JP3540018B2 - Epoxy resin composition and cured product thereof - Google Patents

Epoxy resin composition and cured product thereof Download PDF

Info

Publication number
JP3540018B2
JP3540018B2 JP18736794A JP18736794A JP3540018B2 JP 3540018 B2 JP3540018 B2 JP 3540018B2 JP 18736794 A JP18736794 A JP 18736794A JP 18736794 A JP18736794 A JP 18736794A JP 3540018 B2 JP3540018 B2 JP 3540018B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
cured product
formula
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18736794A
Other languages
Japanese (ja)
Other versions
JPH0848749A (en
Inventor
泰昌 赤塚
博美 森田
博昭 大野
健一 窪木
芳郎 嶋村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP18736794A priority Critical patent/JP3540018B2/en
Publication of JPH0848749A publication Critical patent/JPH0848749A/en
Application granted granted Critical
Publication of JP3540018B2 publication Critical patent/JP3540018B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)

Description

【0001】
【産業上の利用分野】
本発明は耐熱性、耐水性に優れる硬化物を与えるエポキシ樹脂組成物およびその硬化物に関する。
【0002】
【従来の技術】
エポキシ樹脂は種々の硬化剤で硬化させることにより、一般的に機械的性質,耐水性,耐薬品性,耐熱性,電気的性質などに優れた硬化物となり、接着剤,塗料,積層板,成形材料,注型材料などの幅広い分野に利用されている。従来、工業的に最も使用されているエポキシ樹脂としてビスフェノールAにエピクロルヒドリンを反応させて得られる液状および固形のビスフェノールA型エポキシ樹脂がある。その他液状のビスフェノールA型エポキシ樹脂にテトラブロムビスフェノールAを反応させて得られる難燃性臭素含有エポキシ樹脂などが汎用エポキシ樹脂として工業的に使用されている。
【0003】
【発明が解決しようとする課題】
しかしながら、前記したような汎用エポキシ樹脂は分子量が大きくなるにつれて、それを使用して得られる硬化物の耐熱性は低下するという欠点がある。また、汎用エポキシ樹脂にオルソクレゾールノボラックエポキシ樹脂等の多官能エポキシ樹脂を添加した場合、その硬化物の耐熱性は向上するものの、耐水性が低下するという欠点がある。
【0004】
【課題を解決するための手段】
本発明者らはこうした実情に鑑み、耐熱性及び耐水性に優れる硬化物を与えるエポキシ樹脂組成物を求めて鋭意研究した結果、下記の特定のエポキシ樹脂を含有するエポキシ樹脂組成物がその硬化物に対して優れた耐熱性及び耐水性を付与するものであることを見い出して本発明を完成させるに到った。
【0005】
すなわち本発明は
(1)(a)式(1)
【0006】
【化2】
【0007】
(式中、nは平均値であり0<n≦10である。Rはそれぞれ独立して水素原子またはハロゲン原子または炭素数1〜4のアルキル基、またはアリール基を表し、個々のRはお互いに同一であっても異なっていてもよい。Xは置換されていてもよい環員数5〜8のシクロアルカンの残基を表し、置換されている場合の置換基は炭素数1〜4のアルキル基またはアリール基である。)で表されるエポキシ樹脂混合物、
(b)硬化剤、
及び必要により
(c)硬化促進剤
を含有するエポキシ樹脂組成物;及び
(2)上記(1)記載のエポキシ樹脂組成物を硬化してなる硬化物に関するものである。
【0008】
以下、本発明を詳細に説明する。
【0009】
本発明のエポキシ樹脂組成物の成分の1つである式(1)で表されるエポキシ樹脂混合物は例えば、式(2)
【0010】
【化3】
【0011】
(式中X及びRは式(1)におけるのと同じ意味を表す。)
で表される化合物とエピハロヒドリンとの反応をアルカリ金属水酸化物の存在下で行うことにより得ることができる。
【0012】
式(2)で表される化合物の具体例としては、例えば下記式(3)
【0013】
【化4】
【0014】
或は下記式(4)
【0015】
【化5】
【0016】
或は下記式(5)
【0017】
【化6】
【0018】
で表される化合物が挙げられるが,これらに限定されるものではない。
【0019】
式(2)で表される化合物から本発明の成分の1つであるエポキシ樹脂混合物を得る方法としては公知の方法が採用できる。例えば式(2)で表される化合物と過剰のエピクロルヒドリン、エピブロムヒドリン等のエピハロヒドリンの溶解混合物に水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物を添加し、または添加しながら20〜120℃の温度で反応させる方法が挙げられる。以下特に断りのないかぎり、上記した反応で得られたエポキシ樹脂混合物をエポキシ樹脂(I)という。
【0020】
エポキシ樹脂(I)を得る反応において、アルカリ金属水酸化物はその水溶液を使用してもよく、その場合は該アルカリ金属水酸化物の水溶液を連続的に反応系内に添加すると共に減圧下、または常圧下連続的に水及びエピハロヒドリンを流出させ、更に分液し水は除去しエピハロヒドリンは反応系内に連続的に戻す方法でもよい。
【0021】
また、式(2)で表される化合物とエピハロヒドリンの溶解混合物にテトラメチルアンモニウムクロライド、テトラメチルアンモニウムブロマイド、トリメチルベンジルアンモニウムクロライド、等の4級アンモニウム塩を触媒として添加し50〜150℃で0.5〜5時間反応させて得られるハロヒドリンエーテル化物にアルカリ金属水酸化物の固体または水溶液を加え、再び20〜120℃の温度で1〜10時間反応させ脱ハロゲン化水素(閉環)させる方法でもよい。
【0022】
通常これらの反応において使用されるエピハロヒドリンの量は式(2)で表される化合物の水酸基1当量に対し通常1〜20モル、好ましくは2〜10モルである。アルカリ金属水酸化物の使用量は式(2)で表される化合物の水酸基1当量に対し0.8〜15モル、好ましくは0.9〜11モルである。更に、反応を円滑に進行させるためにメタノール、エタノールなどのアルコール類の他、ジメチルスルホン、ジメチルスルホキシド等の非プロトン性極性溶媒などを添加して反応を行うことが好ましく、中でもジメチルスルホキシドが特に好ましい。
【0023】
アルコール類を使用する場合、その使用量はエピハロヒドリンの量に対し2〜20重量%、より好ましくは4〜15重量%である。また非プロトン性極性溶媒を用いる場合はエピハロヒドリンの量に対し5〜100重量%、より好ましくは10〜90重量%である。
【0024】
これらのエポキシ化反応で得られた反応物を水洗後、または水洗無しに加熱減圧下、150〜250℃、圧力10mmHg以下でエピハロヒドリンや他の添加溶媒などを除去する。また更に加水分解性ハロゲンの少ないエポキシ樹脂(I)とするために、回収したエポキシ樹脂(I)を再びトルエン、メチルイソブチルケトンなどの溶剤に溶解し、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の水溶液を加えて更に反応を行い閉環を確実なものにすることもできる。この場合アルカリ金属水酸化物の使用量はエポキシ化に使用した式(2)で表される化合物の水酸基1当量に対して好ましくは0.01〜0.3モル、特に好ましくは0.05〜0.2モルである。反応温度は50〜120℃、反応時間は通常0.5〜2時間である。
【0025】
反応終了後、生成した塩を濾過、水洗などにより除去し、更に、加熱減圧下トルエン、メチルイソブチルケトンなどの溶剤を留去することによりエポキシ樹脂(I)を得ることができる。
【0026】
また、より高分子量の成分が多いエポキシ樹脂(I)は、公知の方法により、例えば上記の方法で得られたエポキシ樹脂と式(2)で表される化合物とを、塩基性触媒の存在下、溶融状態または溶剤中で、70〜200℃の間の温度で0.5〜20時間反応させることにより得ることができる。
【0027】
その場合の各成分の仕込比は、上記の方法で得られたエポキシ樹脂(I)1当量に対し、式(2)で表される化合物0〜0.9当量が好ましく、特に0〜0.85当量が好ましい。
【0028】
更に塩基性触媒としては、例えば、トリフェニルホスフィン、水酸化ナトリウム、4級アンモニウム塩、イミダゾール類などが挙げられ、その使用量はエポキシ樹脂(I)に対して0.001〜1.0重量%が好ましく、特に0.005〜0.5重量%が好ましい。また、溶剤を用いる場合は、メチルイソブチルケトン、トルエンなどが挙げられる。
【0029】
本発明のエポキシ樹脂組成物において、エポキシ樹脂(I)以外のエポキシ樹脂を併用することも可能である。
【0030】
上記(1)おける成分(b)の硬化剤としては種々のものが使用でき特に限定されず、例えばアミン系化合物,酸無水物系化合物,アミド系化合物,フェノール系化合物などが使用できる。用いうる硬化剤の具体例としては、ジアミノジフェニルメタン,ジエチレントリアミン,トリエチレンテトラミン,ジアミノジフェニルスルホン,イソホロンジアミン,ジシアンジアミド,リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂,無水フタル酸,無水トリメリット酸,無水ピロメリット酸,無水マレイン酸,テトラヒドロ無水フタル酸,メチルテトラヒドロ無水フタル酸,無水メチルナジック酸,ヘキサヒドロ無水フタル酸,メチルヘキサヒドロ無水フタル酸,フェノールノボラック,及びこれらの変性物,イミダゾール,BF−アミン錯体,グアニジン誘導体などが挙げられる。また、エポキシ樹脂(I)の原料として用いた式(2)で表される化合物も硬化剤として用いることが出来る。これらの硬化剤はそれぞれ単独で用いてもよいし、2種以上組み合わせて用いてもよい。
【0031】
これらの硬化剤の使用量は、エポキシ樹脂(I)と必要により併用されるこれ以外のエポキシ樹脂のエポキシ基1当量に対して0.7〜1.2当量が好ましい。エポキシ基1当量に対して、0.7当量に満たない場合、あるいは1.2当量を超える場合、いずれも硬化が不完全となり良好な硬化物性は得られない恐れがある。
【0032】
また上記硬化剤を用いる際に硬化促進剤を併用しても差し支えない。硬化促進剤として例えば2−メチルイミダゾール、2−エチルイミダゾール、2−エチル4−メチルイミダゾール等のイミダゾール類、2−(ジメチルアミノメチル)フェノール、1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7等の第3級アミン類、トリフェニルホスフィン等のホスフィン類、オクチル酸スズ等の有機金属化合物塩等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。硬化促進剤はエポキシ樹脂(I)と必要により併用されるこれ以外のエポキシ樹脂の合計100重量部に対して0.01〜15重量部用いるのが好ましく、特に0.1〜10重量部用いることが好ましい。
【0033】
本発明のエポキシ樹脂組成物には、更に必要に応じて公知の添加剤を配合することができる。用いうる添加剤としては、例えばシリカ、アルミナ、タルク、ガラス繊維等の無機充填材やシランカップリング剤、離型剤、顔料等が挙げられる。
【0034】
本発明のエポキシ樹脂組成物は、各成分を前記したような割合で均一に混合することにより得られる。本発明のエポキシ樹脂組成物は従来知られている方法と同様の方法で容易に硬化物とすることができる。例えばエポキシ樹脂(I)と硬化剤,必要により硬化促進剤及びその他の添加剤とを必要に応じて押出機,ニーダ,ロール等を用いて均一になるまで充分に混合してエポキシ樹脂組成物を得、そのエポキシ樹脂組成物を溶融後注型あるいはトランスファー成形機などを用いて成形し、さらに80〜200℃で2〜10時間に加熱することにより硬化物を得ることができる。
【0035】
また本発明のエポキシ樹脂組成物をトルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン等の希釈溶剤に溶解させ、ガラス繊維,カーボン繊維,ポリエステル繊維,ポリアミド繊維,アルミナ繊維,紙などの基材に含浸させ加熱乾燥して得たプリプレグを熱プレス成形して硬化物を得ることなどもできる。
【0036】
この場合の希釈溶剤の使用量は本発明のエポキシ樹脂組成物と該希釈溶剤の合計重量に対し通常10〜70重量%、好ましくは15〜65重量%である。
【0037】
こうして得られる硬化物は耐熱性、耐水性及び機械強度に優れているため、耐熱性、耐水性、高機械強度の要求される広範な分野で用いることができる。具体的には封止材料、積層板、絶縁材料などのあらゆる電気・電子材料として有用である。また、成型材料、接着剤、複合材料、塗料などの分野にも用いることができる。
【0038】
【実施例】
次に本発明を実施例、比較例により更に具体的に説明するが、以下において部は特に断わりのない限り重量部である。
【0039】
製造例1
温度計、冷却管、撹拌器を取り付けたフラスコに窒素ガスパージを施しながら前記式(3)で表される化合物310部、エピクロルヒドリン720部、ジメチルスルホキシド185部を仕込み溶解させた。更に45℃に加熱しフレーク状水酸化ナトリウム(純分99%)80.8部を90分かけて分割添加し、その後更に45℃で2時間、70℃で1時間反応させた。反応終了後、130℃で加熱減圧下ジメチルスルホキシド及びエピクロルヒドリンを留去し、残留物に844部のメチルイソブチルケトンを加え溶解した。
【0040】
更にこのメチルイソブチルケトンの溶液を70℃に加熱し30重量%の水酸化ナトリウム水溶液20部を添加し1時間反応させた後、水洗を3回繰り返しpHを中性とした。更に水層は分離除去し、ロータリエバポレーターを使用して油層から加熱減圧下メチルイソブチルケトンを留去し、下記式(6)
【0041】
【化7】
【0042】
で表されるエポキシ樹脂(A)409部を得た。得られたエポキシ樹脂の軟化点は53.3℃、エポキシ当量は227g/eqであった。またエポキシ当量から計算すると式中のnの値は0.09であった。
【0043】
実施例1,比較例1
製造例1で得られたエポキシ樹脂(A)、比較としてビスフェノールA型エポキシ樹脂(エピコート828、油化シェルエポキシ(株)製、エポキシ当量186g/eq)、硬化剤としてフェノールノボラック(水酸基当量106g/eq、日本化薬(株)製)、硬化促進剤としてトリフェニルホスフィン(TPP)を用い、表1に示す組成で配合して、70℃で15分ロールで混練し本発明のエポキシ樹脂組成物と比較用のエポキシ樹脂組成物を得た。次いでこれを150℃、180秒でトランスファー成型して、その後160℃で2時間、更に180℃で8時間硬化せしめて試験片を作製し、ガラス転移温度、吸水率を測定した。結果を表1に示す。尚、ガラス転移点及び吸水率の測定条件は次の通りである。また、表中、配合物の組成の欄の数値は部を示す。
【0044】
ガラス転移点
熱機械測定装置(TMA):真空理工(株)製 TM−7000
昇温速度:2℃/min
吸水率
試験片(硬化物):直径50mm
厚さ3mm 円盤
100℃の水中で24時間煮沸した後の重量増加率(%)
【0045】
【表1】
製造例2
温度計、冷却管、撹拌器を取り付けたフラスコに窒素ガスパージを施しながら、製造例1で得られたエポキシ樹脂159部、前記式(3)で表される化合物42部、及びメチルイソブチルケトン200部を仕込み、撹拌溶解した後、トリフェニルホスフィン0.16部を添加し、撹拌下120℃でメチルイソブチルケトンを減圧留去し、更に150℃で2時間反応を行い前記式(6)で表されるエポキシ当量470g/eq、軟化点85.2℃のエポキシ樹脂(B)201部を得た。エポキシ当量から計算すると式中のnの値は1.42であった。
【0046】
実施例2,比較例2
製造例2で得られたエポキシ樹脂(B)、比較としてビスフェノールA型エポキシ樹脂(エポミックR−301、三井石油化学(株)製、エポキシ当量468g/eq)、硬化剤としてフェノールノボラック(水酸基当量106g/eq、日本化薬(株)製)、硬化促進剤としてトリフェニルホスフィン(TPP)を用い、表2に示す組成で配合して、70℃で15分ロールで混練し、本発明のエポキシ樹脂組成物と比較用のエポキシ樹脂組成物を得た。次いでこれを150℃、180秒でトランスファー成型して、その後160℃2時間、更に180℃で8時間硬化せしめて試験片を作製し、上記条件でガラス転移温度、吸水率を測定した。結果を表2に示す。また、表中配合物の組成の欄の数値は重量部を示す。
【0047】
【表2】
以上、表1,2より本発明のエポキシ樹脂組成物の硬化物は、公知のエポキシ樹脂組成物の硬化物に較べ、高いガラス転移点及び低い吸水率を示した。
【0048】
【発明の効果】
本発明のエポキシ樹脂組成物は、従来一般的に使用されてきたエポキシ樹脂組成物と比較して、耐熱性及び耐水性に優れた硬化物を与える。
【0049】
すなわち本発明のエポキシ樹脂組成物は耐熱性、耐水性及び機械的強度に優れた特性を兼ね備えた硬化物を与えることができ、成形材料,注型材料,積層材料,塗料,接着剤,レジストなどの広範囲の用途にきわめて有用である。
[0001]
[Industrial applications]
The present invention relates to an epoxy resin composition that gives a cured product having excellent heat resistance and water resistance, and a cured product thereof.
[0002]
[Prior art]
Epoxy resins can be cured with various curing agents to give cured products with excellent mechanical properties, water resistance, chemical resistance, heat resistance, and electrical properties. It is used in a wide range of fields such as materials and casting materials. Conventionally, there is a liquid and solid bisphenol A type epoxy resin obtained by reacting epichlorohydrin with bisphenol A as the epoxy resin most used industrially. Other flame-retardant bromine-containing epoxy resins obtained by reacting tetrabromobisphenol A with a liquid bisphenol A-type epoxy resin are used industrially as general-purpose epoxy resins.
[0003]
[Problems to be solved by the invention]
However, the general-purpose epoxy resin as described above has a disadvantage that as the molecular weight increases, the heat resistance of a cured product obtained by using the resin decreases. Further, when a polyfunctional epoxy resin such as orthocresol novolak epoxy resin is added to a general-purpose epoxy resin, the heat resistance of the cured product is improved, but the water resistance is reduced.
[0004]
[Means for Solving the Problems]
In view of these circumstances, the present inventors have conducted intensive studies in search of an epoxy resin composition that gives a cured product having excellent heat resistance and water resistance. As a result, an epoxy resin composition containing the following specific epoxy resin was obtained by curing the cured product. The present invention has been found to impart excellent heat resistance and water resistance to the present invention.
[0005]
That is, the present invention provides (1) (a) Formula (1)
[0006]
Embedded image
[0007]
(In the formula, n is an average value and 0 <n ≦ 10. Each R independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an aryl group. X represents an optionally substituted cycloalkane residue having 5 to 8 ring members, and when substituted, the substituent is an alkyl having 1 to 4 carbon atoms. An epoxy resin mixture represented by the formula:
(B) a curing agent,
And (c) an epoxy resin composition containing a curing accelerator if necessary; and (2) a cured product obtained by curing the epoxy resin composition according to (1).
[0008]
Hereinafter, the present invention will be described in detail.
[0009]
The epoxy resin mixture represented by the formula (1), which is one of the components of the epoxy resin composition of the present invention, is, for example, a compound represented by the formula (2)
[0010]
Embedded image
[0011]
(Wherein X and R represent the same meaning as in formula (1))
By reacting the compound represented by with epihalohydrin in the presence of an alkali metal hydroxide.
[0012]
Specific examples of the compound represented by the formula (2) include, for example, the following formula (3)
[0013]
Embedded image
[0014]
Or the following equation (4)
[0015]
Embedded image
[0016]
Or the following equation (5)
[0017]
Embedded image
[0018]
However, the present invention is not limited thereto.
[0019]
As a method for obtaining an epoxy resin mixture which is one of the components of the present invention from the compound represented by the formula (2), a known method can be employed. For example, an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is added to a dissolved mixture of the compound represented by the formula (2) and an excess of epihalohydrin such as epichlorohydrin or epibromhydrin, or 20- A method in which the reaction is carried out at a temperature of 120 ° C. is exemplified. Hereinafter, unless otherwise specified, the epoxy resin mixture obtained by the above reaction is referred to as epoxy resin (I).
[0020]
In the reaction for obtaining the epoxy resin (I), an aqueous solution of the alkali metal hydroxide may be used. In this case, the aqueous solution of the alkali metal hydroxide is continuously added to the reaction system, and under reduced pressure. Alternatively, a method may be employed in which water and epihalohydrin are continuously discharged under normal pressure, liquids are separated, water is removed, and epihalohydrin is continuously returned to the reaction system.
[0021]
In addition, a quaternary ammonium salt such as tetramethylammonium chloride, tetramethylammonium bromide, trimethylbenzylammonium chloride or the like is added as a catalyst to a dissolved mixture of the compound represented by the formula (2) and epihalohydrin at 50 to 150 ° C. A method in which a solid or aqueous solution of an alkali metal hydroxide is added to a halohydrin etherified product obtained by reacting for 5 to 5 hours, and the reaction is performed again at a temperature of 20 to 120 ° C. for 1 to 10 hours to perform dehydrohalogenation (ring closing). May be.
[0022]
The amount of epihalohydrin used in these reactions is usually 1 to 20 mol, preferably 2 to 10 mol, per 1 equivalent of the hydroxyl group of the compound represented by the formula (2). The amount of the alkali metal hydroxide to be used is 0.8 to 15 mol, preferably 0.9 to 11 mol, per 1 equivalent of the hydroxyl group of the compound represented by the formula (2). Further, in order to make the reaction proceed smoothly, it is preferable to perform the reaction by adding an aprotic polar solvent such as dimethyl sulfone and dimethyl sulfoxide, in addition to alcohols such as methanol and ethanol, and dimethyl sulfoxide is particularly preferable. .
[0023]
When alcohols are used, the amount used is 2 to 20% by weight, more preferably 4 to 15% by weight, based on the amount of epihalohydrin. When an aprotic polar solvent is used, it is 5 to 100% by weight, more preferably 10 to 90% by weight, based on the amount of epihalohydrin.
[0024]
After the reaction product obtained by these epoxidation reactions is washed with or without water, epihalohydrin and other additional solvents are removed at 150 to 250 ° C. and a pressure of 10 mmHg or less under heating and reduced pressure. In order to further reduce the amount of the hydrolyzable halogenated epoxy resin (I), the recovered epoxy resin (I) is dissolved again in a solvent such as toluene or methyl isobutyl ketone, and the alkali metal such as sodium hydroxide or potassium hydroxide is used. An aqueous solution of a hydroxide may be added for further reaction to ensure ring closure. In this case, the amount of the alkali metal hydroxide used is preferably 0.01 to 0.3 mol, particularly preferably 0.05 to 0.3 mol per equivalent of the hydroxyl group of the compound represented by the formula (2) used for the epoxidation. 0.2 mol. The reaction temperature is 50 to 120 ° C, and the reaction time is usually 0.5 to 2 hours.
[0025]
After completion of the reaction, the formed salt is removed by filtration, washing with water, or the like, and the solvent such as toluene and methyl isobutyl ketone is distilled off under reduced pressure under heating to obtain the epoxy resin (I).
[0026]
In addition, the epoxy resin (I) having a higher molecular weight component can be prepared by a known method, for example, by combining the epoxy resin obtained by the above method and the compound represented by the formula (2) in the presence of a basic catalyst. , In a molten state or in a solvent at a temperature between 70 and 200 ° C for 0.5 to 20 hours.
[0027]
In this case, the charge ratio of each component is preferably from 0 to 0.9 equivalent, particularly preferably from 0 to 0. 0 equivalent of the compound represented by the formula (2) to 1 equivalent of the epoxy resin (I) obtained by the above method. 85 equivalents are preferred.
[0028]
Further, examples of the basic catalyst include triphenylphosphine, sodium hydroxide, quaternary ammonium salts, imidazoles, and the like, and the amount of the basic catalyst is 0.001 to 1.0% by weight based on the epoxy resin (I). Is preferable, and particularly preferably 0.005 to 0.5% by weight. When a solvent is used, methyl isobutyl ketone, toluene and the like can be used.
[0029]
In the epoxy resin composition of the present invention, an epoxy resin other than the epoxy resin (I) can be used in combination.
[0030]
As the curing agent of the component (b) in the above (1), various ones can be used and are not particularly limited. For example, amine compounds, acid anhydride compounds, amide compounds, phenol compounds and the like can be used. Specific examples of the curing agent that can be used include a polyamide resin synthesized from diamine of diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, and linolenic acid, and ethylenediamine, phthalic anhydride, and trianhydride. Mellitic acid, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylnadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, phenol novolak, and modified products thereof, imidazole , BF 3 -amine complexes, guanidine derivatives and the like. Further, the compound represented by the formula (2) used as a raw material of the epoxy resin (I) can also be used as a curing agent. These curing agents may be used alone or in combination of two or more.
[0031]
The amount of these curing agents used is preferably 0.7 to 1.2 equivalents to 1 equivalent of the epoxy group of the epoxy resin (I) and the other epoxy resin used if necessary. If the amount is less than 0.7 equivalents or more than 1.2 equivalents with respect to 1 equivalent of the epoxy group, curing may be incomplete and good cured physical properties may not be obtained.
[0032]
When using the above curing agent, a curing accelerator may be used in combination. As a curing accelerator, for example, imidazoles such as 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2- (dimethylaminomethyl) phenol, 1,8-diaza-bicyclo (5,4,0) Examples include tertiary amines such as undecene-7, phosphines such as triphenylphosphine, and salts of organometallic compounds such as tin octylate. These may be used alone or in combination of two or more. The curing accelerator is preferably used in an amount of 0.01 to 15 parts by weight, more preferably 0.1 to 10 parts by weight, based on 100 parts by weight of the epoxy resin (I) and the other epoxy resin used in combination as necessary. Is preferred.
[0033]
The epoxy resin composition of the present invention may further contain known additives, if necessary. Examples of additives that can be used include inorganic fillers such as silica, alumina, talc, and glass fibers, silane coupling agents, release agents, and pigments.
[0034]
The epoxy resin composition of the present invention is obtained by uniformly mixing the components at the above-described ratio. The epoxy resin composition of the present invention can be easily made into a cured product by a method similar to a conventionally known method. For example, the epoxy resin (I) and a curing agent, and if necessary, a curing accelerator and other additives are sufficiently mixed, if necessary, using an extruder, a kneader, a roll, or the like to obtain an epoxy resin composition. The epoxy resin composition is melted, molded using a casting or transfer molding machine, and further heated at 80 to 200 ° C. for 2 to 10 hours to obtain a cured product.
[0035]
Further, the epoxy resin composition of the present invention is dissolved in a diluting solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, etc., and impregnated into a base material such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber and paper. The prepreg obtained by heating and drying may be subjected to hot press molding to obtain a cured product.
[0036]
The amount of the diluting solvent used in this case is usually 10 to 70% by weight, preferably 15 to 65% by weight, based on the total weight of the epoxy resin composition of the present invention and the diluting solvent.
[0037]
The cured product thus obtained is excellent in heat resistance, water resistance and mechanical strength, and can be used in a wide range of fields requiring heat resistance, water resistance and high mechanical strength. Specifically, it is useful as any electric or electronic material such as a sealing material, a laminate, or an insulating material. Further, it can also be used in the fields of molding materials, adhesives, composite materials, paints and the like.
[0038]
【Example】
Next, the present invention will be described more specifically with reference to Examples and Comparative Examples. In the following, parts are by weight unless otherwise specified.
[0039]
Production Example 1
A nitrogen gas purge was applied to a flask equipped with a thermometer, a condenser and a stirrer, and 310 parts of the compound represented by the formula (3), 720 parts of epichlorohydrin, and 185 parts of dimethyl sulfoxide were charged and dissolved. The mixture was further heated to 45 ° C., and 80.8 parts of flaky sodium hydroxide (99% pure content) was added in portions over 90 minutes. Thereafter, the mixture was further reacted at 45 ° C. for 2 hours and at 70 ° C. for 1 hour. After completion of the reaction, dimethyl sulfoxide and epichlorohydrin were distilled off under heating and reduced pressure at 130 ° C., and 844 parts of methyl isobutyl ketone was added to the residue and dissolved.
[0040]
Further, the solution of methyl isobutyl ketone was heated to 70 ° C., 20 parts of a 30% by weight aqueous sodium hydroxide solution was added, and the mixture was allowed to react for 1 hour. Further, the aqueous layer was separated and removed, and methyl isobutyl ketone was distilled off from the oil layer under reduced pressure by heating using a rotary evaporator.
[0041]
Embedded image
[0042]
409 parts of an epoxy resin (A) represented by the following formula was obtained. The obtained epoxy resin had a softening point of 53.3 ° C. and an epoxy equivalent of 227 g / eq. When calculated from the epoxy equivalent, the value of n in the equation was 0.09.
[0043]
Example 1, Comparative Example 1
Epoxy resin (A) obtained in Production Example 1, bisphenol A type epoxy resin (Epicoat 828, manufactured by Yuka Shell Epoxy Co., Ltd., epoxy equivalent: 186 g / eq) as a comparison, phenol novolak (hydroxyl equivalent: 106 g / eq, manufactured by Nippon Kayaku Co., Ltd.), triphenylphosphine (TPP) was used as a curing accelerator, blended in the composition shown in Table 1, kneaded with a roll at 70 ° C. for 15 minutes, and the epoxy resin composition of the present invention. And an epoxy resin composition for comparison was obtained. Next, this was subjected to transfer molding at 150 ° C. for 180 seconds, and then cured at 160 ° C. for 2 hours and further at 180 ° C. for 8 hours to prepare a test piece, and the glass transition temperature and the water absorption were measured. Table 1 shows the results. In addition, the measurement conditions of a glass transition point and a water absorption are as follows. Also, in the table, the numerical values in the column of the composition of the composition indicate parts.
[0044]
Glass transition point thermomechanical analyzer (TMA): TM-7000 manufactured by Vacuum Riko Co., Ltd.
Heating rate: 2 ° C / min
Water absorption test piece (cured product): 50 mm in diameter
Weight increase rate (%) after boiling for 3 hours in water at 100 ° C with a thickness of 3mm disk
[0045]
[Table 1]
Production Example 2
While applying a nitrogen gas purge to a flask equipped with a thermometer, a condenser, and a stirrer, 159 parts of the epoxy resin obtained in Production Example 1, 42 parts of the compound represented by the formula (3), and 200 parts of methyl isobutyl ketone After stirring and dissolving, 0.16 parts of triphenylphosphine was added, methyl isobutyl ketone was distilled off under reduced pressure at 120 ° C. with stirring, and the reaction was further performed at 150 ° C. for 2 hours, and represented by the above formula (6). Thus, 201 parts of an epoxy resin (B) having an epoxy equivalent of 470 g / eq and a softening point of 85.2 ° C. was obtained. When calculated from the epoxy equivalent, the value of n in the formula was 1.42.
[0046]
Example 2, Comparative Example 2
Epoxy resin (B) obtained in Production Example 2, bisphenol A type epoxy resin (Epomic R-301, manufactured by Mitsui Petrochemical Co., Ltd., epoxy equivalent: 468 g / eq) as a comparison, phenol novolak (hydroxyl equivalent: 106 g) as a curing agent / Eq, manufactured by Nippon Kayaku Co., Ltd.), triphenylphosphine (TPP) was used as a curing accelerator, blended with the composition shown in Table 2, kneaded with a roll at 70 ° C. for 15 minutes, and the epoxy resin of the present invention. An epoxy resin composition for comparison with the composition was obtained. Next, this was subjected to transfer molding at 150 ° C. for 180 seconds, and then cured at 160 ° C. for 2 hours and further at 180 ° C. for 8 hours to prepare a test piece, and the glass transition temperature and the water absorption were measured under the above conditions. Table 2 shows the results. The numerical values in the column of the composition of the blend in the table indicate parts by weight.
[0047]
[Table 2]
As described above, from Tables 1 and 2, the cured product of the epoxy resin composition of the present invention showed a higher glass transition point and a lower water absorption than the cured product of the known epoxy resin composition.
[0048]
【The invention's effect】
The epoxy resin composition of the present invention provides a cured product having excellent heat resistance and water resistance as compared with conventionally used epoxy resin compositions.
[0049]
That is, the epoxy resin composition of the present invention can provide a cured product having excellent properties of heat resistance, water resistance and mechanical strength, and can be used for molding materials, casting materials, laminate materials, paints, adhesives, resists and the like. Is very useful for a wide range of applications.

Claims (2)

(a)式(6)
(式中、nは平均値であり0.09≦n≦1.42である。)で表されるエポキシ樹脂混合物、
(b)フェノールノボラック
及び必要により
(c)硬化促進剤
を含有するエポキシ樹脂組成物。
(A) Equation (6)
( Where n is an average and 0.09 ≦ n ≦ 1.42 ), an epoxy resin mixture represented by the following formula:
(B) phenol novolak ,
And (c) an epoxy resin composition containing, if necessary, a curing accelerator.
請求項1記載のエポキシ樹脂組成物を硬化してなる硬化物。A cured product obtained by curing the epoxy resin composition according to claim 1.
JP18736794A 1994-08-09 1994-08-09 Epoxy resin composition and cured product thereof Expired - Fee Related JP3540018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18736794A JP3540018B2 (en) 1994-08-09 1994-08-09 Epoxy resin composition and cured product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18736794A JP3540018B2 (en) 1994-08-09 1994-08-09 Epoxy resin composition and cured product thereof

Publications (2)

Publication Number Publication Date
JPH0848749A JPH0848749A (en) 1996-02-20
JP3540018B2 true JP3540018B2 (en) 2004-07-07

Family

ID=16204764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18736794A Expired - Fee Related JP3540018B2 (en) 1994-08-09 1994-08-09 Epoxy resin composition and cured product thereof

Country Status (1)

Country Link
JP (1) JP3540018B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4760010B2 (en) * 2004-12-22 2011-08-31 三菱化学株式会社 Polyether polyol resin, curable resin composition and cured product thereof
CN105331053B (en) * 2014-07-22 2017-12-05 广东生益科技股份有限公司 A kind of halogen-free resin composition and use its prepreg and laminate for printed circuits
KR102375986B1 (en) * 2015-03-13 2022-03-17 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Oxazolidone ring-containing epoxy resin, method for producing the thereof, epoxy resin composition and cured product

Also Published As

Publication number Publication date
JPH0848749A (en) 1996-02-20

Similar Documents

Publication Publication Date Title
JP3476027B2 (en) Manufacturing method of epoxy resin
JP3659532B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP3659533B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP3540018B2 (en) Epoxy resin composition and cured product thereof
JPH10147629A (en) Epoxy resin, epoxy resin composition and its cured material
JP3441020B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JPH08239454A (en) Novolac resin, epoxy resin, epoxy resin composition and cured product thereof
JP3468315B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JPH11130838A (en) Epoxy resin composition and cured product thereof
JP2001114862A (en) Liqiud state epoxy resin, epoxy resin composition and its cured material
JP2003277468A (en) Epoxy resin, epoxy resin composition and its cured product
JP5579300B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP3729472B2 (en) Production method of epoxy resin
JP4463453B2 (en) Epoxy resin composition and cured product thereof
JPH1077330A (en) Epoxy resin, epoxy resin composition and its cured material
JPH08269168A (en) Epoxy resin, epoxy resin composition and its cured product
JPH07109334A (en) Epoxy rein, epoxy resin composition and cured product thereof
JPH06239966A (en) Epoxy resin, epoxy resin composition and its cured product
JP4036289B2 (en) Liquid epoxy resin, epoxy resin composition and cured product thereof
JP3537561B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JPH0848747A (en) Epoxy resin, epoxy resin composition, and its cured item
JP2000001524A (en) Epoxy resin, epoxy resin composition, and cured product of the composition
JPH10147631A (en) Epoxy compound, epoxy resin composition and its cured material
JPH10139857A (en) Silicone-modified epoxy resin, epoxy resin composition and its cured product
JPH1045868A (en) Epoxy resin, epoxy resin composition and cured product therefrom

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040324

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees