JP2016157890A - Coil component - Google Patents

Coil component Download PDF

Info

Publication number
JP2016157890A
JP2016157890A JP2015036320A JP2015036320A JP2016157890A JP 2016157890 A JP2016157890 A JP 2016157890A JP 2015036320 A JP2015036320 A JP 2015036320A JP 2015036320 A JP2015036320 A JP 2015036320A JP 2016157890 A JP2016157890 A JP 2016157890A
Authority
JP
Japan
Prior art keywords
magnetic core
annular magnetic
coil
annular
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015036320A
Other languages
Japanese (ja)
Inventor
直樹 芦谷
Naoki Ashiya
直樹 芦谷
伊藤 亨
Toru Ito
亨 伊藤
杉山 雄太
Yuta Sugiyama
雄太 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2015036320A priority Critical patent/JP2016157890A/en
Publication of JP2016157890A publication Critical patent/JP2016157890A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coils Or Transformers For Communication (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a coil component which can be assembled easily because deviation of stacking of annular magnetic cores is small, while reducing the impact of leakage flux on the DC superposition characteristics.SOLUTION: A coil component has a first annular magnetic core, and a second annular magnetic core having an effective permeability larger than that of the first annular magnetic core, a composite magnetic core consisting of the first and second annular magnetic cores has a race track shape, a first reel where a first coil is laid is disposed on one of opposite straight line part, a second reel where a second coil of different winding direction from the first coil is laid on the other straight line part, the first and second coils are connected so that the magnetic flux generated in each coil has the same direction in the magnetic path, the first and second reels are composed of an insulating resin, and have partitions for determining the intervals of the first and second annular magnetic cores, respectively.SELECTED DRAWING: Figure 1

Description

本発明は、各種の電源装置、電子機器等に用いられるリアクトル、チョーク等のコイル部品に関する。   The present invention relates to a coil component such as a reactor or a choke used in various power supply devices, electronic devices, and the like.

エアコン等の家電機器、ハイブリッド車・電気自動車等のモータ駆動車両、太陽光発電装置等に搭載されている電源装置の力率改善(PFC)回路や平滑回路には、チョークコイル等のインダクタンス素子が使用されている。電源装置用のインダクタンス素子の適正インダクタンス値は、回路の出力定格等の仕様や負荷の状態によって異なる。したがって、電力変換効率、負荷変動応答特性等を考慮しながら、直流重畳電流が小電流から大電流まで広範囲にわたって効率の良い電源装置を構成するためには、負荷電流の大きさに応じてインダクタンス値が変化する非線形インダクタンス素子(コイル部品)が使用される。   Inductors such as choke coils are used in power factor correction (PFC) circuits and smoothing circuits of power supply devices installed in home appliances such as air conditioners, motor-driven vehicles such as hybrid vehicles and electric vehicles, and solar power generation devices. It is used. The appropriate inductance value of the inductance element for the power supply device varies depending on the specifications such as the output rating of the circuit and the state of the load. Therefore, in order to configure a power supply device that is efficient over a wide range from a small current to a large current with consideration for power conversion efficiency, load fluctuation response characteristics, etc., an inductance value according to the magnitude of the load current A non-linear inductance element (coil component) that changes is used.

例えば、特許文献1には、特に小電流時の効率を良くするために、小電流時のインダクタンスが大きくなるように、非線形に変化させるコイル部品が提案されている。図14はその外観斜視図である。このコイル部品は、円環状でギャップのない第2環状磁心93と、ギャップ92のある第1環状磁心91とを同心に積み重ねて複合磁心を構成し、磁気抵抗が異なる複数の環状磁心に対して、共通に巻回されたコイルを備えている。なお図示においては、コイルが省略されている。前記各環状磁心を構成する磁性体材料として、非晶質合金、パーマロイ、ケイ素鋼板などの金属磁性材料、あるいはソフトフェライトのいずれかが用いられる。   For example, Patent Document 1 proposes a coil component that changes non-linearly so as to increase the inductance at a small current in order to improve the efficiency at a small current. FIG. 14 is an external perspective view thereof. In this coil component, a second annular magnetic core 93 having an annular shape without a gap and a first annular magnetic core 91 having a gap 92 are concentrically stacked to form a composite magnetic core, and a plurality of annular magnetic cores having different magnetic resistances are formed. It has a coil wound in common. In the drawing, the coil is omitted. As the magnetic material constituting each of the annular magnetic cores, either a metal magnetic material such as an amorphous alloy, permalloy, silicon steel plate, or soft ferrite is used.

また、特許文献2には、磁気抵抗が異なる複数の円環状の環状磁心の間に、電磁遮蔽板を挟み込んで一体化したコイル部品が開示されている。図15はその外観斜視図である。第1環状磁心101と、ギャップ103を設けた第2環状磁心102との間に、電磁遮蔽板104を挟み込んで一体化し、第1環状磁心101と第2環状磁心102とに共通のコイル105を備える。各環状磁心には、アモルファスやナノ結晶合金が用いられる。電磁遮蔽板104には、アルミニウムや銅あるいはSUS304などが用いられ、第2環状磁心102に設けられたギャップ103から第1環状磁心101に漏れた磁界によって、渦電流損失が発生するのを防いでいる。   Patent Document 2 discloses a coil component in which an electromagnetic shielding plate is sandwiched and integrated between a plurality of annular annular magnetic cores having different magnetic resistances. FIG. 15 is an external perspective view thereof. An electromagnetic shielding plate 104 is sandwiched and integrated between the first annular magnetic core 101 and the second annular magnetic core 102 provided with a gap 103, and a coil 105 common to the first annular magnetic core 101 and the second annular magnetic core 102 is provided. Prepare. Amorphous or nanocrystalline alloy is used for each annular magnetic core. The electromagnetic shielding plate 104 is made of aluminum, copper, SUS304, or the like, and prevents eddy current loss from occurring due to the magnetic field leaking from the gap 103 provided in the second annular magnetic core 102 to the first annular magnetic core 101. Yes.

特開昭59−182514号公報JP 59-182514 A 特開2003−272937号公報JP 2003-272937 A

図16は特許文献1のコイル部品における漏れ磁束を説明するための図である。第1環状磁心91と第2環状磁心93とが、密接して同心状に積み重ねられるので、第1環状磁心91に設けられたギャップ92から漏れ出す磁束95が、第2環状磁心93に回り込み易い構成となっている。第2環状磁心93は磁性体材料として、比抵抗が小さい非晶質合金、ケイ素鋼板などの金属磁性材料を用いると、漏れ磁束95により渦電流損失が発生する問題があった。   FIG. 16 is a diagram for explaining leakage magnetic flux in the coil component of Patent Document 1. In FIG. Since the first annular magnetic core 91 and the second annular magnetic core 93 are closely and concentrically stacked, the magnetic flux 95 leaking from the gap 92 provided in the first annular magnetic core 91 tends to enter the second annular magnetic core 93. It has a configuration. The second annular magnetic core 93 has a problem that eddy current loss occurs due to leakage magnetic flux 95 when a magnetic metal material such as an amorphous alloy having a small specific resistance or a silicon steel plate is used.

また力率改善(PFC)回路や平滑回路に用いられるコイル部品は、高インダクタンスの動作から低インダクタンスの動作への移行が、直流重畳電流に対して急峻であるのが好ましい。しかしながら、漏れ磁束95が第2環状磁心93を経路とすることで、インダクタンスの変化が鈍化して、所定の直流重畳電流において、コイル部品に求められるインダクタンスよりも大きな値となる場合があった。   Moreover, it is preferable that the coil components used in the power factor correction (PFC) circuit and the smoothing circuit have a steep transition from the high inductance operation to the low inductance operation with respect to the DC superimposed current. However, when the leakage magnetic flux 95 is routed through the second annular magnetic core 93, the change in inductance is slowed down, and there are cases where the value is larger than the inductance required for the coil component at a predetermined DC superimposed current.

また、特許文献2では、電磁遮蔽板104自体がアルミニウムや銅などの導体で構成されるので、電磁遮蔽板104に流れる渦電流によって発熱が生じてしまう。電磁遮蔽板104は取り付けブラケットとしても機能し、ブラケット部分を経路として取り付け対象物へ放熱にも寄与するが、伝熱を十分に考慮した電磁遮蔽板104の構造設計が必要となる。また、取り付け対象物へ伝熱が不十分であると、環状磁心の温度が上昇して、磁気特性が変動する場合がある。   In Patent Document 2, since the electromagnetic shielding plate 104 itself is made of a conductor such as aluminum or copper, heat is generated by an eddy current flowing through the electromagnetic shielding plate 104. The electromagnetic shielding plate 104 also functions as a mounting bracket and contributes to heat radiation to the attachment target by using the bracket portion as a path, but the structural design of the electromagnetic shielding plate 104 with sufficient consideration for heat transfer is required. Further, if the heat transfer to the object to be attached is insufficient, the temperature of the annular magnetic core may rise and the magnetic characteristics may fluctuate.

引用文献1のコイル部品は、単に環状磁心を積み重ねて構成される。引用文献2のコイル部品は、電磁蔽板を挟んで同心に並置された環状磁心に、共通にコイルを巻く。いずれの場合も、複数の環状磁心を積み重ね固定する際に、ずれを小さくして構成する点については何ら配慮されてなく、環状磁心間のずれが少ないコイル部品を得るのは困難であって、並置される環状磁心の位置ずれは、コイル部品のインダクタンスのばらつき(変動)を生じさせる問題がある。また、引用文献1や引用文献2のコイル部品では、コイルを絶縁保護する構造については示されていない。引用文献2のコイル部品においては、コイルが環状磁心101,102や電磁遮蔽板104のエッジ部と当接して巻かれており、その絶縁被服が損傷し易い構造となっている。   The coil component of the cited document 1 is configured by simply stacking annular magnetic cores. In the coil component of the cited document 2, a coil is commonly wound around an annular magnetic core arranged concentrically with an electromagnetic shielding plate interposed therebetween. In any case, when stacking and fixing a plurality of annular magnetic cores, no consideration is given to the point of constituting with a small deviation, and it is difficult to obtain a coil component with little deviation between the annular magnetic cores, The positional deviation of the annular magnetic cores arranged side by side has a problem of causing variation (variation) in the inductance of the coil components. Moreover, in the coil components of the cited document 1 and the cited document 2, the structure for insulating and protecting the coil is not shown. In the coil component of the cited document 2, the coil is wound in contact with the edge portions of the annular magnetic cores 101 and 102 and the electromagnetic shielding plate 104, and the insulation clothing is easily damaged.

そこで本発明は、環状磁心の積み重ねのずれを抑制するとともに、所定の重ね間隔に規制して重ねて組み立てるのが容易で、一方の環状磁心に設けられたギャップから漏れ出す磁束が、他方の環状磁心に回り込み難いコイル部品を提供することを目的とする。   Therefore, the present invention suppresses the stacking deviation of the annular magnetic cores and is easy to assemble while being regulated to a predetermined overlapping interval. Magnetic flux leaking from the gap provided in one annular magnetic core An object of the present invention is to provide a coil component that does not easily wrap around a magnetic core.

本発明のコイル部品は、実効透磁率が異なる複数の環状磁心を、間隔をもって同心状に重ねて配置して複合磁心とし、各環状磁心に共通のコイルを敷設したコイル部品であって、
第1環状磁心と、前記第1環状磁心よりも実効透磁率が大きい第2環状磁心とを有し、前記第1環状磁心と前記第2環状磁心とでなる複合磁心はレーストラック形状を成し、前記複合磁心における対向する直線部の一方に、第1コイルが敷設された第1巻枠と、他方に前記第1コイルと巻方向が異なる第2コイルが敷設された第2巻枠とが配置され、各コイルで発生する磁束が磁路中で同じ方向となるように、第1コイルと第2コイルとが接続され、前記第1巻枠と前記第2巻枠は絶縁性樹脂からなり、それぞれ、前記第1環状磁心と前記第2環状磁心の間隔を決める仕切り部を有することを特徴とするコイル部品である。
The coil component of the present invention is a coil component in which a plurality of annular magnetic cores having different effective magnetic permeability are arranged concentrically with intervals to form a composite magnetic core, and a common coil is laid on each annular magnetic core,
A composite magnetic core having a first annular magnetic core and a second annular magnetic core having an effective permeability larger than that of the first annular magnetic core, and comprising the first annular magnetic core and the second annular magnetic core has a racetrack shape. The first winding frame in which the first coil is laid on one of the opposing linear portions in the composite magnetic core, and the second winding frame on which the second coil having a different winding direction from the first coil is laid on the other. The first coil and the second coil are connected so that the magnetic flux generated in each coil is in the same direction in the magnetic path, and the first winding frame and the second winding frame are made of an insulating resin. Each of the coil parts has a partition portion for determining an interval between the first annular magnetic core and the second annular magnetic core.

本発明のコイル部品においては、前記第1環状磁心がメタルパウダーコアで構成され、前記第2環状磁心がフェライトコア又はアモルファスコアで構成されるのが好ましい。   In the coil component of the present invention, it is preferable that the first annular magnetic core is constituted by a metal powder core and the second annular magnetic core is constituted by a ferrite core or an amorphous core.

本発明のコイル部品においては、前記第2環状磁心が、間隔をもって環状に配置された個片磁心により構成されるのが好ましい。   In the coil component of the present invention, it is preferable that the second annular magnetic core is constituted by individual magnetic cores arranged annularly at intervals.

本発明によれば、環状磁心の積み重ねのずれを抑制することでインダクタンスのばらつきを抑えることができるとともに、環状磁心の重ね間隔に規制することで一方の環状磁心に設けられたギャップから漏れ出す磁束が、他方の環状磁心に回り込み難いコイル部品を提供することができる。   According to the present invention, the variation in inductance can be suppressed by suppressing the deviation of the stacking of the annular magnetic cores, and the magnetic flux leaks from the gap provided in one annular magnetic core by restricting to the overlapping interval of the annular magnetic cores. However, it is possible to provide a coil component that is difficult to go around the other annular magnetic core.

本発明の一実施態様のコイル部品の外観を示す正面図である。It is a front view which shows the external appearance of the coil component of one embodiment of this invention. 本発明の一実施態様のコイル部品の外観を示す上面図である。It is a top view which shows the external appearance of the coil component of one embodiment of this invention. 本発明の一実施態様のコイル部品の外観を示す側面図である。It is a side view which shows the external appearance of the coil component of one embodiment of this invention. 本発明の一実施態様のコイル部品におけるコイルの接続図である。It is a connection diagram of the coil in the coil component of one embodiment of the present invention. 本発明の一実施態様のコイル部品に用いる第1環状磁心の外観を示す上面図である。It is a top view which shows the external appearance of the 1st annular magnetic core used for the coil components of one embodiment of this invention. 図5に示した第1環状磁心を構成する個片磁心の外観を示す斜視図である。It is a perspective view which shows the external appearance of the individual piece magnetic core which comprises the 1st annular magnetic core shown in FIG. 本発明の一実施態様のコイル部品に用いる第2環状磁心の外観を示す上面図である。It is a top view which shows the external appearance of the 2nd annular magnetic core used for the coil components of one embodiment of this invention. 図7に示した第2環状磁心を構成する個片磁心の外観を示す斜視図である。It is a perspective view which shows the external appearance of the individual piece magnetic core which comprises the 2nd annular magnetic core shown in FIG. 本発明の一実施態様のコイル部品に用いるコイルの巻枠の外観を示す正面図である。It is a front view which shows the external appearance of the winding frame of the coil used for the coil component of one embodiment of this invention. 本発明の一実施態様のコイル部品に用いるコイルの巻枠の外観を示す上面図である。It is a top view which shows the external appearance of the winding frame of the coil used for the coil component of one embodiment of this invention. 本発明の一実施態様のコイル部品に用いるコイルの巻枠の外観を示す側面図である。It is a side view which shows the external appearance of the winding frame of the coil used for the coil component of one embodiment of this invention. 第1環状磁心と第2環状磁心とでなる複合磁心の外観を示す斜視図である。It is a perspective view which shows the external appearance of the composite magnetic core which consists of a 1st annular magnetic core and a 2nd annular magnetic core. 本発明の一実施態様のコイル部品の直流重畳特性を示す図である。It is a figure which shows the direct current | flow superimposition characteristic of the coil components of one embodiment of this invention. 従来のコイル部品の外観斜視図である。It is an external appearance perspective view of the conventional coil components. 従来の他のコイル部品の外観斜視図である。It is an external appearance perspective view of other conventional coil components. 従来のコイル部品における漏れ磁束を説明するための図である。It is a figure for demonstrating the leakage magnetic flux in the conventional coil components.

以下、本発明に係るコイル部品の実施形態について、図を用いて具体的に説明するが、本発明はこれに限定されるものではない。また、各実施形態において説明する構成は、他の実施形態の趣旨を損なわない限り、他の実施形態においても適用することが可能であり、その場合、重複する説明は適宜省略する。   Hereinafter, although embodiment of the coil component which concerns on this invention is described concretely using figures, this invention is not limited to this. Moreover, the structure demonstrated in each embodiment is applicable also in other embodiment, unless the meaning of other embodiment is impaired, In that case, the overlapping description is abbreviate | omitted suitably.

図1は本発明のコイル部品の実施形態を示す正面図であり、図2は図1に示したコイル部品の上面図であり、図3は図1に示したコイル部品の側面図である。図4は本発明の一実施態様のコイル部品におけるコイルの接続図である。図5は本発明の一実施態様のコイル部品に用いる第1環状磁心の外観を示す上面図である。図6は図5に示した第1環状磁心を構成する個片磁心の外観を示す斜視図である。図7は本発明の一実施態様のコイル部品に用いる第2環状磁心の外観を示す上面図である。図8は図7に示した第2環状磁心を構成する個片磁心の外観を示す斜視図である。図9は本発明の一実施態様のコイル部品に用いるコイルの巻枠の外観を示す正面図である。図10は図9に示した巻枠の上面図である。図11は図9に示した巻枠の側面図である。   FIG. 1 is a front view showing an embodiment of the coil component of the present invention, FIG. 2 is a top view of the coil component shown in FIG. 1, and FIG. 3 is a side view of the coil component shown in FIG. FIG. 4 is a connection diagram of coils in a coil component according to an embodiment of the present invention. FIG. 5 is a top view showing the appearance of the first annular magnetic core used in the coil component according to one embodiment of the present invention. FIG. 6 is a perspective view showing the external appearance of the individual magnetic core constituting the first annular magnetic core shown in FIG. FIG. 7 is a top view showing the appearance of the second annular magnetic core used in the coil component according to one embodiment of the present invention. FIG. 8 is a perspective view showing the appearance of an individual magnetic core constituting the second annular magnetic core shown in FIG. FIG. 9 is a front view showing an appearance of a coil winding frame used in the coil component according to one embodiment of the present invention. 10 is a top view of the reel shown in FIG. FIG. 11 is a side view of the reel shown in FIG.

図1〜図3に示すコイル部品1は、第1環状磁心10及び第2環状磁心20と、前記第1、第2環状磁心10,20とを配置する第1巻枠50a及び第2巻枠50bと、前記第1巻枠50a及び第2巻枠50bに敷設された第1コイル60aと第2コイル60bとを含む。巻方向が異なる第1コイル60aと第2コイル60bの端部100a,100bを圧着端子等の接続手段200で接続し、図4に示すように各コイルで発生する磁束が磁路中で同じ方向となるように結線する。   The coil component 1 shown in FIGS. 1 to 3 includes a first winding frame 50a and a second winding frame in which a first annular magnetic core 10 and a second annular magnetic core 20 and the first and second annular magnetic cores 10 and 20 are arranged. 50b, and a first coil 60a and a second coil 60b laid on the first and second winding frames 50a and 50b. The ends 100a and 100b of the first coil 60a and the second coil 60b having different winding directions are connected by connection means 200 such as crimp terminals, and the magnetic flux generated in each coil is the same direction in the magnetic path as shown in FIG. Connect so that

第1環状磁心10は、コイルに流れる大きな負荷電流に対して磁気飽和しないことが求められる。そのため実効透磁率が小さく構成できて、飽和磁束密度が大きいメタルパウダーコアを用いるのが好ましい。メタルパウダーコアは、表面が絶縁被膜で覆われた金属磁性粉を用いた磁心であって、例えば、金属磁性粉と絶縁被膜となる樹脂やガラスを混合し、成形し熱処理して構成される。磁性材料として1T以上の高飽和磁束密度を有する金属磁性材料を用いるのが好ましく、例えば、純鉄、Fe−Si系磁粉、Fe−Si−Al系磁粉、Fe−Si−Cr系磁粉、Fe基、Co基等のアモルファス合金磁粉等を用いることができる。   The first annular magnetic core 10 is required not to be magnetically saturated with respect to a large load current flowing through the coil. Therefore, it is preferable to use a metal powder core that can be configured to have a low effective permeability and a high saturation magnetic flux density. The metal powder core is a magnetic core using metal magnetic powder whose surface is covered with an insulating film, and is formed by mixing, molding, and heat-treating metal magnetic powder and a resin or glass to be an insulating film, for example. It is preferable to use a metal magnetic material having a high saturation magnetic flux density of 1T or more as the magnetic material. For example, pure iron, Fe—Si magnetic powder, Fe—Si—Al magnetic powder, Fe—Si—Cr magnetic powder, Fe base An amorphous alloy magnetic powder such as Co base can be used.

第2環状磁心20は、相対的に小さい負荷電流において高インダクタンスであって、所定の負荷電流を超えると磁気飽和する磁性材料が飽和磁束密度や透磁率を基に選定される。また第2環状磁心20には、要求されるインダクタンス値や動作電流に応じて磁気ギャップが設けられる。なお第1環状磁心10もまた、要求されるインダクタンス値や動作電流に応じて磁気ギャップを設けても良い。   The second annular magnetic core 20 has a high inductance at a relatively small load current, and a magnetic material that is magnetically saturated when a predetermined load current is exceeded is selected based on the saturation magnetic flux density and the magnetic permeability. The second annular magnetic core 20 is provided with a magnetic gap according to a required inductance value and operating current. The first annular magnetic core 10 may also be provided with a magnetic gap according to the required inductance value and operating current.

用いられる磁性材料としては、Ni系、Mn系等のソフトフェライトやFe基、Co基のアモルファス合金を用いるのが好ましい。例えば、磁気飽和する負荷電流が相対的に小さい場合には、飽和磁束密度が小さいソフトフェライトを用いれば良いし、ソフトフェライトよりも大きい負荷電流まで高いインダクタンス値を維持する場合には、アモルファス合金を用いれば良い。所定の負荷電流において急峻にインダクタンス値を低下させたい場合には、アモルファス合金よりも飽和磁化の小さいソフトフェライトを用いるのが好ましい。第2環状磁心20に用いられるアモルファス合金は、通常リボン状にて提供される。それを巻回し切断してカットコアとしたり、あるいは、リボンを所定形状に打ち抜き、積層して積層コアとした磁心を用いることが出来る。   As a magnetic material to be used, it is preferable to use Ni-based, Mn-based soft ferrite, Fe-based, and Co-based amorphous alloys. For example, when the load current at which the magnetic saturation is relatively small, soft ferrite having a low saturation magnetic flux density may be used, and when maintaining a high inductance value up to a load current larger than soft ferrite, an amorphous alloy is used. Use it. When it is desired to rapidly decrease the inductance value at a predetermined load current, it is preferable to use soft ferrite having a saturation magnetization smaller than that of the amorphous alloy. The amorphous alloy used for the second annular magnetic core 20 is usually provided in a ribbon shape. It can be wound and cut to form a cut core, or a ribbon can be punched into a predetermined shape and laminated to form a laminated core.

第1環状磁心10と第2環状磁心20は、ぞれぞれ後述する巻枠に配置可能な様に、U字状、L字状、J字状、あるいはI字状の個片磁心を組み合わせて構成される。図5は図6に示したL字状の個片磁心を用いた環状磁心の構成例であり、図7は図6に示したU字状の個片磁心を用いた環状磁心の構成例である。第1環状磁心10と第2環状磁心20は、個片磁心が組み合わされて、それぞれ短辺と長辺の直線部を有するレーストラック形状を成す。以下、L字状の個片磁心を用いて第1環状磁心とし、U字状の個片磁心を用いて第2環状磁心とする場合を説明する。   The first annular magnetic core 10 and the second annular magnetic core 20 are combined with individual U-shaped, L-shaped, J-shaped, or I-shaped individual magnetic cores so that they can be arranged on a winding frame described later. Configured. FIG. 5 is a configuration example of the annular magnetic core using the L-shaped individual core shown in FIG. 6, and FIG. 7 is a configuration example of the annular magnetic core using the U-shaped individual core shown in FIG. is there. The first annular magnetic core 10 and the second annular magnetic core 20 are combined with individual magnetic cores to form a racetrack shape having straight portions of short sides and long sides, respectively. Hereinafter, the case where the L-shaped individual magnetic core is used as the first annular magnetic core and the U-shaped individual magnetic core is used as the second annular magnetic core will be described.

図5に示した第1環状磁心10は、L字状の個片磁心10a、10b、10c、10dで構成される。第1環状磁心10として、成形に高圧力が必要なメタルパウダーコアを用いる場合には、成形が容易な様に単純形状の個片磁心とするのが好ましく、一層単純に、各個片磁心をJ字状、あるいはI字状としても良い。一方で、環状磁心とするのに多くの個片磁心が必要となり、組み立てる工数が増す欠点があり、個片磁心の形状は、その成形の容易さと、組み立て工数などを勘案して決定すれば良い。   The first annular magnetic core 10 shown in FIG. 5 is composed of L-shaped individual magnetic cores 10a, 10b, 10c, and 10d. When a metal powder core that requires high pressure for molding is used as the first annular magnetic core 10, it is preferable that the individual cores have simple shapes so that the molding can be easily performed. It may be a letter shape or an I shape. On the other hand, many individual cores are required to make an annular magnetic core, and there is a drawback that the number of man-hours to be assembled increases, and the shape of the individual core may be determined in consideration of the ease of molding and the assembly man-hours. .

図6に示したL字状の個片磁心10a、10b、10c、10dは同形状に形成されている。第1環状磁心10は、それらの端面18を突き合わせ、間隙無く当接させて接着固定し構成される。第1環状磁心10は、対向する2つの短辺部と2つの長辺部を有する矩形となる。J字状の個片磁心を用いれば、前記短辺部は円弧状となる。図示した例では、個片磁心を間隙無く構成するが、個片磁心の端面18の間に空隙を設けて磁気ギャップとし、高負荷電流時のコイル部品のインダクタンス値を小さくするように調整しても良い。   The L-shaped individual cores 10a, 10b, 10c, and 10d shown in FIG. 6 are formed in the same shape. The first annular magnetic core 10 is configured such that the end faces 18 are abutted and abutted with no gap therebetween to be bonded and fixed. The first annular magnetic core 10 has a rectangular shape having two short side portions and two long side portions facing each other. If a J-shaped individual magnetic core is used, the short side portion has an arc shape. In the illustrated example, the individual magnetic cores are configured without a gap, but a gap is provided between the end faces 18 of the individual magnetic cores to form a magnetic gap, and the inductance value of the coil component at high load current is adjusted to be small. Also good.

図7に示した第2環状磁心20は、磁路に磁気ギャップとなる空隙をもって配置された複数の磁心で構成される。第2環状磁心20は、図8に示した略U字状の個片磁心である、フェライトコアあるいはアモルファスコア20a、20bを、磁気ギャップとなる空隙16をもって対向させて構成する。空隙1により低負荷電流時のコイル部品のインダクタンス値と、第2環状磁心20が磁気飽和する負荷電流を調整することができる。第2環状磁心20の実効透磁率は第1環状磁心10よりも大きい。第2環状磁心20も、対向する2つの短辺部と2つの長辺部を有する矩形となる。   The second annular magnetic core 20 shown in FIG. 7 is composed of a plurality of magnetic cores arranged with gaps serving as magnetic gaps in the magnetic path. The second annular magnetic core 20 is configured by opposing a ferrite core or amorphous core 20a, 20b, which is a substantially U-shaped individual magnetic core shown in FIG. 8, with a gap 16 serving as a magnetic gap. The air gap 1 can adjust the inductance value of the coil component at the time of a low load current and the load current at which the second annular magnetic core 20 is magnetically saturated. The effective magnetic permeability of the second annular magnetic core 20 is larger than that of the first annular magnetic core 10. The second annular magnetic core 20 is also a rectangle having two short side portions and two long side portions facing each other.

第1環状磁心10と第2環状磁心20はともにレーストラック形状に構成されており、その直線部に耐熱性樹脂で形成された第1巻枠50aと第2巻枠50bが配置される。図9〜11に巻枠の構造を示す。図示した例では、各巻枠は同じ形状に形成されており、それぞれ対の鍔部51が設けられ、鍔部51で仕切られた部分に、導線を巻回したコイル60a、60bが敷設される胴部52が設けられている。各鍔部51には、各コイル60a、60bの端部を引き出す切欠きが設けられている。胴部52の内側の領域には、貫通孔56a、56bとして形成された2か所の開口部が、仕切り部55を介して並設されている。巻枠のそれぞれは、絶縁性、耐熱性及び成形性を有する樹脂により形成するのが好ましく、具体的にはポリフェニレンサルファイド、液晶ポリマー、ポリエチレンテレフタレート、ポリブチレンテレフタレート等が好ましい。それらの成形には射出成形法を用いることができる。   Both the first annular magnetic core 10 and the second annular magnetic core 20 are configured in a racetrack shape, and a first winding frame 50a and a second winding frame 50b formed of a heat-resistant resin are arranged on the straight portion thereof. 9 to 11 show the structure of the winding frame. In the illustrated example, the respective winding frames are formed in the same shape, and a pair of flange portions 51 are provided, and a cylinder in which coils 60a and 60b each wound with a conducting wire are laid in a portion partitioned by the flange portions 51. A part 52 is provided. Each flange 51 is provided with a notch for drawing out the ends of the coils 60a and 60b. Two openings formed as through holes 56 a and 56 b are juxtaposed through the partition portion 55 in the region inside the body portion 52. Each of the winding frames is preferably formed of a resin having insulating properties, heat resistance, and moldability. Specifically, polyphenylene sulfide, liquid crystal polymer, polyethylene terephthalate, polybutylene terephthalate, and the like are preferable. An injection molding method can be used for these moldings.

第1環状磁心10と第2環状磁心20を構成する個片磁心は、貫通孔56a、56bのぞれぞれに通されて、各環状磁心ごとに接着剤で固定されるとともに、絶縁テープやバンドで拘束固定される。コイルの巻枠を利用して、レーストラック形状に構成された第1環状磁心10と第2環状磁心20とを並置するという簡易な構造であって、第1環状磁心10と第2環状磁心20の直線部が巻枠に通されるので、コイル部品の組み立てが容易となる。   The individual cores constituting the first annular magnetic core 10 and the second annular magnetic core 20 are passed through the through-holes 56a and 56b, respectively, and fixed with an adhesive for each annular magnetic core. It is restrained and fixed by a band. A simple structure in which a first annular magnetic core 10 and a second annular magnetic core 20 configured in a racetrack shape are juxtaposed using a coil winding frame, and the first annular magnetic core 10 and the second annular magnetic core 20 are arranged. Since the straight portion is passed through the winding frame, the coil parts can be easily assembled.

また、第1環状磁心10と第2環状磁心20の間隔を前記仕切り部55の厚みによって決めることが出来る。図示した例による仕切り部は第1環状磁心10と第2環状磁心20との間を完全に隔離するように一面に隙間無く樹脂が形成されているが、樹脂の一部を抜いて開口部側へ突き出る鍔状、突起状としても良い。また仕切り部はその機能を阻害しない限りは、コイルの巻軸方向の一部にのみ設けてもかまわない。   Further, the distance between the first annular magnetic core 10 and the second annular magnetic core 20 can be determined by the thickness of the partition portion 55. The partition portion according to the illustrated example has a resin formed on one side without a gap so as to completely separate the first annular magnetic core 10 and the second annular magnetic core 20, but the opening side is formed by removing a part of the resin. It is good also as a hook-like shape and protrusion shape which protrudes. Further, the partition portion may be provided only in a part in the winding axis direction of the coil as long as the function is not hindered.

図12にコイル部品の複合磁心について巻枠やコイルを省略した状態の外観斜視図を示す。第1環状磁心10と第2環状磁心20とが積み重ねられ複合磁心が構成される。積み重ねにおいて、第1環状磁心10と第2環状磁心20とを当接させると、第2環状磁心20の磁気ギャップ(空隙16)から漏洩する磁束が、第1環状磁心10へ回り込んで磁路を形成し、高負荷電流においてもインダクタンス値の低下が十分で無いといった問題が生じる。そのため、第1環状磁心10と第2環状磁心20とは、巻枠の仕切り部55によって間隔をもって重ねられる。仕切り部55の厚みは、第2環状磁心20に設けれらた空隙16の間隔以上であるのが好ましく、0.3mm〜2.0mm程度の厚みであるのが望ましい。   FIG. 12 shows an external perspective view of the composite magnetic core of the coil component with the winding frame and coil omitted. The first annular magnetic core 10 and the second annular magnetic core 20 are stacked to constitute a composite magnetic core. In the stacking, when the first annular magnetic core 10 and the second annular magnetic core 20 are brought into contact with each other, the magnetic flux leaking from the magnetic gap (gap 16) of the second annular magnetic core 20 wraps around the first annular magnetic core 10 and enters the magnetic path. This causes a problem that the inductance value is not sufficiently lowered even at a high load current. Therefore, the first annular magnetic core 10 and the second annular magnetic core 20 are overlapped with each other by the partition part 55 of the winding frame. The thickness of the partition portion 55 is preferably equal to or greater than the interval between the gaps 16 provided in the second annular magnetic core 20, and is preferably about 0.3 mm to 2.0 mm.

前記複合磁心には第1コイル60aと、前記第1コイル60aと巻方向が異なる第2コイル60bとが敷設され、各コイル60a、60bで発生する磁束の方向が同じとなるように、第1コイル60aと第2コイル60bとが接続される。各コイル60a、60bの内側に、第1環状磁心10と第2環状磁心20とが配置され、コイル部品1は、直流重畳電流が小さい領域においては、第1環状磁心10と第2環状磁心20により高インダクタンスとなり、直流重畳電流が大きい領域では第1環状磁心10により低インダクタンス値でインダクタンスを維持することができる。   In the composite magnetic core, a first coil 60a and a second coil 60b having a winding direction different from that of the first coil 60a are laid, and the first magnetic flux 60a and the second magnetic flux generated in the coils 60b have the same direction. The coil 60a and the second coil 60b are connected. The first annular magnetic core 10 and the second annular magnetic core 20 are disposed inside each of the coils 60a and 60b, and the coil component 1 has the first annular magnetic core 10 and the second annular magnetic core 20 in a region where the DC superimposed current is small. Therefore, in the region where the DC superimposed current is large, the first annular magnetic core 10 can maintain the inductance with a low inductance value.

第1環状磁心としてFe−9.5質量%Si−5.5質量%Al合金(センダスト)のメタルパウダーコアを用い、第2環状磁心としてMn系フェライトコア(日立金属製 MB19D)を用いてコイル部品を作製した。   A coil using a metal powder core of Fe-9.5 mass% Si-5.5 mass% Al alloy (Sendust) as the first annular magnetic core and an Mn ferrite core (MB19D made by Hitachi Metals) as the second annular magnetic core Parts were produced.

各コイル60a、60bは、それぞれエナメル導線を巻枠50a、50bに巻回して構成されており、巻枠50a,50bに設けた2つの貫通孔56a、56bにフェライトコアとメタルパウダーコアを通して、エポキシ系接着剤で固定した後、各コイル60a、60bの端部を接続してコイル部品1とした。第1環状磁心10と第2環状磁心20のそれぞれは、外寸法が54mm×42mm、内寸法が33mm×11mm、厚み20mmであり、巻枠50a、50bの仕切り部55の厚みを0.6mmとしている。第1環状磁心10と第2環状磁心20との間隔は、実質的に仕切り部55の厚みと同じである。第1環状磁心10の実効透磁率は60であり、第2環状磁心20の実効透磁率は180であった。   Each of the coils 60a and 60b is formed by winding an enameled wire around the winding frames 50a and 50b. Through the two through holes 56a and 56b provided in the winding frames 50a and 50b, a ferrite core and a metal powder core are passed through an epoxy. After fixing with a system adhesive, the coil parts 1 were obtained by connecting the ends of the coils 60a and 60b. Each of the first annular magnetic core 10 and the second annular magnetic core 20 has an outer dimension of 54 mm × 42 mm, an inner dimension of 33 mm × 11 mm, a thickness of 20 mm, and a thickness of the partition portion 55 of the reels 50a and 50b is 0.6 mm. Yes. The distance between the first annular magnetic core 10 and the second annular magnetic core 20 is substantially the same as the thickness of the partition portion 55. The effective magnetic permeability of the first annular magnetic core 10 was 60, and the effective magnetic permeability of the second annular magnetic core 20 was 180.

第2環状磁心20の対向する長辺に空隙16を設けた。その間隔はそれぞれ0.3mmである。各コイル60a、60bの巻数は、それぞれ38ターンである。なおコイル部品の構成は、図1〜図3に示したものと同様なので構造の詳細は省略する。得られたコイル部品は巻枠を基準に組み立てるので、容易に環状磁心間のずれを少なく出来る。   An air gap 16 was provided on the long side of the second annular magnetic core 20 facing each other. The intervals are each 0.3 mm. The number of turns of each coil 60a, 60b is 38 turns. The configuration of the coil component is the same as that shown in FIGS. Since the obtained coil component is assembled on the basis of the winding frame, deviation between the annular magnetic cores can be easily reduced.

得られたコイル部品の直流重畳特性を評価した結果を図13に示す。コイル部品のインダクタンスは、第1及び第2環状磁心によって直流重畳電流Idcが2Aまでは高インダクタンス値が得られ、磁気ギャップから漏洩する磁束の影響を減じているので2Aを超えて3Aまでの間に急峻に低下した。更に第2環状磁心によって、低インダクタンス値で直流重畳電流が30A超える大きい領域まで飽和せずにインダクタンスを維持することができた。   The result of evaluating the DC superposition characteristics of the obtained coil component is shown in FIG. As for the inductance of the coil component, a high inductance value is obtained by the first and second annular magnetic cores until the DC superimposed current Idc is up to 2A, and the influence of magnetic flux leaking from the magnetic gap is reduced. It declined sharply. Furthermore, the second annular magnetic core can maintain the inductance without saturation up to a large region where the DC superimposed current exceeds 30 A with a low inductance value.

1 コイル部品
10 第1環状磁心
10a、10b、10c、10d メタルパウダーコア
20 第2環状磁心
20a、20b フェライトコア、アモルファスコア
50a、50b 巻枠
60a、60b 第1コイル、第2コイル


DESCRIPTION OF SYMBOLS 1 Coil component 10 1st cyclic | annular magnetic core 10a, 10b, 10c, 10d Metal powder core 20 2nd cyclic | annular magnetic core 20a, 20b Ferrite core, amorphous core 50a, 50b Winding frame 60a, 60b 1st coil, 2nd coil


Claims (3)

実効透磁率が異なる複数の環状磁心を、間隔をもって同心状に重ねて配置して複合磁心とし、各環状磁心に共通のコイルを敷設したコイル部品であって、
第1環状磁心と、前記第1環状磁心よりも実効透磁率が大きい第2環状磁心とを有し、
前記第1環状磁心と前記第2環状磁心とでなる複合磁心はレーストラック形状を成し、前記複合磁心における対向する直線部の一方に、第1コイルが敷設された第1巻枠と、他方に前記第1コイルと巻方向が異なる第2コイルが敷設された第2巻枠とが配置され、
各コイルで発生する磁束が磁路中で同じ方向となるように、第1コイルと第2コイルとが接続され、
前記第1巻枠と前記第2巻枠は絶縁性樹脂からなり、それぞれ、前記第1環状磁心と前記第2環状磁心の間隔を決める仕切り部を有することを特徴とするコイル部品。
A coil component in which a plurality of annular magnetic cores having different effective magnetic permeability are arranged concentrically at intervals to form a composite magnetic core, and a common coil is laid on each annular magnetic core,
A first annular magnetic core, and a second annular magnetic core having an effective permeability larger than that of the first annular magnetic core,
A composite magnetic core composed of the first annular magnetic core and the second annular magnetic core has a racetrack shape, a first winding frame in which a first coil is laid on one of opposing linear portions of the composite magnetic core, and the other And a second winding frame in which a second coil having a winding direction different from that of the first coil is laid,
The first coil and the second coil are connected so that the magnetic flux generated in each coil is in the same direction in the magnetic path,
The coil component, wherein the first winding frame and the second winding frame are made of an insulating resin, and each has a partition portion that determines an interval between the first annular magnetic core and the second annular magnetic core.
請求項1に記載のコイル部品であって、
前記第1環状磁心がメタルパウダーコアで構成され、前記第2環状磁心がフェライトコア又はアモルファスコアで構成されたことを特徴とするコイル部品。
The coil component according to claim 1,
The coil component, wherein the first annular magnetic core is constituted by a metal powder core, and the second annular magnetic core is constituted by a ferrite core or an amorphous core.
請求項1又2に記載のコイル部品であって、
前記第2環状磁心が、間隔をもって環状に配置された個片磁心により構成されたことを特徴とするコイル部品。

The coil component according to claim 1 or 2,
The coil component, wherein the second annular magnetic core is constituted by individual magnetic cores arranged in an annular shape at intervals.

JP2015036320A 2015-02-26 2015-02-26 Coil component Pending JP2016157890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015036320A JP2016157890A (en) 2015-02-26 2015-02-26 Coil component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015036320A JP2016157890A (en) 2015-02-26 2015-02-26 Coil component

Publications (1)

Publication Number Publication Date
JP2016157890A true JP2016157890A (en) 2016-09-01

Family

ID=56826446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015036320A Pending JP2016157890A (en) 2015-02-26 2015-02-26 Coil component

Country Status (1)

Country Link
JP (1) JP2016157890A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106526333A (en) * 2016-11-03 2017-03-22 四川长虹电器股份有限公司 Method of obtaining quadrature-axis and direct-axis inductance of permanent magnet synchronous motor
CN110121753A (en) * 2016-12-28 2019-08-13 株式会社村田制作所 Inductor and DC-DC converter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106526333A (en) * 2016-11-03 2017-03-22 四川长虹电器股份有限公司 Method of obtaining quadrature-axis and direct-axis inductance of permanent magnet synchronous motor
CN106526333B (en) * 2016-11-03 2019-08-13 四川长虹电器股份有限公司 A method of obtaining permanent magnet synchronous motor quadrature axis and d-axis inductance
CN110121753A (en) * 2016-12-28 2019-08-13 株式会社村田制作所 Inductor and DC-DC converter
US20190295761A1 (en) * 2016-12-28 2019-09-26 Murata Manufacturing Co., Ltd. Inductor and dc-dc converter
US10714252B2 (en) 2016-12-28 2020-07-14 Murata Manufacturing Co., Ltd. Inductor and DC-DC converter

Similar Documents

Publication Publication Date Title
JP5877486B2 (en) Amorphous metal core, induction device using the same, and method of manufacturing the same
JP6124110B2 (en) Composite reactor for multi-phase converter and multi-phase converter using the same
JP6331060B2 (en) Surface mount type reactor and manufacturing method thereof
JP3282183B2 (en) choke coil
JP6397349B2 (en) Three-phase five-legged iron core and stationary electromagnetic equipment
EP3026683B1 (en) Transformer, power supply device, and method for manufacturing transformer
JP2015164172A (en) reactor
US20180005749A1 (en) Coupled inductor
JP6274511B2 (en) Reactor coil bobbin and winding core holder and reactor
JP2016157890A (en) Coil component
JP2012023090A (en) Reactor
JP2009032922A (en) Reactor core and reactor
JP2013254827A (en) Transformer
JP2019079944A (en) Coil component, circuit board, and power supply device
JP5773250B2 (en) Inductor and two-phase interleaved control power factor correction converter
JP5189637B2 (en) Coil parts and power supply circuit using the same
JP6075678B2 (en) Composite magnetic core, reactor and power supply
JP2015204406A (en) reactor
JP6977369B2 (en) Transformer core support structure
JP2011135091A (en) Magnetic core, and coil component
CN111788642B (en) Inductor structure and forming method thereof
JP5900741B2 (en) Composite magnetic core, reactor and power supply
JP3812701B2 (en) Zero phase current transformer
JP2016039322A (en) Coil and coil component
JP2013197570A (en) Composite magnetic core, reactor, and power supply device