JP4075316B2 - Thermal relay with CT - Google Patents

Thermal relay with CT Download PDF

Info

Publication number
JP4075316B2
JP4075316B2 JP2001099540A JP2001099540A JP4075316B2 JP 4075316 B2 JP4075316 B2 JP 4075316B2 JP 2001099540 A JP2001099540 A JP 2001099540A JP 2001099540 A JP2001099540 A JP 2001099540A JP 4075316 B2 JP4075316 B2 JP 4075316B2
Authority
JP
Japan
Prior art keywords
thermal relay
iron core
laminated
thickness
laminated iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001099540A
Other languages
Japanese (ja)
Other versions
JP2002298716A (en
Inventor
文浩 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric FA Components and Systems Co Ltd
Original Assignee
Fuji Electric FA Components and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric FA Components and Systems Co Ltd filed Critical Fuji Electric FA Components and Systems Co Ltd
Priority to JP2001099540A priority Critical patent/JP4075316B2/en
Priority to CN 02108527 priority patent/CN1241225C/en
Publication of JP2002298716A publication Critical patent/JP2002298716A/en
Application granted granted Critical
Publication of JP4075316B2 publication Critical patent/JP4075316B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Transformers For Measuring Instruments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、サーマルリレーにCT(変流器)を組合せ、該CTの二次出力をサーマルリレーのヒータエレメントに通電して動作させるようにした大電流回路に適用するCT付きサーマルリレーに関する。
【0002】
【従来の技術】
頭記したCT付きサーマルリレーとして、そのCTの積層鉄心を二分割構造の絶縁ケースで左右から挟持固定するようにして部品点数の削減化を図った構成のものが、本発明の同一出願人より特開2000−156145号として先に提案されており、その組立構造を図3〜図5に示す。
【0003】
各図において、1はCT、2はCT1に搭載して外付けしたサーマルリレーであり、CT1は磁性鋼板3aを多数枚積層した額縁形の積層鉄心3と、該鉄心を貫通する一次導体4と、巻枠5aに巻装して前記鉄心3に嵌挿した二次巻線5と、絶縁ケース(熱可塑性樹脂の成形品)6との組立体からなり、二次巻線5の引出リード線5bをサーマルリレー2に内蔵したヒータエレメント(図示せず)に接続してCTの二次出力でサーマルリレー2を動作させるようにしている。
【0004】
また、積層鉄心3を構成する磁性鋼板3aの数カ所には、図5で示すように各枚ごとにエンボス3bを形成しておき、このエンボス3bを重ね合わせて磁性鋼板3aを積層するようにしている。
一方、絶縁ケース6は片面が開放した分割ケース6aと6bを左右に重ね合わせてボルト7で締結した二分割構造になり、かつ各分割ケース6a,6bの内部には前記積層鉄心3を挟持するリブ片6cが成形されており、CT1の組立状態では、図示のようにリブ片6cを介して積層鉄心3を左右から挟持して定位置に固定するようにしている。
【0005】
なお、かかる構成になるCT付きサーマルリレーの動作原理は周知であり、ここではその説明を省略する。
【0006】
【発明が解決しようとする課題】
前記したCT付きサーマルリレーは、定格電流が大きい負荷回路への適応を対象としており、その動作特性としてCTに搭載したサーマルリレー自身の動作特性に比して長い動作時間が要求されることが多い。
そこで、このような遅動動作特性の要求(「標準形」に対して「遅動形」と呼ぶ)に対処するために、従来のCT付きサーマルリレーでは、定格電流の範囲でのCT二次出力にリニアリティな特性を持たせ、それ以上の過電流領域では二次出力に飽和特性を持たせるように設計してサーマルリレーに流す電流を低く抑え、サーマルリレーの動作時間を長くする(例えば、CTの一次側に定格電流の7倍値の過電流が流れた場合でも、その二次出力がサーマルリレーの整定電流の5倍値程度になるように抑えれば、サーマルリレーの動作時間は整定電流の5倍に相当した値となる)ようにしており、さらに動作時間の長い遅動特性が要求される場合には、図6,図7に示すような方法で対処している。
【0007】
すなわち、図6ではCT1の二次負担として抵抗8を直列に外付け接続してサーマルリレー2のヒータエレメント2aに流れる電流を低い値に減流し、これによりサーマルリレーの整定電流の倍数を実際よりも低め目に抑えてその動作時間を長くするようにしている。また、図7ではCT1の二次側にサーマルリレー2のヒータエレメント2aと並列に可飽和リアクトル9を外付け接続し、過電流の領域でCTの二次出力を可飽和リアクトル9に分流させてサーマルリレー2の動作時間を長くするようにしている。
【0008】
ところで、図6,図7に示した従来の方法では次記のような問題点がある。すなわち、CTに抵抗8,可飽和リアクトル9を外付けした遅動形のCT付きサーマルリレーでは、構造が大形,複雑化して設置スペースが標準形のものよりも大きくなるほか、抵抗8の発熱に対する放熱対策も必要となり、さらに標準形構造の端子カバーなどの部品が遅動形に共用できなくなるなどの問題点がある。
【0009】
本発明は上記の点に鑑みなされたものであり、その目的は前記課題を解決し、標準形と同じ外形構造で動作時間の長い遅動形への仕様変更を可能にしたCT付きサーマルリレーを提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するために、本発明によれば、磁性鋼板を積層した額縁形の積層鉄心と、該積層手新を貫通する一次導体と、巻枠に巻装して積層鉄心に嵌挿した二次巻線と、絶縁ケースの組立体からなるCTにサーマルリレーを搭載し、該サーマルリレーにCTの二次出力を通電するようにしたCT付きサーマルリレーにおいて、遅動動作特性の要求に対しては、前記積層鉄心の積層方向の厚さを標準の厚さよりも小さくし、かつ積層鉄心にはその厚さ減少分に対応する厚さの非磁性スペーサを重ね合わせた上で、絶縁ケースに挟持固定したことで、サーマルリレーの動作時間を長くするようにし(請求項1)、その具体的な組立構造としては、CTの絶縁ケースを、分割ケースを向かい合わせに組合せたニ分割構造で、各分割ケースには組立状態で標準厚さの積層鉄心を左右から挟持固定するリブ片を形成した構成とする。
【0011】
上記構成によれば、サーマルリレーに対する遅動動作特性の要求に対しては、CTの積層鉄心の鋼板積層枚数を減して標準形の厚さよりも小さく設定することで、従来のようにCTに抵抗,可飽和リアクトルなどを外付けすることなしに、CTの二次出力に飽和特性をもたせてサーマルリレーに所望の遅動動作特性を付与することができる。
【0012】
また、CTの組立構造において、前記した積層鉄心の厚さ減少分を埋めるように非磁性スペーサを鉄心に重ね合わせることで、絶縁ケースの構造,寸法,および固定方法を変えずに、積層鉄心を標準形の絶縁ケース内に挟持固定することができる。
【0013】
【発明の実施の形態】
以下、本発明の実施例に係る遅動形のCT付きサーマルリレーの組立構造を図1,図2に示す実施例に基づいて説明する。なお、実施例の図中で図3に対応する部材には同じ符号を付してその説明は省略する。
すなわち、図示実施例において、CT付きサーマルリレーの組立構造は基本的に図3〜図5に示した従来の標準形構造と同じであるが、CT1の積層鉄心3については、該積層鉄心を構成している磁性鋼板の積層枚数を減らして図3の標準厚さよりも小さく設定している。これにより、CTの一次側に過負荷電流が流れると積層鉄心3が磁気飽和してCT1の二次出力の増加が低く抑えられ、その結果としてサーマルリレーの動作時間が長くなる。なお、積層鉄心3の厚さは遅動形のサーマルリレーに要求される動作特性に合わせて設定するものとする。
【0014】
また、前記の積層鉄心3をCTの絶縁ケース6に組み込む際には、図示のように鉄心の厚さ削減分を補うように非磁性のスペーサ10を積層鉄心3に重ね合わせて左右の分割ケース6aと6bの間に介装し、そのリブ片6cを介して積層鉄心3をケース内の定位置に挟持固定するようにしている。なお、非磁性スペーサ10としては、図2で示すように磁性鋼板と同等な厚さの非磁性板を必要枚数だけ鉄心3の側面に重ね合わせ、積層鉄心3と非磁性スペーサ10の合計厚さdが所定寸法となるようにすることができる。これにより、絶縁ケース6の構造,外形寸法,および鉄心の固定方法を変えずに、標準形用に作られた絶縁ケースを共用部品として、積層鉄心3の厚さを減らした遅動形のCT付きサーマルリレーを組立てることができる。
【0015】
【発明の効果】
以上述べたように、本発明によれば、CT付きサーマルリレーに要求される遅動動作特性に対応して、CTの積層鉄心の厚さを標準厚さよりも小さく設定するすることにより、従来のようにCTの二次側に抵抗,可飽和リアクトルなどを外付けすることなしに、鉄心を構成する磁性鋼板の積層枚数を減らすだけで、CTの二次出力に飽和特性をもたせてサーマルリレーに所望の遅動動作特性を付与することができる。
【0016】
また、CT付きサーマルリレーの組立構造に関して、その絶縁ケースを、分割ケースを向かい合わせに重ね合わせた二分割構造で、その分割ケースにはCTの組立状態で標準厚さの積層鉄心を左右から挟持固定するリブ片を形成した構成となし、かつ積層鉄心にはその厚さ減少分に対応する厚さの非磁性スペーサを重ね合わせた上で、絶縁ケースの分割ケース間に介装して挟持固定するよう構成したことにより、絶縁ケースの構造,外形寸法,および鉄心の固定方法を変えずに、標準形用に作られた絶縁ケースを共用部品として、積層鉄心の厚さを減らした遅動形のCT付きサーマルリレーを組立て構成することができる。
【図面の簡単な説明】
【図1】本発明の実施例による遅動形CT付きサーマルリレーの組立構造図
【図2】図1におけるCTの要部構造の拡大断面図
【図3】従来の標準形CT付きサーマルリレーの組立構造図
【図4】図3における積層鉄心と二次巻線との組立体の側面図
【図5】図3における積層鉄心の部分拡大断面図
【図6】CTの二次側に抵抗を接続してサーマルリレーに遅動動作特性を付与する従来方式の回路図
【図7】CTの二次側に可負荷リアクタンスを接続してサーマルリレーに遅動動作特性を付与する従来方式の回路図
【符号の説明】
1 CT
2 サーマルリレー
3 積層鉄心
4 一次導体
5 二次巻線
5a 巻枠
6 絶縁ケース
6a,6b 分割ケース
6c リブ片
10 非磁性スペーサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermal relay with CT applied to a large current circuit in which a CT (current transformer) is combined with a thermal relay, and a secondary output of the CT is operated by energizing a heater element of the thermal relay.
[0002]
[Prior art]
From the same applicant of the present invention, the thermal relay with CT described above has a configuration in which the laminated core of the CT is sandwiched and fixed from the left and right with a two-part insulation case to reduce the number of parts. Japanese Patent Laid-Open No. 2000-156145 has been proposed previously, and its assembly structure is shown in FIGS.
[0003]
In each figure, 1 is a CT, 2 is a thermal relay mounted externally on CT1, and CT1 is a frame-shaped laminated iron core 3 in which a large number of magnetic steel plates 3a are laminated, and a primary conductor 4 penetrating the iron core. The lead wire of the secondary winding 5 comprises an assembly of a secondary winding 5 wound around the winding frame 5a and fitted into the iron core 3, and an insulating case (molded product of thermoplastic resin) 6. 5b is connected to a heater element (not shown) built in the thermal relay 2 so that the thermal relay 2 is operated with a secondary output of CT.
[0004]
Further, as shown in FIG. 5, embosses 3b are formed for each sheet at several locations of the magnetic steel plates 3a constituting the laminated core 3, and the magnetic steel plates 3a are laminated by overlapping the embosses 3b. Yes.
On the other hand, the insulating case 6 has a split structure in which split cases 6a and 6b whose one side is open are overlapped on the left and right and fastened with bolts 7, and the laminated core 3 is sandwiched between the split cases 6a and 6b. A rib piece 6c is formed, and in the assembled state of CT1, the laminated iron core 3 is sandwiched from the left and right via the rib piece 6c and fixed in place as shown.
[0005]
The operation principle of the thermal relay with CT having such a configuration is well known, and the description thereof is omitted here.
[0006]
[Problems to be solved by the invention]
The above-described thermal relay with CT is intended for adaptation to a load circuit with a large rated current, and its operation characteristics often require a longer operation time than the operation characteristics of the thermal relay itself mounted on the CT. .
Therefore, in order to cope with such a demand for slow operation characteristics (referred to as “slow-acting type” with respect to “standard type”), the conventional CT thermal relay has a secondary CT in the rated current range. Designed to give the output a linear characteristic and to have a saturation characteristic for the secondary output in the overcurrent region beyond that, keep the current flowing to the thermal relay low, and increase the operating time of the thermal relay (for example, Even if an overcurrent of 7 times the rated current flows on the primary side of CT, the operation time of the thermal relay will be settled if the secondary output is suppressed to about 5 times the settling current of the thermal relay. When the delay characteristic with a longer operation time is required, the method shown in FIGS. 6 and 7 is used.
[0007]
That is, in FIG. 6, a resistor 8 is externally connected in series as a secondary burden of CT1, and the current flowing through the heater element 2a of the thermal relay 2 is reduced to a low value, thereby making the multiple of the settling current of the thermal relay actual. However, the operation time is lengthened by keeping it low. In FIG. 7, a saturable reactor 9 is externally connected in parallel with the heater element 2a of the thermal relay 2 on the secondary side of CT1, and the secondary output of CT is shunted to the saturable reactor 9 in the overcurrent region. The operation time of the thermal relay 2 is extended.
[0008]
Incidentally, the conventional methods shown in FIGS. 6 and 7 have the following problems. In other words, a slow acting CT thermal relay with a resistor 8 and a saturable reactor 9 externally attached to the CT has a larger and more complicated structure and a larger installation space than that of the standard type. In addition, there is a problem that heat dissipation measures are required for this, and parts such as the standard structure terminal cover cannot be shared with the slow-acting type.
[0009]
The present invention has been made in view of the above points, and an object of the present invention is to provide a thermal relay with CT that solves the above-described problems and enables the specification to be changed to a delayed type having a long operating time with the same external structure as the standard type. It is to provide.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, a frame-shaped laminated iron core laminated with magnetic steel sheets, a primary conductor penetrating the laminated innovation, and wound around a winding frame and inserted into the laminated iron core. In the thermal relay with CT, in which a thermal relay is mounted on a CT consisting of an assembly of secondary winding and insulating case, and the secondary output of CT is energized to the thermal relay, in response to the demand for slow operation characteristics In this case, the thickness of the laminated core in the stacking direction is made smaller than the standard thickness, and a nonmagnetic spacer having a thickness corresponding to the thickness reduction is superposed on the laminated core , and then the insulating case is formed. By sandwiching and fixing, the operation time of the thermal relay is lengthened (Claim 1), and as its specific assembly structure, a CT insulating case is a two-part structure in which the divided cases are combined face-to-face, Each split case has a pair A configuration in which the rib pieces for clamping fixing the laminated core of the standard thickness of the right and left in the state.
[0011]
According to the above configuration, in response to the demand for slow operation characteristics for the thermal relay, the number of laminated steel cores of the CT laminated core is reduced and set to be smaller than the standard thickness, so that the CT can be made as in the conventional case. Without externally attaching a resistor, a saturable reactor, etc., the secondary output of CT can be provided with a saturation characteristic, and a desired delayed operation characteristic can be imparted to the thermal relay.
[0012]
Also, in the CT assembly structure, the non-magnetic spacer is superimposed on the iron core so as to fill the thickness reduction of the laminated core described above, so that the laminated core can be formed without changing the structure, dimensions, and fixing method of the insulating case. Can be clamped and fixed in a standard insulation case.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an assembly structure of a delay type CT-equipped thermal relay according to an embodiment of the present invention will be described based on the embodiments shown in FIGS. In addition, in the figure of an Example, the same code | symbol is attached | subjected to the member corresponding to FIG. 3, and the description is abbreviate | omitted.
That is, in the illustrated embodiment, the assembly structure of the thermal relay with CT is basically the same as the conventional standard structure shown in FIGS. 3 to 5, but the laminated iron core 3 of CT1 constitutes the laminated iron core. The number of laminated magnetic steel plates is reduced to be smaller than the standard thickness in FIG. Thereby, when an overload current flows on the primary side of CT, the laminated iron core 3 is magnetically saturated, and the increase in the secondary output of CT1 is suppressed low, and as a result, the operation time of the thermal relay becomes long. The thickness of the laminated iron core 3 is set in accordance with the operating characteristics required for the slow-acting thermal relay.
[0014]
Further, when the laminated core 3 is incorporated in the CT insulation case 6, as shown in the drawing, a nonmagnetic spacer 10 is superimposed on the laminated core 3 so as to compensate for the thickness reduction of the iron core. 6a and 6b are interposed, and the laminated core 3 is sandwiched and fixed at a fixed position in the case via the rib piece 6c. As the nonmagnetic spacer 10, as shown in FIG. 2, a necessary number of nonmagnetic plates having the same thickness as the magnetic steel plate are stacked on the side surface of the iron core 3, and the total thickness of the laminated iron core 3 and the nonmagnetic spacer 10 is overlapped. d can be a predetermined dimension. As a result, a slow-acting CT in which the thickness of the laminated iron core 3 is reduced by using the insulating case made for the standard type as a common part without changing the structure, outer dimensions, and fixing method of the iron core. A thermal relay can be assembled.
[0015]
【The invention's effect】
As described above, according to the present invention, the thickness of the laminated core of CT is set smaller than the standard thickness in accordance with the slow operation characteristics required for the thermal relay with CT. Thus, without adding external resistance, saturable reactor, etc. to the secondary side of CT, just reducing the number of magnetic steel plates that make up the iron core, and adding saturation characteristics to the secondary output of CT, it becomes a thermal relay. Desired slow motion characteristics can be imparted.
[0016]
In addition, regarding the assembly structure of the thermal relay with CT, the insulation case has a two-part structure in which the division cases are stacked face to face, and the division case holds a laminated iron core of standard thickness from the left and right in the assembled state of the CT. The structure is such that rib pieces to be fixed are formed, and the laminated iron core is sandwiched and fixed between the divided cases of the insulating case, with a nonmagnetic spacer having a thickness corresponding to the reduced thickness. With this configuration, the slow-acting type that reduces the thickness of the laminated core using the insulating case made for the standard type as a common part without changing the structure, external dimensions, and fixing method of the core. The CT-equipped thermal relay can be assembled.
[Brief description of the drawings]
FIG. 1 is an assembly structure diagram of a thermal relay with a delay type CT according to an embodiment of the present invention. FIG. 2 is an enlarged cross-sectional view of the main structure of a CT in FIG. Assembly structure diagram [FIG. 4] Side view of the assembly of the laminated core and secondary winding in FIG. 3 [FIG. 5] Partial enlarged sectional view of the laminated core in FIG. [Fig. 6] Resistance on the secondary side of CT Circuit diagram of the conventional method for connecting and providing the slow operation characteristics to the thermal relay. [FIG. 7] Circuit diagram of the conventional method for connecting the loadable reactance to the secondary side of the CT and imparting the slow operation characteristics to the thermal relay. [Explanation of symbols]
1 CT
2 Thermal Relay 3 Laminated Core 4 Primary Conductor 5 Secondary Winding 5a Winding Frame 6 Insulating Case 6a, 6b Split Case 6c Rib Piece 10 Nonmagnetic Spacer

Claims (2)

磁性鋼板を積層した額縁形の積層鉄心と、該積層鉄心を貫通する一次導体と、巻枠に巻装して積層鉄心に嵌挿した二次巻線と、絶縁ケースの組立体からなるCTにサーマルリレーを搭載し、該サーマルリレーにCTの二次出力を通電するようにしたCT付きサーマルリレーにおいて、遅動動作特性の要求に対して前記積層鉄心の積層方向の厚さを標準の厚さよりも小さく設定し、かつ積層鉄心にはその厚さ減少分に対応する厚さの非磁性スペーサを重ね合わせた上で、絶縁ケースに挟持固定したことを特徴とするCT付きサーマルリレー。The CT is composed of a frame-shaped laminated iron core in which magnetic steel plates are laminated, a primary conductor penetrating the laminated iron core, a secondary winding wound around a winding frame and fitted into the laminated iron core, and an insulating case assembly. In a thermal relay with CT, which is equipped with a thermal relay and energizes the secondary output of CT to the thermal relay, the thickness in the stacking direction of the laminated core is higher than the standard thickness in response to the demand for slow operation characteristics The CT thermal relay is characterized in that the non-magnetic spacer having a thickness corresponding to the thickness reduction is superimposed on the laminated iron core, and is sandwiched and fixed in an insulating case . 請求項1記載のCT付きサーマルリレーにおいて、CTの絶縁ケースを、分割ケースを向かい合わせに組合せた分割構造で、各分割ケースには組立状態で標準厚さの積層鉄心を左右から挟持固定するリブ片を形成した構成とすることを特徴とするCT付きサーマルリレー。2. The thermal relay with CT according to claim 1, wherein the insulating case of CT has a split structure in which the split cases are combined face to face, and each split case has a rib that clamps and fixes a laminated iron core of standard thickness from the left and right in the assembled state. A thermal relay with CT, characterized by having a configuration in which a piece is formed.
JP2001099540A 2001-03-30 2001-03-30 Thermal relay with CT Expired - Fee Related JP4075316B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001099540A JP4075316B2 (en) 2001-03-30 2001-03-30 Thermal relay with CT
CN 02108527 CN1241225C (en) 2001-03-30 2002-03-29 Heat overload relay having current transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001099540A JP4075316B2 (en) 2001-03-30 2001-03-30 Thermal relay with CT

Publications (2)

Publication Number Publication Date
JP2002298716A JP2002298716A (en) 2002-10-11
JP4075316B2 true JP4075316B2 (en) 2008-04-16

Family

ID=18953068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001099540A Expired - Fee Related JP4075316B2 (en) 2001-03-30 2001-03-30 Thermal relay with CT

Country Status (2)

Country Link
JP (1) JP4075316B2 (en)
CN (1) CN1241225C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101852985B (en) * 2009-03-30 2013-01-09 鸿富锦精密工业(深圳)有限公司 Manufacturing method of substrate alignment mark

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101852985B (en) * 2009-03-30 2013-01-09 鸿富锦精密工业(深圳)有限公司 Manufacturing method of substrate alignment mark

Also Published As

Publication number Publication date
CN1241225C (en) 2006-02-08
CN1379425A (en) 2002-11-13
JP2002298716A (en) 2002-10-11

Similar Documents

Publication Publication Date Title
EP0977214B1 (en) Amorphous metal core transformer
US9601256B2 (en) Wound iron core for static apparatus, amorphous transformer and coil winding frame for transformer
KR101197234B1 (en) Amorphous Metal Core, Inductive Device Using the Same, and Manufacturing Method thereof
CN107735843B (en) Base assembly for a magnetic core of a power transformer, magnetic core comprising such a base assembly, method for manufacturing such a magnetic core and transformer comprising such a magnetic core
TWI529756B (en) Magnetic core
JP2007123928A (en) Magnetic assembly such as transformer
US6100783A (en) Energy efficient hybrid core
JP2012129241A (en) Magnetic component and manufacturing method of the same
JP4075316B2 (en) Thermal relay with CT
JP5428334B2 (en) Electric motor
JP5969755B2 (en) Amorphous iron core transformer
WO2019073650A1 (en) Transformer and power conversion device
US4361823A (en) Core laminations for shell-type cores, especially for transformers
JP3317877B2 (en) Amorphous core transformer
JP2001160513A (en) Amorphous wound core transformer
JP2001230134A (en) Outer core reactor and assembly method of outer core reactor
JPH06302442A (en) Gapped core type reactor
JP5813064B2 (en) Stationary inductor
JP3096267U (en) Inner iron type reactor
JP2004349617A (en) Dust core for reactor
JPH0727825B2 (en) Iron core using amorphous metal thin film, method of manufacturing the same, transformer and reactor using the same
JPH0124908Y2 (en)
JPH04303904A (en) Iron-core type reactor provided with gap
JP2619071B2 (en) Iron core type reactor
JPH07118423B2 (en) Transformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051114

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees