量%で、C:0.30〜1.0%、Si:0.6
〜1.3%、Mn:0.4〜1.0%、P:≦0.02
%、S:0.015〜0.055%、Al:0.01〜
0.10%、B:0.001〜0.004%、N:0.
002〜0.008%、Mo:0.05〜0.20%、
を基本成分とし、残部Fe及び不可避的不純物からな
る、熱間圧延直後の棒鋼を、その熱間圧延ラインの後面
に設置した水冷却装置により、冷却開始温度をAr1点以
上、冷却終了温度をMS 点以下、平均冷却速度を30〜
100℃/sとして冷却後、さらに自然冷却し、次いで
加熱温度600〜720℃で黒鉛化処理することを特徴
とする平均粒径4.0μm以下、粒数3000個/mm
2 以上の黒鉛0.3〜1.0%を有することを特徴とす
る靱性に優れた微細黒鉛均一分散棒鋼の製造方法であ
る。
DISCLOSURE OF THE INVENTION The present invention relates to a fine graphite uniformly dispersed steel bar excellent in toughness which can advantageously eliminate the above-mentioned disadvantages of the conventional method, and a method for producing the same. By weight%, C: 0.30 to 1.0%, Si: 0.6
11.3%, Mn: 0.4-1.0%, P: ≦ 0.02
0%, S: 0.015 to 0.055%, Al: 0.01
-0.10%, B: 0.001-0.004%, N:
0.002 to 0.008%, Mo: 0.05 to 0.20
% As a basic component, the balance being Fe and unavoidable impurities, an average particle size of 4.0 μm or less, and a number of particles of 3000 / mm 2.
A fine graphite uniformly dispersed steel bar having excellent toughness, characterized by having the above graphite of 0.3 to 1.0%. By weight%, C: 0.30 to 1.0%, Si: 0.6
11.3%, Mn: 0.4-1.0%, P: ≦ 0.02
%, S: 0.015 to 0.055%, Al: 0.01 to
0.10%, B: 0.001 to 0.004%, N: 0.
002 to 0.008%, Mo: 0.05 to 0.20%,
With the water cooling device installed on the rear surface of the hot rolling line, the cooling start temperature is Ar 1 point or more, and the cooling end temperature is M S point below 30 the average cooling rate
After cooling at 100 ° C./s, it is further cooled naturally, and then graphitized at a heating temperature of 600 to 720 ° C., characterized by an average particle size of 4.0 μm or less and a number of particles of 3000 / mm.
A method for producing a fine graphite uniformly dispersed steel bar having excellent toughness, characterized by having 0.3 to 1.0% of two or more graphites.

【0011】[0011]

【作用】以下に、本発明を詳細に説明する。本発明者ら
は、種々検討を重ねた結果、Moを添加すると、黒鉛粒
子数が著しく増加して黒鉛粒径が小さくなること、及び
析出箇所がフェライト結晶粒内及び粒界の双方となり黒
鉛が均一分散することを新しく見出した。ところが、従
来は、特開平2−111842号公報(特に、第4頁左
上欄第7行〜第12行)で紹介されているように、Mo
はセメンタイトに固溶してセメンタイトの分解を遅延さ
せ、ひいてはCrと同様に黒鉛化を阻害する元素である
と考えられていた。この常識に反する黒鉛粒子の生成機
構としては、Mo2 Cの結晶構造がBNと同じ六方晶で
あることから、Mo2 Cが、同じく六方晶である黒鉛の
析出箇所になる機構が推測される。また、黒鉛が均一分
散するのは、Mo2 Cが粒界、粒内にかかわらず均一分
散していることと関係していると考えられる。
Hereinafter, the present invention will be described in detail. The present inventors have conducted various studies, and as a result, when Mo is added, the number of graphite particles is significantly increased and the graphite particle size is reduced, and the precipitation location becomes both within the ferrite crystal grains and at the grain boundary, and the graphite becomes It has been newly found that they are uniformly dispersed. However, conventionally, as introduced in Japanese Unexamined Patent Application Publication No. Hei 2-111842 (particularly, page 7, upper left column, line 7 to line 12),
Was thought to be an element that forms a solid solution in cementite to delay the decomposition of cementite, and thus, like Cr, inhibits graphitization. As a generation mechanism of graphite particles contrary to the common sense, since Mo 2 C has the same hexagonal crystal structure as BN, it is supposed that Mo 2 C becomes a deposition site of graphite, which is also hexagonal. . Further, it is considered that the reason why the graphite is uniformly dispersed is related to the fact that Mo 2 C is uniformly dispersed irrespective of the grain boundaries and the inside of the grains.

【0012】一方、製造方法について、本発明者らは、
熱間圧延直後の棒鋼を、その熱間圧延ラインの後面に設
置した水冷却装置により、冷却開始温度をAr1点以上、
冷却終了温度をMS 点以下、平均冷却速度を30〜10
0℃/sとして冷却後、さらに自然冷却し、次いで加熱
温度600〜720℃で黒鉛化処理することにより黒鉛
が微細化することを見出した。これはマルテンサイト変
態歪に加えて熱間圧延後の急冷によりマルテンサイトに
残留する圧延歪が付加されるために、マルテンサイトが
内包する歪の総量が増え、その結果、黒鉛発生箇所が増
加したためと考えられる。
On the other hand, regarding the manufacturing method, the present inventors
The steel bar immediately after the hot rolling is cooled by a water cooling device installed on the rear surface of the hot rolling line so that the cooling start temperature is Ar 1 point or more.
The cooling end temperature below M S point, the average cooling rate 30 to 10
After cooling at 0 ° C./s, it was further found that graphite was refined by further natural cooling and then graphitizing at a heating temperature of 600 to 720 ° C. This is because the rolling strain remaining in martensite is added by rapid cooling after hot rolling in addition to the martensitic transformation strain, so the total amount of strain included in martensite increases, and as a result, the number of graphite occurrence locations increases it is conceivable that.

【0013】本発明は、上記知見に基づいて構成された
ものである。本発明の請求範囲を上記のように定めた理
由を以下に示す。請求項1については、Cは焼入れ後の
強度を確保するために、また十分な被削性能を得るため
に必要な黒鉛の量を確保するために、その下限値を0.
30%とした。上限は冷間加工後の熱処理における焼割
れを防止するために1.0%とした。Siは鋼中の炭素
原子との結合力が小さく、黒鉛化を促進する有力な元素
の1つであるために必須の元素である。焼入+焼鈍処理
により十分な黒鉛を析出させて高い黒鉛化率とするため
にはSiを添加することが必要であり、その下限値は
0.6%でなければならない。1.3%以上になると黒
鉛化率は大きくなるもののフェライト相に固溶するSi
含有量の増加により硬さが大きくなるために冷間加工性
能が劣化する。黒鉛化による硬さの低減効果が相殺され
るので、上限値を1.3%に限定した。Mnは、鋼中硫
黄をMnSとして固定・分散させるために必要な量及び
マトリックスに固溶させて強度を確保するために必要な
量を加算した量が必要であり、その下限値は0.4%で
ある。Mn量が大きくなると黒鉛化を著しく阻害するの
で上限値は1.0%とした。
The present invention has been made based on the above findings. The reasons for defining the scope of the present invention as described above will be described below. Regarding claim 1, C has a lower limit of 0.1 to secure the strength after quenching and to secure the amount of graphite necessary for obtaining sufficient machinability.
30%. The upper limit is set to 1.0% in order to prevent burning cracks in the heat treatment after cold working. Si is an essential element because it has a small bonding force with carbon atoms in steel and is one of the powerful elements for promoting graphitization. In order to precipitate a sufficient amount of graphite by quenching + annealing treatment to obtain a high degree of graphitization, it is necessary to add Si, and its lower limit must be 0.6%. When the content exceeds 1.3%, the graphitization ratio increases, but Si forms a solid solution with the ferrite phase.
Since the hardness increases with an increase in the content, the cold working performance deteriorates. Since the effect of reducing the hardness due to graphitization is offset, the upper limit is limited to 1.3%. Mn requires an amount obtained by adding an amount necessary to fix and disperse sulfur in steel as MnS and an amount necessary to secure strength by solid solution in a matrix, and the lower limit is 0.4. %. If the amount of Mn is large, graphitization is significantly inhibited, so the upper limit is set to 1.0%.

【0014】Pは、鋼中において粒界に析出した燐化合
物、フェライトに固溶したPとして存在するために、被
削性を改善するものの熱間加工性を著しく損なうので、
その上限を0.020%とした。Sは、Mnと結合して
MnS介在物として存在する。鋼中MnS介在物の量が
増えると工具とMnS介在物とが接触する機会が増加
し、MnS介在物が工具すくい面上で塑性変形して被膜
を形成する。その結果、フェライトと工具との接触する
機会が減少するために凝着は抑制され切削仕上げ面の性
状は向上する。凝着を抑制するためには、Sの下限値は
0.015%必要である。Sは冷間鍛造性を損なうので
上限値は0.055%とした。
Since P exists as a phosphorus compound precipitated at grain boundaries in steel and exists as a solid solution in ferrite, machinability is improved, but hot workability is significantly impaired.
The upper limit was set to 0.020%. S bonds with Mn and exists as MnS inclusions. As the amount of MnS inclusions in the steel increases, the chance of contact between the tool and the MnS inclusions increases, and the MnS inclusions plastically deform on the rake face of the tool to form a coating. As a result, the chance of contact between the ferrite and the tool is reduced, so that adhesion is suppressed and the properties of the cut surface are improved. In order to suppress the adhesion, the lower limit of S needs to be 0.015%. Since S impairs cold forgeability, the upper limit is set to 0.055%.

【0015】Alは、鋼中酸素を酸化物系介在物として
除去する。また、結晶粒度を調整するために、0.01
%以上の添加が必要である。酸化物系介在物が多すぎる
と靱性を損なうので上限値を0.10%とした。BとN
は、BNを生成して黒鉛化焼鈍時間を短縮させる。短縮
効果を充分得るためには0.001%以上のBを添加し
なければならない。Bが0.004%を越えると短縮効
果は飽和するので、その上限を0.004%とした。N
は0.001〜0.004%BをBNとするために必要
な量、即ち0.002〜0.008%である。Moは、
フェライト粒内に黒鉛を析出させるために0.05%以
上添加しなければならない。0.20%を越えるとフェ
ライト地の硬さが上昇するので、その上限値を0.20
%とした。
Al removes oxygen in steel as oxide-based inclusions. Further, in order to adjust the crystal grain size, 0.01
% Or more is required. If the amount of the oxide-based inclusions is too large, the toughness is impaired. Therefore, the upper limit is set to 0.10%. B and N
Generates BN and shortens the graphitizing annealing time. In order to obtain a sufficient shortening effect, 0.001% or more of B must be added. If B exceeds 0.004%, the shortening effect is saturated, so the upper limit was made 0.004%. N
Is an amount necessary for converting B to BN from 0.001 to 0.004%, that is, 0.002 to 0.008%. Mo is
In order to precipitate graphite in ferrite grains, it must be added at 0.05% or more. If it exceeds 0.20%, the hardness of the ferrite ground increases, so the upper limit is 0.20%.
%.

【0016】黒鉛の平均粒径は靱性(衝撃特性)の点か
らその上限を4μmとしなければならない。4μmを越
えると、焼入れ組織がフェライト+マルテンサイトの混
合組織となって衝撃値が低下する。黒鉛の粒数が300
0個/mm2 未満では黒鉛間の距離が大きくなり炭素の
拡散距離が大きくなるために、焼入組織はマルテンサイ
ト+フェライトの不完全焼入組織となる。そのために下
限値を3000個/mm2 としなけらばならない。鋼中
Cのほぼ全量を黒鉛化させるために、黒鉛の下限値はC
含有量の下限値0.30%と、上限値は同じくC含有量
の上限値1.0%と一致しなければならない。
The upper limit of the average particle size of graphite must be 4 μm from the viewpoint of toughness (impact characteristics). If it exceeds 4 μm, the quenched structure becomes a mixed structure of ferrite and martensite, and the impact value decreases. 300 graphite particles
If the number is less than 0 / mm 2 , the distance between graphites becomes large and the diffusion distance of carbon becomes large, so that the quenched structure becomes an incomplete quenched structure of martensite + ferrite. For this purpose, the lower limit must be 3000 pieces / mm 2 . In order to graphitize almost all of C in steel, the lower limit of graphite is C
The lower limit of the content should be 0.30% and the upper limit should also be equal to the upper limit of 1.0% of the C content.

【0017】請求項2の発明の化学成分及び製造条件の
限定理由について述べる、C,Si,Mn,P,S,A
l,B,N,Moについては請求項1と全く同じであ
る。製造条件については、熱間仕上圧延した直後の棒鋼
を、その熱延ラインの延長線上に設置した水冷却装置に
より強制冷却するのは、熱間圧延による圧延歪を焼入れ
マルテンサイト組織に残存させるためである。この方法
によると熱延後の赤熱状態の棒鋼の熱エネルギーを焼入
れに利用でき再加熱を必要としないので、結果として熱
処理コストの低減をはかることができる。
C, Si, Mn, P, S, A
1, B, N, and Mo are exactly the same as in claim 1. Regarding the production conditions, the steel bar immediately after hot finish rolling is forcibly cooled by a water cooling device installed on an extension of the hot rolling line, because the rolling strain caused by hot rolling remains in the quenched martensite structure. It is. According to this method, the heat energy of the red-hot steel bar after hot rolling can be used for quenching and reheating is not required, and as a result, the cost of heat treatment can be reduced.

【0018】棒鋼表面で測定した冷却開始温度は、マル
テンサイト変態歪と圧延歪とを同時に発生させて黒鉛生
成サイト数を多くするためにAr1点以上でなければなら
ない。冷却終了温度は充分なマルテンサイト変態組織を
得て黒鉛生成を容易にするためにMS 点以下でなければ
ならない。平均冷却速度の下限値を30℃/sとしたの
は、マルテンサイト変態組織を得るためと加工歪を残留
させて黒鉛化を容易にするためであり、上限値を100
℃/sとしたのは、これ以上に急冷却してもマルテンサ
イト変態量は増加しないためである。焼鈍温度の下限値
を600℃、上限値を720℃に限定したのはこの温度
範囲における黒鉛化時間が最も短いためである。
The cooling start temperature measured on the surface of the steel bar must be equal to or higher than the Ar1 point in order to increase the number of graphite forming sites by simultaneously generating martensitic transformation strain and rolling strain. The cooling end temperature must be below the MS point in order to obtain a sufficient martensitic transformation structure and facilitate graphite formation. The lower limit of the average cooling rate is set to 30 ° C./s in order to obtain a martensitic transformation structure and to maintain the processing strain to facilitate graphitization.
C / s is because the amount of martensitic transformation does not increase even if cooling is performed more rapidly. The lower limit of the annealing temperature is limited to 600 ° C. and the upper limit is set to 720 ° C. because the graphitization time in this temperature range is the shortest.

【0019】[0019]

【実施例】次に実施例により本発明の効果をさらに具体
的に示す。表1に供試鋼の化学成分と製造条件及び黒鉛
化率を示す。本試験に使用した棒鋼は直径19mm以上
の直棒またはバーインコイルである。熱延ラインの延長
線上に設置した冷却装置により、棒鋼表面の全面に単位
面積当たり0.3〜0.5トン/m2 の冷却水を均一に
散水することにより冷却した。冷却装置は、長さ20m
で、円周上に多数の冷却水を供給するための孔を有する
パイプで、棒鋼はパイプの中心線上を通過する際に冷却
される。冷却開始温度、冷却終了温度は、鋼材の表面温
度を放射温度計で測定した値であり、平均冷却速度は、
冷却開始温度と冷却終了温度との差を冷却時間で除すこ
とにより求めた。その後、自然冷却させ、さらにオフラ
インの焼鈍炉で黒鉛化処理した。黒鉛化率は次式により
算出した。 (鋼中黒鉛含有量/鋼の炭素含有量)×100(%) 鋼の炭素含有量は化学分析により定量した。黒鉛含有量
は平均黒鉛粒子径、密度及び黒鉛粒子数から算出した。
本製造法による棒鋼の黒鉛化率は焼鈍時間が10時間前
後と短いにも係わらず、100%と著しく優れた結果で
ある。比較製造法の場合には黒鉛化率は50%程度と低
い。
Next, the effects of the present invention will be described more specifically by way of examples. Table 1 shows the chemical composition, production conditions and graphitization ratio of the test steel. The steel bars used in this test are straight bars or burn-in coils having a diameter of 19 mm or more. Cooling was performed by uniformly spraying cooling water of 0.3 to 0.5 ton / m 2 per unit area over the entire surface of the steel bar by a cooling device installed on an extension of the hot rolling line. The cooling device is 20m long
In a pipe having a plurality of holes for supplying cooling water on the circumference, the steel bar is cooled when passing on the center line of the pipe. The cooling start temperature and the cooling end temperature are values obtained by measuring the surface temperature of steel with a radiation thermometer.
It was determined by dividing the difference between the cooling start temperature and the cooling end temperature by the cooling time. Then, it was cooled naturally and further graphitized in an offline annealing furnace. The graphitization rate was calculated by the following equation. (Graphite content in steel / Carbon content of steel) × 100 (%) The carbon content of steel was quantified by chemical analysis. The graphite content was calculated from the average graphite particle diameter, the density and the number of graphite particles.
The graphitization rate of the steel bars produced by this method is 100%, which is a remarkably excellent result, although the annealing time is as short as about 10 hours. In the case of the comparative production method, the graphitization ratio is as low as about 50%.

【0020】[0020]

【表1】 [Table 1]

【0021】表2に黒鉛粒径及び黒鉛間の最大距離を示
す。黒鉛粒径の測定は次の方法によった。黒鉛粒子に電
子線を照射して、反射電子線の強度を2値化することに
よりSEM画面上に黒鉛を結像させて、解析システムを
使用して粒径を測定・解析した。1視野の面積は100
μm×100μmで視野数は25であり、測定総面積は
0.25mm2 である。黒鉛面の最大距離は、倍率20
0倍の光学顕微鏡写真上で測定した。写真上に黒鉛の存
在しない箇所のみを含む円弧を描きその直径の最大値を
黒鉛間の最大距離とした。本発明鋼の黒鉛粒径及び黒鉛
間の最大距離は比較鋼のそれよりいずれも小さくなって
いる。
Table 2 shows the graphite particle size and the maximum distance between graphite. The graphite particle size was measured by the following method. By irradiating the graphite particles with an electron beam and binarizing the intensity of the reflected electron beam, the graphite was imaged on a SEM screen, and the particle size was measured and analyzed using an analysis system. The area of one visual field is 100
The number of fields of view is 25 μm × 100 μm, and the total measured area is 0.25 mm 2 . The maximum distance of the graphite surface is 20 magnification.
It was measured on an optical microscope photograph of 0 times. An arc including only a portion where no graphite was present was drawn on the photograph, and the maximum value of the diameter was defined as the maximum distance between graphite. The graphite grain size and the maximum distance between graphites of the steel of the present invention are smaller than those of the comparative steel.

【0022】[0022]

【表2】 [Table 2]

【0023】表3にシャルピー衝撃値を示す。シャルピ
ー衝撃試験方法について以下に述べる。黒鉛析出状態の
直径38mmの棒鋼を直径25mmに旋削した後に、高
周波焼入(1000℃×3sec→水冷)、及び焼戻
(600℃×6min→水冷)した。焼入・焼戻した棒
鋼からUノッチのJIS3号試験片を切り出した。シャ
ルピー試験温度は20℃である。本発明鋼の靱性を示す
シャルピー衝撃値は比較鋼のそれと比較して著しく高
い。
Table 3 shows the Charpy impact values. The Charpy impact test method is described below. After turning a steel bar having a diameter of 38 mm in a graphite precipitated state to a diameter of 25 mm, induction hardening (1000 ° C. × 3 sec → water cooling) and tempering (600 ° C. × 6 min → water cooling) were performed. A JIS No. 3 test piece of U notch was cut out from the quenched and tempered steel bar. The Charpy test temperature is 20 ° C. The Charpy impact value indicating the toughness of the steel of the present invention is significantly higher than that of the comparative steel.

【0024】[0024]

【表3】 [Table 3]

【0025】[0025]

【発明の効果】以上の実施例からも明らかなように本発
明によれば、靱性の優れた極微細黒鉛均一分散棒鋼を提
供することが可能であり、産業上の効果は極めて顕著な
ものがある。
As is clear from the above examples, according to the present invention, it is possible to provide an ultrafine graphite uniformly dispersed steel bar excellent in toughness, and the industrial effect is extremely remarkable. is there.

フロントページの続き (56)参考文献 特開 平8−60295(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 C21D 8/06,9/52 (56) References JP-A-8-60295 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 38/00-38/60 C21D 8 / 06,9 / 52

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、 C :0.30〜1.0% Si:0.6〜1.3% Mn:0.4〜1.0% P :≦0.020% S :0.015〜0.055% Al:0.01〜0.10% B :0.001〜0.004% N :0.002〜0.008% Mo:0.05〜0.20% を基本成分とし、残部Fe及び不可避的不純物からな
り、平均粒径4.0μm以下、粒数3000個/mm2
以上の黒鉛0.3〜1.0%を有することを特徴とする
靱性に優れた微細黒鉛均一分散棒鋼。
C: 0.30 to 1.0% Si: 0.6 to 1.3% Mn: 0.4 to 1.0% P: ≦ 0.020% S: 0. 015 to 0.055% Al: 0.01 to 0.10% B: 0.001 to 0.004% N: 0.002 to 0.008% Mo: 0.05 to 0.20% as a basic component , The balance being Fe and unavoidable impurities, having an average particle size of 4.0 μm or less, and the number of particles of 3000 / mm 2
A fine graphite uniformly dispersed steel bar having excellent toughness, characterized by having the above graphite of 0.3 to 1.0%.
【請求項2】 重量%で、 C :0.30〜1.0% Si:0.6〜1.3% Mn:0.4〜1.0% P :≦0.020% S :0.015〜0.055% Al:0.01〜0.10% B :0.001〜0.004% N :0.002〜0.008% Mo:0.05〜0.20% を基本成分とし、残部Fe及び不可避的不純物からな
る、熱間圧延直後の棒鋼を、その熱間圧延ラインの後面
に設置した水冷却装置により、冷却開始温度をAr1点以
上、冷却終了温度をMS 点以下、平均冷却速度を30〜
100℃/sとして冷却後、さらに自然冷却し、次いで
加熱温度600〜720℃で黒鉛化処理することを特徴
とする平均粒径4.0μm以下、粒数3000個/mm
2 以上の黒鉛0.3〜1.0%を有する靱性に優れた微
細黒鉛均一分散棒鋼の製造方法。
2. In% by weight, C: 0.30 to 1.0% Si: 0.6 to 1.3% Mn: 0.4 to 1.0% P: ≦ 0.020% S: 0. 015 to 0.055% Al: 0.01 to 0.10% B: 0.001 to 0.004% N: 0.002 to 0.008% Mo: 0.05 to 0.20% as a basic component , the balance being Fe and unavoidable impurities, the steel bar immediately after hot rolling, by installing water cooling unit to the rear surface of the hot rolling line, the cooling start temperature a r1 or more points, the cooling end temperature below M S point , Average cooling rate 30 ~
After cooling at 100 ° C./s, it is further cooled naturally, and then graphitized at a heating temperature of 600 to 720 ° C., characterized by an average particle size of 4.0 μm or less and a number of particles of 3000 / mm.
A method for producing a fine graphite uniformly dispersed steel bar having excellent toughness and having 0.3 to 1.0% of two or more graphites.
JP06220804A 1994-02-24 1994-08-24 Fine graphite uniformly dispersed steel bar with excellent toughness and method for producing the same Expired - Fee Related JP3093577B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP06220804A JP3093577B2 (en) 1994-08-24 1994-08-24 Fine graphite uniformly dispersed steel bar with excellent toughness and method for producing the same
CA002183441A CA2183441C (en) 1994-02-24 1995-02-24 Fine graphite uniform dispersion steel excellent in cold machinability, cuttability and hardenability, and production method for the same
US08/700,355 US5830285A (en) 1994-02-24 1995-02-24 Fine graphite uniform dispersion steel excellent in cold machinability, cuttability and hardenability, and production method for the same
PCT/JP1995/000276 WO1995023241A1 (en) 1994-02-24 1995-02-24 Steel material containing fine graphite particles uniformly dispersed therein and having excellent cold workability, machinability and hardenability, and method of manufacturing the same
CN95192203A CN1046555C (en) 1994-02-24 1995-02-24 Steel material containing fine graphite particles uniformly dispersed therein and having excellent cold workability, machinability and hardenability and method of manufacturing the same
KR1019960704638A KR100210867B1 (en) 1994-02-24 1995-02-24 Steel material containing fine graphite particles uniformly dispersed therein and having excellent cold workability machinability and hardenability and method of manufacturing the same
DE69514340T DE69514340T2 (en) 1994-02-24 1995-02-24 STEEL MATERIAL WITH EVENLY FINE DISTRIBUTED CARBON PARTICLES WITH OUTSTANDING WORKABILITY, COLD FORMABILITY AND TEMPERATURE PROPERTIES AND THEIR PRODUCTION PROCESS
EP95909974A EP0751232B1 (en) 1994-02-24 1995-02-24 Steel material containing fine graphite particles uniformly dispersed therein and having excellent cold workability, machinability and hardenability, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06220804A JP3093577B2 (en) 1994-08-24 1994-08-24 Fine graphite uniformly dispersed steel bar with excellent toughness and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0860296A JPH0860296A (en) 1996-03-05
JP3093577B2 true JP3093577B2 (en) 2000-10-03

Family

ID=16756829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06220804A Expired - Fee Related JP3093577B2 (en) 1994-02-24 1994-08-24 Fine graphite uniformly dispersed steel bar with excellent toughness and method for producing the same

Country Status (1)

Country Link
JP (1) JP3093577B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115710621A (en) * 2022-10-23 2023-02-24 东北大学秦皇岛分校 Process method for reducing graphitization of carbon steel

Also Published As

Publication number Publication date
JPH0860296A (en) 1996-03-05

Similar Documents

Publication Publication Date Title
JP4448456B2 (en) Case-hardened steel with excellent coarse grain prevention and fatigue characteristics during carburizing and its manufacturing method
JP4709944B2 (en) Case-hardened steel, carburized parts, and method for producing case-hardened steel
JP6583588B2 (en) Carburizing steel sheet and method for manufacturing carburizing steel sheet
WO2013151009A1 (en) Steel wire rod or steel bar having excellent cold forgeability
JP2016186099A (en) Wire for bolt excellent in acid cleaning property and delayed fracture resistance after quenching and tempering, and bolt
JP3764586B2 (en) Manufacturing method of case-hardened steel with excellent cold workability and low carburizing strain characteristics
JP5262740B2 (en) Case-hardened steel with excellent coarse grain prevention and fatigue characteristics during carburizing and its manufacturing method
WO1995023241A1 (en) Steel material containing fine graphite particles uniformly dispersed therein and having excellent cold workability, machinability and hardenability, and method of manufacturing the same
JP3172075B2 (en) Graphite uniformly dispersed steel excellent in toughness and method for producing the same
JP5489497B2 (en) Method for producing boron steel sheet with excellent hardenability
JP3093577B2 (en) Fine graphite uniformly dispersed steel bar with excellent toughness and method for producing the same
JPH11124623A (en) Manufacture of boron-containing steel for cold forging
JP3093576B2 (en) Fine graphite uniformly dispersed steel wire with excellent toughness and method for producing the same
JP3262687B2 (en) Fine graphite uniformly dispersed steel for cold working with excellent toughness
JPH08283847A (en) Production of graphite steel for cold forging excellent in toughness
JP2955456B2 (en) Hypoeutectoid graphite precipitated steel with excellent fatigue strength and cold workability
JP2999104B2 (en) Manufacturing method of graphite free-cutting steel
JP3429911B2 (en) Fine graphite uniformly dispersed steel excellent in machinability and hardenability and its manufacturing method
JP3602602B2 (en) Method for producing fine graphite uniformly dispersed steel bar for cold working with excellent toughness
JP3552286B2 (en) Manufacturing method of machine structural steel having excellent machinability, cold forgeability and fatigue strength after quenching and tempering, and a method of manufacturing the member
JP3428282B2 (en) Gear steel for induction hardening and method of manufacturing the same
JP3150523B2 (en) Method for producing hypoeutectoid graphite deposited steel wire
JP3602603B2 (en) Method for producing fine graphite uniformly dispersed steel for cold working with excellent toughness
JP3217943B2 (en) Method for producing steel for machine structural use having excellent machinability, cold forgeability and fatigue properties after quenching and tempering
JP3237990B2 (en) Cold forging steel with excellent cold workability and hardenability

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070728

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080728

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080728

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 13

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees