JP3379419B2 - Composite reactor, manufacturing method thereof and power supply device - Google Patents

Composite reactor, manufacturing method thereof and power supply device

Info

Publication number
JP3379419B2
JP3379419B2 JP00667498A JP667498A JP3379419B2 JP 3379419 B2 JP3379419 B2 JP 3379419B2 JP 00667498 A JP00667498 A JP 00667498A JP 667498 A JP667498 A JP 667498A JP 3379419 B2 JP3379419 B2 JP 3379419B2
Authority
JP
Japan
Prior art keywords
core
iron core
reactor
coil
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00667498A
Other languages
Japanese (ja)
Other versions
JPH11204355A (en
Inventor
隆夫 澤江
順一 寺西
哲也 湊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP00667498A priority Critical patent/JP3379419B2/en
Publication of JPH11204355A publication Critical patent/JPH11204355A/en
Application granted granted Critical
Publication of JP3379419B2 publication Critical patent/JP3379419B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coils Of Transformers For General Uses (AREA)
  • Rectifiers (AREA)
  • Power Conversion In General (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はインバータ回路を採
用した電気・電子機器に用いるリアクタおよびそれを用
いた直流電源装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reactor for an electric / electronic device employing an inverter circuit and a DC power supply device using the reactor.

【0002】[0002]

【従来の技術】従来、家電用電気製品などにもそのきめ
細やかな出力制御の利点を生かしたインバータ制御方式
が広く導入され、その入力電流の波形を改善して電流ピ
ーク値抑制や力率改善するためにリアクタが使われてい
た。
2. Description of the Related Art Conventionally, an inverter control system, which takes advantage of its fine output control, has been widely introduced in home electric appliances and the like, and the input current waveform is improved to suppress the current peak value and improve the power factor. A reactor was being used to do this.

【0003】また、近年国内外の電気機器・電子機器事
情より、さらに一層この電流波形の改善をすすめて謂わ
ゆる、高調波抑制を図ろうとする機運が高まってきてお
り、チョッパ回路の導入など、主として電子回路上での
対策をとったアクティブフィルタ方式と、主として図2
9に示す個別のリアクタ2個を整流用ダイオードブリッ
ジと平滑コンデンサの間にそれぞれ接続したパッシブフ
ィルタ方式が採用されていた。
In recent years, due to the circumstances of electric and electronic equipment both in Japan and overseas, there has been an increasing tendency to further improve the current waveform to achieve so-called harmonic suppression, such as the introduction of a chopper circuit. The active filter method mainly taking measures on the electronic circuit, and mainly FIG.
A passive filter system in which two individual reactors shown in 9 are connected between a rectifying diode bridge and a smoothing capacitor has been adopted.

【0004】すなわち、図29に示すように従来の個別
のリアクタは、中央磁脚部にコアギャップを作り込んだ
E型鉄心102と、これに対向するI型鉄心101、と
コイル103と、これを絶縁する絶縁紙104を有し、
取付板105を介して電気機器に取付ける構成にしてい
た。
That is, as shown in FIG. 29, a conventional individual reactor has an E-shaped iron core 102 having a core gap formed in a central magnetic leg portion, an I-shaped iron core 101 facing the E-shaped iron core 102, a coil 103, and a core 103. Has an insulating paper 104 for insulating the
It is configured to be attached to an electric device via the attachment plate 105.

【0005】[0005]

【発明が解決しようとする課題】従来アクティブフィル
タ方式の場合、高調波電流抑制策としてほぼ完全な効果
が期待できるが、コスト高になり、実用面から、より低
コストの対策が望まれていた。したがって、アクティブ
フィルタ方式よりコスト面で有利なパッシブフィルタ方
式でも、必要な2個のインダクタンスをそれぞれ独立し
た2個のリアクタで構成することもできるが、機器が重
くなり、容積も増える欠点を有していた。なお2つの必
要なインダクタンスを単にそのまま一体化したリアクタ
で実現しようとしても、相互インダクタンスの影響が大
きく高調波電流抑制効果が劣るものであった。
In the case of the conventional active filter method, almost complete effect can be expected as a harmonic current suppressing measure, but the cost becomes high, and a practically lower cost measure is desired. . Therefore, even with the passive filter method, which is more cost effective than the active filter method, it is possible to configure the required two inductances with two independent reactors, but it has the drawback of making the equipment heavy and increasing the volume. Was there. Even if an attempt was made to realize a reactor in which the two required inductances were simply integrated as they were, the mutual inductance had a large effect and the harmonic current suppressing effect was poor.

【0006】本発明は、上記課題を解決するもので、従
来より安価で小型、軽量の高調波電流抑制パッシブフィ
ルタに適した複合形リアクタとその製造方法と電源装置
を提供することを目的としている。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a composite reactor suitable for a passive filter for suppressing harmonic current, which is cheaper, smaller and lighter than conventional ones, a manufacturing method thereof, and a power supply device. .

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
の本発明の第1手段は、電磁鋼板を積層し第1のコイル
を挿着した第1の鉄心部と、電磁鋼板を積層し第2のコ
イルを挿着した第2の鉄心部と、電磁鋼板を積層し前記
第1・第2の鉄心部にそれぞれ所定のコアギャップを介
して不飽和閉磁路を形成するための橋絡鉄心部を有し、
前記第1のコイルと第2のコイルによる各磁束が商用電
源の毎サイクル中の少なくとも一部の期間互いに相殺方
向に流れる第3の鉄心部を具備し、この第3の鉄心部を
前記所定のコアギャップより小間隙の微小コアギャップ
を介して前記橋絡鉄心部間に前記第3の鉄心部を配設
し、これら第1,第2,第3の鉄心部と橋絡鉄心部とを
固定手段により一体に固定したものである。
A first means of the present invention for achieving this object is to laminate a first iron core portion on which electromagnetic steel sheets are laminated and a first coil is attached, and to laminate electromagnetic steel sheets. A bridging iron core portion for forming an unsaturated closed magnetic circuit in the first and second iron core portions through a predetermined core gap by laminating a second iron core portion having the second coil inserted therein and an electromagnetic steel plate. Have
There is provided a third iron core portion in which the magnetic fluxes of the first coil and the second coil flow in mutually offset directions during at least a part of each cycle of the commercial power source. The third iron core part is arranged between the bridging core parts via a small core gap smaller than the core gap, and the first, second and third iron core parts and the bridging core part are fixed. It is fixed integrally by means.

【0008】また、本発明の第3手段は、第1手段にお
いて、少なくとも第1,第2,第3の鉄心部の端面がそ
れぞれ橋絡鉄心部の両端面内に収まるような鉄心部寸
法,突き合せ位置としたものである。
The third means of the present invention is, in the first means, an iron core portion dimension such that at least the end surfaces of the first, second and third iron core portions are respectively housed in both end surfaces of the bridging iron core portion, It is a butt position.

【0009】また、本発明の第4手段は、第1の手段に
おいて、第3の鉄心部の断面積を第1の鉄心部および第
2の鉄心部の断面積の和の5%以上にしたものである。
According to a fourth means of the present invention, in the first means, the cross-sectional area of the third iron core portion is 5% or more of the sum of the cross-sectional areas of the first iron core portion and the second iron core portion. It is a thing.

【0010】また、本発明の第5手段は、第1手段にお
いて、第3の鉄心部と橋絡鉄心部との間の微小コアギャ
ップ寸法を第1の鉄心部と橋絡鉄心部との間の所定コア
ギャップ寸法の40%以下、かつ第2の鉄心部と橋絡鉄
心部との間の所定コアギャップ寸法の40%以下とした
ものである。
The fifth means of the present invention is the first means, wherein in the first means, the size of the small core gap between the third iron core portion and the bridging iron core portion is set between the first iron core portion and the bridging iron core portion. Of 40% or less of the predetermined core gap dimension and 40% or less of the predetermined core gap dimension between the second iron core portion and the bridging iron core portion.

【0011】また、本発明の第6手段は、第1手段にお
いて、各鉄心部により形成された不飽和磁気回路が、2
つのコイルが上下に位置するように見て略日の字状、略
目の字状、略田の字状のいずれかの形態となるように一
体に固定したものである。
The sixth means of the present invention is the same as the first means, wherein the unsaturated magnetic circuit formed by the iron core portions is
The two coils are integrally fixed so as to have any one of the shape of a substantially day shape, the shape of a substantially square shape, and the shape of a substantially square shape when viewed from above and below.

【0012】また、本発明の製造方法は、第1のコイル
を挿着した電磁鋼板を積層してなる第1の鉄心部と、第
2のコイルを挿着した電磁鋼板を積層してなる第2の鉄
心部と、前記第1・第2の鉄心部にそれぞれ所定のコア
ギャップを介して不飽和磁路を形成するための電磁鋼板
を積層してなる橋絡鉄心部を有し、前記第1のコイルと
第2のコイルによる各磁束が商用電源の毎サイクル中の
少なくとも一部の期間互いに相殺方向に流れる第3の鉄
心部を具備し、前記所定のコアギャップより小間隙の微
小コアギャップを介して前記橋絡鉄心部間に前記第3の
鉄心部を配設することによって略日の字状、目の字状ま
たは田の字状の磁路を形成し、インダクタンス値などの
リアクタ特性を測定しながら橋絡鉄心部を押圧してコア
ギャップ寸法であるギャップスペーサの厚さを調節し、
所要の特性が得られた時の押圧力を維持したままで橋絡
鉄心部を固定手段で固定して複合リアクタを製造するも
のである。
Further, according to the manufacturing method of the present invention, the first iron core portion formed by laminating the electromagnetic steel plates having the first coil inserted therein and the electromagnetic steel sheets having the second coil inserted therein are laminated. A second iron core portion and a bridging iron core portion formed by laminating electromagnetic steel sheets for forming an unsaturated magnetic path on the first and second iron core portions via predetermined core gaps, respectively. A third core portion in which magnetic fluxes of the first coil and the second coil flow in mutually offset directions during at least a part of each cycle of the commercial power supply; By disposing the third core portion between the bridging core portions via a magnetic flux path, a magnetic path having an approximately day shape, an eye shape, or a square shape is formed, and reactor characteristics such as an inductance value are formed. The core gap size is determined by pressing the bridge core while measuring Adjusting the thickness of the gap spacer,
The bridging core portion is fixed by the fixing means while maintaining the pressing force when the required characteristics are obtained to manufacture the composite reactor.

【0013】また、本発明の電源装置は、第1手段の複
合形リアクタを用いて単相交流を整流して直流電源を形
成する電源装置であって、全波整流用ダイオードブリッ
ジと平滑用コンデンサの間にリアクタの第1のコイルと
ダイオードの直列回路と、リアクタの第2のコイルとコ
ンデンサの直列回路とを並列接続して使用するものであ
る。
The power supply device of the present invention is a power supply device for rectifying a single-phase alternating current by using the composite reactor of the first means to form a direct-current power supply, which is a full-wave rectifying diode bridge and a smoothing capacitor. A series circuit of a first coil of a reactor and a diode and a series circuit of a second coil of a reactor and a capacitor are connected in parallel between the two and are used.

【0014】また、本発明の他の電源装置は、第1手段
の複合形リアクタを用いて単相交流を整流して直流電源
を形成する電源装置であって、全波整流用ダイオードブ
リッジの後段で、リアクタの第1のコイルとダイオード
の平滑用コンデンサを含む直列回路と、リアクタの第2
のコイルとコンデンサの直列回路とを並列に接続して使
用するものである。
Further, another power supply device of the present invention is a power supply device which rectifies a single-phase alternating current by using the composite reactor of the first means to form a direct current power supply, and is a latter stage of a full-wave rectification diode bridge. And a series circuit including the first coil of the reactor and the smoothing capacitor of the diode, and the second circuit of the reactor.
The coil and the series circuit of the capacitor are connected in parallel and used.

【0015】[0015]

【発明の実施の形態】本発明の第1手段は、第3の鉄心
部を共有させた2個の口の字状の不飽和磁路が形成で
き、一体化した2個のインダクタンスを得ることができ
るため従来の独立した2個のリアクタをパッシブフィル
タに使用する場合に比しリアクタの組立工数を大巾に減
らすことができ、また機器にリアクタを搭載する場合の
取付け工数を約半分に減らすことができる作用を有す
る。
BEST MODE FOR CARRYING OUT THE INVENTION The first means of the present invention is to form two square V-shaped unsaturated magnetic paths sharing a third iron core portion and obtain two integrated inductances. As a result, the number of man-hours required to assemble the reactor can be greatly reduced compared to the conventional case where two independent reactors are used for passive filters, and the man-hours required to mount the reactor on equipment are reduced by about half. It has the effect of being able to.

【0016】本発明の第2手段は、第1,第2,第3の
各鉄心部の磁路断面の巾寸法と奥行き寸法のうち小さい
方の寸法を積層厚とすることによって鉄心の積層枚数が
減るので各鉄心部の製作工数を低減できる作用を有す
る。
According to the second means of the present invention, the smaller of the width and depth of the magnetic path cross-section of each of the first, second and third iron cores is taken as the lamination thickness, whereby the number of laminated iron cores is set. Is reduced, which has the effect of reducing the number of manufacturing steps for each core.

【0017】本発明の第3手段は、第1,第2,第3の
各鉄心部の端面が橋絡鉄心部の端面より外にはみ出して
組立てられることがなくなるのでこれにより、第1,第
2,第3の鉄心部からの漏れ磁束がミニマム化されて一
定に保たれることとなり、組立て時の鉄心ずれによるリ
アクタ特性のばらつきを抑えることができる作用を有す
る。
According to the third means of the present invention, the end faces of the first, second, and third iron core parts are prevented from being assembled outside the end faces of the bridging iron core parts. The leakage fluxes from the second and third iron core portions are minimized and kept constant, which has the effect of suppressing variations in reactor characteristics due to iron core deviation during assembly.

【0018】本発明の第4手段は、前記第1手段におい
て、2つのインダクタンスを構成する2つの磁気回路の
共通磁路である第3の鉄心部の磁路断面積を通常、第1
の鉄心部および第2の鉄心部の断面積の和の100%必
要なところ、5%以上確保すれば所定のリアクタ特性を
得ることができ、鉄心使用量の大巾な低減・小型・軽量
化ができる作用を有する。
According to a fourth aspect of the present invention, in the first means, the magnetic path cross-sectional area of the third core portion, which is the common magnetic path of the two magnetic circuits forming the two inductances, is usually the first.
100% of the sum of the cross-sectional areas of the iron core part and the second iron core part, where required 5% or more, the specified reactor characteristics can be obtained, and the core usage can be greatly reduced, downsized and lightened. It has the ability to

【0019】本発明の第5手段は、第3の鉄心部と橋絡
鉄心部との間の微小コアギャップ寸法を、他の鉄心部と
橋絡鉄心部との間のコアギャップに比し小さく設定する
ことにより、2つのインダクタンス間の相互影響を実用
上問題とならない程度にまで小さく抑えることができる
作用を有する。
In the fifth means of the present invention, the size of the minute core gap between the third iron core portion and the bridging iron core portion is smaller than the core gap between the other iron core portions and the bridging iron core portion. By setting it, there is an effect that the mutual influence between the two inductances can be suppressed to a level that does not pose a problem in practical use.

【0020】本発明の第6手段は、第1手段における磁
路構成を実際に具現化するものであり、それぞれ磁路形
態に応じてその組立方法、作業性、占有面積などを改善
できる作用を有する。
The sixth means of the present invention actually embodies the magnetic path configuration of the first means, and has an effect of improving the assembling method, workability, occupied area, etc. according to the magnetic path configuration. Have.

【0021】本発明の製造方法は、厚さ方向に弾力性を
有する安価な材料のコアギャップスペーサを使って、所
定のリアクタ特性を与えるコアギャップ寸法を容易に調
整することができる作用を有する。
The manufacturing method of the present invention has the function of easily adjusting the core gap size which gives the predetermined reactor characteristics, by using the core gap spacer made of an inexpensive material having elasticity in the thickness direction.

【0022】本発明の電源装置は高調波抑制回路を形成
する2個のそれぞれのコイルにLc共振電流が流れて、
電源の1サイクルのうち一定の導通期間ごとに互いに逆
位相の電流が流れることになる。これにより、第3の鉄
心部には商用電源の毎サイクル中の少なくとも一部の期
間、互いに相殺方向の磁束が合流し、実際には互いに相
殺し合ったわずかな合成磁束しか流れないことになる。
したがって第3の鉄心はこの合成磁束を流すに必要なだ
けの磁路を形成すればよいことになり、本来、第1の鉄
心部に流れる磁束と第2の鉄心部に流れる磁束とが合流
するため第1の鉄心部と第2の鉄心部の断面積を合計し
た断面積が必要なところ、その1/2以下の断面積で済
ませることができるものである。
In the power supply device of the present invention, the Lc resonance current flows through each of the two coils forming the harmonic suppression circuit,
The currents of opposite phases flow in every constant conduction period of one cycle of the power supply. As a result, the magnetic fluxes in the offset directions merge with each other in the third iron core portion for at least a part of each cycle of the commercial power supply, and in actuality, only a small amount of the combined magnetic flux offset each other flows. .
Therefore, the third iron core only needs to form as many magnetic paths as are required to flow the combined magnetic flux, and originally, the magnetic flux flowing in the first iron core portion and the magnetic flux flowing in the second iron core portion join together. Therefore, where the total cross-sectional area of the first iron core portion and the second iron core portion is required, the cross-sectional area of 1/2 or less of that is required.

【0023】以下、本発明の実施の形態につき、図1な
いし図28に沿って説明する。 (実施の形態1)本実施の形態1について図1ないし図
4を参照しながら説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 28. (First Embodiment) The first embodiment will be described with reference to FIGS. 1 to 4.

【0024】図1において、短柵型の電磁鋼板を積層し
て溶接、突き出し圧接、接着等の手段でブロック化され
た第1の鉄心部1はコイル2に挿設されている。これと
同様に第2の鉄心部3とコイル4も組合わされる。第3
の鉄心部5は短柵型の電磁鋼板を積層してブロック化さ
れている。このように構成されたものを第1の鉄心部
1,第3の鉄心部5,第2の鉄心部3の順に並べて配置
し、厚さ方向に弾力性を有する絶縁シートよりなるギャ
ップスペーサ6,7を介して、台形状の電磁鋼板を積層
してなる2個の橋絡鉄心部8を突き合せて日の字を横に
した形状の磁路を形成して組立てる。第1のコイル2,
第2のコイル4はそれぞれ独立したインダクタンスとし
て使われ、各コイル2,4によって発生した磁束は、各
鉄心部の突合せ部のギャップスペーサ6,7の厚さで確
保されるコアギャップを介して日の字状の磁路を流れ、
2つのリアクタとして機能を供する。第3の鉄心部5と
橋絡鉄心部8の間のコアギャップは要求されるリアクタ
特性に応じて無しにする場合もある。
In FIG. 1, a first iron core portion 1 formed by laminating short-fence type electromagnetic steel sheets and forming a block by means such as welding, extrusion pressure welding, and adhesion is inserted in a coil 2. Similarly, the second iron core portion 3 and the coil 4 are also combined. Third
The iron core part 5 is formed by stacking short fence type electromagnetic steel plates to form a block. The first core portion 1, the third core portion 5, and the second core portion 3 thus arranged are arranged in this order, and the gap spacer 6 made of an insulating sheet having elasticity in the thickness direction is formed. Two bridge iron core parts 8 formed by stacking trapezoidal electromagnetic steel plates are abutted to each other via 7 to form a magnetic path having a shape in which the letter "L" is laid sideways. First coil 2,
The second coil 4 is used as an independent inductance, and the magnetic flux generated by each coil 2 and 4 passes through the core gap secured by the thickness of the gap spacers 6 and 7 at the butt portion of each iron core. It flows through the magnetic path in the shape of
It functions as two reactors. The core gap between the third core portion 5 and the bridging core portion 8 may be eliminated depending on required reactor characteristics.

【0025】日の字状の磁路を形成する5個の鉄心部
1,3,5,8のうち外側に位置する2個の鉄心部を互
いに固定金具10で溶接し固定された後、他の機器へ取
付けるための取付板9が橋絡鉄心部8に溶接、固定され
る。その後、リアクタ全体としてワニス含浸処理を施さ
れている。
Out of the five iron core portions 1, 3, 5, 8 forming the day-shaped magnetic path, the two outer iron core portions are welded and fixed to each other by the fixing metal fittings 10, and then the others. An attachment plate 9 for attaching to the equipment is welded and fixed to the bridging core portion 8. After that, the reactor as a whole is subjected to varnish impregnation treatment.

【0026】また、第1のコイル2,第2のコイル4は
図2及び図3に示すような高調波電流抑制回路を有する
直流電源装置(例えばインバータエアコン用)における
それぞれ、交流用インダクタンスLc,直流用インダク
タンスLdとしてそれぞれ接続し、機能させる。図2お
よび図3は、高調波電流抑制回路を施した電源回路とし
て一般的によく知られており、図2の回路を例にその高
調波電流抑制の作用を概略説明する。すなわち、Lc,
1の直列共振回路により電源電圧の低い立上り時期か
ら電源の約2倍の周波数の共振電流を流すことにより前
半部分での電流導通角を拡大させ、一方、Ld,Dの直
列回路により位相の遅れた電流を流すことにより後半部
分の導通角の拡大に寄与させる。これによりこれら2つ
の電流ic,idを合成した電源装置の入力電流Iは電
流導通角の広いなめらかな、すなわち高調波電流を少し
しか含まない電流波形を合成することができるものであ
る。参考のためその電流波形例を図4に示す。
Also, the first coil 2 and the second coil 4 are respectively the inductances Lc, AC for the DC power supply device (for inverter air conditioner, for example) having the harmonic current suppressing circuit as shown in FIGS. Each of them is connected as a DC inductance Ld and made to function. 2 and 3 are generally well known as a power supply circuit provided with a harmonic current suppressing circuit, and the operation of suppressing the harmonic current will be schematically described by taking the circuit of FIG. 2 as an example. That is, Lc,
The series resonance circuit of C 1 causes a resonance current having a frequency about twice that of the power supply to flow from the rise time of the power supply voltage to expand the current conduction angle in the first half, while the series circuit of Ld and D causes By causing a delayed current to flow, it contributes to the expansion of the conduction angle in the latter half. As a result, the input current I of the power supply device that combines these two currents ic and id can be combined into a smooth current waveform with a wide current conduction angle, that is, a current waveform that contains only a few harmonic currents. For reference, an example of the current waveform is shown in FIG.

【0027】2つのインダクタンスLc,Ldが従来の
ようにそれぞれ独立した2個のリアクタで構成されてい
る場合は問題ないが、本発明のように1個のリアクタに
2個のインダクタンスを一体化して構成させる場合は、
いかに2つのインダクタンス間の結合を小さくできるか
が肝要である。
There is no problem in the case where the two inductances Lc and Ld are composed of two independent reactors as in the conventional case. However, as in the present invention, the two inductances are integrated into one reactor. If you want to configure
It is important how to reduce the coupling between the two inductances.

【0028】図5に第1のコイル2に流れる電流icに
よって生ずる磁束のφA,φBの流れを示す。すなわ
ち、φAは第1の鉄心部1,橋絡鉄心部8,第3の鉄心
部5,橋絡鉄心部8の閉回路を流れる磁束を示し、φB
は鉄心部1,鉄心部8,鉄心部3、鉄心部8の閉回路を
流れる磁束を示している。そして、2つのインダクタン
ス間の相互結合を小さくするためには、このφBをなく
するかミニマム化しなければならない。本発明ではこれ
を実現するため第1の鉄心部1,第2の鉄心部3,第3
の鉄心部5のコアギャップ寸法を以下のように設定して
いる。すなわち、インダクタンスLcのインダクタンス
特性を得るのに必要なコアギャップ寸法の大半を第1の
鉄心部1と2個の橋絡鉄心部8との間に形成し(本実施
例では1.5mm)、共通磁脚である第3の鉄心部5と
橋絡鉄心8との間のコアギャップをほとんどなくするよ
うにした(0〜0.35mm)。さらにインダクタンス
Ldのインダクタンス特性を得るのに必要なコアギャッ
プ寸法の大半を第2の鉄心部3と2個の橋絡鉄心部8と
の間に形成(本実施例では1.5mm)してある。
FIG. 5 shows the flow of magnetic fluxes φA and φB generated by the current ic flowing through the first coil 2. That is, φA represents the magnetic flux flowing in the closed circuit of the first iron core portion 1, the bridging iron core portion 8, the third iron core portion 5, and the bridging iron core portion 8, and φB
Indicates a magnetic flux flowing through a closed circuit of the iron core portion 1, the iron core portion 8, the iron core portion 3, and the iron core portion 8. In order to reduce the mutual coupling between the two inductances, this φB must be eliminated or minimized. In the present invention, in order to realize this, the first iron core portion 1, the second iron core portion 3, the third iron core portion 3,
The core gap size of the iron core part 5 is set as follows. That is, most of the core gap dimension required to obtain the inductance characteristic of the inductance Lc is formed between the first iron core portion 1 and the two bridging iron core portions 8 (1.5 mm in this embodiment), The core gap between the third iron core portion 5 which is the common magnetic leg and the bridging iron core 8 is almost eliminated (0 to 0.35 mm). Further, most of the core gap size required to obtain the inductance characteristic of the inductance Ld is formed between the second iron core portion 3 and the two bridging iron core portions 8 (1.5 mm in this embodiment). .

【0029】これにより、磁束φBが流れる第2の鉄心
部3を含む磁路の磁気抵抗が、共通磁脚である第3の鉄
心部5を含む磁路の磁気抵抗に比し桁違いに大きくなる
ので実際にはφBは殆ど流れないことになる。すなわ
ち、第1のコイル2で生じた磁束は共通磁脚である第3
の鉄心部5を経由する閉回路にそのほとんどがφAとし
て流れ、他方のインダクタンスLdを構成する第2のコ
イル4と鎖交する磁束は実用上無視できる程度の微少分
しか流れなくなる。
As a result, the magnetic resistance of the magnetic path including the second iron core portion 3 through which the magnetic flux φB flows is orders of magnitude larger than the magnetic resistance of the magnetic path including the third iron core portion 5 that is the common magnetic leg. Therefore, φB hardly actually flows. That is, the magnetic flux generated in the first coil 2 is the third magnetic flux which is the common magnetic leg.
Most of the current flows in the closed circuit passing through the iron core part 5 as φA, and the magnetic flux interlinking with the second coil 4 forming the other inductance Ld flows only to a practically negligible amount.

【0030】反対に第2のコイル4の電流で発生する磁
束の流れについても今までの説明と同じく、第2のコイ
ル4による磁束の大半が共通磁脚である第3の鉄心部5
を経由して流れ、第3の鉄心部5を越えて第1のコイル
2と鎖交する磁束はほとんど無くなる。
On the contrary, regarding the flow of the magnetic flux generated by the current of the second coil 4, as in the above description, most of the magnetic flux generated by the second coil 4 is the third magnetic core 5 which is the common magnetic leg.
The magnetic flux flowing through the first coil 2 and flowing over the third core portion 5 is almost eliminated.

【0031】このようにして2つのインダクタンスが同
時に機能しても磁気的な相互影響がほとんど無いか、若
しくは実用上無視できる一体型のリアクタを実現でき
た。参考までに、図6に第3の鉄心部5のコアギャップ
を他の第1の鉄心部1,第2の鉄心部3の場合に比しど
の程度の相対値にしたらどの程度の高調波電流抑制効果
になるかの傾向を高調波電流抑制値の第3高調波を例に
して示した。なお、本発明の複合形リアクタの各コイル
に流れる電流の波形は、2つの独立したリアクタを使用
する場合とほぼ同じ電流波形(図4)である。
In this way, it was possible to realize an integrated reactor which has almost no magnetic mutual influence even if the two inductances function at the same time, or which can be practically ignored. For reference, in FIG. 6, what is the relative value of the core gap of the third iron core portion 5 compared with the case of the other first iron core portion 1 and the second iron core portion 3 and what is the harmonic current? The tendency of the suppression effect is shown by taking the third harmonic of the harmonic current suppression value as an example. The waveform of the current flowing through each coil of the composite reactor of the present invention is almost the same as that when two independent reactors are used (FIG. 4).

【0032】なお、従来の独立した2個のリアクタで構
成する場合、リアクタの電磁設計としてはそれぞれ交流
用リアクタでは電流Icの積分値の合計S1+S2に比例
する磁束が流れるのでこれに応じた磁路断面が必要であ
り、一方直流用リアクタでは電流Idの積分値S3に比
例する磁束が流れるのでこれに応じた磁路断面が必要と
なる。
When the conventional independent two reactors are used, the electromagnetic design of the reactor is such that a magnetic flux proportional to the sum S 1 + S 2 of the integrated values of the current Ic flows in the AC reactor. A magnetic path cross section is required, and on the other hand, in the DC reactor, a magnetic flux proportional to the integral value S 3 of the current Id flows, so a magnetic path cross section corresponding to this is required.

【0033】これに対し、本発明の実施の形態のよう
に、共通磁脚である第3の鉄心部5を介して磁気的にほ
ぼ独立した2つの磁気回路を併設する場合、図4に示す
電流IcとIdがそれぞれ第1のコイル2,第2のコイ
ル4に流れると、第3の鉄心部5にはそれぞれicとi
dに相応する磁束が合流することになる。すなわち、i
cとidの合成電流Iに相応する合成磁束が第3の鉄心
部5に流れる。図4から明らかなようにIcとIdとの
互いに逆位相であるS2部分とS3部分が打消し合った結
果、合成電流Iの積分値S4は従来の独立した2個のリ
アクタを使用する場合の電流の総和S1+S2+S3に比
し大巾に減少される。
On the other hand, as in the embodiment of the present invention, when two magnetic circuits that are magnetically almost independent are provided side by side through the third iron core portion 5 which is the common magnetic leg, it is shown in FIG. When the currents Ic and Id flow through the first coil 2 and the second coil 4, respectively, ic and i are applied to the third iron core portion 5, respectively.
The magnetic flux corresponding to d merges. That is, i
A combined magnetic flux corresponding to the combined current I of c and id flows through the third iron core part 5. As is apparent from FIG. 4, as a result of canceling out the S 2 portion and the S 3 portion of Ic and Id, which are in opposite phases to each other, the integrated value S 4 of the combined current I uses two conventional independent reactors. The current is greatly reduced compared to the sum S 1 + S 2 + S 3 of the currents.

【0034】以上のことから判るように、従来の2つの
独立したリアクタで構成していたものを、本発明のよう
に一体化して構成した場合、本来この第3の鉄心部5の
磁路断面積はそれぞれの積分値S1+S2+S3に相応す
る値が必要となるはずであるところ、積分値S4に相応
する磁路断面積で済むことになる。このS4のS1+S2
+S3に対する比率は、高調波電流抑制の目標設定値に
応じて回路定数・リアクタ特性を調整することにより変
わってくるが本実施例では約2分の1である。したがっ
て第3の鉄心部5の磁路断面を従来例に比し約2分の1
に減らすことができ、鉄心量を大巾に減らすことができ
るので、リアクタの小形、軽量、低コスト化を図ること
ができる。参考として、図7に第3の鉄心部5の断面積
を第1の鉄心部1と第2の鉄心部2の断面積を合計した
値に比しどの程度の相対値にしたら、どの程度の高調波
電流抑制効果になるかの傾向を高調波電流抑制値の第3
高調波を例にして示した。
As can be seen from the above, when the conventional two independent reactors are integrated as in the present invention, the magnetic path disconnection of the third iron core portion 5 is originally made. Where the area should have a value corresponding to each integrated value S 1 + S 2 + S 3 , a magnetic path cross-sectional area corresponding to the integrated value S 4 will suffice. This S 4 is S 1 + S 2
The ratio with respect to + S 3 changes depending on the circuit constant / reactor characteristics adjusted in accordance with the target set value for harmonic current suppression, but is about one half in this embodiment. Therefore, the cross section of the magnetic path of the third iron core portion 5 is about half that of the conventional example.
Since the amount of iron core can be greatly reduced, the reactor can be made compact, lightweight and low cost. For reference, in FIG. 7, what is the relative value of the cross-sectional area of the third iron core portion 5 to the total value of the cross-sectional areas of the first iron core portion 1 and the second iron core portion 2 and how much? The tendency of the harmonic current suppression effect to become the harmonic current suppression value
Harmonics are shown as an example.

【0035】なお、第3の鉄心部5の鉄心材料として方
向性けい素鋼板などの透磁性のより透れた電磁鋼板を使
用したり板厚をうすくなどして、高調波電流に対しても
必要な透磁率を維持することによって、第3の鉄心部5
の磁路断面をさらに減らすことも可能である。
It is to be noted that, as the iron core material of the third iron core portion 5, a magnetically more permeable magnetic steel sheet such as a grain-oriented silicon steel sheet is used, or the thickness thereof is thinned, so that the harmonic current is also prevented. By maintaining the required magnetic permeability, the third core portion 5
It is possible to further reduce the cross section of the magnetic path.

【0036】また、鉄心部1,3,5や橋絡鉄心部8に
使う電磁鋼板は単純な形状の短柵型や台形型にできるの
で高価な打抜き型も不要となりシャーリング等で容易に
製作でき、従来のEI型などの鉄心形状の場合に比し電
磁鋼板のサイズも自由に設定することができる。これに
よりコイルを収容する鉄心部1,3,5,8の寸法も必
要最小寸法に設計することが機種ごとに可能となるので
鉄心部1,3,5,8の材料使用量を減らすことができ
る。
Further, since the electromagnetic steel plates used for the iron core parts 1, 3, 5 and the bridging iron core part 8 can be made into a simple short fence type or a trapezoidal type, an expensive punching die is not necessary and can be easily manufactured by shearing or the like. The size of the electromagnetic steel sheet can be freely set as compared with the conventional iron core shape such as the EI type. As a result, the size of the iron cores 1, 3, 5, 8 for housing the coils can be designed to be the minimum required size for each model, so that the amount of material used for the iron cores 1, 3, 5, 8 can be reduced. it can.

【0037】さらに図1に示すように2個の橋絡鉄心部
8については、磁束の流れからみて有効でない隅の部分
をカットした形状として、橋絡鉄心部8に使う電磁鋼板
11の材料使用量を低減しているとともに、リアクタ重
量の軽量化となる。また、台形状の電磁鋼板11の角度
は図8に示すように、実用特性面より60°から80°
の範囲で選定され、この電磁鋼板11を材料ロスなく製
作する場合の例を示している。
Further, as shown in FIG. 1, regarding the two bridging core portions 8, the material of the electromagnetic steel plate 11 used for the bridging core portion 8 is formed by cutting the ineffective corner portions in view of the flow of magnetic flux. The amount is reduced and the weight of the reactor is reduced. Further, the angle of the trapezoidal electromagnetic steel sheet 11 is, as shown in FIG.
The following shows an example of the case where the electromagnetic steel plate 11 is selected within the above range and is manufactured without material loss.

【0038】また、図9に示すように鉄心1,3,5の
磁路断面の巾寸法Aの方が奥行き寸法B(積層厚)より
大なる場合は奥行き寸法Bがそれぞれ鉄心部1,3,5
の積層厚となるようにした方が積層枚数が少なくて済む
ので鉄心1,3,5に使う電磁鋼板の打抜き加工費の低
減に有利である。なお、図10は、寸法A,Bが図9と
は逆の寸法A(積層厚)<寸法Bの場合を示す。
Further, as shown in FIG. 9, when the width dimension A of the magnetic path cross section of the iron cores 1, 3, 5 is larger than the depth dimension B (laminated thickness), the depth dimension B is set to the iron core portions 1, 3 respectively. , 5
It is advantageous to reduce the punching cost of the electromagnetic steel plates used for the iron cores 1, 3, and 5 because the number of laminated sheets can be reduced by making the laminated thickness. Note that FIG. 10 shows a case where the dimensions A and B are the dimension A (laminated thickness) <dimension B, which is the opposite of that in FIG.

【0039】また、コアギャップを確保するために必要
なコアギャップスペーサ6,7として絶縁シートを採用
して、コアギャップ寸法確保と絶縁の機能を兼ねさせる
ことにより、部材の節約ができる。
Further, by adopting an insulating sheet as the core gap spacers 6 and 7 necessary to secure the core gap and having the functions of securing the core gap dimension and insulating, it is possible to save the members.

【0040】さらに、第1の鉄心部1と第2の鉄心部3
は、それぞれ絶縁シートを兼ねたコアギャップスペーサ
6,7によって2個の橋絡鉄心部8すなわちアースから
完全に分離絶縁される。したがってコイル2,4の鉄心
部1,3に対する絶縁は何ら必要でない構成が実現でき
る。これにより絶縁材料の低減、絶縁構成の簡略化によ
る組立工数の低減がはかれる。さらには前述のようにそ
れぞれコイル2,4と鉄心部1,3の間の絶縁が要らな
いのでコイル2,4とそれぞれ鉄心部1,3との間の絶
縁距離を取る必要がなくなって巻線の内径寸法を最小に
できることにより電線使用量の大巾低減がはかれる。ま
た、鉄心部にコイルを直接巻回することも可能となり、
巻芯治具の不要化、巻回後のコイルと巻芯治具との分離
作業の不要化による製作工数の低減なども図れる。
Further, the first iron core portion 1 and the second iron core portion 3
Are completely separated and insulated from the two bridging core portions 8, that is, the ground by the core gap spacers 6 and 7 which also serve as insulating sheets. Therefore, it is possible to realize a configuration in which the coils 2 and 4 are not required to be insulated from the iron core portions 1 and 3. As a result, the number of insulating materials can be reduced, and the number of assembling steps can be reduced by simplifying the insulating structure. Furthermore, as described above, since the insulation between the coils 2 and 4 and the iron cores 1 and 3 is not required, it is not necessary to provide the insulation distance between the coils 2 and 4 and the iron cores 1 and 3, respectively, and the winding is performed. Since the inner diameter of the wire can be minimized, the amount of electric wire used can be greatly reduced. It is also possible to wind the coil directly around the iron core,
It is also possible to reduce the number of manufacturing steps by eliminating the need for a core jig and eliminating the work of separating the coil after winding from the core jig.

【0041】さらに、矩形断面をなす第1の鉄心部1ま
たは第2の鉄心部3の外周に図11のようにコの字状の
コイル保護部材12を取付けて、その上からコイル2ま
たはコイル4を直接、巻回するようにすれば、鉄心コー
ナ部13で巻回時のコイル傷を防止する構造として有用
である。
Further, as shown in FIG. 11, a U-shaped coil protection member 12 is attached to the outer periphery of the first iron core portion 1 or the second iron core portion 3 having a rectangular cross section, and the coil 2 or the coil is attached from above. If 4 is wound directly, it is useful as a structure for preventing coil scratches in the iron core corner portion 13 during winding.

【0042】また、図12に示すように、鉄心部1,3
の鉄心コーナ部13にR加工を施してこの上から直接コ
イル2またはコイル4を巻回することも何らコイル保護
部材を使用せずに済む構造として有用である。
Further, as shown in FIG. 12, the iron core parts 1, 3
It is also useful as a structure in which the coil protection member is not used at all, by subjecting the iron core corner portion 13 to rounding and winding the coil 2 or the coil 4 directly from above.

【0043】また、図13(A)(B),図14(A)
(B)に示すように、鉄心部1または3の側端部に、端
面にRを有するコイル保護部材14をそれぞれ設置し、
その上からコイル2または4を直接巻回する構造も鉄心
コーナ部13で巻回によるコイル傷が発生するのを防止
するものとして有用である。
Further, FIGS. 13 (A), (B) and 14 (A)
As shown in (B), at the side end of the iron core 1 or 3, the coil protection member 14 having R on the end face is installed,
A structure in which the coil 2 or 4 is directly wound from above is also useful for preventing the coil damage due to the winding in the iron core corner portion 13.

【0044】また、リアクタの特性上の制限より、コア
ギャップを確保するギャップスペーサ6,7の厚さ寸法
にはかなりの精度が必要とされる。厚さ方向に弾力性の
ない材料でこの寸法精度を実現しようとすると非常に高
いコストがかかる。これに対し、本実施例ではガラス不
織布、ポリエステル不織布、カレンダー加工なしのアラ
ミッド紙などのような厚さ方向に弾力性を有する安価な
材料をギャップスペーサ6,7として用い、2つの橋絡
鉄心部8の上下から押圧してコアギャップ部を押圧する
と、押圧力に応じて弾力性を有するコアギャップスペー
サ6,7の厚さ、すなわちコアギャップ寸法が変化す
る。この際、同時にコイル2,4に測定器を接続してイ
ンダクタンス値を測定しながら押圧し、所要のインダク
タンス値に達した時点でその押圧力を維持したまま、固
定金具10を固定すれば容易に所要のインダクタンス値
を有するリアクタをつくることができる。このようにギ
ャップスペーサとして弾力性を有する安価な材料を使う
ことにより材料コストを低減することができる。
Further, due to the limitation of the characteristics of the reactor, the thickness of the gap spacers 6 and 7 for ensuring the core gap requires a considerable accuracy. Attempting to achieve this dimensional accuracy with a material that is not elastic in the thickness direction is very expensive. On the other hand, in the present embodiment, an inexpensive material having elasticity in the thickness direction, such as glass nonwoven fabric, polyester nonwoven fabric, or uncalendered aramid paper, is used as the gap spacers 6 and 7, and the two bridging core portions are used. When the core gap portion is pressed by pressing from above and below 8, the thickness of the elastic core gap spacers 6 and 7, that is, the core gap size changes according to the pressing force. At this time, it is easy to connect the measuring devices to the coils 2 and 4 at the same time, press the coil while measuring the inductance value, and fix the fixing metal fitting 10 while maintaining the pressing force when the required inductance value is reached. It is possible to create a reactor with the required inductance value. By using an inexpensive material having elasticity as the gap spacer in this way, the material cost can be reduced.

【0045】また、図15に示すように鉄心部1,3,
5の端面がそれぞれ、橋絡鉄心部8の端面内で必ず収ま
るようにそれぞれの鉄心寸法、突き合せ位置に設定する
ことにより、漏洩磁束を橋絡鉄心部8で吸収することが
でき、組立て時の鉄心相互の突き合せずれなどによるリ
アクタ特性のばらつきを抑えることができる。
Further, as shown in FIG. 15, the iron core parts 1, 3,
The leakage magnetic flux can be absorbed by the bridging core portion 8 by setting the respective iron core dimensions and the abutting positions so that the end surfaces of 5 are always accommodated within the end surface of the bridging core portion 8. It is possible to suppress variations in reactor characteristics due to misalignment of the cores with each other.

【0046】また、日の字状の磁路を形成するために有
用な鉄心形状の組合せ例を図16ないし図23に示し
た。これらも、本実施例と同様の効果を有するリアクタ
構造として有用である。
16 to 23 show examples of combinations of iron core shapes useful for forming a V-shaped magnetic path. These are also useful as a reactor structure having the same effect as this embodiment.

【0047】(実施の形態2)さらに、本発明の複合形
リアクタの一部または全体を樹脂でモールドした場合の
例を実施の形態2として説明する(図示せず)。すなわ
ち、モールドすることにより鉄心部1,3,5,8やコ
イル2,4などを確実に固定するとともに、モールド部
に端子固定部、他の機器への取付け部などを容易に具備
させ、製造工数の少ない量産性に富む構造を得ることが
できる。特に複合形リアクタ全体をモールドしたことに
より、複合形リアクタ全体がより完全に固定されるとと
もに外部から隔離・保護されるので非常に防水性にすぐ
れ、かつ複合形リアクタから発生する騒音や振動を抑制
されたリアクタ構造を得ることができる。
(Embodiment 2) Furthermore, an example in which a part or the whole of the composite reactor of the present invention is molded with resin will be described as Embodiment 2 (not shown). That is, by molding, the iron core parts 1, 3, 5, 8 and the coils 2, 4 are securely fixed, and the molding part is easily provided with a terminal fixing part, a mounting part for other equipment, etc. It is possible to obtain a structure having a small number of man-hours and being rich in mass productivity. In particular, by molding the entire composite reactor, the entire composite reactor is more completely fixed and is isolated and protected from the outside, so it is extremely waterproof and suppresses noise and vibration generated from the composite reactor. It is possible to obtain an optimized reactor structure.

【0048】(実施の形態3)さらに、本発明の複合形
リアクタの固定を鉄心のプロジェクション溶接で行った
場合を実施の形態3として図24に示す。
(Third Embodiment) Furthermore, FIG. 24 shows a third embodiment in which the composite reactor of the present invention is fixed by projection welding of an iron core.

【0049】2個の台形状の橋絡鉄心部8が第3の鉄心
部5と突き合わされる部分で少なくとも1個所ずつのプ
ロジェクション溶接を施すことによって2個の橋絡鉄心
部8と、第3の鉄心部5とを固定する。この時、鉄心部
1,3とコイル2,4はそれぞれギャップスペーサ6,
7とともに所定の位置に設置された状態で2個の橋絡鉄
心部8の上下から押圧されて固定される。プロジェクシ
ョン溶接のために橋絡鉄心部8または第3の鉄心部5に
プロジェクション溶接用の突起15が設けられる。この
構成により、図1の固定金具10を使用することなくリ
アクタを固定できるので使用材料費の低減がはかれると
ともに、固定金具10がなくなった分だけリアクタ外形
寸法の小形化がはかれて機器内への収納性の面で有効で
ある。
At least one portion of each of the two trapezoidal bridging core portions 8 abutted on the third iron core portion 5 is subjected to projection welding so that the two bridging core portions 8 and the third And the iron core part 5 of. At this time, the iron core parts 1 and 3 and the coils 2 and 4 are separated by the gap spacers 6 and 6, respectively.
The two bridging core portions 8 are fixed by being pressed from above and below while being installed at a predetermined position together with 7. A projection 15 for projection welding is provided on the bridging core portion 8 or the third core portion 5 for projection welding. With this configuration, the reactor can be fixed without using the fixing metal fitting 10 of FIG. 1, so that the material cost can be reduced, and the external dimensions of the reactor can be reduced by the amount of the fixing metal fitting 10 being removed, and the reactor can be installed in the equipment. It is effective in terms of storability.

【0050】なお、これにワニス含浸を施すことによっ
て各鉄心部の突き合せ部やコイル2,4などが互いに接
着固定されてリアクタ全体の固定は完全になる。
By impregnating this with varnish, the abutting portions of the iron core portions and the coils 2, 4 and the like are adhered and fixed to each other, so that the entire reactor is completely fixed.

【0051】(実施の形態4)さらに、リアクタの固定
に関する実施の形態4を図25(A)(B)に図示す
る。図25(A)(B)はリアクタのほぼ中央の第3の
鉄心部5のあたりを略U字状の固定金具16で挟持さ
せ、取付板9に設けた2個所の貫通孔9Aから突き出た
固定金具16の先端を取付板の貫通孔9Aの周辺にて溶
接固定したものを示す。
(Fourth Embodiment) Further, a fourth embodiment relating to the fixing of the reactor is shown in FIGS. In FIGS. 25 (A) and 25 (B), the vicinity of the third core portion 5 at the substantially center of the reactor is clamped by the substantially U-shaped fixing metal fitting 16 and protruded from two through holes 9A provided in the mounting plate 9. The fixing metal fitting 16 has the tip thereof welded and fixed around the through hole 9A of the mounting plate.

【0052】こうした構造により、鉄心部1,3,5,
8やコイル2,4が固定されるだけでなく、リアクタと
取付板9との固定をも同時に行われる。
With this structure, the iron core parts 1, 3, 5,
Not only the coil 8 and the coils 2 and 4 are fixed, but also the reactor and the mounting plate 9 are fixed at the same time.

【0053】したがって、組立工数の少ない量産性に富
むリアクタ構造を得ることができる。また、図1の固定
金具10が不要となるため、その分外形寸法が小さくな
りコンパクト化に寄与するものである。
Therefore, it is possible to obtain a reactor structure which has a small number of assembling steps and is rich in mass productivity. Further, since the fixing metal fitting 10 of FIG. 1 is not necessary, the outer dimension is reduced by that much, which contributes to downsizing.

【0054】なお、この固定金具16としては必要によ
りステンレスなどの非磁性体で作ることも可能である。
The fixing member 16 can be made of a non-magnetic material such as stainless steel if necessary.

【0055】(実施の形態5)さらに、鉄心の磁路形状
に関する実施の形態5を図26に示す。なお、実施の形
態1と共通する部分については図1と同じ符号に統一し
て説明する。
(Fifth Embodiment) FIG. 26 shows a fifth embodiment of the magnetic path shape of the iron core. It should be noted that parts common to those in the first embodiment will be described by unifying them with the same reference numerals as those in FIG.

【0056】図26は鉄心部1,3とそれぞれコイル
2,4およびギャップスペーサ6,7で組合わされた2
組を日の字状の磁路の窓の中にそれぞれ1組ずつ収納し
て、略田の字状の磁路を形成したものを示す。ここで日
の字状の磁路は2個のC形鉄心17,18と1個のI型
鉄心19とを有する。そして、実施の形態1の場合と同
様、図2,図3で示す直流電源装置の中で2つのリアク
タとして動作させることにより、I形鉄心19が実施の
形態1の鉄心部5に相当し、本来の約2分の1の鉄心断
面積で済むものである。
FIG. 26 shows a combination of the cores 1 and 3 with the coils 2 and 4 and the gap spacers 6 and 7, respectively.
One set is housed in each of the windows of the day-shaped magnetic path to form a magnetic path having a substantially U-shape. Here, the day-shaped magnetic path has two C-shaped iron cores 17 and 18 and one I-shaped iron core 19. Then, as in the case of the first embodiment, the I-shaped iron core 19 corresponds to the iron core portion 5 of the first embodiment by operating as two reactors in the DC power supply device shown in FIGS. 2 and 3. The core cross-sectional area is about half that of the original one.

【0057】この場合、鉄心の全ての突き合せ個所のコ
アギャップ寸法は固定された寸法になるので、コアギャ
ップ寸法のばらつきがなく安定したリアクタ特性を有す
るリアクタ構造を得ることができる。この構造は鉄心突
き合せ部端部で溶接で固定されるのに適しているが他の
固定手段を用いてもよい。高さ方向の寸法が大きくなる
が占有面積を小さくするのに適する。
In this case, since the core gap size at all butting points of the iron core is a fixed size, it is possible to obtain a reactor structure having stable reactor characteristics without variations in core gap size. This structure is suitable for being fixed by welding at the ends of the core butts, but other fixing means may be used. Although the size in the height direction increases, it is suitable for reducing the occupied area.

【0058】(実施の形態6)さらに、鉄心の磁路形状
に関する実施の形態6を図27に示す。図27は、鉄心
1,3とコイル2,4及びコアギャップスペーサ6,7
でそれぞれ組合された2組を少なくとも1個の鉄心から
なる口の字状の磁路の中に並べて配して略目の字状の磁
路を形成したものを示す。ここで口の字状の磁路はL型
鉄心20,21とで成る例を示している。
(Sixth Embodiment) FIG. 27 shows a sixth embodiment of the magnetic path shape of the iron core. FIG. 27 shows iron cores 1 and 3, coils 2 and 4, and core gap spacers 6 and 7.
In Fig. 2, the two sets respectively combined are arranged side by side in a square-shaped magnetic path made of at least one iron core to form a substantially V-shaped magnetic path. Here, an example in which the V-shaped magnetic path is composed of the L-shaped iron cores 20 and 21 is shown.

【0059】この実施の形態6の場合も、実施の形態1
の場合と同様、図2,図3で示す直流電源装置のなかで
2つのリアクタとして動作させることにより、L型鉄心
20,21の磁脚部分と一部橋絡部分が実施の形態1の
鉄心5に相当し、同様に狭い磁路断面で済むものであ
る。
Also in the case of this sixth embodiment, the first embodiment
In the same manner as in the above case, by operating as two reactors in the DC power supply device shown in FIGS. 2 and 3, the magnetic leg portions and partial bridging portions of the L-shaped iron cores 20 and 21 are the iron cores of the first embodiment. 5, which similarly requires a narrow magnetic path cross section.

【0060】この場合も実施の形態5と同様、鉄心部の
全ての突き合せ個所のコアギャップ寸法が固定寸法にな
るので、コアギャップ寸法のばらつきがなく安定したリ
アクタ特性を有するリアクタ構造が得られる。この場合
もL型鉄心20とL型鉄心21の突き合せ部は、溶接で
固定するのに適しているが他の固定手段によってもよ
い。
Also in this case, as in the fifth embodiment, the core gap size at all butting points of the iron core portion is a fixed size, so that a reactor structure having stable reactor characteristics without variations in core gap size can be obtained. . Also in this case, the abutting portions of the L-shaped iron core 20 and the L-shaped iron core 21 are suitable to be fixed by welding, but other fixing means may be used.

【0061】(実施の形態7)さらに、鉄心の磁路形状
に関する実施の形態7を図28に示す。
(Embodiment 7) FIG. 28 shows Embodiment 7 relating to the magnetic path shape of the iron core.

【0062】鉄心部1,3とコイル2,4およびギャッ
プスペーサ6,7とでそれぞれ組合された2組と、2組
の間に介在させた鉄心部5とをL形鉄心部22,23よ
りなる口の字状磁路のうちに配置したものである。この
ように、口の字状磁路のうちに3つの磁脚を並列させた
磁路構成である。2個のインダクタンスの相互影響をさ
らに減らしたリアクタ構成として有用である。
From the L-shaped core portions 22 and 23, two sets each of which is composed of the core portions 1 and 3 and the coils 2 and 4 and the gap spacers 6 and 7 and the core portion 5 which is interposed between the two sets are provided. It is arranged in the V-shaped magnetic path. In this way, the magnetic path configuration is such that three magnetic legs are arranged in parallel in the V-shaped magnetic path. This is useful as a reactor configuration in which the mutual influence of the two inductances is further reduced.

【0063】[0063]

【発明の効果】以上の説明から明らかなように本発明の
複合型リアクタは、第1のコイルを挿着した第1の鉄心
部と、第2のコイルを挿着した第2の鉄心部と、各コイ
ルによる磁束が互いに相殺方向となる第3の鉄心部と橋
絡鉄心部との突合せ部のコアギャップ寸法の配分を調整
したことにより、2つの磁気回路の結合をミニマム化し
て2個のほぼ独立したインタクダンスが得られる一体化
の複合型リアクタを実現でき、これにより大巾な小形,
軽量,低コスト化が図れる優れた効果を奏するものであ
る。
As is apparent from the above description, the composite reactor of the present invention comprises the first iron core portion having the first coil inserted therein and the second iron core portion having the second coil inserted therein. , By adjusting the distribution of the core gap size of the abutting part of the third iron core part and the bridging iron core part in which the magnetic fluxes of the respective coils cancel each other, the coupling of the two magnetic circuits is minimized and It is possible to realize an integrated hybrid reactor that can obtain almost independent interaction.
It has an excellent effect of being lightweight and low cost.

【0064】また、積層鉄心の積層厚が鉄心寸法を選定
することにより積層枚数が少なくて済むので電磁鋼板の
打抜き加工費を低減できる。
Further, since the number of laminated layers can be reduced by selecting the core size for the laminated thickness of the laminated iron core, the punching cost of the electromagnetic steel sheets can be reduced.

【0065】また、3個の磁脚の端面が橋絡鉄心部より
はみ出さないような突き合せ位置と鉄心寸法にすること
により、鉄心の突き合せずれによって生ずる漏洩磁束を
吸収して、安定したリアクタ特性を得ることができる。
Further, by setting the abutting position and the iron core size so that the end faces of the three magnetic legs do not protrude from the bridging iron core portion, the leakage magnetic flux generated by the abutting displacement of the iron core is absorbed and stabilized. The reactor characteristics can be obtained.

【0066】また、2つのインダクタンスに流れるLC
共振電流の作用で、2つの磁気回路の共通磁脚である第
3の鉄心部に合流する磁束が互いに逆位相となって打消
し合うことによりこの第3の鉄心部の磁路を従来型リア
クタで必要な磁路断面の5%にまでミニマム化でき、さ
らに複合型リアクタの小形,軽量,低コスト化が実現で
きる。
LC flowing through two inductances
Due to the action of the resonance current, the magnetic fluxes merging with the third iron core portion, which is the common magnetic leg of the two magnetic circuits, have opposite phases to each other and cancel each other, so that the magnetic path of the third iron core portion is made to reciprocate. It is possible to minimize the required magnetic path cross section to 5%, and it is also possible to realize a compact, lightweight and low cost composite reactor.

【0067】また、2つの磁気回路の共通磁脚である第
3の鉄心部と橋絡鉄心部との間の微小コアギャップ寸法
を、第1のコイル及び第2のコイルが挿設されている第
1または第2の鉄心部のコアギャップ寸法の40%以下
にすることにより2つの磁気回路の相互影響を実用上問
題ないレベルにまで抑えることができる。
In addition, the first coil and the second coil are inserted so that the small core gap size between the third core portion and the bridging core portion, which is the common magnetic leg of the two magnetic circuits, is provided. By setting the core gap size of the first or second iron core portion to 40% or less, the mutual influence of the two magnetic circuits can be suppressed to a level at which there is no practical problem.

【0068】また、各鉄心部により形成される磁路形状
を日の字状,目の字状,田の字状などに選択することに
より組立性,占有スペース性で有用な構成を必要に応じ
て選ぶこともできる。
Also, by selecting the magnetic path shape formed by each iron core portion into a letter shape, a letter shape, a square shape, etc., a useful structure in terms of assembling and occupying space can be obtained as necessary. You can also choose.

【0069】さらに、本発明の複合型リアクタの製造方
法は、インダクタンス値等の特性を測定しながらコアギ
ャップ寸法であるギャップスペーサの厚さを調節し、所
要の特性が得られた時の押圧力を維持したままで各鉄心
部を固定手段で固定するようにしているので、ギャップ
スペーサとして極めて高精度の厚さ寸法を要するためき
わめて高価な材料が必要とされるところを、厚さ寸法精
度を要しない安価な材料をギャップスペーサとして使う
ことができるようになり材料のコストを低減できるとと
もに、押圧力を調整することによりインダクタンス値を
自由に設定することができる。
Further, in the method for manufacturing the composite reactor of the present invention, the thickness of the gap spacer, which is the core gap size, is adjusted while measuring the characteristics such as the inductance value, and the pressing force when the required characteristics are obtained. Since the iron cores are fixed with fixing means while maintaining the above, it is necessary to improve the thickness dimensional accuracy when extremely expensive materials are required because the gap spacers require extremely high-precision thickness dimensions. An inexpensive material that does not need to be used can be used as the gap spacer, the cost of the material can be reduced, and the inductance value can be freely set by adjusting the pressing force.

【0070】また、本発明の電源装置は、高調波抑制回
路に本発明の複合型リアクタを用い、高調波規制値(I
EC相当レベル)を全次数に亘って完全にクリアするこ
とができる優れた効果を奏するものである。
Further, the power supply device of the present invention uses the composite reactor of the present invention in the harmonic suppression circuit, and the harmonic regulation value (I
It has an excellent effect that the EC equivalent level) can be completely cleared over all orders.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態1の複合形リアクタの概略
正面図
FIG. 1 is a schematic front view of a composite reactor according to a first embodiment of the present invention.

【図2】同複合形リアクタが使用される電源装置の第1
回路図
FIG. 2 is a first power supply device in which the same composite reactor is used.
circuit diagram

【図3】同電源装置の第2回路図FIG. 3 is a second circuit diagram of the power supply device.

【図4】同複合形リアクタに流れる電流の波形図FIG. 4 is a waveform diagram of a current flowing through the composite reactor.

【図5】同複合形リアクタの第1のコイルで発生する磁
束の流れを示す不飽和閉磁路図
FIG. 5 is an unsaturated closed magnetic circuit diagram showing the flow of magnetic flux generated in the first coil of the same composite reactor.

【図6】同複合形リアクタの各コアギャップと第3高調
波電流の関係特性図
FIG. 6 is a characteristic diagram showing the relationship between each core gap and the third harmonic current in the same composite reactor.

【図7】同複合形リアクタの各鉄心断面積と第3高調波
電流の関係特性図
FIG. 7 is a characteristic diagram showing the relationship between the cross-sectional area of each core and the third harmonic current of the same composite reactor.

【図8】同複合形リアクタの鉄心に使う電磁鋼板のプレ
ス工程の切断見取図
FIG. 8 is a cutaway view of a pressing process of an electromagnetic steel sheet used for an iron core of the composite reactor.

【図9】同複合形リアクタの各鉄心部の積層方向例を示
す斜視図
FIG. 9 is a perspective view showing an example of the stacking direction of each core of the composite reactor.

【図10】同複合形リアクタの各鉄心部の他の積層方向
例を示す斜視図
FIG. 10 is a perspective view showing another example of the stacking direction of each core of the composite reactor.

【図11】同複合形リアクタの鉄心部にコイル保護部材
を配した状態を示す斜視図
FIG. 11 is a perspective view showing a state in which a coil protection member is arranged on an iron core portion of the composite reactor.

【図12】同複合形リアクタの鉄心部を示す斜視図FIG. 12 is a perspective view showing an iron core portion of the composite reactor.

【図13】(A)同複合形リアクタの鉄心部のコイル挿
着状態を示す斜視図 (B)(A)のコイル保護部材の拡大斜視図
FIG. 13 (A) is a perspective view showing a coil insertion state of an iron core portion of the same composite reactor. FIG. 13 (B) is an enlarged perspective view of the coil protection member of FIG. 13 (A).

【図14】(A)同複合形リアクタの鉄心部の他のコイ
ル挿着状態を示す斜視図 (B)(A)のコイル保護部材の拡大斜視図
FIG. 14A is a perspective view showing another coil insertion state of the iron core portion of the same composite reactor, and FIG. 14B is an enlarged perspective view of the coil protection member of FIG. 14A.

【図15】同複合形リアクタの鉄心部の組立配置状態を
示す概念図
FIG. 15 is a conceptual diagram showing an assembled arrangement state of an iron core portion of the same composite reactor.

【図16】同複合形リアクタの鉄心部の第2例を示す概
念図
FIG. 16 is a conceptual diagram showing a second example of an iron core portion of the same composite reactor.

【図17】同複合形リアクタの鉄心部の第3例を示す概
念図
FIG. 17 is a conceptual diagram showing a third example of an iron core portion of the same composite reactor.

【図18】同複合形リアクタの鉄心部の第4例を示す概
念図
FIG. 18 is a conceptual diagram showing a fourth example of an iron core portion of the same composite reactor.

【図19】同複合形リアクタの鉄心部の第5例を示す概
念図
FIG. 19 is a conceptual diagram showing a fifth example of an iron core portion of the same composite reactor.

【図20】同複合形リアクタの鉄心部の第6例を示す概
念図
FIG. 20 is a conceptual diagram showing a sixth example of an iron core portion of the same composite reactor.

【図21】同複合形リアクタの鉄心部の第7例を示す概
念図
FIG. 21 is a conceptual diagram showing a seventh example of an iron core portion of the same composite reactor.

【図22】同複合形リアクタの鉄心部の第8例を示す概
念図
FIG. 22 is a conceptual diagram showing an eighth example of an iron core portion of the same composite reactor.

【図23】同複合形リアクタの鉄心部の第9例を示す概
念図
FIG. 23 is a conceptual diagram showing a ninth example of an iron core portion of the same composite reactor.

【図24】同実施の形態3における複合形リアクタの組
立概念図
FIG. 24 is a conceptual diagram of assembly of a composite reactor according to the third embodiment.

【図25】(A)同実施の形態4の複合形リアクタの正
面図 (B)(A)の固定金具の取付状態を示す要部斜視図
FIG. 25 (A) is a front view of the composite reactor of the fourth embodiment, and FIG. 25 (B) is a perspective view of essential parts showing the mounting state of the fixing metal fitting of FIG.

【図26】同実施の形態5の複合形リアクタの鉄心部の
第10例を示す正面図
FIG. 26 is a front view showing a tenth example of the core of the composite reactor according to the fifth embodiment.

【図27】同実施の形態6の複合形リアクタの鉄心部の
第11例を示す正面図
FIG. 27 is a front view showing an eleventh example of the iron core portion of the composite reactor of the sixth embodiment.

【図28】同実施の形態7の複合形リアクタの鉄心部の
第12例を示す正面図
FIG. 28 is a front view showing a twelfth example of the iron core portion of the composite reactor according to the seventh embodiment.

【図29】従来の個別のリアクタの正面図FIG. 29 is a front view of a conventional individual reactor.

【符号の説明】[Explanation of symbols]

1,3,5,8 鉄心部 2,4 コイル 6,7 ギャップスペーサ 9 取付板 9A 取付板の貫通孔 10 固定金具 11 電磁鋼板 12 コイル保護部材 13 鉄心コーナ部 14 コーナ部にRを有するコイル保護部材 15 プロジェクション溶接用突起 16 U字状の固定金具 17,18 C形鉄心 19 I形鉄心 20,21,22,23 L形鉄心 1, 3, 5, 8 Iron core 2,4 coils 6,7 Gap spacer 9 Mounting plate 9A Mounting plate through hole 10 Fixing bracket 11 Electrical steel sheet 12 Coil protection member 13 Iron core corner 14 Coil protection member having R at the corner 15 Projection welding projections 16 U-shaped fixing bracket 17,18 C-shaped iron core 19 I-shaped iron core 20, 21, 22, 23 L-shaped iron core

フロントページの続き (51)Int.Cl.7 識別記号 FI H02M 7/06 H01F 27/24 H (56)参考文献 特開 昭61−259514(JP,A) 特開 平7−22258(JP,A) 特開 平8−339924(JP,A) 特開 平9−134825(JP,A) 特開 平8−149812(JP,A) 特開 平9−163744(JP,A) 特開 平9−237722(JP,A) 特開 平7−263262(JP,A) 特開 昭55−22837(JP,A) 特開 昭56−15017(JP,A) 特開 平10−163046(JP,A) 特開 平9−148185(JP,A) 実開 平5−36821(JP,U) 実開 平3−92016(JP,U) 実開 平4−133415(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01F 37 H01F 27 H01F 38 H02M 7 Continuation of front page (51) Int.Cl. 7 identification code FI H02M 7/06 H01F 27/24 H (56) Reference JP-A 61-259514 (JP, A) JP-A 7-22258 (JP, A) ) JP-A-8-339924 (JP, A) JP-A-9-134825 (JP, A) JP-A-8-149812 (JP, A) JP-A-9-163744 (JP, A) JP-A-9- 237722 (JP, A) JP 7-263262 (JP, A) JP 55-22837 (JP, A) JP 56-15017 (JP, A) JP 10-163046 (JP, A) Unexamined Japanese Patent Publication No. 9-148185 (JP, A) Actual development 5-36821 (JP, U) Actual development 3-92016 (JP, U) Actual development 4-133415 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) H01F 37 H01F 27 H01F 38 H02M 7

Claims (19)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電磁鋼板を積層し第1のコイルを挿着し
た第1の鉄心部と、電磁鋼板を積層し第2のコイルを挿
着した第2の鉄心部と、電磁鋼板を積層し前記第1・第
2の鉄心部にそれぞれ所定のコアギャップを介して不飽
和閉磁路を形成するための橋絡鉄心部を有し、前記第1
のコイルと第2のコイルによる各磁束が商用電源の毎サ
イクル中の少なくとも一部の期間互いに相殺方向に流れ
る第3の鉄心部を具備し、この第3の鉄心部を前記所定
のコアギャップより小間隙の微小コアギャップを介して
前記橋絡鉄心部間に配設し、前記第3の鉄心部と前記橋
絡鉄心部との間の微小コアギャップ寸法を前記第1の鉄
心部と前記橋絡鉄心部との間の所定コアギャップ寸法の
40%以下とし、前記第3の鉄心部の断面積を第1の鉄
心部および第2の鉄心部の断面積の和の5%以上にし、
これら第1,第2,第3の鉄心部と橋絡鉄心部とを固定
手段により一体に固定した複合形リアクタ。
1. A first iron core portion having electromagnetic steel sheets laminated and a first coil inserted therein, a second iron core portion having electromagnetic steel sheets laminated and a second coil inserted therein, and an electromagnetic steel sheet laminated together. The first and second iron core portions each have a bridging iron core portion for forming an unsaturated closed magnetic circuit via a predetermined core gap,
A third core portion in which the magnetic fluxes of the coil and the second coil flow in mutually offset directions during at least a part of each cycle of the commercial power source, and the third core portion is separated from the predetermined core gap. The third core and the bridge are arranged between the bridging cores via a small core gap having a small gap.
The size of the minute core gap between the magnetic core and the
Of the specified core gap size between the core and the bridge core
40% or less, and the cross-sectional area of the third iron core is the first iron
5% or more of the sum of the cross-sectional areas of the core and the second iron core,
A composite reactor in which the first, second, and third iron core parts and the bridging iron core parts are integrally fixed by a fixing means.
【請求項2】 コアギャップをギャップスペーサを介在
させて確保した請求項1記載の複合形リアクタ。
2. A core gap and a gap spacer are interposed.
The composite reactor according to claim 1, which is secured by the above method.
【請求項3】 ギャップスペーサに少なくとも厚さ方向
に弾力性を有する部材を使用した請求項2記載の複合形
リアクタ。
3. The gap spacer is provided at least in the thickness direction.
The composite type according to claim 2, wherein a member having elasticity is used for
Reactor.
【請求項4】 ギャップスペーサとして絶縁シートを使
用した請求項2記載の複合形リアクタ。
4. An insulating sheet is used as the gap spacer.
The composite reactor according to claim 2, which is used.
【請求項5】 ギャップスペーサとして多孔質材料もし
くは繊維質材料を使用した請求項2記載の複合形リアク
タ。
5. If the gap spacer is a porous material
The composite type rear rivet according to claim 2, wherein the fiber material is used.
Ta.
【請求項6】 固定手段として少なくとも各鉄心部の突
き合せ部をワニス含浸で固着させた請求項1記載の複合
形リアクタ。
6. A protrusion of at least each iron core portion as a fixing means.
The composite according to claim 1, wherein the bonded portion is fixed by varnish impregnation.
Shaped reactor.
【請求項7】 固定手段として一部もしくは全体を樹脂
注型または樹脂モールドした請求項1記載の複合形リア
クタ。
7. A part or the whole of the resin is used as the fixing means.
The composite rear according to claim 1, which is cast or resin-molded.
Kuta.
【請求項8】 橋絡鉄心部を台形状とした請求項1記載
の複合形リアクタ。
8. The bridge core according to claim 1, wherein the bridge core has a trapezoidal shape.
Composite reactor.
【請求項9】 第1,第2,第3の鉄心部の磁路断面の
巾寸法または奥行き寸法のうち小さい方の寸法が積層厚
となる方向に積層した請求項1記載の複合形リアクタ。
9. The magnetic path cross section of the first, second and third cores
The smaller of the width and depth dimensions is the laminate thickness
The composite reactor according to claim 1, wherein the composite reactors are stacked in the same direction.
【請求項10】 少なくとも第1,第2,第3の鉄心部
の端面がそれぞれ橋絡 鉄心部の両端面内に収まるような
鉄心部寸法,突き合せ位置とした請求項1記載の複合形
リアクタ。
10. At least first, second, and third iron core portions
Such as the end face of the falls within both end faces of the respective bridging core portion
The composite type according to claim 1, wherein the dimensions of the core and the abutting position are set.
Reactor.
【請求項11】 第1,第2の鉄心部の鉄心コーナ部に
コの字状のコイル保護部材を介してコイルを巻回した請
求項1記載の複合形リアクタ。
11. Iron core corner portions of the first and second iron core portions
A contract in which a coil is wound through a U-shaped coil protection member.
The composite reactor according to claim 1.
【請求項12】 第1,第2の鉄心部の鉄心コーナ部に
R加工を施し、これにコイルを巻回した請求項1記載の
複合形リアクタ。
12. The core corners of the first and second cores
The R process is applied, and the coil is wound around the R process.
Complex reactor.
【請求項13】 それぞれ第1,第2の鉄心部の少なく
とも一対の対辺の両側端に、鉄心コーナ部にRを有する
コイル保護部材を取付けてコイルを巻回した請求項1記
載の複合形リアクタ。
13. A less number of first and second iron core portions, respectively.
Both have R at the corners of the iron core at both ends of the pair of opposite sides.
A coil protective member is attached to wind the coil.
Mounted combined reactor.
【請求項14】 第3の鉄心部と橋絡鉄心部2個との突
き合せ部にプロジェクション溶接を施して固定した請求
項1記載の複合形リアクタ。
14. A protrusion between a third core portion and two bridging core portions.
Claim that fixed the welded part by projection welding
Item 2. The composite reactor according to item 1.
【請求項15】 略U字状の金具により、リアクタの略
中央部を挟持させ、一方の橋絡鉄心部の外側端面に取付
けられた金属製取付板の貫通孔から前記略U字状金具の
先端2個所を突き出させ、これを貫通孔周辺で取付板に
溶接固定した請求項1記載の複合形リアクタ。
15. A reactor is provided with a substantially U-shaped metal fitting.
Hold the central part and attach it to the outer end face of one bridging core
From the through hole of the metal mounting plate,
Protruding two points on the tip and using this as a mounting plate around the through hole
The composite reactor according to claim 1, which is fixed by welding.
【請求項16】 各鉄心部により形成された不飽和磁気
回路が、2つのコイルが上下に位置するように見て略日
の字状、略目の字状、略田の字状のいずれかの形態とな
るように一体に固定した請求項1記載の複合形リアク
タ。
16. Unsaturated magnetism formed by each core
The circuit looks like the two coils are positioned one above the other
It can be in the shape of a square, a square, or a square.
2. The composite type rear aku according to claim 1, wherein
Ta.
【請求項17】 第1のコイルを挿着した電磁鋼板を積
層してなる第1の鉄心部と、第2のコイルを挿着した電
磁鋼板を積層してなる第2の鉄心部と、前記第1・第2
の鉄心部にそれぞれ所定のコアギャップを介して不飽和
磁路を形成するための電磁鋼板を積層してなる橋絡鉄心
部を有し、前記第1のコイルと第2のコイルによる各磁
束が商用電源の毎サイクル中の少なくとも一部の期間互
いに相殺方向に流れる第3の鉄心部を具備し、前記所定
のコアギャップより小間隙の微小コアギャップを介して
前記橋絡鉄心部間に前記第3の鉄心部を配設することに
よって略日の字状,目の字状または田の字状の磁路を形
成し、インダクタンス値などのリアクタ特性を測定しな
がら、前記第3の鉄心部と前記橋絡鉄心部との間の微小
コアギャップ寸法を前記第1の鉄心部と前記橋絡鉄心部
との間の所定コアギャップ寸法の40%以下の範囲で橋
絡鉄心部を押圧してコアギャップ寸法である ギャップス
ペーサの厚さを調節し、所要の特性が得られた時の押圧
力を維持したままで橋絡鉄心部を固定手段で固定した複
合形リアクタの製造方法。
17. A magnetic steel sheet on which a first coil is attached is laminated.
A layered first core and a second coil are attached to the electric core.
A second iron core portion formed by laminating magnetic steel sheets, and the first and second
Unsaturated through the specified core gap in the iron core
Bridging iron core formed by laminating electromagnetic steel sheets for forming a magnetic path
Each of the magnets by the first coil and the second coil.
The bundles will remain at each other for at least some period of each cycle of utility power.
A third iron core portion that flows in an offset direction,
Through a small core gap that is smaller than the core gap of
Arranging the third core portion between the bridging core portions
Therefore, form a magnetic path in the shape of a day, the shape of an eye, or the shape of a square.
And do not measure the reactor characteristics such as inductance value.
And the minute gap between the third core and the bridging core.
The core gap size is set to the first core portion and the bridging core portion.
Bridge within 40% of the specified core gap size between
The core gap size is pressed by pressing the magnetic core .
Adjust the thickness of the pacer and press when the desired characteristics are obtained
While maintaining the force, the bridge core is fixed by the fixing means.
Manufacturing method of combined reactor.
【請求項18】 請求項1記載の複合形リアクタを用
い、単相交流を整流して直流電源を形成する電源装置で
あって、全波整流用ダイオードブリッジと平滑用コンデ
ンサの間に複合形リアクタの第1のコイルとダイオード
の直列回路と、前記複合形リアクタの第2のコイルとコ
ンデンサの直列回路とを並列接続した電源装置。
18. A composite reactor according to claim 1 is used.
A power supply unit that rectifies single-phase AC to form a DC power supply
There is a diode bridge for full-wave rectification and a capacitor for smoothing.
First coil and diode of combined reactor between sensors
Of the series circuit and the second coil and the coil of the composite reactor.
A power supply unit that is connected in parallel with a capacitor series circuit.
【請求項19】 請求項1記載の複合形リアクタを用
い、単相交流を整流して直流電源を形成する電源装置で
あって、全波整流用ダイオードブリッジの後段で、複合
形リアクタの第1のコイルとダイオードの平滑用コンデ
ンサを含む直列回路と、前記複合形リアクタの第2のコ
イルとコンデンサの直列回路とを並列接続した電源装
置。
19. A composite reactor according to claim 1 is used.
A power supply unit that rectifies single-phase AC to form a DC power supply
There is a composite in the latter stage of the diode bridge for full wave rectification.
-Type reactor first coil and diode smoothing capacitor
And a second circuit of the composite reactor.
Power supply device in which a capacitor and a series circuit of capacitors are connected in parallel.
Place
JP00667498A 1998-01-16 1998-01-16 Composite reactor, manufacturing method thereof and power supply device Expired - Fee Related JP3379419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00667498A JP3379419B2 (en) 1998-01-16 1998-01-16 Composite reactor, manufacturing method thereof and power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00667498A JP3379419B2 (en) 1998-01-16 1998-01-16 Composite reactor, manufacturing method thereof and power supply device

Publications (2)

Publication Number Publication Date
JPH11204355A JPH11204355A (en) 1999-07-30
JP3379419B2 true JP3379419B2 (en) 2003-02-24

Family

ID=11644927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00667498A Expired - Fee Related JP3379419B2 (en) 1998-01-16 1998-01-16 Composite reactor, manufacturing method thereof and power supply device

Country Status (1)

Country Link
JP (1) JP3379419B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071584A (en) * 2002-06-10 2004-03-04 Tabuchi Electric Co Ltd Electromagnetic induction apparatus
FI115805B (en) 2003-09-23 2005-07-15 Abb Oy The reactor arrangement
JP4219909B2 (en) * 2005-03-31 2009-02-04 Tdk株式会社 Filter circuit and power supply device
JP4482477B2 (en) * 2005-04-13 2010-06-16 株式会社タムラ製作所 Combined reactor winding structure
US7974069B2 (en) * 2008-10-29 2011-07-05 General Electric Company Inductive and capacitive components integration structure
JP5062439B2 (en) * 2009-04-28 2012-10-31 Tdk株式会社 PFC choke coil for interleaving
CN101989485A (en) * 2009-07-31 2011-03-23 株式会社田村制作所 Inductor
CN102340145A (en) * 2011-09-23 2012-02-01 丹东欣泰电气股份有限公司 Magnetically controlled shunt reactor
PL222458B1 (en) 2012-05-18 2016-07-29 Dtw Spółka Z Ograniczoną Odpowiedzialnością Reluctance composite module
JP6124110B2 (en) * 2012-10-10 2017-05-10 日立金属株式会社 Composite reactor for multi-phase converter and multi-phase converter using the same
EP2782105B1 (en) 2013-03-20 2018-03-21 Schneider Toshiba Inverter Europe SAS Differential mode and common mode choke
JP2015065346A (en) * 2013-09-25 2015-04-09 トヨタ自動車株式会社 Reactor device and power conversion device
CN104021920B (en) * 2014-05-27 2016-09-28 华为技术有限公司 Coupling inductance and power inverter
CN104319075B (en) * 2014-09-19 2017-05-24 南方电网科学研究院有限责任公司 Connecting reactor for multi-level voltage source transverter
JP2016111307A (en) * 2014-12-10 2016-06-20 株式会社デンソー Common choke coil
CN105097222A (en) * 2015-07-22 2015-11-25 上海正泰电源系统有限公司 Magnetic coupling inductor of interleaving parallel converter and magnetic core
JP7391776B2 (en) * 2020-06-17 2023-12-05 愛三工業株式会社 reactor
DE102022130155A1 (en) 2022-11-15 2024-05-16 Valeo Eautomotive Germany Gmbh Magnetic core device

Also Published As

Publication number Publication date
JPH11204355A (en) 1999-07-30

Similar Documents

Publication Publication Date Title
JP3379419B2 (en) Composite reactor, manufacturing method thereof and power supply device
EP2775488A1 (en) Reactor, transformer, and power conversion apparatus using same
US20120229118A1 (en) Reactor and power converter using the same
US6480088B2 (en) Common mode choke coil
JP6124110B2 (en) Composite reactor for multi-phase converter and multi-phase converter using the same
US6617950B2 (en) Common mode/differential mode choke
US20160344195A1 (en) Wireless power transfer apparatus using enclosures with enhanced magnetic features
JP7126210B2 (en) reactor, power circuit
JP6048789B2 (en) Reactor and power supply
JP3282183B2 (en) choke coil
JPH0722258A (en) Reactor and manufacture thereof
EP2012327B1 (en) Filtering choke arrangement
JP2007123596A (en) Dc reactor and inverter device
JP2013026492A (en) Reactor and power conditioner incorporating the same
JP6050024B2 (en) Reactor
JPH0613120U (en) Noise prevention choke coil
JPH07245222A (en) Reactor and transformer
JP3534011B2 (en) choke coil
JP2004288882A (en) Noise filter
JP2005183885A (en) Reactor
JP2016157890A (en) Coil component
CN218730291U (en) Magnetic integrated element and multiphase interleaved LLC resonant converter
JP7440280B2 (en) Noise filter
CN114334406B (en) Magnetic integrated structure and transducer
JP2001230134A (en) Outer core reactor and assembly method of outer core reactor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees