JP3377241B2 - Method for producing epoxy resin, epoxy resin composition and cured product thereof - Google Patents

Method for producing epoxy resin, epoxy resin composition and cured product thereof

Info

Publication number
JP3377241B2
JP3377241B2 JP04869693A JP4869693A JP3377241B2 JP 3377241 B2 JP3377241 B2 JP 3377241B2 JP 04869693 A JP04869693 A JP 04869693A JP 4869693 A JP4869693 A JP 4869693A JP 3377241 B2 JP3377241 B2 JP 3377241B2
Authority
JP
Japan
Prior art keywords
epoxy resin
formula
parts
group
equivalent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04869693A
Other languages
Japanese (ja)
Other versions
JPH06239966A (en
Inventor
泰昌 赤塚
繁 茂木
博昭 大野
健一 窪木
富好 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP04869693A priority Critical patent/JP3377241B2/en
Publication of JPH06239966A publication Critical patent/JPH06239966A/en
Application granted granted Critical
Publication of JP3377241B2 publication Critical patent/JP3377241B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は耐熱性、耐水性に優れた
硬化物を与えるエポキシ樹脂の製法およびエポキシ樹脂
組成物およびその硬化物に関するものであり、本発明の
組成物は成形材料,注型材料,積層材料,複合材料,塗
料,接着剤,レジストなどの広範囲の用途に極めて有用
である。又、本発明において得られるエポキシ樹脂が有
するアリル基とシリコンオイルのSiH基とを反応させ
ることにより、ポリマーアロイへの応用も可能である。 【0002】 【従来の技術】エポキシ樹脂は種々の硬化剤で硬化させ
ることにより、一般的に機械的性質,耐水性,耐薬品
性,耐熱性,電気的性質などの優れた硬化物となり、接
着剤,塗料,積層板,成形材料,注型材料などの幅広い
分野に利用されている。従来、工業的に最も多く使用さ
れているエポキシ樹脂としてビスフェノ−ルAにエピク
ロルヒドリンを反応させて得られる液状および固形のビ
スフェノ−ルA型エポキシ樹脂がある。その他液状のビ
スフェノ−ルA型エポキシ樹脂にテトラブルムビスフェ
ノ−ルAを反応させて得られる難燃性固形エポキシ樹脂
などが汎用エポキシ樹脂として工業的に使用されてい
る。 【0003】 【発明が解決しようとする課題】しかしながら、前記し
たような汎用エポキシ樹脂は分子量が大きくなるにつれ
て、それを使用して得られる硬化物の吸水性は高くなり
耐熱性は低下するという欠点がある。一方、最近の電子
産業などの目ざましい発達に伴い、これらに使用される
電気絶縁材料などに要求される耐水性及び耐熱性は益々
厳しくなっており、耐水性及び耐熱性に優れたエポキシ
樹脂の出現が待ち望まれている。 【0004】 【課題を解決するための手段】本発明者らはこうした実
状に鑑み、耐水性及び耐熱性に優れるエポキシ樹脂を求
めて鋭意研究した結果、後記式(1)で表されるエポキ
シ樹脂がその硬化物に対して耐水性及び耐熱性を付与す
るものであることを見い出して本発明を完成させるに到
った。すなわち本発明は (1) 下記式(2) (式中、nは平均値を示し正数を表す。Rは、2個のフ
ェノール性水酸基を有する化合物の水酸基が除かれた残
基を表し、個々のRはお互いに同一であっても異なって
いてもよい。)で表される化合物のアルコール性水酸基
をアリルハライド(及び必要により更にエピハロヒドリ
ン)と反応させることを特徴とする式(1) 【0005】 【化2】 【0006】(式中、n及びRは式(1)におけるのと
同じ意味を表す。又、個々のXは、水素原子、アリル基
(CH2=CHCH2−)、或いはグリシジル基を表し、
個々のXはお互いに同一であっても異なってもよいが、
Xの5%以上はアリル基である。)で表されるエポキシ
樹脂の製法、 【0007】(2)エポキシ樹脂、硬化剤、及び必要に
より硬化促進剤を含有するエポキシ樹脂組成物におい
て、該エポキシ樹脂成分として式(1)のエポキシ樹脂
を含有することを特徴とするエポキシ樹脂組成物、
(3)上記(2)記載のエポキシ樹脂組成物からなる積
層板用エポキシ樹脂組成物、(4)上記(2)又は
(3)記載のエポキシ樹脂組成物の硬化物、に関するも
のである。 【0008】本発明によれば、耐熱性、耐水性に優れた
硬化物を得ることができる。本発明の製法においては、
式(2) 【0009】 【化3】【0010】(式中、n及びRは前記と同じ意味を表
す。)で表される化合物のアルコール性水酸基をアリル
ハライド(必要により更にエピハロヒドリン)と反応さ
せる。 【0011】より詳細には式(2)で表される化合物の
アルコ−ル性水酸基とアリルハライド(必要により更に
エピハロヒドリン)との反応をジメチルスルホキシドま
たは4級アンモニウム塩または1,3−ジメチル−2−
イミダゾリジノンとアルカリ金属水酸化物の共存下に行
い,アルカリ金属水酸化物の使用量を調節することによ
り式(1)のエポキシ樹脂を得ることができる。 【0012】本発明者らの検討によれば、式(2)の化
合物のアルコ−ル性水酸基は一般のアルコ−ル類より反
応性に富んでおり,例えばジメチルスルホキシドまたは
4級アンモニウム塩または1,3−ジメチル−2−イミ
ダゾリジノンとアルカリ金属水酸化物を共存させること
により、驚くべきことに,アルコ−ル性水酸基とアリル
ハライド(必要により更にエピハロヒドリン)との反応
を選択的に行え、さらにアルカリ金属水酸化物の量を調
節することにより式(2)で表される化合物のアルコ−
ル性水酸基を所望の割合にアリル化(必要により更にエ
ポキシ化)できる。 【0013】式(2)で表される化合物のアルコ−ル性
水酸基とアリルハライド(必要により更にエピハロヒド
リン)との反応をジメチルスルホキシドまたは4級アン
モニウム塩または1,3−ジメチル−2−イミダゾリジ
ノンとアルカリ金属水酸化物の共存下に行なう際,溶剤
としてアルコ−ル類,芳香族炭化水素類,ケトン類,環
状又は鎖状エ−テル化合物等を併用しても構わない。ま
たジメチルスルホキシド,4級アンモニウム塩,1,3
−ジメチル−2−イミダゾリジノンは単独で用いてもよ
いが、併用しても構わない。 【0014】ジメチルスルホキシドあるいは1,3−ジ
メチル−2−イミダゾリジノンの使用量は式(2)で表
される化合物に対して5重量%〜300重量%が好まし
い。式(2)で表される化合物に対して5重量%未満で
あると式(2)で表される化合物の水酸基とアリルハラ
イド,エピハロヒドリンとの反応が遅くなる為長時間の
反応が必要となり好ましくない。式(2)で表される化
合物に対して300重量%を超えると増量した効果はほ
とんどなくなる一方容積効率も悪くなり好ましくない。 【0015】4級アンモニウム塩としてはテトラメチル
アンモニウムクロライド,テトラメチルアンモニウムブ
ロマイド,トリメチルベンジルアンモニウムクロライド
等が挙げられ、その使用量は式(2)で表される化合物
のアリル化,エポキシ化させたい水酸基1当量に対して
0.3〜50gが好ましい。0.3g未満であると式
(2)で表される化合物の水酸基とアリルハライド或は
エピハロヒドリンとの反応が遅くなり長時間の反応が必
要となり好ましくなく,又,50gを超えると増量した
効果はほとんどなくなる一方コストが高くなり好ましく
ない。 【0016】アリルハライド及びエピハロヒドリンとし
ては、例えば,アリルクロライド,アリルブロマイド,
エピクロロヒドリン,エピブロモヒドリン等が挙げら
れ,これらは,それぞれ,式(2)で表される化合物の
アリル化或はエポキシ化させたい水酸基1当量に対して
当量以上使用すれば良い。しかしながらアリル化或はエ
ポキシ化させたい水酸基1当量に対して20倍当量を超
えると増量した効果はほとんどなくなる一方容積効率も
悪くなり好ましくない。 【0017】アルカリ金属水酸化物としては、苛性ソ−
ダ,苛性カリ,水酸化リチウム,水酸化カルシウムなど
が使用できるが苛性ソ−ダが好ましい。アルカリ金属水
酸化物の使用量は式(2)で表される化合物のアリル化
或はエポキシ化させたい水酸基1当量に対して1〜2.
5倍当量使用すれば良い。アルカリ金属水酸化物は固形
でも水溶液でも構わない。また水溶液を使用する場合は
反応中、反応系内の水は常圧下、減圧下において反応系
外に留去しながら反応を行うこともできる。 【0018】反応温度は20〜100℃が好ましい。反
応温度が20℃未満であると反応が遅くなり長時間の反
応が必要となる。反応温度が100℃を超えると副反応
が多く起こり好ましくない。 【0019】本発明において得られる式(1)のエポキ
シ樹脂(以下、本発明のエポキシ樹脂という)におい
て,nは平均値を示し正数を表わすが好ましい値は0.
1〜15,特に好ましい値は1〜10である。又,Xの
5%以上はアリル基であるが,Xの10%以上がアリル
基であることが好ましい。又,Rとしては,例えば, 【0020】 【化4】【0021】等が挙げられる。Rは,式(1)で表され
るエポキシ樹脂において,含有される分子毎に同一であ
っても異なっていてもよく,又,同一分子内において
も,複数存在するRはお互いに同一であっても異なって
いてもよい。 【0022】以下に,本発明のエポキシ樹脂組成物につ
いて説明する。本発明のエポキシ樹脂は単独で用いても
よく,又,他のエポキシ樹脂と併用してもよい。他のエ
ポキシ樹脂と併用する場合,本発明のエポキシ樹脂は全
エポキシ樹脂中10重量%以上用いるのが好ましく,特
に20重量%以上用いるのが好ましい。他のエポキシ樹
脂としては,例えば,ビスフェノールA型エポキシ樹
脂,臭素化ビスフェノールA型エポキシ樹脂,トリフェ
ニルメタン型エポキシ樹脂,テトラメチルビフェノール
型エポキシ樹脂,フェノールノボラック型エポキシ樹
脂,クレゾールノボラック型エポキシ樹脂等が挙げられ
る。 【0023】硬化剤としてはアミン系化合物,酸無水物
系化合物,アミド系化合物,フェノ−ル系化合物などが
挙げられ,具体例としては、ジアミノジフェニルメタ
ン,ジエチレントリアミン,トリエチレンテトラミン,
ジアミノジフェニルスルホン,イソホロンジアミン,ジ
シアンジアミド,リノレン酸の2量体とエチレンジアミ
ンとより合成されるポリアミド樹脂,無水フタル酸,無
水トリメリット酸,無水ピロメリット酸,無水マレイン
酸,テトラヒドロ無水フタル酸,メチルテトラヒドロ無
水フタル酸,無水メチルナジック酸,ヘキサヒドロ無水
フタル酸,メチルヘキサヒドロ無水フタル酸,フェノ−
ルノボラック,及びこれらの変性物,イミダゾ−ル,B
F3 −アミン錯体,グアニジン誘導体などが挙げられ
る。これらの硬化剤はそれぞれ単独で用いてもよいし、
2種以上組み合わせて用いてもよい。 【0024】これらの硬化剤の使用量は,エポキシ樹脂
のエポキシ基に対して0.7〜1.2当量が好ましい。
エポキシ基に対して,0.7当量に満たない場合、ある
いは1.2当量を超える場合,いずれも硬化が不完全と
なり良好な硬化物性が得られない恐れがある。 【0025】また上記硬化剤を用いる際に硬化促進剤を
併用しても差し支えない。硬化促進剤としては例えばイ
ミダゾ−ル類,第3級アミン類,フェノ−ル類,金属化
合物等が挙げられる。さらに、必要に応じて無機または
有機の充填剤等の種々の配合剤を添加することができ
る。硬化促進剤を使用する場合,その使用量はエポキシ
樹脂100重量部に対して0.1〜5.0重量部が好ま
しい。 【0026】本発明のエポキシ樹脂組成物は,エポキシ
樹脂,硬化剤,必要により硬化促進剤や他の各種配合剤
を均一に混合することにより得ることができる。本発明
のエポキシ樹脂組成物から従来知られている方法と同様
の方法で容易にエポキシ樹脂組成物の硬化物を得ること
ができる。例えば,エポキシ樹脂と硬化剤,必要により
硬化促進剤,充填剤,その他の添加剤を必要に応じて押
出機,ニ−ダ,ロ−ル等を用いて均一になるまで充分に
混合してエポキシ樹脂組成物を得、そのエポキシ樹脂組
成物を溶融後注型あるいはトランスファ−成形機などを
用いて成形し、さらに80〜200℃に加熱することに
より硬化物を得ることができる。また本発明の樹脂組成
物を溶剤に溶解させ、ガラス繊維,カ−ボン繊維,ポリ
エステル繊維,ポリアミド繊維,アルミナ繊維,紙など
の基材に含浸させ加熱乾燥して得たプリプレグを熱プレ
ス成形して硬化物を得ることもできる。 【0027】本発明のエポキシ樹脂組成物は,耐水性,
耐熱性に優れた硬化物を与え,積層板用,塗料,接着
剤,封止材用等各種用途に使用できる。 【0028】 【実施例】次に本発明を実施例,比較例により具体的に
説明するが、以下において部は特に断わりのない限りす
べて重量部であるものとする。尚、ガラス転移点,吸水
率及びNMRの測定条件は次の通りである。 【0029】ガラス転移点 熱機械測定装置(TMA):真空理工 TM−7000 昇温速度:2℃/min 吸水率測定条件 試験片(硬化物):直径 50mm 厚さ 3mm 円盤 100℃の水中で20時間煮沸した後の重量増加量(重
量%) 【0030】NMR測定条件 NMR:Varian Gemini−300 溶媒:CDCl3 温度:20℃ 周波数領域:4500.5Hz 濃度:150mg/ml パルス間隔:10.0microsec 積算回数:16回 【0031】実施例1〜3,比較例1 式(2)で表される化合物としてRが式(3)で示され
る残基でありnが2.2であるビスフェノ−ルA型エポ
キシ樹脂(エポミックR−301、三井石油化学
(株)、エポキシ当量479g/eq)220部(アル
コ−ル性水酸基0.5当量)をジメチルスルホキシド4
40部に溶解させた後、撹拌下40℃で塩化アリル7
6.5部を添加した。その後30%NaOH水溶液9
4.7部を加え還流下で50℃に昇温し3時間反応を行
った。反応終了後メチルイソブチルケトン880部、水
440部を加え2回水洗を行った。油水分離後、油層よ
りメチルイソブチルケトン及びジメチルスルホキシドを
減圧下に蒸留回収し、エポキシ当量511g/eqのエ
ポキシ樹脂(1)217部を得た。NMRを用いて、得
られたエポキシ樹脂(1)のアリル基とグリシジル基と
を合わせた総官能基当量を算出すると288g/eqと
なった。得られたエポキシ樹脂(1)は,式(1)にお
いてn=2.2,Rが式(3)で表される残基,Xが水
素原子及びアリル基を示しXの69%がアリル基となっ
ているエポキシ樹脂である。 【0032】また同様の方法で30%NaOH水溶液の
使用量を67.7部にしてエポキシ当量504g/eq
のエポキシ樹脂(2)210部を得た。NMRを用い
て、得られたエポキシ樹脂(2)のアリル基とグリシジ
ル基とを合わせた総官能基当量を算出すると319g/
eqとなった。得られたエポキシ樹脂(2)は,式
(1)においてn=2.2,Rが式(3)で表される残
基,Xが水素原子及びアリル基を示しXの52%がアリ
ル基となっているエポキシ樹脂である。 【0033】更に同様の方法で30%NaOH水溶液の
使用量を40.6部にしてエポキシ当量496g/eq
のエポキシ樹脂(3)206部を得た。NMRを用い
て、得られたエポキシ樹脂(3)のアリル基とグリシジ
ル基とを合わせた総官能基当量を算出すると372g/
eqとなった。得られたエポキシ樹脂(3)は,式
(1)においてn=2.2,Rが式(3)で表される残
基,Xが水素原子及びアリル基を示しXの30%がアリ
ル基となっているエポキシ樹脂である。 【0034】また得られたエポキシ樹脂(1)〜
(3)、比較としてエポキシ樹脂エポミックR−30
1、硬化剤としてジアミノジフェニルメタン(DDM)
を用い、表−1に示す組成で配合して、70℃で15分
ロールで混練し,150℃、180秒でトランスファー
成形して、その後160℃で2時間、更に180℃で8
時間硬化せしめて試験片を作成し、ガラス転移点及び吸
水率を測定した。結果を表1に示す。なお表中,各成分
の欄の数値は重量部を示す。 【0035】 表1 実 施 例 比較例 1 2 3 1 エポキシ樹脂(1) 100 エポキシ樹脂(2) 100 エポキシ樹脂(3) 100 エポミックR−301 100 エポキシ当量(g/eq) 511 504 496 479 総官能基当量(g/eq) 288 319 372 479 DDM 17 16 13 10 ガラス転移点(℃) 155 147 144 140 吸水率(%) 1.51 1.60 1.67 1.87 【0036】実施例4〜5,比較例2 実施例1〜3と同様の原料エポミックR−301を53
2部用いてエポキシ樹脂(3)の合成の場合と同様の方
法でエポキシ当量が494g/eq、NMRを用いて算
出されたアリル基とグリシジル基とを合わせた総官能基
当量が369g/eqであるエポキシ樹脂522部を得
た。得られたエポキシ樹脂219部をエピクロルヒドリ
ン648部に溶解させた後、テトラメチルアンモニウム
クロライド2.5部を添加し、次いでNaOHを13.
5部添加し,更に撹拌下40℃で3時間反応を行った。
反応終了後水324部を加え水洗を行った。油水分離
後、油層より過剰の未反応エピクロルヒドリンを減圧下
に蒸留回収し、エポキシ当量349g/eqのエポキシ
樹脂(4)221部を得た。NMRを用いてアリル基と
グリシジル基とを合わせた総官能基当量を算出すると2
91g/eqとなった。得られたエポキシ樹脂(4)
は,式(1)においてn=2.2,Rが式(3)で表さ
れる残基,Xが水素原子,アリル基及びグリシジル基を
示し,Xの30%がアリル基に,又,Xの45%がグリ
シジル基になっているエポキシ樹脂である。 【0037】また同様の方法で98.5%NaOHの使
用量を12.2部としてエポキシ当量371g/eqの
エポキシ樹脂(5)217部を得た。NMRを用いてア
リル基とグリシジル基とを合わせた総官能基当量を算出
すると300g/eqとなった。得られたエポキシ樹脂
(5)は,式(1)においてn=2.2,Rが式(3)
で表される残基,Xが水素原子,アリル基及びグリシジ
ル基を示し,Xの30%がアリル基であり,又,Xの3
5%がグリシジル基であるエポキシ樹脂である。 【0038】また得られたエポキシ樹脂(4)〜
(5)、比較としてエポキシ樹脂エポミックR−30
1、硬化剤としてジアミノジフェニルメタン(DDM)
を用い、表2に示す組成で配合して、70℃で15分ロ
ールで混練し、150℃、180秒でトランスファー成
形して、その後160℃で2時間、更に180℃で8時
間硬化せしめて試験片を作成し、ガラス転移点及び吸水
率を測定した。結果を表2に示す。なお,表中,各成分
の欄の数値は重量部を示す。 【0039】 【0040】実施例6〜7,比較例3 式(2)で表される化合物として,Rとして式(3)で
示される残基と式(4)で示される残基の両方が存在
し,nが2.6である臭素含有ビスフェノ−ルA型エポ
キシ樹脂(エピコート5049、油化シェルエポキシ
(株)、エポキシ当量735g/eq、臭素含有量2
6.6重量%)281部(アルコ−ル性水酸基0.5当
量)をジメチルスルホキシド560部に溶解させた後、
撹拌下40℃で塩化アリルを76.5部、30%NaO
H水溶液を88.0部添加した以外は実施例1と同様に
反応を行い、エポキシ当量782g/eqのエポキシ樹
脂(6)217部を得た。NMRを用いて、得られたエ
ポキシ樹脂(6)のアリル基とグリシジル基とを合わせ
た総官能基当量を算出すると416g/eqとなった。
得られたエポキシ樹脂(6)は,式(1)においてn=
2.6,Rが式(3)で表される残基及び式(4)で表
される残基を示し臭素含有量が25重量%であり,Xが
水素原子及びアリル基を示し,Xの65%がアリル基で
あるエポキシ樹脂である。 【0041】また同様の方法で30%NaOH水溶液の
使用量を60.9部にしてエポキシ当量770g/eq
のエポキシ樹脂(7)206部を得た。NMRを用い
て、得られたエポキシ樹脂(7)のアリル基とグリシジ
ル基とを合わせた総官能基当量を算出すると476g/
eqとなった。得られたエポキシ樹脂(7)は,式
(1)においてn=2.6,Rが式(3)で表される残
基及び式(4)で表される残基を示し臭素含有量が2
5.4重量%であり,Xが水素原子及びアリル基を示
し,Xの45%がアリル基であるエポキシ樹脂である。 【0042】また得られたエポキシ樹脂(6)〜
(7)、比較としてエポキシ樹脂エピコート5049、
硬化剤としてジアミノジフェニルメタン(DDM)を用
い、表3に示す組成で配合して、70℃で15分ロール
で混練し、150℃、180秒でトランスファー成形し
て、その後160℃で2時間、更に180℃で8時間硬
化せしめて試験片を作成し、ガラス転移点及び吸水率を
測定した。結果を表3に示す。なお,表中,各成分の欄
の数値は重量部を示す。 【0043】 【0044】実施例8〜10,比較例4 式(2)で表されるエポキシ樹脂としてRが式(3)で
示される残基であり,nが3.2であるビスフェノール
A型エポキシ樹脂(エポミックR−302,三井石油化
学(株),エポキシ当量629g/eq)389部(ア
ルコール性水酸基1.0当量)をジメチルスルホキシド
800部に溶解させた後,攪拌下30℃で塩化アリル7
6.5部を添加した。その後の30%NaOH水溶液1
35部(1.0モル)を加え還流下で50℃に昇温し3
時間反応を行った。反応終了後メチルイソブチルケトン
1600部,水800部を加え2回水洗を行った。油水
分離後,油層よりメチルイソブチルケトン及びジメチル
スルホキシドを減圧下に蒸留回収し,エポキシ当量69
0g/eqのエポキシ樹脂(8)375部を得た。得ら
れたエポキシ樹脂(8)は,式(1)においてn=3.
2,Rが式(3)で表される残基,Xが水素原子及びア
リル基を示し,Xの50%がアリル基で,NMRによる
総官能基当量=381g/eqであるエポキシ樹脂であ
る。 【0045】また同様の方法で30%NaOH水溶液の
使用量を94.7部(0.7モル)にしてエポキシ当量
682g/eqのエポキシ樹脂(9)371部を得た。
得られたエポキシ樹脂(9)は,式(1)においてn=
3.2,Rが式(3)で表される残基,Xが水素原子及
びアリル基を示し,Xの35%がアアリル基で,NMR
による総官能基当量=432g/eqであるエポキシ樹
脂である。 【0046】更に同様の方法で30%NaOH水溶液の
使用量を54.1部(0.4モル)にしてエポキシ当量
671g/eqのエポキシ樹脂(10)366 部を得た。
得られたエポキシ樹脂(10)は,式(1)においてn
=3.2,Rが式(3)で表される残基,Xが水素原子
及びアリル基を示し,Xの20%がアリル基であり,N
MRによる総官能基当量=495g/eqのエポキシ樹
脂である。 【0047】また得られたエポキシ樹脂(8)〜(1
0),比較としてエポキシ樹脂エポミックR−302,
硬化剤としてDDMを用い,表4に示す組成で配合し
て,70℃で15分ロール混練し,150℃,180秒
でトランスファー成形して,その後160℃で2時間,
更に180℃で8時間硬化せしめて試験片を作成し,ガ
ラス転移点及び吸水率を測定した。結果を表4に示す。
なお,表中,各成分の欄の数値は重量部を示す。 【0048】 表4 実施例 比較例 8 9 10 4 エポキシ樹脂(8) 100 エポキシ樹脂(9) 100 エポキシ樹脂(10) 100 エポミックR−302 100 エポキシ当量(g/eq) 690 682 671 629 総官能基当量(g/eq) 381 432 495 629 DDM 13 11 10 8 ガラス転移点(℃) 156 152 145 130 吸水率(%) 1.33 1.67 1.84 2.04 【0049】 【発明の効果】本発明のエポキシ樹脂は耐熱性、耐水性
に優れた特性を兼ね備えた硬化物を与えることができ、
成形材料,注型材料,積層材料,塗料,接着剤,レジス
トなどの広範囲の用途に極めて有用である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an epoxy resin which gives a cured product having excellent heat resistance and water resistance, an epoxy resin composition and a cured product thereof. The compositions of the present invention are extremely useful in a wide range of applications such as molding materials, casting materials, laminate materials, composite materials, paints, adhesives, resists, and the like. Further, by reacting the allyl group of the epoxy resin obtained in the present invention with the SiH group of silicone oil, application to a polymer alloy is also possible. 2. Description of the Related Art Epoxy resins are generally cured with various curing agents to give cured products having excellent mechanical properties, water resistance, chemical resistance, heat resistance, electrical properties, and the like. It is used in a wide range of fields such as agents, paints, laminates, molding materials, and casting materials. Conventionally, there is a liquid and solid bisphenol A-type epoxy resin obtained by reacting bisphenol A with epichlorohydrin as the epoxy resin most frequently used industrially. In addition, a flame-retardant solid epoxy resin obtained by reacting liquid bisphenol A with a liquid bisphenol A epoxy resin is industrially used as a general-purpose epoxy resin. [0003] However, the above-mentioned general-purpose epoxy resin has a disadvantage that as the molecular weight increases, the cured product obtained by using the resin has higher water absorption and lower heat resistance. There is. On the other hand, with recent remarkable developments in the electronics industry, etc., the water resistance and heat resistance required for electrical insulating materials used for these are becoming increasingly severe, and the emergence of epoxy resins having excellent water resistance and heat resistance. Is eagerly awaited. [0004] In view of such circumstances, the present inventors have conducted intensive studies for an epoxy resin having excellent water resistance and heat resistance. As a result, an epoxy resin represented by the following formula (1) was obtained. Have been found to impart water resistance and heat resistance to the cured product, and have completed the present invention. That is, the present invention provides (1) the following formula (2) (In the formula, n represents an average value and represents a positive number. R represents a residue in which the hydroxyl group of a compound having two phenolic hydroxyl groups has been removed, and each R is different from each other even if they are the same. Wherein the alcoholic hydroxyl group of the compound represented by formula (1) is reacted with allyl halide (and, if necessary, epihalohydrin). Wherein n and R have the same meanings as in formula (1), and each X represents a hydrogen atom, an allyl group (CH 2 CHCHCH 2 —) or a glycidyl group;
Each X may be the same or different from each other,
5% or more of X is an allyl group. (2) In an epoxy resin composition containing an epoxy resin, a curing agent and, if necessary, a curing accelerator, an epoxy resin of the formula (1) is used as the epoxy resin component. Epoxy resin composition characterized by containing,
(3) An epoxy resin composition for a laminate comprising the epoxy resin composition according to (2), and (4) a cured product of the epoxy resin composition according to (2) or (3). According to the present invention, a cured product having excellent heat resistance and water resistance can be obtained. In the production method of the present invention,
Formula (2) (Wherein n and R have the same meanings as described above). The alcoholic hydroxyl group of the compound represented by the formula (1) is reacted with allyl halide (further, if necessary, epihalohydrin). More specifically, the reaction between the alcoholic hydroxyl group of the compound represented by the formula (2) and allyl halide (furthermore, epihalohydrin if necessary) is carried out by using dimethyl sulfoxide or a quaternary ammonium salt or 1,3-dimethyl-2. −
The epoxy resin of the formula (1) can be obtained by performing the reaction in the presence of imidazolidinone and an alkali metal hydroxide and adjusting the amount of the alkali metal hydroxide used. According to the study of the present inventors, the alcoholic hydroxyl group of the compound of the formula (2) is more reactive than common alcohols, for example, dimethyl sulfoxide or quaternary ammonium salt or 1-hydroxyl. Surprisingly, by allowing coexistence of 2,3-dimethyl-2-imidazolidinone and an alkali metal hydroxide, the reaction between an alcoholic hydroxyl group and an allyl halide (and epihalohydrin if necessary) can be selectively carried out. Further, by adjusting the amount of the alkali metal hydroxide, the alcohol of the compound represented by the formula (2)
The hydroxyl group can be allylated (and, if necessary, further epoxidized) at a desired ratio. The reaction between the alcoholic hydroxyl group of the compound represented by the formula (2) and allyl halide (furthermore, epihalohydrin if necessary) is carried out by using dimethyl sulfoxide or a quaternary ammonium salt or 1,3-dimethyl-2-imidazolidinone. When the reaction is carried out in the co-presence of a solvent and an alkali metal hydroxide, alcohols, aromatic hydrocarbons, ketones, cyclic or chain ether compounds, etc. may be used in combination as a solvent. Dimethyl sulfoxide, quaternary ammonium salt, 1,3
-Dimethyl-2-imidazolidinone may be used alone or in combination. The use amount of dimethyl sulfoxide or 1,3-dimethyl-2-imidazolidinone is preferably 5% by weight to 300% by weight based on the compound represented by the formula (2). If the amount is less than 5% by weight based on the compound represented by the formula (2), the reaction between the hydroxyl group of the compound represented by the formula (2) and allyl halide or epihalohydrin becomes slow, so that a long-time reaction is required, which is preferable. Absent. If the amount exceeds 300% by weight based on the compound represented by the formula (2), the effect of increasing the amount is almost negligible, but the volumetric efficiency becomes poor, which is not preferable. Examples of the quaternary ammonium salt include tetramethylammonium chloride, tetramethylammonium bromide, trimethylbenzylammonium chloride, and the like. 0.3 to 50 g is preferable per equivalent. If the amount is less than 0.3 g, the reaction between the hydroxyl group of the compound represented by the formula (2) and allyl halide or epihalohydrin becomes slow, and a long reaction is required, which is not preferable. While it almost disappears, the cost increases, which is not preferable. The allyl halide and epihalohydrin include, for example, allyl chloride, allyl bromide,
Epichlorohydrin, epibromohydrin and the like can be mentioned, and these may be used in an amount of at least one equivalent to one equivalent of the hydroxyl group to be allylated or epoxidized of the compound represented by the formula (2). However, if the equivalent is more than 20 times equivalent to 1 equivalent of the hydroxyl group to be allylated or epoxidized, the effect of increasing the amount is hardly obtained, but the volumetric efficiency is deteriorated, which is not preferable. As the alkali metal hydroxide, caustic sodium
, Caustic potash, lithium hydroxide, calcium hydroxide and the like can be used, but caustic soda is preferred. The amount of the alkali metal hydroxide to be used is from 1 to 2 with respect to 1 equivalent of the hydroxyl group to be allylated or epoxidized of the compound represented by the formula (2).
What is necessary is just to use 5 times equivalent. The alkali metal hydroxide may be a solid or an aqueous solution. When an aqueous solution is used, the reaction can be carried out while distilling water out of the reaction system under normal pressure and reduced pressure during the reaction. The reaction temperature is preferably from 20 to 100 ° C. When the reaction temperature is lower than 20 ° C., the reaction becomes slow and a long-time reaction is required. If the reaction temperature exceeds 100 ° C., many side reactions occur, which is not preferable. In the epoxy resin of the formula (1) obtained in the present invention (hereinafter referred to as the epoxy resin of the present invention), n represents an average value and represents a positive number.
1 to 15, particularly preferred values are 1 to 10. Further, 5% or more of X is an allyl group, but it is preferable that 10% or more of X is an allyl group. Further, as R, for example, And the like. R may be the same or different for each contained molecule in the epoxy resin represented by the formula (1), and even in the same molecule, a plurality of Rs are the same as each other. Or different. Hereinafter, the epoxy resin composition of the present invention will be described. The epoxy resin of the present invention may be used alone or in combination with another epoxy resin. When used in combination with another epoxy resin, the epoxy resin of the present invention is preferably used in an amount of at least 10% by weight, more preferably at least 20% by weight of the total epoxy resin. Examples of other epoxy resins include bisphenol A epoxy resin, brominated bisphenol A epoxy resin, triphenylmethane epoxy resin, tetramethyl biphenol epoxy resin, phenol novolak epoxy resin, and cresol novolak epoxy resin. No. Examples of the curing agent include amine compounds, acid anhydride compounds, amide compounds, and phenol compounds. Specific examples thereof include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, and the like.
Polyamide resin synthesized from diaminodiphenylsulfone, isophoronediamine, dicyandiamide, linolenic acid dimer and ethylenediamine, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydro Phthalic anhydride, methylnadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, phenol
Lunovolac and modified products thereof, imidazole, B
F3-amine complexes, guanidine derivatives and the like. Each of these curing agents may be used alone,
Two or more kinds may be used in combination. The amount of the curing agent used is preferably 0.7 to 1.2 equivalents to the epoxy group of the epoxy resin.
If the amount is less than 0.7 equivalents or more than 1.2 equivalents with respect to the epoxy group, curing may be incomplete and good cured physical properties may not be obtained. When the above curing agent is used, a curing accelerator may be used in combination. Examples of the curing accelerator include imidazoles, tertiary amines, phenols, and metal compounds. Furthermore, various compounding agents such as inorganic or organic fillers can be added as needed. When a curing accelerator is used, its amount is preferably 0.1 to 5.0 parts by weight based on 100 parts by weight of the epoxy resin. The epoxy resin composition of the present invention can be obtained by uniformly mixing an epoxy resin, a curing agent, and if necessary, a curing accelerator and other various compounding agents. A cured product of the epoxy resin composition can be easily obtained from the epoxy resin composition of the present invention by a method similar to a conventionally known method. For example, an epoxy resin and a curing agent, and if necessary, a curing accelerator, a filler, and other additives are sufficiently mixed using an extruder, a kneader, a roll, or the like, as needed, until the mixture becomes homogeneous. A cured product can be obtained by obtaining a resin composition, molding the epoxy resin composition after casting by using a casting or transfer molding machine, and further heating to 80 to 200 ° C. Further, a prepreg obtained by dissolving the resin composition of the present invention in a solvent, impregnating a base material such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber or paper and drying by heating is subjected to hot press molding. To obtain a cured product. The epoxy resin composition of the present invention has water resistance,
Gives a cured product with excellent heat resistance and can be used for various applications such as laminates, paints, adhesives, and sealing materials. EXAMPLES Next, the present invention will be described in more detail with reference to Examples and Comparative Examples. Hereinafter, all parts are by weight unless otherwise specified. The measurement conditions of glass transition point, water absorption and NMR are as follows. Glass transition point thermomechanical analyzer (TMA): Vacuum Science and Technology TM-7000 Heating rate: 2 ° C./min Water absorption measurement conditions Test piece (cured product): diameter 50 mm thickness 3 mm disk 100 ° C. in water at 20 ° C. Weight increase after boiling for hours (% by weight) NMR measurement conditions NMR: Varian Gemini-300 Solvent: CDCl 3 Temperature: 20 ° C. Frequency range: 4500.5 Hz Concentration: 150 mg / ml Pulse interval: 10.0 microsec integration Number of times: 16 Examples 1-3, Comparative Example 1 As a compound represented by the formula (2), bisphenol A wherein R is a residue represented by the formula (3) and n is 2.2 220 parts of epoxy resin (epoxy R-301, Mitsui Petrochemical Co., Ltd., epoxy equivalent: 479 g / eq) (alcohol hydroxyl group: 0.5 equivalent) is dimethyl Sulfoxide 4
After dissolving in 40 parts, allyl chloride 7
6.5 parts were added. Then, 30% NaOH aqueous solution 9
4.7 parts were added, the temperature was raised to 50 ° C. under reflux, and the reaction was carried out for 3 hours. After completion of the reaction, 880 parts of methyl isobutyl ketone and 440 parts of water were added, and the mixture was washed twice with water. After oil-water separation, methyl isobutyl ketone and dimethyl sulfoxide were distilled and recovered from the oil layer under reduced pressure to obtain 217 parts of an epoxy resin (1) having an epoxy equivalent of 511 g / eq. Using NMR, the total functional group equivalent of the obtained epoxy resin (1) including the allyl group and the glycidyl group was calculated to be 288 g / eq. In the obtained epoxy resin (1), n = 2.2 in the formula (1), R is a residue represented by the formula (3), X is a hydrogen atom and an allyl group, and 69% of X is an allyl group. It is an epoxy resin. In the same manner, the amount of the 30% aqueous NaOH solution was changed to 67.7 parts, and the epoxy equivalent was 504 g / eq.
Of epoxy resin (2) was obtained. The total functional group equivalent of the allyl group and the glycidyl group of the obtained epoxy resin (2) was calculated using NMR to be 319 g /
eq. In the obtained epoxy resin (2), n = 2.2 in the formula (1), R is a residue represented by the formula (3), X is a hydrogen atom and an allyl group, and 52% of X is an allyl group. It is an epoxy resin. Further, in the same manner, the amount of the 30% aqueous NaOH solution was changed to 40.6 parts and the epoxy equivalent was 496 g / eq.
206 parts of an epoxy resin (3) was obtained. Using NMR, the total functional group equivalent of the obtained epoxy resin (3), including allyl groups and glycidyl groups, was 372 g /
eq. In the obtained epoxy resin (3), n = 2.2 in the formula (1), R is a residue represented by the formula (3), X is a hydrogen atom and an allyl group, and 30% of X is an allyl group. It is an epoxy resin. The obtained epoxy resin (1)
(3) Epoxy resin epomic R-30 for comparison
1. Diaminodiphenylmethane (DDM) as curing agent
And kneaded with a roll at 70 ° C. for 15 minutes, and transfer-molded at 150 ° C. for 180 seconds, then at 160 ° C. for 2 hours, and further at 180 ° C. for 8 hours.
A test piece was prepared by curing for a time, and the glass transition point and the water absorption were measured. Table 1 shows the results. In the table, the numerical values in the columns of the respective components indicate parts by weight. Table 1 Example Comparative Example 1 2 3 1 Epoxy resin (1) 100 Epoxy resin (2) 100 Epoxy resin (3) 100 Epomic R-301 100 Epoxy equivalent (g / eq) 511 504 496 479 Total functionality Group equivalent (g / eq) 288 319 372 479 DDM 17 16 13 10 Glass transition point (° C) 155 147 144 140 Water absorption (%) 1.51 1.60 1.67 1.87 Examples 4 to 5, Comparative Example 2 Example 1 Raw material epomic R-301 similar to
In the same manner as in the synthesis of the epoxy resin (3) using two parts, the epoxy equivalent was 494 g / eq, and the total functional group equivalent of allyl groups and glycidyl groups calculated using NMR was 369 g / eq. 522 parts of a certain epoxy resin were obtained. After dissolving 219 parts of the obtained epoxy resin in 648 parts of epichlorohydrin, 2.5 parts of tetramethylammonium chloride was added, and then 13.13 parts of NaOH was added.
5 parts were added, and the reaction was further performed at 40 ° C. for 3 hours with stirring.
After the completion of the reaction, 324 parts of water was added and washed with water. After oil-water separation, excess unreacted epichlorohydrin was distilled and recovered from the oil layer under reduced pressure to obtain 221 parts of an epoxy resin (4) having an epoxy equivalent of 349 g / eq. When the total functional group equivalent of the allyl group and the glycidyl group was calculated using NMR, it was 2
It became 91 g / eq. Epoxy resin obtained (4)
In Formula (1), n = 2.2, R represents a residue represented by Formula (3), X represents a hydrogen atom, an allyl group, and a glycidyl group, 30% of X represents an allyl group, An epoxy resin in which 45% of X is a glycidyl group. In the same manner, 217 parts of an epoxy resin (5) having an epoxy equivalent of 371 g / eq was obtained, using 12.2 parts of 98.5% NaOH. Using NMR, the total functional group equivalent of the allyl group and the glycidyl group was calculated to be 300 g / eq. In the obtained epoxy resin (5), n = 2.2 and R in the formula (1) are the same as those in the formula (3).
X represents a hydrogen atom, an allyl group or a glycidyl group, and 30% of X is an allyl group;
5% is an epoxy resin having a glycidyl group. The obtained epoxy resin (4)
(5) Epoxy resin epomic R-30 for comparison
1. Diaminodiphenylmethane (DDM) as curing agent
And kneaded with a roll at 70 ° C. for 15 minutes, transfer-molded at 150 ° C. for 180 seconds, and then cured at 160 ° C. for 2 hours and further at 180 ° C. for 8 hours. A test piece was prepared, and the glass transition point and the water absorption were measured. Table 2 shows the results. In the table, the numerical values in the column of each component indicate parts by weight. [0039] Examples 6 and 7, Comparative Example 3 As a compound represented by the formula (2), R represents both a residue represented by the formula (3) and a residue represented by the formula (4); A bromine-containing bisphenol A type epoxy resin in which n is 2.6 (Epicoat 5049, Yuka Shell Epoxy Co., Ltd., epoxy equivalent 735 g / eq, bromine content 2)
After dissolving 281 parts (0.5 equivalent of alcoholic hydroxyl group) in 560 parts of dimethyl sulfoxide,
76.5 parts of allyl chloride and 30% NaO
The reaction was carried out in the same manner as in Example 1 except that 88.0 parts of an H aqueous solution was added to obtain 217 parts of an epoxy resin (6) having an epoxy equivalent of 782 g / eq. The total functional group equivalent of the allyl group and the glycidyl group of the obtained epoxy resin (6) was calculated to be 416 g / eq using NMR.
The obtained epoxy resin (6) is represented by the formula (1) where n =
2.6, R represents a residue represented by the formula (3) and a residue represented by the formula (4), the bromine content is 25% by weight, X represents a hydrogen atom and an allyl group, 65% of the epoxy resin is an allyl group. In the same manner, the amount of the 30% aqueous NaOH solution was changed to 60.9 parts, and the epoxy equivalent was 770 g / eq.
206 parts of an epoxy resin (7) was obtained. NMR was used to calculate the total functional group equivalent of the obtained epoxy resin (7) including allyl groups and glycidyl groups, which was 476 g /
eq. In the obtained epoxy resin (7), n = 2.6 in formula (1), R represents the residue represented by formula (3) and the residue represented by formula (4), and the bromine content is 2
The epoxy resin is 5.4% by weight, X represents a hydrogen atom and an allyl group, and 45% of X is an allyl group. The obtained epoxy resin (6)
(7), epoxy resin epicoat 5049 for comparison,
Using diaminodiphenylmethane (DDM) as a curing agent, compounded with the composition shown in Table 3, kneaded with a roll at 70 ° C. for 15 minutes, and transfer-molded at 150 ° C. for 180 seconds, and then at 160 ° C. for 2 hours, A test piece was prepared by curing at 180 ° C. for 8 hours, and the glass transition point and the water absorption were measured. Table 3 shows the results. In the table, the numerical values in the column of each component indicate parts by weight. [0043] Examples 8 to 10 and Comparative Example 4 As an epoxy resin represented by the formula (2), a bisphenol A type epoxy resin wherein R is a residue represented by the formula (3) and n is 3.2 After dissolving 389 parts (1.0 equivalent of alcoholic hydroxyl group) of epoxide R-302, Mitsui Petrochemical Co., Ltd., epoxy equivalent 629 g / eq) in 800 parts of dimethyl sulfoxide, allyl chloride 7 was stirred at 30 ° C.
6.5 parts were added. Then 30% NaOH aqueous solution 1
35 parts (1.0 mol) were added, and the temperature was raised to 50 ° C. under reflux to obtain 3
A time reaction was performed. After the completion of the reaction, 1600 parts of methyl isobutyl ketone and 800 parts of water were added, and the mixture was washed twice with water. After oil-water separation, methyl isobutyl ketone and dimethyl sulfoxide were distilled and recovered from the oil layer under reduced pressure, and the epoxy equivalent was 69%.
375 parts of 0 g / eq epoxy resin (8) were obtained. The obtained epoxy resin (8) has the formula (1) where n = 3.
2, an epoxy resin in which R is a residue represented by the formula (3), X is a hydrogen atom and an allyl group, 50% of X is an allyl group, and the total functional group equivalent by NMR is 381 g / eq. . In a similar manner, the amount of the 30% aqueous NaOH solution was changed to 94.7 parts (0.7 mol) to obtain 371 parts of an epoxy resin (9) having an epoxy equivalent of 682 g / eq.
The obtained epoxy resin (9) is represented by the formula (1) where n =
3.2, R is a residue represented by the formula (3), X is a hydrogen atom and an allyl group, 35% of X is an allyl group, and NMR
Is an epoxy resin having a total functional group equivalent of 432 g / eq. In the same manner, the amount of the 30% aqueous NaOH solution was changed to 54.1 parts (0.4 mol) to obtain 366 parts of an epoxy resin (10) having an epoxy equivalent of 671 g / eq.
The obtained epoxy resin (10) is represented by the formula (1)
= 3.2, R is a residue represented by the formula (3), X is a hydrogen atom and an allyl group, 20% of X is an allyl group,
It is an epoxy resin having a total functional group equivalent of 495 g / eq by MR. The obtained epoxy resins (8) to (1)
0), epoxy resin epomic R-302 as a comparison,
Using DDM as a curing agent, compounded with the composition shown in Table 4, roll-kneaded at 70 ° C for 15 minutes, transfer-molded at 150 ° C for 180 seconds, and then at 160 ° C for 2 hours.
Further, a test piece was prepared by curing at 180 ° C. for 8 hours, and the glass transition point and the water absorption were measured. Table 4 shows the results.
In the table, the numerical values in the column of each component indicate parts by weight. Table 4 Example Comparative Example 8 9 10 4 Epoxy resin (8) 100 Epoxy resin (9) 100 Epoxy resin (10) 100 Epomic R-302 100 Epoxy equivalent (g / eq) 690 682 671 629 Total functional groups Equivalent (g / eq) 381 432 495 629 DDM 13 11 10 8 Glass transition point (° C) 156 152 145 130 Water absorption (%) 1.33 1.67 1.84 2.04 [Effect of the Invention] The epoxy resin of the present invention has heat resistance. , Can give a cured product having excellent water resistance properties,
It is extremely useful for a wide range of applications such as molding materials, casting materials, laminate materials, paints, adhesives, and resists.

フロントページの続き (56)参考文献 特開 平1−168722(JP,A) 特開 平1−230622(JP,A) (58)調査した分野(Int.Cl.7,DB名) C08G 39/14 C08G 59/32 Continuation of the front page (56) References JP-A-1-168722 (JP, A) JP-A-1-230622 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C08G 39 / 14 C08G 59/32

Claims (1)

(57)【特許請求の範囲】 【請求項1】下記式(2) (式中、nは平均値を示し正数を表す。Rは、2個のフ
ェノール性水酸基を有する化合物の水酸基が除かれた残
基を表し、個々のRはお互いに同一であっても異なって
いてもよい。)で表される化合物のアルコール性水酸基
をアリルハライド(及び必要により更にエピハロヒドリ
ン)と反応させることを特徴とする式(1)(式中、n及びRは式(1)におけるのと同じ意味を表
す。又、個々のXは、水素原子、アリル基、或いはグリ
シジル基を表し、個々のXはお互いに同一であっても異
なっていてもよいが、Xの5%以上はアリル基であ
る。)で表されるエポキシ樹脂の製法。
(57) [Claims] [Claim 1] The following formula (2) (In the formula, n represents an average value and represents a positive number. R represents a residue in which the hydroxyl group of a compound having two phenolic hydroxyl groups has been removed, and each R is different even if it is the same as each other. Wherein the alcoholic hydroxyl group of the compound represented by the formula (1) is reacted with allyl halide (and, if necessary, epihalohydrin). (In the formula, n and R have the same meanings as in formula (1). Each X represents a hydrogen atom, an allyl group, or a glycidyl group, and even if each X is the same as each other, The method may be different, but 5% or more of X is an allyl group.)
JP04869693A 1993-02-16 1993-02-16 Method for producing epoxy resin, epoxy resin composition and cured product thereof Expired - Fee Related JP3377241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04869693A JP3377241B2 (en) 1993-02-16 1993-02-16 Method for producing epoxy resin, epoxy resin composition and cured product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04869693A JP3377241B2 (en) 1993-02-16 1993-02-16 Method for producing epoxy resin, epoxy resin composition and cured product thereof

Publications (2)

Publication Number Publication Date
JPH06239966A JPH06239966A (en) 1994-08-30
JP3377241B2 true JP3377241B2 (en) 2003-02-17

Family

ID=12810477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04869693A Expired - Fee Related JP3377241B2 (en) 1993-02-16 1993-02-16 Method for producing epoxy resin, epoxy resin composition and cured product thereof

Country Status (1)

Country Link
JP (1) JP3377241B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07228580A (en) * 1993-12-21 1995-08-29 Yuka Shell Epoxy Kk Modified polyvalent epoxy compound, production of the compound and epoxy resin composition
WO2006121030A1 (en) * 2005-05-09 2006-11-16 Nippon Kayaku Kabushki Kaisha Epoxy resin, method for producing same and use thereof
WO2008018364A1 (en) * 2006-08-07 2008-02-14 Nippon Steel Chemical Co., Ltd. Prepreg, laminate and printed wiring board
DE102006059464A1 (en) * 2006-12-14 2008-06-19 Henkel Kgaa Polyurethane laminating adhesive

Also Published As

Publication number Publication date
JPH06239966A (en) 1994-08-30

Similar Documents

Publication Publication Date Title
JP3476027B2 (en) Manufacturing method of epoxy resin
EP1275673B1 (en) Epoxy resin composition, cured article thereof, novel epoxy resin, novel phenol compound, and process for preparing the same
JPH1036485A (en) Epoxy resin, epoxy resin composition and cured product thereof
JP3735896B2 (en) Epoxy resin composition and semiconductor sealing material
EP0477724A2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP3377241B2 (en) Method for producing epoxy resin, epoxy resin composition and cured product thereof
JP3573530B2 (en) Epoxy resin mixture, epoxy resin composition and cured product thereof
JPH08239454A (en) Novolac resin, epoxy resin, epoxy resin composition and cured product thereof
JP2587739B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JPH08193110A (en) Novolak resin, epoxy resin, epoxy resin composition, and cured article obtained therefrom
JP3441020B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP3636409B2 (en) Phenolic resins, epoxy resins, epoxy resin compositions and cured products thereof
JP4605420B2 (en) Epoxy resin composition and cured product thereof
JP3540018B2 (en) Epoxy resin composition and cured product thereof
JP3886060B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JPH06298904A (en) Epoxy resin composition, epoxy resin mixture and its cured material
JP3476584B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP3729472B2 (en) Production method of epoxy resin
JPH06248055A (en) Epoxy resin, epoxy resin composition and its cured product
JP3068285B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP3537561B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JPH11199656A (en) Novolak resin, epoxy resin, epoxy resin composition and cured product thereof
JP3938592B2 (en) Phenolic compounds
JP3646942B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JPH08269168A (en) Epoxy resin, epoxy resin composition and its cured product

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees