JP3382467B2 - Active matrix substrate manufacturing method - Google Patents

Active matrix substrate manufacturing method

Info

Publication number
JP3382467B2
JP3382467B2 JP24193996A JP24193996A JP3382467B2 JP 3382467 B2 JP3382467 B2 JP 3382467B2 JP 24193996 A JP24193996 A JP 24193996A JP 24193996 A JP24193996 A JP 24193996A JP 3382467 B2 JP3382467 B2 JP 3382467B2
Authority
JP
Japan
Prior art keywords
insulating layer
electrode
polishing
forming
active matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24193996A
Other languages
Japanese (ja)
Other versions
JPH09148329A (en
Inventor
嘉彦 福元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP24193996A priority Critical patent/JP3382467B2/en
Priority to EP96306683A priority patent/EP0768710A3/en
Priority to TW085111218A priority patent/TW469420B/en
Priority to US08/714,437 priority patent/US6307264B1/en
Publication of JPH09148329A publication Critical patent/JPH09148329A/en
Priority to US09/429,530 priority patent/US6743723B2/en
Application granted granted Critical
Publication of JP3382467B2 publication Critical patent/JP3382467B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/7684Smoothing; Planarisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/02068Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
    • H01L21/02074Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers the processing being a planarization of conductive layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/48Flattening arrangements

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Thin Film Transistor (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、アクティブマトリ
クス基板の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for manufacturing an active matrix substrate.

【0002】[0002]

【従来の技術】半導体装置には、半導体基板もしくは半
導体層と外部とを接続する配線が通常設けられている。
このような配線としては、Al(アルミニウム)配線が
一般的である。Al配線の例として、’94VLSI S
ymp.で報告されたCMP(Chemical Mechanical Polish
ing)を用いたダマシン法によるAl配線もしくはAl電
極の形成方法がある。これについて図14を用いて説明
する。まず、シリコン基板60上に熱酸化膜61、層間
絶縁膜62を形成する(図14(a))。層間絶縁膜6
2をパタ−ニングし、Al埋め込みパタ−ン63を形成
する(図14(b))。スパッタリング法を用いてAl
膜64を形成する(図14(c))。このときAl膜6
4の厚さは、Al埋め込みパタ−ン63の段差よりも大
きくする。次いで、Al膜64をCMP研磨し、Al電
極65を形成する(図14(d))。
2. Description of the Related Art A semiconductor device is usually provided with wiring for connecting a semiconductor substrate or a semiconductor layer to the outside.
As such a wiring, an Al (aluminum) wiring is generally used. As an example of Al wiring, a '94 VLSI S
CMP (Chemical Mechanical Polish) reported in ymp.
There is a method of forming an Al wiring or an Al electrode by a damascene method using (ing). This will be described with reference to FIG. First, the thermal oxide film 61 and the interlayer insulating film 62 are formed on the silicon substrate 60 (FIG. 14A). Interlayer insulation film 6
2 is patterned to form an Al-embedded pattern 63 (FIG. 14 (b)). Al using the sputtering method
The film 64 is formed (FIG. 14C). At this time, the Al film 6
The thickness of No. 4 is larger than the step of the Al-embedded pattern 63. Then, the Al film 64 is CMP-polished to form an Al electrode 65 (FIG. 14D).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述し
たダマシン法による配線もしくは電極形成においては、
実際には図15(e)に示したようにAl電極65の中
央部がくぼむディッシングと呼ばれる形状を生ずる。こ
れは、Alに代表されるメタル層とp−SiOに代表さ
れる絶縁層におけるCMPの研磨レ−トの異なる材料が
同一の研磨面内に混在する場合、研磨布が変形可能であ
るため、研磨レ−トの大きな材料が余分に研磨されて生
ずるものである。Alとp−SiOではAlの研磨レ−
トがp−SiOに比べて4〜5倍大きいためAl電極6
5にディッシングが生ずる。このディッシングは、図1
6に示すようにAl電極の寸法が大きくなるに従い大き
くなり、300μmの大きさのAl電極では約3000
Åのディッシングが生じる。ワイヤボンディングを行う
パッド部のように、数百μmの大きさのAl電極の場合
には図15(f)に示すように大きなディッシングによ
りAl電極65の一部が消失し、ワイヤボンディングが
不可能となり、素子の歩留まりを下げる原因ともなって
いる。また、Al配線においては、ディッシングにより
配線抵抗が増大し、素子の特性を劣化させる原因ともな
る。
However, in the above-mentioned wiring or electrode formation by the damascene method,
Actually, as shown in FIG. 15E, a shape called dishing in which the central portion of the Al electrode 65 is depressed is produced. This is because the polishing cloth is deformable when materials having different CMP polishing rates in the metal layer typified by Al and the insulating layer typified by p-SiO are mixed in the same polishing surface. This is caused by excessive polishing of a material having a large polishing rate. For Al and p-SiO, polishing rate of Al
Is 4 to 5 times larger than p-SiO, the Al electrode 6
Dishing occurs at 5. This dishing is shown in Figure 1.
As shown in Fig. 6, the size increases as the size of the Al electrode increases, and is about 3000 for an Al electrode of 300 μm.
Å Dishing occurs. In the case of an Al electrode having a size of several hundred μm, such as a pad portion for wire bonding, a part of the Al electrode 65 disappears due to large dishing as shown in FIG. This is also a cause of lowering the yield of the device. Further, in the Al wiring, the wiring resistance increases due to dishing, which causes deterioration of the element characteristics.

【0004】本発明の目的は、ディッシング量を小さく
なした金属画素電極を用いたアクティブマトリクス基板
の製造方法を提供することにある。
An object of the present invention is to provide a method of manufacturing an active matrix substrate using a metal pixel electrode with a reduced dishing amount.

【0005】[0005]

【課題を解決するための手段】上述の目的を達成する本
発明のアクティブマトリクス基板の製造方法は、次のと
おりのものである。
A method of manufacturing an active matrix substrate of the present invention which achieves the above object is as follows.

【0006】即ち、本発明のアクティブマトリクス基板
の製造方法は、信号線部、走査線部及びトランジスタ部
を有する半導体基板を用意する第1工程、前記半導体基
板の表面上に、窒化シリコン(50)からなる第1絶縁
層を形成する第2工程、前記第1の絶縁層上に酸化シリ
コン(51)からなる第2絶縁層を形成する第3工程、
開口部(53)内に第2絶縁層の残された絶縁領域(5
2)を形成するように、前記第1絶縁層をエッチングス
トッパーとして使用しながら、前記第2絶縁層をエッチ
ングすることによって、前記第2絶縁層をパターニング
し、これによって、該開口部(53)を形成する第4工
程、該開口部内にトランジスタ部まで延びたコンタクト
ホール(54)を形成し、該コンタクトホール内を金属
(55)で埋め込む第5工程、前記第5工程を経た半導
体基板上に、アルミニウム(56)を被覆する第6工
程、及び前記第2絶縁層の残された絶縁領域(52)を
研磨ストップ部として使用しながら、前記第4工程の開
口部以外に位置する第2絶縁層及び前記第6工程のアル
ミニウムを研磨し、これによって、研磨された第2絶縁
層によって互いに絶縁分離された金属画素電極(56)
を形成する第7工程を有することを特徴とするものであ
る。
That is, in the method for manufacturing an active matrix substrate of the present invention, a first step of preparing a semiconductor substrate having a signal line portion, a scanning line portion and a transistor portion, and silicon nitride (50) on the surface of the semiconductor substrate. A second step of forming a first insulating layer made of, a third step of forming a second insulating layer made of silicon oxide (51) on the first insulating layer,
The insulating region (5) left in the second insulating layer in the opening (53)
2) is formed by patterning the second insulating layer by etching the second insulating layer while using the first insulating layer as an etching stopper, thereby forming the opening (53). Forming a contact hole (54) extending to the transistor portion in the opening, filling the contact hole with a metal (55), and forming the contact hole on the semiconductor substrate after the fifth step. , A sixth step of coating aluminum (56), and a second insulation located outside the opening of the fourth step while using the remaining insulation region (52) of the second insulation layer as a polishing stop. A layer and a metal pixel electrode (56), which is polished in the sixth step, so that it is insulated from each other by the polished second insulating layer.
It has the 7th process of forming.

【0007】[0007]

【0008】[0008]

【0009】本発明で、導電性材料あるいは画素電極は
Alであるのがいい。また、異なる領域あるいは異なる
材料は、SiOまたはSiNであるのがいい。
In the present invention, the conductive material or the pixel electrode is preferably Al. Also, the different regions or different materials may be SiO or SiN.

【0010】本発明のアクティブマトリクス基板の製造
方法は、一般のICの製造方法を含め、表示部と駆動部
が一体となった一体型液晶表示装置の製造法にも適用す
ることが出来る。また、本発明の方法による半導体装置
は、アクティブマトリックス基板に適用することがで
き、このアクティブマトリックス基板は、液晶表示装置
やDMD(Digital Micromirror
Device)などの表示デバイスに用いることができ
る。
The method of manufacturing an active matrix substrate of the present invention can be applied to a method of manufacturing an integrated liquid crystal display device in which a display section and a driving section are integrated, including a general IC manufacturing method. Further, the semiconductor device according to the method of the present invention can be applied to an active matrix substrate, and this active matrix substrate is used for a liquid crystal display device or a DMD (Digital Micromirror).
It can be used for a display device such as a device.

【0011】[0011]

【発明の実施の形態】図1〜図4を参照して説明する。
以下、順をおって、本発明の半導体装置を形成する手順
について説明する。なお、説明に際して、これらの図に
おいては、半導体装置のワイヤボンディング部であるパ
ッドのみを示しており、トランジスタ部、配線部等は、
通常の半導体プロセスを用いて形成するものとする。
DETAILED DESCRIPTION OF THE INVENTION A description will be given with reference to FIGS.
Hereinafter, the procedure for forming the semiconductor device of the present invention will be described step by step. In the description, in these drawings, only the pads that are the wire bonding portions of the semiconductor device are shown, and the transistor portion, the wiring portion, and the like are
It should be formed using a normal semiconductor process.

【0012】まず、半導体基板1を熱酸化し、厚さ80
00Å程度のフィ−ルド酸化膜2を形成する。例えば、
MOSトランジスタのゲ−ト電極形成と同時にポリシリ
コン3を厚さ4400Å程度に形成する。ポリシリコン
3は、パッド部を後のCMP工程の前に、ウエハ面内で
最も高く形成するために設ける。次ぎにBPSG(Bo
vo−Phospho−Silicate Glas
s)4を厚さ8000Å程度に成膜する(図1
(a))。つぎに、配線材料であるAl(アルミニウ
ム)膜5を形成する(図1(b))。次に、プラズマC
VD(Chemical Vaper Deposit
ion)によりp−SiN6、p−SiO7を積層する
(図1(c))。本願で、p−SiN,p−SiOと
は、プラズマCVDで形成したSiN領域SiO領域を
表す。次にp−SiO7をパタ−ニングし、パッド内部
に島状の研磨ストップ部8を形成する(図1(d))。
パタ−ニングにおけるドエライエッチング、ウエットエ
ッチングの際p−SiN6はエッチングのストッパ−層
として機能し、ドライエッチングにおけるp−SiOと
の選択比は約3、BHF(バッファ−ド弗酸)を用いた
ウエットエッチングにおける選択比は6程度である。ス
ル−ホ−ル9を形成する(図2(e))。CVD法を用
いてタングステン膜をスル−ホ−ル9内に選択的に堆積
させ、タングステンプラグ10を形成する(図2
(f))。ここではスル−ホ−ル9の埋め込みにタング
ステンを用いた例を示したが他の金属、例えばAl、T
i等を用いることもできる。スッパタリング法等を用い
てAl膜11を形成する(図2(g))。ここでAl膜
11の厚さはp−SiO7の厚さよりも厚くする。次ぎ
にCMP(chemical mechanical polishing)によりウエ
ハ表面を研磨し、デバイス表面を平坦にすると共に、A
l電極12からなるパッド部を他の電極から絶縁する
(図2(h))。実際のCMP研磨には、例えば(株)
スピ−ドファム製CMP−224CMP装置、研磨布と
してPolitex DG、スラリ−として(株)フジ
ミ製PLANERLITE5102を用い、例えばスラ
リ−流量100ml/min、PLATEN SPEE
D/CARRIER SPEEDを40rpm/39r
pm、ウエハ押し付け圧力200g/cm2 の研磨条件
で行うことができる。また、(株)エバラ製作所製EP
O−114CMP装置、研磨布にSUPREME RN
−H(D51)、スラリ−に(株)フジミ製PLANE
RLITE5102を用い、スラリ−流量200ml/
min、PLATEN SPEED/CARRIER
SPEEDを50rpm/49rpm、ウエハ押し付け
圧力200g/cm2 の条件で研磨を行っても同様の結
果が得られる。CMP研磨後の洗浄は、純水を電気分解
して作る電解イオン水のpH=7を越える陰極水を用い
たメガソニックスピン洗浄を行った後、PVAのブラシ
を用いたスクラブ洗浄で行う。上記電解イオン水の陰極
水にNH4 OHを0.01ppm加えた洗浄液を用いた
メガソニックスピン洗浄は、更にパ−ティクル除去の効
果が大きい。
First, the semiconductor substrate 1 is thermally oxidized to a thickness of 80.
A field oxide film 2 having a thickness of about 00Å is formed. For example,
Simultaneously with the formation of the gate electrode of the MOS transistor, the polysilicon 3 is formed to a thickness of about 4400Å. The polysilicon 3 is provided to form the pad portion at the highest height in the wafer surface before the subsequent CMP process. Next, BPSG (Bo
vo-Phospho-Silicate Glass
s) 4 is deposited to a thickness of about 8000Å (Fig. 1
(A)). Next, an Al (aluminum) film 5 which is a wiring material is formed (FIG. 1B). Next, plasma C
VD (Chemical Vapor Deposition)
ion) to stack p-SiN6 and p-SiO7 (FIG. 1C). In the present application, p-SiN and p-SiO represent a SiN region SiO region formed by plasma CVD. Next, p-SiO7 is patterned to form an island-shaped polishing stop portion 8 inside the pad (FIG. 1 (d)).
In the dry etching and wet etching in patterning, p-SiN6 functions as an etching stopper layer, the dry etching has a selectivity of about 3 with p-SiO, and wet using BHF (buffered hydrofluoric acid). The etching selection ratio is about 6. The through-hole 9 is formed (FIG. 2 (e)). A tungsten film is selectively deposited in the through hole 9 by using the CVD method to form a tungsten plug 10 (FIG. 2).
(F)). Although an example in which tungsten is used to fill the through hole 9 is shown here, other metals such as Al and T are used.
i or the like can also be used. The Al film 11 is formed by using the sputtering method or the like (FIG. 2G). Here, the Al film 11 is made thicker than the p-SiO7. Next, the wafer surface is polished by CMP (chemical mechanical polishing) to flatten the device surface, and
The pad portion including the l-electrode 12 is insulated from other electrodes (FIG. 2 (h)). For actual CMP polishing, for example,
A CMP-224 CMP apparatus manufactured by Speed Fam, a Politex DG as a polishing cloth, and a PLANERLITE 5102 manufactured by Fujimi Co., Ltd. as a slurry, for example, a slurry flow rate of 100 ml / min, PLATEN SPEE
D / CARRIER SPEED 40rpm / 39r
The polishing can be performed under the polishing conditions of pm and a wafer pressing pressure of 200 g / cm 2 . In addition, EP manufactured by Ebara Corporation
O-114 CMP equipment, SUPERME RN for polishing cloth
-H (D51), slurry to Fujimi PLANE
Using RLITE5102, slurry-flow rate 200 ml /
min, PLATEN SPEED / CARRIER
Similar results can be obtained by polishing under the conditions of SPEED of 50 rpm / 49 rpm and wafer pressing pressure of 200 g / cm 2 . The cleaning after the CMP polishing is performed by scrub cleaning using a PVA brush after performing megasonic spin cleaning using cathodic water having an electrolyzed pure water that is electrolyzed and having a pH of more than 7. The megasonic spin cleaning using the cleaning liquid in which 0.01 ppm of NH 4 OH is added to the cathode water of the electrolytic ion water is more effective in removing particles.

【0013】図3(i)は図1(a)の斜視図、図3
(j)は図1(b)の斜視図、図3(k)は図1(d)
の斜視図、図4(l)は図2(h)の斜視図である。図
4(m)は、図2(h)、図4(l)を表面から見た平
面図である。図3(k)に示すように研磨ストップ部8
は、柱状に形成し、図4(l)、図4(m)に示すよう
にAl電極12を電気的に分離しないように形成する。
FIG. 3 (i) is a perspective view of FIG. 1 (a).
1J is a perspective view of FIG. 1B, and FIG. 3K is FIG. 1D.
FIG. 4 (l) is a perspective view of FIG. 2 (h). FIG. 4 (m) is a plan view of FIG. 2 (h) and FIG. 4 (l) seen from the surface. As shown in FIG. 3 (k), the polishing stop portion 8
Is formed in a columnar shape, and is formed so as not to electrically separate the Al electrode 12 as shown in FIGS. 4 (l) and 4 (m).

【0014】本形態の特徴点は、パッド部なるAl電極
12のパタ−ン内部に、研磨ストップ部8を設けたこと
であり、これによりCMP研磨時に生ずるAl電極12
のディッシングを小さくし、オ−バ−研磨によるAl電
極12の消失を防ぐことができる。即ち、メタルCMP
プロセスの歩留まりを向上させることができる。なお、
図4(m)においては研磨ストップ部8を正方形とした
が、正5角形、正6角形等の正多角形にすることも可能
である。Al電極12上の任意の点から研磨ストップ部
8、もしくはAl電極12の側壁までの最短の距離は5
0μm以下とするのが好ましい。
The feature of the present embodiment is that the polishing stop portion 8 is provided inside the pattern of the Al electrode 12 which is the pad portion, whereby the Al electrode 12 generated during CMP polishing is formed.
It is possible to reduce the dishing and to prevent the Al electrode 12 from disappearing due to overpolishing. That is, metal CMP
The process yield can be improved. In addition,
Although the polishing stopper 8 is square in FIG. 4 (m), it may be regular polygon such as regular pentagon or regular hexagon. The shortest distance from any point on the Al electrode 12 to the polishing stop portion 8 or the side wall of the Al electrode 12 is 5
It is preferably 0 μm or less.

【0015】[0015]

【実施例】【Example】

(実施例1)図5および図6を用いて説明する。これら
の図は、図4(m)と同様にパッド部の平面図である。
図5(a)においては、研磨ストップ部8をストライプ
状に形成した。図5(b)においては、研磨ストップ部
8の断面形状を多角形にした。図6(c)においては、
研磨ストップ部8の断面形状を3角形にした。図6
(d)においては、研磨ストップ部8の断面形状を円形
あるいは楕円形にした。図6(e)においては、研磨ス
トップ部8の断面形状を任意かつ複数の形状とした。図
5(a)〜図6(e)のいずれの図においても、Al電
極12上の任意の点から研磨ストップ部8、もしくはA
l電極12の側壁までの最短の距離は50μm以下であ
ることが望ましい。本例の特徴点は研磨ストップ部8の
断面形状を任意の形状に形成したことであり、これによ
り、Al電極12のCMP研磨時のディッシングを小さ
くし、パッド部Al膜の消失を防ぎ、CMP工程の歩留
まりを向上させることができる。
(Embodiment 1) This will be described with reference to FIGS. These figures are plan views of the pad portion similarly to FIG. 4 (m).
In FIG. 5A, the polishing stop portion 8 is formed in a stripe shape. In FIG. 5B, the cross-sectional shape of the polishing stop portion 8 is polygonal. In FIG. 6 (c),
The cross-sectional shape of the polishing stop portion 8 is triangular. Figure 6
In (d), the cross-sectional shape of the polishing stopper 8 is circular or elliptical. In FIG. 6E, the cross-sectional shape of the polishing stop portion 8 is arbitrary and plural. In any of FIGS. 5A to 6E, the polishing stop portion 8 or A from an arbitrary point on the Al electrode 12 is removed.
The shortest distance to the side wall of the l-electrode 12 is preferably 50 μm or less. The feature of this example is that the cross-sectional shape of the polishing stop portion 8 is formed in an arbitrary shape, which reduces dishing of the Al electrode 12 during CMP polishing, prevents the pad portion Al film from disappearing, and improves the CMP. The process yield can be improved.

【0016】(実施例2)図7を用いて説明する。図7
は図4(m)と同じくパッド部の平面図である。図7に
おいて、5は下層のAl配線、12は、上層のAl電極
である。8は研磨ストップ部、9はAl配線5とAl電
極12を電気的に結ぶスル−ホ−ルである。本例の特徴
は、研磨ストップ部を格子状にし、同一パッド部のAl
電極12を複数のセグメントに分離し、各のAl電極1
2のセグメントをスル−ホ−ル9、Al配線によって電
気的に結んでいる点である。これによりAl電極12の
ディッシングをより小さくし、Al電極12の消失が防
げるため、CMP工程の歩留まりが向上する。なお、各
のAl電極12のセグメントは、複数の任意の形状に形
成することができ、Al電極12のセグメント上の任意
の点から研磨ストップ部8までの最短の距離は100μ
m以下とするのが望ましい。
(Second Embodiment) A description will be given with reference to FIG. Figure 7
FIG. 4B is a plan view of the pad portion as in FIG. In FIG. 7, 5 is a lower layer Al wiring, and 12 is an upper layer Al electrode. Reference numeral 8 is a polishing stop portion, and 9 is a through hole for electrically connecting the Al wiring 5 and the Al electrode 12. The feature of this example is that the polishing stop portion is formed in a lattice shape and the Al of the same pad portion is formed.
The electrode 12 is divided into a plurality of segments, and each Al electrode 1
The second segment is electrically connected by the through hole 9 and the Al wiring. As a result, the dishing of the Al electrode 12 can be made smaller and the disappearance of the Al electrode 12 can be prevented, so that the yield of the CMP process is improved. The segments of each Al electrode 12 can be formed in a plurality of arbitrary shapes, and the shortest distance from any point on the segment of the Al electrode 12 to the polishing stop portion 8 is 100 μm.
It is desirable that the thickness is m or less.

【0017】(実施例3)図8及び図9を用いて説明す
る。図8(a)において、1は半導体基板、2は半導体
基板1を熱酸化して形成した熱酸化膜、4はBPSG
(Boro−Phospho−Silicate Gl
ass)、20はp−SiOである。p−SiO20を
パタ−ニングし、研磨ストップ部8を形成する(図8
(b))。パタ−ニングの際のドライエッテイングもし
くはウエットエッチングは、時間制御により、所望の深
さのパタ−ンを形成する。スパッタリング法等を用い
て、Al膜5を形成する(図8(c))。Al膜5の厚
さは図8(b)で形成したパタ−ンの深さよりも大きく
形成する。CMP研磨によりAl配線5を形成する(図
8(d))。なおCMPの研磨条件、洗浄条件は、上述
した例と同様とすることができる。p−SiN21を成
膜する(図8(e))。これ以降、第二のAl膜、第三
のAl膜等、同様の方法で多層配線を形成することがで
きる。図9(f)は図8(b)の斜視図、図9(g)は
図8(d)の斜視図である。図8(a)乃至図8(d)
はダマシン法によるAl配線5の形成方法であり、本例
の特徴はAl配線5の内部に島状の研磨ストップ部8を
設けたことである。この研磨ストップ部8は、図9
(f)、図9(g)に示すように同一のAl配線5を電
気的に分離しないように島状に形成され、その断面形状
は前述したように、任意の複数の形状に形成することが
できる。この研磨ストップ部8の配置方法は、Al配線
5上の任意の点から研磨ストップ部8、あるいはAl電
極5側壁までの最短の距離が10μm以下となるように
配置するのが望ましい。以上の工程によりAl配線5の
CMP研磨によるディッシングを200Å以下に押さえ
ることができる。これによりディッシングによる配線抵
抗の増大と、配線抵抗のバラツキを抑えることができ
る。また、デバイスの安定化、高歩留まりが実現でき
る。
(Third Embodiment) A third embodiment will be described with reference to FIGS. In FIG. 8A, 1 is a semiconductor substrate, 2 is a thermal oxide film formed by thermally oxidizing the semiconductor substrate 1, and 4 is BPSG.
(Boro-Phospho-Silicate Gl
and 20 is p-SiO. The p-SiO20 is patterned to form the polishing stop portion 8 (FIG. 8).
(B)). In dry etching or wet etching during patterning, a pattern having a desired depth is formed by controlling the time. The Al film 5 is formed by using the sputtering method or the like (FIG. 8C). The thickness of the Al film 5 is formed larger than the depth of the pattern formed in FIG. 8 (b). The Al wiring 5 is formed by CMP polishing (FIG. 8D). The CMP polishing conditions and cleaning conditions can be the same as those in the above-described example. A film of p-SiN21 is formed (FIG. 8E). After that, the multilayer wiring can be formed by a similar method such as the second Al film and the third Al film. 9 (f) is a perspective view of FIG. 8 (b), and FIG. 9 (g) is a perspective view of FIG. 8 (d). 8 (a) to 8 (d)
Is a method of forming the Al wiring 5 by the damascene method, and the feature of this example is that an island-shaped polishing stop portion 8 is provided inside the Al wiring 5. This polishing stop portion 8 is shown in FIG.
(F), as shown in FIG. 9 (g), the same Al wiring 5 is formed in an island shape so as not to be electrically separated, and its cross-sectional shape is formed in an arbitrary plurality of shapes as described above. You can The polishing stop portion 8 is preferably arranged such that the shortest distance from an arbitrary point on the Al wiring 5 to the polishing stop portion 8 or the side wall of the Al electrode 5 is 10 μm or less. Through the above steps, the dishing of the Al wiring 5 by CMP polishing can be suppressed to 200 Å or less. As a result, an increase in wiring resistance due to dishing and a variation in wiring resistance can be suppressed. In addition, device stabilization and high yield can be realized.

【0018】(実施例4)図10〜図13を用いて、以
下、順を追って説明する。図10(a)に示されるよう
に、2.0〜3.0Ω・cmのN型シリコン基板30を
熱酸化し、厚さ7000Åの熱酸化膜を形成した後、B
HFのウエットエッチングによりP型ウェルのパタ−ン
を形成する。P型ウェルのインプラ前にN型Si基板3
0を500Å熱酸化しP型ウェルバッファ−酸化膜を成
膜した後、ボロンをド−ズ量9×1012cm-2、加速電
圧60KeVでイオン注入する。31と32の熱酸化膜
をBHFを用いたエッチングにより除去した後、115
0℃、840minのアニ−ルによりP型ウェル33を
形成する(図10(b))。Si基板30を熱酸化し、
350Åの熱酸化膜34を形成後、低圧CVD法により
SiN膜35を形成する。ドライエッチングによりSi
N膜35をパタ−ニング後、Si基板30の熱酸化によ
り8000Åのフィ−ルド酸化膜を形成する(図10
(c))。SiN膜35を熱リン酸を用いたウエットエ
ッチングにより除去後、厚さ350Åのバッファ−熱酸
化膜を形成する。次いで厚さ700Åのpoly−Si
38を形成する。レジスト39のパタ−ニングにより、
後に薄膜トランジスタ(TFT)を形成するpoly−
Si38の部分にのみBF2 をド−ズ量1×1012cm
-2、加速電圧35KeVでイオン注入する。レジスト除
去後、1100℃で60minアニ−ルを行う(図10
(d))。poly−Si38をパタ−ニング後、バッ
ファ−酸化膜37をBHFを用いたエッチングにより除
去し、850Åのゲ−ト酸化膜を形成する。
(Embodiment 4) With reference to FIGS. 10 to 13, description will be made below step by step. As shown in FIG. 10A, the N-type silicon substrate 30 having a thickness of 2.0 to 3.0 Ω · cm is thermally oxidized to form a thermal oxide film having a thickness of 7,000 Å, and then B
A pattern of P-type wells is formed by wet etching of HF. N-type Si substrate 3 before implantation of P-type well
After thermal oxidation of 0 to 500 Å to form a P-type well buffer-oxide film, boron is ion-implanted at a dose amount of 9 × 10 12 cm −2 and an acceleration voltage of 60 KeV. After removing the thermal oxide films 31 and 32 by etching using BHF, 115
A P-type well 33 is formed by annealing at 0 ° C. for 840 minutes (FIG. 10B). The Si substrate 30 is thermally oxidized,
After forming the thermal oxide film 34 of 350 Å, the SiN film 35 is formed by the low pressure CVD method. Si by dry etching
After patterning the N film 35, a field oxide film of 8000 Å is formed by thermal oxidation of the Si substrate 30 (FIG. 10).
(C)). After removing the SiN film 35 by wet etching using hot phosphoric acid, a buffer thermal oxide film having a thickness of 350 Å is formed. Next, 700 Å thick poly-Si
38 is formed. By patterning the resist 39,
A poly-which will later form a thin film transistor (TFT)
BF 2 dose amount 1 × 10 12 cm only in the Si 38 part
-2 , Ion implantation is performed at an acceleration voltage of 35 KeV. After removing the resist, annealing is performed at 1100 ° C. for 60 minutes (FIG. 10).
(D)). After patterning the poly-Si 38, the buffer oxide film 37 is removed by etching using BHF to form a gate oxide film of 850 Å.

【0019】poly−Siのゲ−ト電極40を形成
後、イオン注入によりNLD41,NSD42,PLD
43,PSD44を形成する。各の拡散層の形成におけ
る、ド−ズ量/加速電圧は、NLD41がPを1×10
13cm-2/95KeV、NSD42がPを5×1015
-2/95KeV、PLD43がBを1.5×1012
-2/40KeV、PSD44がBを3×1015cm-2
/100KeVであり、全イオン注入後、950℃、6
0minのアニ−ルにより拡散層を活性化させる(図1
0(e))。BPSG45を7000Å成膜後、BPS
G45にコンタクトホ−ルをパタ−ニング形成し、Al
膜46を成膜、Al配線46をパタ−ニング形成する
(図11(f))。Al配線46の構成は、Ti100
0Å/TiN2000Å/AlSi4000Å/TiN
1000Åとなっており、Al配線46のシ−ト抵抗は
0.1Ω/□以下となっている。層間絶縁膜47を10
000Å、P−SiN48を2700Å成膜する(図1
1(g))。層間絶縁膜47は、P−SiO4000Å
/SOG2000Å/P−SiO4000Åの構成とな
っており、SOGには、東京応化工業(株)製T−10
を用い、段差を緩和した。Ti49を3000Å成膜
し、パタ−ニング後P−SiN50を3000Å、P−
SiO51を1000Å形成する(図11(h))。p
−SiO51をパタ−ニングし、CMP研磨のストップ
部52とダマシン法によりAlが残る部分53を形成す
る。次いで、スル−ホ−ル54をパタ−ニング形成する
(図12(i))。スル−ホ−ル54をCVD法による
タングステン膜により選択的に埋め込みタングステンプ
ラグ55を形成した。スパッタリング法によりAl電極
56を10000Å以上研磨することによりAl電極5
6の電極を形成する(図12(j))。CMP研磨条件
と、CMP研磨後の洗浄条件は上述の実施例と同じであ
る。また、タングステンプラグ55は、アルミニウム等
の他の金属で置き換えることもできる。
After forming the poly-Si gate electrode 40, NLD 41, NSD 42, PLD are formed by ion implantation.
43, PSD44 is formed. In the formation of each diffusion layer, the dose / accelerating voltage of the NLD 41 is 1 × 10.
13 cm -2 / 95 KeV, NSD42 has P of 5 × 10 15 c
m −2 / 95 KeV, PLD43 makes B 1.5 × 10 12 c
m −2 / 40 KeV, PSD44 is 3 × 10 15 cm −2 for B
/ 100 KeV, 950 ° C., 6 after all ion implantation
The diffusion layer is activated by 0 min annealing (Fig. 1).
0 (e)). After 7000 Å deposition of BPSG45, BPS
Form a contact hole on G45 by patterning
The film 46 is formed and the Al wiring 46 is patterned (FIG. 11F). The structure of the Al wiring 46 is Ti100.
0Å / TiN2000Å / AlSi4000Å / TiN
The sheet resistance is 1000Å, and the sheet resistance of the Al wiring 46 is 0.1Ω / □ or less. The interlayer insulating film 47 is set to 10
000Å, P-SiN48 2700Å film (Fig. 1
1 (g)). The interlayer insulating film 47 is made of P-SiO4000Å
/ SOG2000Å / P-SiO4000Å, and the SOG contains T-10 manufactured by Tokyo Ohka Kogyo Co., Ltd.
Was used to reduce the step. After forming Ti49 3000 Å film and after patterning P-SiN50 3000 Å, P-SiN50
SiO51 is formed in 1000 liters (FIG. 11 (h)). p
-SiO51 is patterned to form a stop portion 52 for CMP polishing and a portion 53 where Al remains by the damascene method. Then, the through-hole 54 is formed by patterning (FIG. 12 (i)). A tungsten plug 55 was formed by selectively filling the through-hole 54 with a tungsten film by a CVD method. The Al electrode 5 is formed by polishing the Al electrode 56 by 10000 Å or more by the sputtering method.
6 electrodes are formed (FIG. 12 (j)). The CMP polishing conditions and the cleaning conditions after CMP polishing are the same as those in the above-mentioned embodiment. Further, the tungsten plug 55 can be replaced with another metal such as aluminum.

【0020】図13(k)は、図12(j)のAl電極
56部分の斜視図である。この部分は反射型液晶ディス
プレイの画像表示部に相当する。本例の特徴点は、反射
型液晶ディスプレイの反射電極であるAl電極56の内
部にCMPの研磨ストップ部52を設けたことにある。
これによりAl電極56のディッシング量を小さくする
ことができる。このため反射電極であるAl電極56に
入射した光は同一方向に反射され、反射型液晶ディスプ
レイの輝度及びコントラストの向上が図れる。図13
(k)で示した画素電極基板は、所謂アクティブマトリ
クス基板であり、トランジスタのソ−スには信号線が、
ゲ−トには走査線が接続され、画素電極である反射電極
は、トランジスタのドレインに接続されている。そして
反射電極の内部には研磨ストップ部52が設けられてい
る。即ち、図13(k)に示したアクティブマトリクス
基板は、要するに、複数の信号線と複数の走査線との交
差部に対応して設けられた画素電極、該画素電極に電圧
を印加する手段、を有するアクティブマトリクス基板で
あって、前記画素電極の領域内には該画素電極を構成す
る金属とは異なる材料で構成された領域が存在させるよ
うにしてある。なお、研磨ストップ部52の断面形状
は、前述の実施例でも示したように任意の形状とするこ
とができ、また研磨ストップ部52をAl電極56内部
に複数個形成することもできる。任意のAl電極56上
の点から最短の研磨ストップ部52もしくはAl電極5
6の側壁までの距離を10μm以下とすることにより、
ディッシングの量を100Å以下にすることができる。
なお、本例では画素表示部のスイッチングトランジスタ
をTFTで構成したが、Si基板30に拡散層を形成し
て構成されるトランジスタを用いることもできる。本例
の説明には、液晶材料を用いた表示装置を例に挙げた
が、本発明の適用はこれに限られるものではなく、ミラ
−電極(反射電極)の角度を電圧により変化させる装置
の電極、パッド構造等にも適用できる。
FIG. 13 (k) is a perspective view of the Al electrode 56 portion of FIG. 12 (j). This portion corresponds to the image display section of the reflective liquid crystal display. The feature of this example is that the polishing stop portion 52 for CMP is provided inside the Al electrode 56 which is the reflective electrode of the reflective liquid crystal display.
As a result, the dishing amount of the Al electrode 56 can be reduced. Therefore, the light incident on the Al electrode 56, which is a reflective electrode, is reflected in the same direction, and the brightness and contrast of the reflective liquid crystal display can be improved. FIG.
The pixel electrode substrate shown in (k) is a so-called active matrix substrate, and a signal line is provided in the source of the transistor.
A scanning line is connected to the gate, and a reflective electrode which is a pixel electrode is connected to the drain of the transistor. A polishing stop portion 52 is provided inside the reflective electrode. That is, the active matrix substrate shown in FIG. 13 (k) is, in short, a pixel electrode provided corresponding to the intersection of a plurality of signal lines and a plurality of scanning lines, a means for applying a voltage to the pixel electrode, And an area formed of a material different from the metal forming the pixel electrode is present in the area of the pixel electrode. The cross-sectional shape of the polishing stop portion 52 can be any shape as shown in the above-described embodiment, and a plurality of polishing stop portions 52 can be formed inside the Al electrode 56. The shortest polishing stop portion 52 or Al electrode 5 from a point on the arbitrary Al electrode 56.
By setting the distance to the side wall of 6 to 10 μm or less,
The amount of dishing can be less than 100Å.
In this example, the switching transistor of the pixel display section is composed of the TFT, but a transistor formed by forming a diffusion layer on the Si substrate 30 may be used. In the description of this example, a display device using a liquid crystal material is given as an example, but the application of the present invention is not limited to this, and a device for changing the angle of the mirror electrode (reflection electrode) by voltage is used. It can also be applied to electrode and pad structures.

【0021】[0021]

【発明の効果】以上、詳細に説明したとおり、本発明の
半導体装置及びアクティブマトリクス基板の製造方法
は、電極もしくは配線のディッシングを小さく抑えるこ
とができる。これにより、配線については、配線抵抗の
バラツキが極めて低く抑えられるため、半導体装置の特
性は非常に優れたものとなる。また、電極についても、
極めて平面に近いものとなるため、本発明のアクティブ
マトリクス基板の製造方法は、表示画像の輝度向上と、
コントラスト向上を実現させるものとなる。
As described above in detail, the semiconductor device and the method for manufacturing an active matrix substrate of the present invention can suppress dishing of electrodes or wirings. As a result, with respect to the wiring, variations in wiring resistance can be suppressed to an extremely low level, so that the characteristics of the semiconductor device become extremely excellent. Also, regarding the electrodes,
Since it is extremely close to a plane, the method for manufacturing an active matrix substrate of the present invention is to improve the brightness of a display image,
This will improve the contrast.

【0022】また、本発明の半導体装置及びアクティブ
マトリックス基板は配線については、配線抵抗のきわめ
て小さいものになり電極については平面に近いものにな
り表示画像の輝度が向上する。
In the semiconductor device and active matrix substrate of the present invention, the wiring has a very small wiring resistance and the electrodes have a shape close to a plane, and the brightness of the displayed image is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体装置の製造工程の一例を示す模
式図である。
FIG. 1 is a schematic view showing an example of a manufacturing process of a semiconductor device of the present invention.

【図2】本発明の半導体装置の製造工程の一例を示す模
式図である。
FIG. 2 is a schematic view showing an example of a manufacturing process of a semiconductor device of the present invention.

【図3】本発明の半導体装置の製造工程の一例を示す模
式図である。
FIG. 3 is a schematic view showing an example of a manufacturing process of a semiconductor device of the present invention.

【図4】本発明の半導体装置の製造工程の一例を示す模
式図である。
FIG. 4 is a schematic view showing an example of a manufacturing process of a semiconductor device of the present invention.

【図5】本発明の半導体装置の製造工程の一例を示す模
式図である。
FIG. 5 is a schematic view showing an example of a manufacturing process of a semiconductor device of the present invention.

【図6】本発明の半導体装置の製造工程の一例を示す模
式図である。
FIG. 6 is a schematic view showing an example of a manufacturing process of a semiconductor device of the present invention.

【図7】本発明の半導体装置の製造工程の一例を示す模
式図である。
FIG. 7 is a schematic view showing an example of a manufacturing process of a semiconductor device of the present invention.

【図8】本発明の半導体装置の製造工程の一例を示す模
式図である。
FIG. 8 is a schematic view showing an example of a manufacturing process of a semiconductor device of the present invention.

【図9】本発明の半導体装置の製造工程の一例を示す模
式図である。
FIG. 9 is a schematic view showing an example of a manufacturing process of a semiconductor device of the present invention.

【図10】本発明のアクティブマトリクス基板の製造工
程の一例を示す模式図である。
FIG. 10 is a schematic view showing an example of the manufacturing process of the active matrix substrate of the present invention.

【図11】本発明のアクティブマトリクス基板の製造工
程の一例を示す模式図である。
FIG. 11 is a schematic view showing an example of the manufacturing process of the active matrix substrate of the present invention.

【図12】本発明のアクティブマトリクス基板の製造工
程の一例を示す模式図である。
FIG. 12 is a schematic view showing an example of the manufacturing process of the active matrix substrate of the present invention.

【図13】本発明のアクティブマトリクス基板の製造工
程の一例を示す模式図である。
FIG. 13 is a schematic view showing an example of the manufacturing process of the active matrix substrate of the present invention.

【図14】従来の半導体装置の製造工程の一例を示す模
式図である。
FIG. 14 is a schematic view showing an example of a manufacturing process of a conventional semiconductor device.

【図15】従来の半導体装置の製造工程の一例を示す模
式図である。
FIG. 15 is a schematic view showing an example of a conventional manufacturing process of a semiconductor device.

【図16】従来の半導体装置におけるディッシング量を
示すグラフである。
FIG. 16 is a graph showing a dishing amount in a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 フィールド酸化膜 3 ポリシリコン 4BPSG 5Al膜 6p−SiN 7p−SiO 8 研磨ストップ部 9 スルーホール 10 タングステンプラグ 11 Al膜 12 Al電極 1 Semiconductor substrate 2 field oxide film 3 Polysilicon 4BPSG 5Al film 6p-SiN 7p-SiO 8 Polishing stop part 9 through holes 10 Tungsten plug 11 Al film 12 Al electrode

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 21/304 622 H01L 21/3205 - 21/3213 H01L 21/768 G02F 1/1368 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01L 21/304 622 H01L 21/3205-21/3213 H01L 21/768 G02F 1/1368

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 信号線部、走査線部及びトランジスタ部
を有する半導体基板を用意する第1工程、 前記半導体基板の表面上に、窒化シリコン(50)から
なる第1絶縁層を形成する第2工程、 前記第1の絶縁層上に酸化シリコン(51)からなる第
2絶縁層を形成する第3工程、 開口部(53)内に第2絶縁層の残された絶縁領域(5
2)を形成するように、前記第1絶縁層をエッチングス
トッパーとして使用しながら、前記第2絶縁層をエッチ
ングすることによって、前記第2絶縁層をパターニング
し、これによって、該開口部(53)を形成する第4工
程、 該開口部内にトランジスタ部まで延びたコンタクトホー
ル(54)を形成し、該コンタクトホール内を金属(5
5)で埋め込む第5工程、 前記第5工程を経た半導体基板上に、アルミニウム(5
6)を被覆する第6工程、及び前記第2絶縁層の残され
た絶縁領域(52)を研磨ストップ部として使用しなが
ら、前記第4工程の開口部以外に位置する第2絶縁層及
び前記第6工程のアルミニウムを研磨し、これによっ
て、研磨された第2絶縁層によって互いに絶縁分離され
た金属画素電極(56)を形成する第7工程を有するこ
とを特徴とするアクティブマトリクス基板の製造方法。
1. A first step of preparing a semiconductor substrate having a signal line portion, a scanning line portion and a transistor portion, and a second step of forming a first insulating layer made of silicon nitride (50) on a surface of the semiconductor substrate. A third step of forming a second insulating layer made of silicon oxide (51) on the first insulating layer, an insulating region (5) in which the second insulating layer is left in the opening (53)
2) is formed by patterning the second insulating layer by etching the second insulating layer while using the first insulating layer as an etching stopper, thereby forming the opening (53). A fourth step of forming a contact hole (54) extending to the transistor portion in the opening, and forming a metal (5) in the contact hole.
5) embedding with 5), aluminum (5
6) covering the second insulating layer and the second insulating layer located outside the opening of the fourth step while using the remaining insulating region (52) of the second insulating layer as a polishing stop. A method of manufacturing an active matrix substrate, comprising a seventh step of polishing aluminum in the sixth step, thereby forming metal pixel electrodes (56) insulated and separated from each other by the polished second insulating layer. .
【請求項2】 前記研磨は、CMPによって実施する工
程であることを特徴とする請求項1に記載のアクティブ
マトリクス基板の製造方法。
2. The method for manufacturing an active matrix substrate according to claim 1, wherein the polishing is a step performed by CMP.
【請求項3】 前記金属画素電極(56)の側壁と前記
第2絶縁層の残された絶縁領域(52)との間の最短距
離を50μm以下に設定したことを特徴とする請求項1
に記載のアクティブマトリクス基板の製造方法。
3. The shortest distance between the sidewall of the metal pixel electrode (56) and the remaining insulating region (52) of the second insulating layer is set to 50 μm or less.
A method for manufacturing an active matrix substrate according to.
JP24193996A 1995-09-14 1996-09-12 Active matrix substrate manufacturing method Expired - Fee Related JP3382467B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP24193996A JP3382467B2 (en) 1995-09-14 1996-09-12 Active matrix substrate manufacturing method
EP96306683A EP0768710A3 (en) 1995-09-14 1996-09-13 Electrode or wiring for a semiconductor device, an active matrix substrate and process for production thereof
TW085111218A TW469420B (en) 1995-09-14 1996-09-13 Semiconductor device, active matrix substrate, and process for production thereof
US08/714,437 US6307264B1 (en) 1995-09-14 1996-09-16 Semiconductor device, active matrix substrate and process for production thereof
US09/429,530 US6743723B2 (en) 1995-09-14 1999-10-28 Method for fabricating semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP23686595 1995-09-14
JP7-236865 1995-09-14
JP24193996A JP3382467B2 (en) 1995-09-14 1996-09-12 Active matrix substrate manufacturing method

Publications (2)

Publication Number Publication Date
JPH09148329A JPH09148329A (en) 1997-06-06
JP3382467B2 true JP3382467B2 (en) 2003-03-04

Family

ID=26532903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24193996A Expired - Fee Related JP3382467B2 (en) 1995-09-14 1996-09-12 Active matrix substrate manufacturing method

Country Status (4)

Country Link
US (1) US6307264B1 (en)
EP (1) EP0768710A3 (en)
JP (1) JP3382467B2 (en)
TW (1) TW469420B (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6743723B2 (en) 1995-09-14 2004-06-01 Canon Kabushiki Kaisha Method for fabricating semiconductor device
TW364165B (en) * 1996-11-29 1999-07-11 Canon Kk Method for fabricating semiconductor device
US6969866B1 (en) * 1997-10-01 2005-11-29 Ovonyx, Inc. Electrically programmable memory element with improved contacts
US6332835B1 (en) 1997-11-20 2001-12-25 Canon Kabushiki Kaisha Polishing apparatus with transfer arm for moving polished object without drying it
JP4651815B2 (en) * 1998-01-23 2011-03-16 ローム株式会社 Damascene wiring and semiconductor devices
JP2918875B1 (en) 1998-03-02 1999-07-12 インターナショナル・ビジネス・マシーンズ・コーポレイション Reflection type liquid crystal element, manufacturing method and projection display device
US6448650B1 (en) * 1998-05-18 2002-09-10 Texas Instruments Incorporated Fine pitch system and method for reinforcing bond pads in semiconductor devices
EP0982774A3 (en) * 1998-08-21 2002-05-15 International Business Machines Corporation Avoidance of cross-sectional surface reduction in wide soft metal wires
IL139540A0 (en) * 2000-11-07 2004-02-08 Citala Ltd Electrically addressable matrix structure
KR100403619B1 (en) * 2001-02-21 2003-10-30 삼성전자주식회사 Bond pad of semiconductor device having advantage against thermo-mechanical stress and method for fabricating thereof
US6638863B2 (en) * 2001-04-24 2003-10-28 Acm Research, Inc. Electropolishing metal layers on wafers having trenches or vias with dummy structures
JP4205914B2 (en) * 2002-08-27 2009-01-07 株式会社ルネサステクノロジ Semiconductor device manufacturing method and manufacturing apparatus
JP2007293243A (en) * 2005-08-24 2007-11-08 Victor Co Of Japan Ltd Liquid crystal display device and method of producing the same
JP2007324540A (en) * 2006-06-05 2007-12-13 Fuji Electric Holdings Co Ltd Mos type semiconductor device and method of manufacturing same
JP5922915B2 (en) * 2011-12-02 2016-05-24 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
US9460963B2 (en) * 2014-03-26 2016-10-04 Globalfoundries Inc. Self-aligned contacts and methods of fabrication
KR102630641B1 (en) 2018-01-25 2024-01-30 삼성디스플레이 주식회사 Display apparatus and method of manufacturing thereof
US11152222B2 (en) * 2019-08-06 2021-10-19 Taiwan Semiconductor Manufacturing Company, Ltd. Dishing prevention structure embedded in a gate electrode
JP7429150B2 (en) * 2020-04-09 2024-02-07 ローム株式会社 semiconductor equipment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02209730A (en) * 1988-10-02 1990-08-21 Canon Inc Selective polishing
JPH0528925A (en) 1991-07-19 1993-02-05 Dainippon Printing Co Ltd Plasma display
JPH05251412A (en) 1992-03-09 1993-09-28 Fujitsu Ltd Fabrication of soi substrate
JP2760462B2 (en) * 1992-05-13 1998-05-28 シャープ株式会社 Active matrix substrate
KR100306043B1 (en) * 1993-05-13 2001-12-17 카를로스 조르제 라미로프로엔카 아우구스토 VLSI-grade crystalline semiconductor substrate manufacturing method
US5382545A (en) * 1993-11-29 1995-01-17 United Microelectronics Corporation Interconnection process with self-aligned via plug
US5602423A (en) * 1994-11-01 1997-02-11 Texas Instruments Incorporated Damascene conductors with embedded pillars
JP3108861B2 (en) * 1995-06-30 2000-11-13 キヤノン株式会社 Active matrix substrate, display device using the substrate, and manufacturing method thereof

Also Published As

Publication number Publication date
JPH09148329A (en) 1997-06-06
EP0768710A2 (en) 1997-04-16
US6307264B1 (en) 2001-10-23
EP0768710A3 (en) 1997-07-30
TW469420B (en) 2001-12-21

Similar Documents

Publication Publication Date Title
JP3382467B2 (en) Active matrix substrate manufacturing method
US5923993A (en) Method for fabricating dishing free shallow isolation trenches
US5858870A (en) Methods for gap fill and planarization of intermetal dielectrics
US5728621A (en) Method for shallow trench isolation
US6410984B1 (en) Conductive structure in an integrated circuit
KR100270129B1 (en) Display device
US6469389B2 (en) Contact plug
US5561073A (en) Method of fabricating an isolation trench for analog bipolar devices in harsh environments
US6429134B1 (en) Method of manufacturing semiconductor device
US6017780A (en) Passivation scheme for LCD and other applications
US6746888B2 (en) Display and fabricating method thereof
KR100684698B1 (en) Method of manufacturing module for reflection type liquid crystal display device
US5491113A (en) Method of manufacturing semiconductor device having a planarized surface
TWI241646B (en) Substrate with a flattening film, display substrate, and method of manufacturing the substrates
US6339027B1 (en) Process for borderless stop in tin via formation
JP3219838B2 (en) Method for manufacturing semiconductor device
JP3798186B2 (en) Liquid crystal display substrate, manufacturing method thereof, and liquid crystal display device
JP2004048025A (en) Semiconductor integrated circuit device
US6169002B1 (en) Methods of forming trench isolation structures by etching back electrically insulating layers using etching masks
KR100269334B1 (en) Fabrication method for interconnection line of semiconductor device
JP2000049160A (en) Wiring of semiconductor device and manufacture thereof
JP2000021885A (en) Method for forming substrate
US6159759A (en) Method to form liquid crystal displays using a triple damascene technique
JP3257511B2 (en) Method for manufacturing semiconductor device having polishing step
JP3271203B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees