JP2001230134A - Outer core reactor and assembly method of outer core reactor - Google Patents

Outer core reactor and assembly method of outer core reactor

Info

Publication number
JP2001230134A
JP2001230134A JP2000038502A JP2000038502A JP2001230134A JP 2001230134 A JP2001230134 A JP 2001230134A JP 2000038502 A JP2000038502 A JP 2000038502A JP 2000038502 A JP2000038502 A JP 2000038502A JP 2001230134 A JP2001230134 A JP 2001230134A
Authority
JP
Japan
Prior art keywords
core
type
laminate
reactor
iron core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000038502A
Other languages
Japanese (ja)
Inventor
Masahiro Yamaguchi
雅博 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DENKI KEIKI CO Ltd
Denki Keiki Kk
Original Assignee
DENKI KEIKI CO Ltd
Denki Keiki Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DENKI KEIKI CO Ltd, Denki Keiki Kk filed Critical DENKI KEIKI CO Ltd
Priority to JP2000038502A priority Critical patent/JP2001230134A/en
Publication of JP2001230134A publication Critical patent/JP2001230134A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To simplify the assembly of an iron core for an outer core reactor to contrive reduction in the cost. SOLUTION: An iron core for an outer core reactor is provided with an iron core 1 consisting of E core laminated materials 10a to 10c and an I core laminated material 20 and three coils 2a to 2c which are respectively wound inside the laminated materials 10a to 10c. The most characteristic feature of the iron core is a point that the iron core 1 is formed into a structure that the laminated materials 10a to 10c are arranged in the order in such the direction to block the open side surfaces 15a to 15c of the laminated materials 10a to 10c and at the same time, the laminated materials 10a to 10c are assembled with the laminated material 20 in such a way that the open side surface 15a of the outermost E core laminated material 10a is blocked by the I core laminated material 20.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は複数のコイルが鉄心
の内側に一列に並べて巻回された構造の外鉄型リアクト
ル及び同リアクトル用鉄心の組立方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shell-type reactor having a structure in which a plurality of coils are wound in a line inside an iron core and a method of assembling the core for the reactor.

【0002】[0002]

【従来の技術】図4は従来の3相用外鉄型リアクトルの
概略構造を示している。同リアクトルにはI型コア積層
体からなる鉄心が使用されていることが多い。I型コア
積層体は珪素鋼板等のI型コアを積層したもので、複数
種のI型コア積層体を組み合わせることにより同図に示
すような構造の鉄心が組み立てられていた。
2. Description of the Related Art FIG. 4 shows a schematic structure of a conventional three-phase shell-type reactor. An iron core made of an I-shaped core laminate is often used for the reactor. The I-type core laminate is formed by laminating I-type cores such as silicon steel sheets, and an iron core having a structure as shown in FIG. 1 is assembled by combining a plurality of types of I-type core laminates.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来例による場合、コア積層体を組み合わせる点数が多い
ことから、鉄心の組立作業が非常に面倒であり、この点
で低コスト化を図ることが困難という欠点がある。それ
故、3相用外鉄型リアクトルの代わりに、図5に示すよ
うに3台の単相用外鉄型リアクトルが使用されたり、図
6に示すように3相用内鉄型リアクトルが使用されてい
る。
However, in the case of the above-mentioned conventional example, since there are many points to combine the core laminates, the assembling work of the iron core is very troublesome, and it is difficult to reduce the cost in this respect. There is a disadvantage that. Therefore, instead of the three-phase core-type reactor, three single-phase core-type reactors are used as shown in FIG. 5 or three-phase core-type reactors are used as shown in FIG. Have been.

【0004】ところが、3台の単相用外鉄型リアクトル
の場合、全体として大型になるばかりか、総重量が増加
するという欠点がある。一方、3相用内鉄型リアクトル
の場合、第3調波等の零相電流により作り出される磁束
の帰路を有しないため、リアクタンスが低下するという
欠点がある。要するに、このような欠点を内在したとし
ても、価格の方が重要視されることから、現実問題とし
て3相用外鉄型リアクトルが使用されることはなく、単
相用外鉄型リアクトルや内鉄型リアクトルが使用されて
いた。
However, in the case of three single-phase shell-type reactors, there is a disadvantage that not only the overall size is increased but also the total weight is increased. On the other hand, in the case of the three-phase core iron type reactor, there is no return path of the magnetic flux generated by the zero-phase current such as the third harmonic, so that there is a disadvantage that the reactance is reduced. In short, even if such disadvantages are inherent, since the price is more important, the three-phase shell-type reactor is not used as a practical problem, and the single-phase shell-type reactor and the inner phase are not used. Iron-type reactors were used.

【0005】本発明は上記した背景の下で創作されたも
ので、その目的とするところは、低コスト化を図ること
ができる外鉄型リアクトル及び同リアクトル用鉄心の組
立方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above background, and an object of the present invention is to provide a method of assembling a shell-type reactor and an iron core for the reactor, which can reduce the cost. is there.

【0006】[0006]

【課題を解決するための手段】本発明の外鉄型リアクト
ルは、複数のE型コア積層体と1つのI型コア積層体か
らなる鉄心と、前記E型コア積層体の内側に各々巻回さ
れた複数のコイルとを備えており、前記鉄心は、前記E
型コア積層体をその磁路開放側端面を塞ぐような方向に
順次並べるとともに最外のE型コア積層体の磁路開放側
端面を前記I型コア積層体で塞ぐように前記E型コア積
層体と前記I型コア積層体とが組み合わされた構造とな
っていることを特徴としている。
A shell-type reactor according to the present invention comprises an iron core comprising a plurality of E-type core laminates and one I-type core laminate, and a core wound inside the E-type core laminate. And a plurality of coils, wherein the iron core is
The E-shaped core laminates are sequentially arranged in such a direction as to block the magnetic path open side end face thereof, and the magnetic path open side end face of the outermost E-type core laminate is closed with the I-type core laminate. And a structure in which the body and the I-shaped core laminate are combined.

【0007】このような構成による場合、鉄心の構成部
材としてE型コア積層体が使用されていることから、鉄
心を作製するに当たり、従来例による場合に比べて、コ
ア積層体を組み合わせる点数が少なくなる。
In such a configuration, since the E-shaped core laminate is used as a constituent member of the iron core, the number of combinations of the core laminate is smaller in manufacturing the iron core than in the conventional example. Become.

【0008】本発明の外鉄型リアクトル用鉄心の組立方
法は、複数のE型コア積層体をその磁路開放側端面を塞
ぐような方向に順次並べるとともに最外のE型コア積層
体の磁路開放側端面をI型コア積層体により塞ぎ、この
ようにして前記E型コア積層体と前記I型コア積層体と
を組み合わせ、外鉄型リアクトル用の鉄心を組み立てる
ようにしている。
In the method for assembling a core for a core-type reactor according to the present invention, a plurality of E-shaped core laminates are sequentially arranged in a direction so as to cover an end face on the magnetic path open side, and a magnetic material of the outermost E-shaped core laminate is formed. The road opening side end face is closed by an I-type core laminate, and thus the E-type core laminate and the I-type core laminate are combined to assemble an iron core for a shell-type reactor.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。図1は3相用外鉄型リアクトルの
内部構造を説明するための模式図、図2(A)は同リア
クトルの鉄心を構成するE型コア積層体の斜視図、
(B)は同鉄心を構成するI型コア積層体の斜視図、図
3(A)は同リアクトルの正面図、(B)はその側面図
である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic view for explaining the internal structure of a three-phase shell-type reactor, FIG. 2A is a perspective view of an E-type core laminate constituting an iron core of the reactor,
FIG. 3B is a perspective view of an I-type core laminate constituting the iron core, FIG. 3A is a front view of the reactor, and FIG. 3B is a side view thereof.

【0010】ここに掲げる外鉄型リアクトルは主として
無効電力を吸収するのに利用される3相用交流リアクト
ルであり、図1に示すように3組のE型コア積層体10
a、10b、10cと1組のI型コア積層体20からな
る鉄心1(外鉄型リアクトル用鉄心に相当する)と、E
型コア積層体10a〜10cの内側に各々巻回された3
個のコイル2a、2b、2cと、鉄心1におけるE型コ
ア積層体10a〜10cとI型コア積層体20との位置
関係を図3に示すようにボルト4を用いて保持するため
のフレーム3、3、3、3とを備えている。
The shell-type reactor mentioned here is a three-phase AC reactor mainly used to absorb reactive power, and as shown in FIG.
a, an iron core 1 (corresponding to an outer iron-type reactor iron core) composed of a set of I-type core laminates 20, 10 b and 10 c;
3 wound inside each of the mold core laminates 10a to 10c
As shown in FIG. 3, a frame 3 for holding the coils 2a, 2b, and 2c and the positional relationship between the E-type core laminates 10a to 10c and the I-type core laminate 20 in the iron core 1 by using bolts 4. , 3, 3, and 3.

【0011】E型コア積層体10aは珪素鋼板等をE字
状に打ち抜いたE型コアを複数枚重ね合わせたものであ
り、図2(A)に示すように1つのベース部11aと、
3つの枝部12a、13a、14aから構成されてい
る。ベース部11aの両端部にはボルト4(図3参照)
が通される穴111a、111aが各々形成されてい
る。枝部13aには図1に示すようにコイル2aが巻回
されている。
The E-shaped core laminate 10a is formed by laminating a plurality of E-shaped cores formed by punching a silicon steel plate or the like in an E-shape. As shown in FIG.
It is composed of three branches 12a, 13a and 14a. Bolts 4 at both ends of base portion 11a (see FIG. 3)
Holes 111a, 111a through which are passed are formed, respectively. The coil 2a is wound around the branch part 13a as shown in FIG.

【0012】E型コア積層体10aの外面のうち枝部1
2a〜14aの先端側に当たる端面は、コイル2aによ
り生成される磁束が通る磁路の開放面であることから、
ここでは磁路開放側端面15aと称している。E型コア
積層体10b〜10cについても全く同様である。
The branch 1 on the outer surface of the E-shaped core laminate 10a
Since the end surfaces corresponding to the distal ends of 2a to 14a are open surfaces of the magnetic path through which the magnetic flux generated by the coil 2a passes,
Here, it is referred to as the magnetic path open side end face 15a. The same applies to the E-type core laminates 10b to 10c.

【0013】I型コア積層体20は珪素鋼板等をI字状
に打ち抜いたI型コアを複数枚重ね合わせたものであ
る。図2(B)に示すような形状となっており、その両
端部にはボルト4(図3参照)が通される穴21、21
が各々形成されている。
The I-type core laminate 20 is formed by laminating a plurality of I-type cores obtained by stamping a silicon steel plate or the like into an I-shape. 2 (B), and holes 21, 21 through which bolts 4 (see FIG. 3) are inserted at both ends.
Are respectively formed.

【0014】本案リアクトルにおいて最も特徴的である
のは鉄心1の構造である。即ち、鉄心1は、図1に示す
ようにE型コア積層体10a〜10cをその磁路開放側
端面15b、15cを塞ぐような方向に順次並べるとと
もに最外のE型コア積層体10aの磁路開放側端面15
aをI型コア積層体20で塞ぐようにE型コア積層体1
0a〜10cとI型コア積層体20とが組み合わされた
構造となっている。ここでは図3に示すようにE型コア
積層体10c、10b、10a、I型コア積層体20の
順番に下から積み上げられて、縦長となっている。
The most distinctive feature of the reactor of the present invention is the structure of the iron core 1. That is, as shown in FIG. 1, the iron core 1 arranges the E-shaped core laminates 10a to 10c sequentially in a direction so as to close the magnetic path open side end surfaces 15b and 15c, and also forms the magnetic core of the outermost E-shaped core laminate 10a. Road opening side end surface 15
a so that a is closed by the I-type core laminate 20.
It has a structure in which Oa to 10c and the I-type core laminate 20 are combined. Here, as shown in FIG. 3, the E-type core laminates 10c, 10b, 10a and the I-type core laminate 20 are stacked in this order from the bottom, and are vertically elongated.

【0015】コイル2aはE型コア積層体10aの枝部
13aに巻回された銅線等である。図3に示すようにコ
イル2aの外面はレア等の絶縁膜21aで覆われてお
り、コイル2aの両端に取り付けられた接続端子22
a、22aが絶縁膜21aから外に出ている。コイル2
b、2cについても全く同様である。
The coil 2a is a copper wire or the like wound around the branch portion 13a of the E-shaped core laminate 10a. As shown in FIG. 3, the outer surface of the coil 2a is covered with an insulating film 21a such as a rare material, and connection terminals 22 attached to both ends of the coil 2a are provided.
a and 22a are outside the insulating film 21a. Coil 2
The same applies to b and 2c.

【0016】フレーム3は両側を外側に折り曲げた鋼鉄
製の板材であり、これにはボルト4が通される図外の穴
が各々形成されている。
The frame 3 is a steel plate which is bent outward on both sides, and has holes (not shown) through which bolts 4 are passed.

【0017】以上のように構成された外鉄型リアクトル
の製造方法について説明し、併せて外鉄型リアクトル用
鉄心の組立方法について説明する。
A description will be given of a method of manufacturing the shell-type reactor configured as described above, and also a method of assembling the core for the shell-type reactor.

【0018】まず、E型コア積層体10a〜10cの枝
部12a〜12cにコイル2a〜2cを各々巻回してお
く。そしてE型コア積層体10cの磁路開放側端面15
cにE型コア積層体10bを置き、その磁路開放側端面
15bにE型コア積層体10aを置き、その磁路開放側
端面15aにI型コア積層体20を置く。要するに、E
型コア積層体10c、10b、10aをその磁路開放側
端面15c、15bを塞ぐような方向に順次並べるとと
もに最外(最上)のE型コア積層体10aの磁路開放側
端面15aをI型コア積層体20で塞ぎ、これによりE
型コア積層体10a〜10cとI型コア積層体20とを
組み合わせるようにしている。
First, coils 2a to 2c are wound around branches 12a to 12c of E-shaped core laminates 10a to 10c, respectively. Then, the magnetic path open side end face 15 of the E-shaped core laminate 10c
The E-shaped core laminated body 10b is placed on c, the E-shaped core laminated body 10a is placed on the magnetic path open side end face 15b, and the I-shaped core laminated body 20 is placed on the magnetic path open side end face 15a. In short, E
The core laminations 10c, 10b, 10a are sequentially arranged in such a direction as to close the magnetic path opening side end faces 15c, 15b, and the magnetic path opening side end 15a of the outermost (uppermost) E-type core lamination 10a is I-shaped. It is closed with the core laminate 20, whereby E
The die core laminates 10a to 10c and the I-type core laminate 20 are combined.

【0019】このような鉄心1の両面の両側にフレーム
40を当てて、合計8本のボルト4を用いてフレーム4
を鉄心1に取り付けると、E型コア積層体10a〜10
cとI型コア積層体20との位置関係が保持され、鉄心
1が最終的に組み立てられる。本案の外鉄型リアクトル
は上記のような過程を経て製造される。
The frame 40 is applied to both sides of both sides of the iron core 1, and the frame 4 is fixed by using a total of eight bolts 4.
Are attached to the iron core 1, the E-shaped core laminates 10a to 10a
The positional relationship between c and the I-shaped core laminate 20 is maintained, and the iron core 1 is finally assembled. The shell-type reactor of the present invention is manufactured through the above process.

【0020】図4に示す従来の3相用外鉄型リアクトル
による場合、I型コア積層体を組み合わせる点数が多い
ことから、鉄心の組立作業が非常に面倒であったが、本
案による場合、鉄心1を組み立てるに当たり、E型コア
積層体10a〜10cとI型コア積層体20とを組み合
わせ、組み合わせる点数が少ないことから、その組立作
業が非常に楽になる。この点で低コスト化を図ることが
可能となる。また、コア積層体を組み合わせる点数が少
なくなった分、全体の磁気抵抗も小さくなり、低損失に
なるというメリットもある。
In the case of the conventional three-phase shell-type reactor shown in FIG. 4, the assembly work of the iron core is very troublesome because of the large number of points to be combined with the I-type core laminated body. In assembling 1, the E-type core laminates 10 a to 10 c and the I-type core laminate 20 are combined and the number of combinations is small, so that the assembling work becomes very easy. In this respect, cost reduction can be achieved. In addition, as the number of points for combining the core laminates is reduced, there is an advantage that the overall magnetic resistance is reduced and the loss is reduced.

【0021】また、図5に示す3台の単相用外鉄型リア
クトルと比較すると、本案の場合、鉄心1だけで3相の
磁気回路が構成されることから、小さな鉄心であっても
大きなリアクタンスが得られ、これに伴って総重量が軽
くなり、全体の寸法も小さくなった。具体的には、3台
の単相用外鉄型リアクトルを積み上げた場合と比較する
と、高さが約15パーセント低くなり、重量を約15パ
ーセント軽くすることが可能になった。
Compared with the three single-phase core-type reactors shown in FIG. 5, in the case of the present invention, since a three-phase magnetic circuit is constituted only by the iron core 1, even a small iron core is large. Reactance was obtained, resulting in a reduction in total weight and a reduction in overall dimensions. Specifically, as compared with the case where three single-phase shell-type reactors are stacked, the height is reduced by about 15%, and the weight can be reduced by about 15%.

【0022】さらに、鉄心1の内側に各々巻回されたコ
イル2a〜2cが一列に並べて各々配置されている以
上、コイル2a〜2cにより得られる各相の磁界は同方
向となる。よって、コイル2a〜2cに流れる第3調波
等の零相電流により作り出される磁束は共通の磁路を有
することになるため、3相用内鉄型リアクトルとは異な
りリアクタンスの低下という問題も生じない。
Furthermore, since the coils 2a to 2c wound around the inside of the iron core 1 are arranged in a line, the magnetic fields of the respective phases obtained by the coils 2a to 2c are in the same direction. Therefore, the magnetic flux generated by the zero-phase current, such as the third harmonic, flowing through the coils 2a to 2c has a common magnetic path. Absent.

【0023】加えて、コイル2a〜2cの大部分が鉄心
1で覆われるため、設置箇所の状況に応じて、横配置に
することも縦配置にすることも可能となり、非常に好都
合である。のみならず、鉄心1の大部分が露出している
ことから、放熱効率が高く、コイル2a〜2cに高調波
や高周波等の電流が流れても温度が上昇し難い。
In addition, since most of the coils 2a to 2c are covered with the iron core 1, it can be arranged horizontally or vertically according to the situation of the installation location, which is very convenient. In addition, since most of the iron core 1 is exposed, the heat radiation efficiency is high, and the temperature does not easily rise even when a current such as a harmonic or a high frequency flows through the coils 2a to 2c.

【0024】上記したように本案の外鉄型リアクトルに
よる場合、低コスト化、小型化及び高性能化を図ること
が可能となり、従来例による場合に比べて、製品として
の価値が高くなる。
As described above, in the case of the shell-type reactor of the present invention, it is possible to reduce the cost, reduce the size, and improve the performance, and the value as a product is higher than in the case of the conventional example.

【0025】なお、本発明の外鉄型リアクトルは上記実
施の形態に限定されず、例えば、3相以外の多相用電力
リアクトルにも適用可能である。回路の用途によっては
コイルの数も2個にしてもかまわない。また、閉路鉄心
型に限定されず、空隙入り鉄心型であっても当然に適用
可能である。更に、鉄心におけるE型コア積層体とI型
コア積層体との間をろう付け等により互いに固定するよ
うな形態もとってもかまわない。
The shell-type reactor of the present invention is not limited to the above-described embodiment, but can be applied to, for example, a multi-phase power reactor other than three-phase. Depending on the use of the circuit, the number of coils may be two. In addition, the present invention is not limited to the closed core type, and may be applied to a voided iron type. Further, the E-type core laminate and the I-type core laminate in the iron core may be fixed to each other by brazing or the like.

【0026】[0026]

【発明の効果】以上、本発明に係る外鉄型リアクトル及
び同リアクトル用鉄心の組立方法による場合、鉄心の構
成部材としてI型コア積層体に加えてE型コア積層体が
使用されていることから、鉄心を組み立てるに当たり、
従来例による場合に比べて、コア積層体を組み合わせる
点数が少なくなる。これに伴って、鉄心の組立作業が非
常に簡単となり、この点で低コスト化を図ることが可能
となる。また、コア積層体を組み合わせる点数が少なく
なった分、全体の磁気抵抗が小さくなり、低損失になる
というメリットもある。
As described above, according to the method for assembling the shell-type reactor and the core for the reactor according to the present invention, the E-type core laminate is used as a component of the iron core in addition to the I-type core laminate. From when assembling the iron core,
Compared with the case of the conventional example, the number of points for combining the core laminate is reduced. Along with this, the assembling work of the iron core becomes very simple, and it is possible to reduce the cost in this respect. In addition, there is an advantage that the total magnetic resistance is reduced and the loss is reduced because the number of combined core laminates is reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態を説明するための図であっ
て、3相用外鉄型リアクトルの内部構造を説明するため
の模式図である。
FIG. 1 is a view for explaining an embodiment of the present invention, and is a schematic view for explaining an internal structure of a three-phase shell-type reactor.

【図2】(A)は同リアクトルの鉄心を構成するE型コ
ア積層体の斜視図、(B)は同鉄心を構成するI型コア
積層体の斜視図である。
FIG. 2 (A) is a perspective view of an E-type core laminate constituting the iron core of the reactor, and FIG. 2 (B) is a perspective view of an I-type core laminate constituting the same iron core.

【図3】(A)は同リアクトルの正面図、(B)はその
側面図である。
3A is a front view of the reactor, and FIG. 3B is a side view thereof.

【図4】従来技術を説明するための図であって、3相用
外鉄型リアクトルの内部構造を説明するための模式図で
ある。
FIG. 4 is a diagram for explaining a conventional technique, and is a schematic diagram for explaining an internal structure of a three-phase shell-type reactor.

【図5】従来技術を説明するための図であって、3相用
外鉄型リアクトルの代わりに、3台の単相用外鉄型リア
クトルが使用される例を示す模式図である。
FIG. 5 is a diagram for explaining the prior art, and is a schematic diagram showing an example in which three single-phase core-type reactors are used instead of the three-phase core-type reactor.

【図6】従来技術を説明するための図であって、3相用
内鉄型リアクトルの内部構造を説明するための模式図で
ある。
FIG. 6 is a diagram for explaining a conventional technique, and is a schematic diagram for explaining an internal structure of a three-phase core iron reactor.

【符号の説明】[Explanation of symbols]

1 鉄心 10a〜10c E型コア積層体 20 I型コア積層体 2a〜2c コイル DESCRIPTION OF SYMBOLS 1 Iron core 10a-10c E-type core laminated body 20 I-type core laminated body 2a-2c Coil

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数のE型コア積層体と1つのI型コア
積層体からなる鉄心と、前記E型コア積層体の内側に各
々巻回された複数のコイルとを備えており、前記鉄心
は、前記E型コア積層体をその磁路開放側端面を塞ぐよ
うな方向に順次並べるとともに最外のE型コア積層体の
磁路開放側端面を前記I型コア積層体で塞ぐように前記
E型コア積層体と前記I型コア積層体とが組み合わされ
た構造となっていることを特徴とする外鉄型リアクト
ル。
1. An iron core comprising: a plurality of E-shaped core laminates and one I-shaped core laminate; and a plurality of coils wound inside the E-shaped core laminate, respectively. Is arranged so that the E-shaped core laminate is sequentially arranged in such a direction as to close the magnetic path open side end face, and the magnetic path open side end face of the outermost E-type core laminate is closed with the I-type core laminate. An outer iron-type reactor having a structure in which an E-type core laminate and the I-type core laminate are combined.
【請求項2】 複数のE型コア積層体をその磁路開放側
端面を塞ぐような方向に順次並べるとともに最外のE型
コア積層体の磁路開放側端面をI型コア積層体により塞
ぎ、このようにして前記E型コア積層体と前記I型コア
積層体とを組み合わせて、外鉄型リアクトル用の鉄心を
組み立てるようにしたことを特徴とする外鉄型リアクト
ル用鉄心の組立方法。
2. A plurality of E-shaped core laminates are sequentially arranged in such a direction as to close the magnetic path open side end faces, and the magnetic path open side end faces of the outermost E-type core laminate are closed by an I-type core laminate. A method of assembling a core for a shell-type reactor, wherein the core for the shell-type reactor is assembled by combining the E-type core stack and the I-type core stack in this manner.
JP2000038502A 2000-02-16 2000-02-16 Outer core reactor and assembly method of outer core reactor Pending JP2001230134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000038502A JP2001230134A (en) 2000-02-16 2000-02-16 Outer core reactor and assembly method of outer core reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000038502A JP2001230134A (en) 2000-02-16 2000-02-16 Outer core reactor and assembly method of outer core reactor

Publications (1)

Publication Number Publication Date
JP2001230134A true JP2001230134A (en) 2001-08-24

Family

ID=18562228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000038502A Pending JP2001230134A (en) 2000-02-16 2000-02-16 Outer core reactor and assembly method of outer core reactor

Country Status (1)

Country Link
JP (1) JP2001230134A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1439554A1 (en) * 2003-01-17 2004-07-21 Schaffner Emv Ag Inductive component
JP2015521384A (en) * 2012-05-18 2015-07-27 エスエムエー ソーラー テクノロジー アーゲー Integrated inductor device
JP2019087557A (en) * 2017-11-01 2019-06-06 トヨタ自動車株式会社 Reactor
JP2019140388A (en) * 2018-02-09 2019-08-22 台達電子企業管理(上海)有限公司 Magnetic component, converter and inverter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1439554A1 (en) * 2003-01-17 2004-07-21 Schaffner Emv Ag Inductive component
JP2015521384A (en) * 2012-05-18 2015-07-27 エスエムエー ソーラー テクノロジー アーゲー Integrated inductor device
US10121577B2 (en) 2012-05-18 2018-11-06 Sma Solar Technology Ag Integral inductor arrangement
JP2019087557A (en) * 2017-11-01 2019-06-06 トヨタ自動車株式会社 Reactor
JP2019140388A (en) * 2018-02-09 2019-08-22 台達電子企業管理(上海)有限公司 Magnetic component, converter and inverter

Similar Documents

Publication Publication Date Title
US6750749B2 (en) Amorphous metal core transformer
TWI529756B (en) Magnetic core
US8134443B2 (en) Extended E matrix integrated magnetics (MIM) core
JP6333525B2 (en) Linear electromagnetic device
KR101853795B1 (en) Low loss and reduced-weight type transformer and manufacturing method thereof
JP2007535176A (en) Magnetic core for static electromagnetic devices
JPH04212403A (en) Magnetic core sheet
JPS62222614A (en) Composite core of silicon steel-amorphous steel for transformer
US4012706A (en) Sheet-wound transformer coils
US6100783A (en) Energy efficient hybrid core
US5146198A (en) Segmented core inductor
JP3200723U (en) Rapidly assembled transformer and its asymmetric two-part wound core structure
JP2001230134A (en) Outer core reactor and assembly method of outer core reactor
CN116598102A (en) Inductor and electronic device using laminated tape
KR101853794B1 (en) High efficiency and compact type transformer and manufacturing method thereof
JP4722373B2 (en) Welding transformer
JP2016157890A (en) Coil component
RU2144229C1 (en) Three-phase balanced transformer
JP4075316B2 (en) Thermal relay with CT
JP2004349617A (en) Dust core for reactor
JP3758904B2 (en) Transformer
JP2003347127A (en) Shell type insulating transformer
CA1078937A (en) Sheet-wound transformer coils
CN117275894A (en) High-current thin type magnetic integrated inductor
JPH10256055A (en) Low-voltage large-current transformer