JP3343268B2 - Phthalocyanine composition, process for producing the same, electrophotographic photoreceptor using the same, and coating solution for charge generation layer - Google Patents
Phthalocyanine composition, process for producing the same, electrophotographic photoreceptor using the same, and coating solution for charge generation layerInfo
- Publication number
- JP3343268B2 JP3343268B2 JP29429592A JP29429592A JP3343268B2 JP 3343268 B2 JP3343268 B2 JP 3343268B2 JP 29429592 A JP29429592 A JP 29429592A JP 29429592 A JP29429592 A JP 29429592A JP 3343268 B2 JP3343268 B2 JP 3343268B2
- Authority
- JP
- Japan
- Prior art keywords
- phthalocyanine
- degrees
- charge
- group
- phthalocyanine composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Photoreceptors In Electrophotography (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、高い感度を有する新規
なフタロシアニン組成物、その製造法およびこれを用い
た電子写真感光体ならびに電荷発生層用塗液に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel phthalocyanine composition having high sensitivity, a process for producing the same, an electrophotographic photosensitive member using the same, and a coating solution for a charge generating layer.
【0002】[0002]
【従来の技術】従来の電子写真感光体としては、アルミ
ニウム等の導電性基板の上に50μm程度のセレン(S
e)膜を真空蒸着法により形成したものがある。しか
し、このSe感光体は、波長500nm付近までしか感度
を有していない等の問題がある。また、導電性基板の上
に50μm程度のSe層を形成し、この上に更に数μmの
セレン−テルル(Se−Te)合金層を形成した感光体
があるが、この感光体は上記Se−Te合金のTeの含
有率が高い程、分光感度が長波長にまで伸びる反面、T
eの添加量が増加するにつれて表面電荷の保持特性が不
良となり、事実上、感光体として使用できなくなるとい
う重大な問題がある。2. Description of the Related Art As a conventional electrophotographic photosensitive member, selenium (S) of about 50 μm is formed on a conductive substrate such as aluminum.
e) Some films are formed by a vacuum evaporation method. However, this Se photoconductor has a problem that it has sensitivity only up to a wavelength of about 500 nm. Further, there is a photoconductor in which a Se layer of about 50 μm is formed on a conductive substrate, and a selenium-tellurium (Se—Te) alloy layer of several μm is further formed thereon. The higher the Te content of the Te alloy, the longer the spectral sensitivity extends to longer wavelengths.
As the addition amount of e increases, there is a serious problem in that the surface charge retention characteristics become poor, and in fact, the photoreceptor cannot be used.
【0003】また、アルミニウム基板の上に1μm程度
のクロロシアンブルー又はスクウアリリウム酸誘導体を
コーティングして電荷発生層を形成し、この上に絶縁抵
抗の高いポリビニルカルバゾール又はピラゾリン誘導体
とポリカーボネート樹脂との混合物を10〜20μmコ
ーティングして電荷輸送層を形成した所謂複合二層型の
感光体もあるが、この感光体は700nm以上の光に対し
て感度を有していないのが実状である。A charge generating layer is formed by coating a chlorocyan blue or squarylylate derivative of about 1 μm on an aluminum substrate, and a mixture of a polyvinyl carbazole or pyrazoline derivative having high insulation resistance and a polycarbonate resin is formed thereon. There is also a so-called composite two-layer type photoreceptor in which a charge transport layer is formed by coating with a thickness of 10 to 20 μm, but this photoreceptor does not have any sensitivity to light of 700 nm or more.
【0004】近年、この複合二層型の感光体において、
上記欠点を改善した、即ち、半導体レーザ発振領域80
0nm前後に感度を有する感光体も多く報告されている
が、これらのうち多くのものが電荷発生材料としてフタ
ロシアニン顔料を用い、その膜厚0.5〜1μm程度の
電荷発生層上にポリビニルカルバゾール、ピラゾリン誘
導体又はヒドラゾン誘導体とポリカーボネート樹脂又は
ポリエステル樹脂との絶縁抵抗の高い混合物を10〜2
0μmコーティングして電荷輸送層を形成し複合二層型
の感光体を形成している。In recent years, in this composite two-layer type photoreceptor,
The above-mentioned disadvantage has been improved, that is, the semiconductor laser oscillation region 80
Many photoreceptors having a sensitivity around 0 nm have been reported, and many of them use a phthalocyanine pigment as a charge generating material, and have a polyvinyl carbazole, A mixture of a pyrazoline derivative or a hydrazone derivative and a polycarbonate resin or a polyester resin having a high insulation resistance is 10 to 2
A charge transport layer is formed by coating with 0 μm to form a composite two-layer type photoreceptor.
【0005】フタロシアニン類は、中心金属の種類によ
り吸収スペクトルや、光導電性が異なるだけでなく、結
晶型によってもこれらの物性には差があり、同じ中心金
属のフタロシアニンでも、特定の結晶型が電子写真用感
光体用に選択されている例がいくつか報告されている。Phthalocyanines not only have different absorption spectra and photoconductivity depending on the type of the central metal, but also have different physical properties depending on the crystal type. Several examples have been reported that have been selected for electrophotographic photoreceptors.
【0006】例えばチタニルフタロシアニンには種々の
結晶形が存在し、その結晶形の違いによって帯電性、暗
減衰、感度等に大きな差があることが報告されている。[0006] For example, it is reported that titanyl phthalocyanine has various crystal forms, and there is a large difference in chargeability, dark decay, sensitivity, etc. depending on the crystal form.
【0007】特開昭59−49544号公報には、チタ
ニルフタロシアニンの結晶形としては、ブラッグ角(2
θ±0.2度)が9.2度、13.1度、20.7度、
26.2度、27.1度に強い回折ピークを与えるもの
が好適であると記されており、X線回折スペクトル図が
示されている。この結晶形のチタニルフタロシアニンを
電荷発生材料として用いた感光体の電子写真特性は、暗
減衰(DDR):85%、感度(E1/2):0.57lux
・secである。JP-A-59-49544 discloses that the crystal form of titanyl phthalocyanine includes a Bragg angle (2
θ ± 0.2 degrees) are 9.2 degrees, 13.1 degrees, 20.7 degrees,
Those giving strong diffraction peaks at 26.2 degrees and 27.1 degrees are described as suitable, and the X-ray diffraction spectrum is shown. The electrophotographic characteristics of a photoreceptor using this crystalline form of titanyl phthalocyanine as a charge generation material are as follows: dark decay (DDR): 85%, sensitivity (E 1/2 ): 0.57 lux
-It is sec.
【0008】また特開昭59−166959号公報に
は、チタニルフタロシアニンの蒸着膜をテトラヒドロフ
ランの飽和蒸気中に1〜24時間放置し、結晶形を変化
させて、電荷発生層としている。X線回折スペクトル
は、ピークの数が少なく、かつ幅が広く、ブラッグ角
(2θ±0.2度)が7.5度、12.6度、13.0
度、25.4度、26.2度および28.6度に強い回
折ピークを与えることが示されている。この結晶形のチ
タニルフタロシアニンを電荷発生材料として用いた感光
体の電子写真特性は、暗減衰(DDR):86%、感度
(E1/2):0.7lux・secである。In JP-A-59-166959, a deposited film of titanyl phthalocyanine is left in saturated vapor of tetrahydrofuran for 1 to 24 hours to change the crystal form to form a charge generation layer. The X-ray diffraction spectrum has a small number of peaks and a wide peak, and has a Bragg angle (2θ ± 0.2 degrees) of 7.5 degrees, 12.6 degrees, and 13.0 degrees.
, 25.4, 26.2 and 28.6 degrees are shown to give strong diffraction peaks. The electrophotographic characteristics of a photoreceptor using this crystalline form of titanyl phthalocyanine as a charge generating material are dark decay (DDR): 86%, and sensitivity (E 1/2 ): 0.7 lux · sec.
【0009】特開平2−198452号公報では、チタ
ニルフタロシアニンの結晶形としては、ブラッグ角(2
θ±0.2度)が27.3度に主たる回折ピークを有す
るものが高感度(1.7mJ/cm2)であり、その製造法と
して水とオルト−ジクロロベンゼン混合液中で60℃1
時間加熱撹拌することが開示されている。In JP-A-2-198452, the crystal form of titanyl phthalocyanine has a Bragg angle (2
(θ ± 0.2 °) having a main diffraction peak at 27.3 ° has high sensitivity (1.7 mJ / cm 2 ), and is produced at 60 ° C. in a mixed solution of water and ortho-dichlorobenzene at 1 ° C.
It is disclosed to heat and stir for hours.
【0010】特開平2−256059号公報では、チタ
ニルフタロシアニンの結晶形として、ブラック角(2θ
±0.2度)が27.3度に主たる回折ピ−クを有する
ものが高感度(0.62lux・sec)であり、その製造法
として室温下1,2−ジクロロエタン中で撹拌すること
が開示されている。In JP-A-2-256059, the crystal form of titanyl phthalocyanine has a black angle (2θ).
(± 0.2 °) having a main diffraction peak at 27.3 ° has high sensitivity (0.62 lux · sec), and it can be stirred in 1,2-dichloroethane at room temperature. It has been disclosed.
【0011】このように、フタロシアニン類は結晶形の
違いによって電子写真特性が大きく異なり、その結晶形
が電子写真感光体としての性能を左右する重要な因子で
ある。As described above, the electrophotographic characteristics of phthalocyanines greatly differ depending on the crystal form, and the crystal form is an important factor which affects the performance as an electrophotographic photosensitive member.
【0012】特開昭62−194257号公報では、2
種以上のフタロシアニンを混合して用いる例、例えば、
チタニルフタロシアニンと無金属フタロシアニンの混合
物を電荷発生材料として用いることも開示されている。In Japanese Patent Application Laid-Open No. Sho 62-194257, 2
Examples of using a mixture of two or more phthalocyanines, for example,
The use of a mixture of titanyl phthalocyanine and metal-free phthalocyanine as a charge generating material is also disclosed.
【0013】このようにチタニルフタロシアニンは結晶
形変換によって非常に感度が高く、優れた特性を示して
いる。しかし、その用途であるレーザプリンタ等では、
高画質、高精細化が進んでおり、更に高感度な特性を有
する電子写真感光体が求められている。As described above, titanyl phthalocyanine has a very high sensitivity due to the conversion of the crystal form and exhibits excellent characteristics. However, in laser printers and the like,
Higher image quality and higher definition have been developed, and an electrophotographic photoreceptor having higher sensitivity characteristics has been demanded.
【0014】[0014]
【発明が解決しようとする課題】本発明は、高い感度を
有するフタロシアニン組成物、その製造法およびこれを
用いた電子写真感光体ならびに電荷発生層用塗液を提供
するものである。SUMMARY OF THE INVENTION The present invention provides a phthalocyanine composition having high sensitivity, a method for producing the same, an electrophotographic photosensitive member using the same, and a coating solution for a charge generating layer.
【0015】[0015]
【課題を解決するための手段】本発明は、CuKαのX
線回折スペクトルにおいてブラッグ角(2θ±0.2
度)が7.5度、24.2度および27.3度に主な回
折ピークを有するフタロシアニン組成物に関する。SUMMARY OF THE INVENTION The present invention relates to a method for producing a CuK.alpha.
Angle in the X-ray diffraction spectrum (2θ ± 0.2
Degree) is a phthalocyanine composition having main diffraction peaks at 7.5 degrees, 24.2 degrees and 27.3 degrees.
【0016】また、本発明は、チタニルフタロシアニン
及び中心金属が3価のハロゲン化金属フタロシアニンを
含むフタロシアニン混合物を、アシッドペ−スティング
法により水中に再沈させ、CuKαのX線回折スペクト
ルにおいてブラッグ角(2θ±0.2度)の27.2度
に特徴的な回折ピ−クを有する沈殿物を得、引き続き該
沈殿物を有機溶剤−水の混合溶媒で処理することを特徴
とするCuKαのX線回折スペクトルにおいてブラッグ
角(2θ±0.2度)が7.5度、24.2度および2
7.3度に主な回折ピークを有するフタロシアニン組成
物の製造法に関する。Further, according to the present invention, a phthalocyanine mixture containing titanyl phthalocyanine and a halogenated metal phthalocyanine whose central metal is trivalent is reprecipitated in water by an acid pasting method, and the Bragg angle (2θ A precipitate having a characteristic diffraction peak at 27.2 degrees (± 0.2 degrees) and subsequently treating the precipitate with a mixed solvent of an organic solvent and water. In the diffraction spectrum, the Bragg angles (2θ ± 0.2 degrees) are 7.5 degrees, 24.2 degrees and 2 degrees.
The present invention relates to a method for producing a phthalocyanine composition having a main diffraction peak at 7.3 degrees.
【0017】一般に、フタロシアニン混合物とは、原料
に用いたフタロシアニンの単なる物理的混合物であり、
フタロシアニン混合物のX線回折パタ−ンは、原料に用
いたそれぞれのフタロシアニン単体のピ−クパタ−ンの
重ね合わせからなる。一方、本発明のフタロシアニン組
成物とは、原料に用いたフタロシアニンが分子レベルで
混合したもので、X線回折パタ−ンは、原料に用いたそ
れぞれのフタロシアニン単体のピ−クパタ−ンとは異な
るパタ−ンを示す。Generally, a phthalocyanine mixture is a mere physical mixture of phthalocyanine used as a raw material,
The X-ray diffraction pattern of the phthalocyanine mixture consists of a superposition of the peak patterns of the individual phthalocyanines used as raw materials. On the other hand, the phthalocyanine composition of the present invention is a mixture of phthalocyanine used as a raw material at a molecular level, and the X-ray diffraction pattern is different from the peak pattern of each phthalocyanine alone used as a raw material. Indicates a pattern.
【0018】また、本発明は、導電性基材上に有機光導
電性物質を含有する光導電層を有する電子写真感光体に
おいて、該有機光導電性物質がCuKαのX線回折スペ
クトルにおいてブラッグ角(2θ±0.2度)が7.5
度、24.2度および27.3度に主な回折ピークを有
するフタロシアニン組成物である電子写真感光体に関す
る。The present invention also relates to an electrophotographic photoreceptor having a photoconductive layer containing an organic photoconductive substance on a conductive substrate, wherein the organic photoconductive substance has a Bragg angle in an X-ray diffraction spectrum of CuKα. (2θ ± 0.2 degrees) is 7.5
, A phthalocyanine composition having main diffraction peaks at 24.2 degrees and 27.3 degrees.
【0019】また、本発明は、前記の製造法により得ら
れたフタロシアニン組成物を電荷発生材料として含有す
る電荷発生層と、下記の一般式〔I〕(R1及びR2は、
それぞれ独立して水素原子、ハロゲン原子、アルキル
基、アルコキシ基、アリール基、フルオロアルキル基又
はフルオロアルコキシ基を表し、2個のR3は、それぞ
れ独立して水素原子又はアルキル基を表し、Ar1及び
Ar2は、それぞれ独立してアリール基を表し、m及び
nは、それぞれ独立して0〜5の整数を表す)で表され
るベンジジン誘導体を電荷輸送物質として含有する電荷
輸送層を有する複合型電子写真感光体に関する。Further, the present invention includes a charge generation layer containing a phthalocyanine composition obtained by the production method as a charge generating material, the following general formula [I] (R 1 and R 2,
Each independently represent a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, an aryl group, fluoroalkyl group or fluoroalkoxy group, two R 3 represents a hydrogen atom or an alkyl group independently, Ar 1 And Ar 2 each independently represent an aryl group, and m and n each independently represent an integer of 0 to 5), which has a charge transport layer containing a benzidine derivative represented by the following formula: The present invention relates to a type electrophotographic photosensitive member.
【化2】 Embedded image
【0020】また、本発明は、前記フタロシアニン組成
物を含有する電荷発生層用塗液に関する。The present invention also relates to a coating liquid for a charge generation layer containing the phthalocyanine composition.
【0021】以下、本発明について詳述する。本発明で
用いられるチタニルフタロシアニンは、例えば、次のよ
うにして製造することができる。フタロニトリル18.
4g(0.144モル)をα−クロロナフタレン120
ml中に加え、次に窒素雰囲気下で四塩化チタン4ml
(0.0364モル)を滴下する。滴下後、昇温し撹拌
しながら200〜220℃で3時間反応させた後、10
0〜130℃で熱時濾過して、α−クロロナフタレンつ
いでメタノールで洗浄する。140mlのイオン交換水で
加水分解(90℃、1時間)を行い、溶液が中性になる
までこの操作を繰り返し、メタノールで洗浄する。次
に、100℃のNMPで充分に洗浄し、続いてメタノー
ルで洗浄する。このようにして得られた化合物を60℃
で真空加熱乾燥してチタニルフタロシアニンが得られる
(収率46%)。Hereinafter, the present invention will be described in detail. The titanyl phthalocyanine used in the present invention can be produced, for example, as follows. Phthalonitrile
4 g (0.144 mol) of α-chloronaphthalene 120
of titanium tetrachloride in a nitrogen atmosphere.
(0.0364 mol) is added dropwise. After dropping, the mixture was reacted at 200 to 220 ° C. for 3 hours while heating and stirring.
Filter hot at 0-130 ° C and wash with α-chloronaphthalene then methanol. Hydrolysis (90 ° C., 1 hour) is performed with 140 ml of ion-exchanged water, and this operation is repeated until the solution becomes neutral, and washed with methanol. Next, it is sufficiently washed with NMP at 100 ° C., and then washed with methanol. The compound obtained in this way is kept at 60 ° C.
To obtain titanyl phthalocyanine (yield 46%).
【0022】本発明で用いられる中心金属が3価のハロ
ゲン化金属フタロシアニン化合物において中心金属とし
ての3価の金属は、In、Ga、Al等が挙げられハロ
ゲンとしては、Cl、Br等が挙げられ、またフタロシ
アニン環にハロゲン等の置換基を有していてもよい。該
化合物は公知の化合物であるが、これらのうち、例え
ば、モノハロゲン金属フタロシアニンおよびモノハロゲ
ン金属ハロゲンフタロシアニンの合成法は、インオーガ
ニック ケミストリー〔Inorganic Chemistry〕19,3131
(1980)および特開昭59−44054号公報に記載され
ている。モノハロゲン金属フタロシアニンは、例えば、
次のようにして製造することができる。In the halogenated metal phthalocyanine compound having a trivalent central metal used in the present invention, examples of the trivalent metal as the central metal include In, Ga, and Al, and examples of the halogen include Cl and Br. Further, the phthalocyanine ring may have a substituent such as halogen. The compound is a known compound, and among these, for example, a method for synthesizing a monohalogen metal phthalocyanine and a monohalogen metal phthalocyanine is described in Inorganic Chemistry 19 , 3131.
(1980) and JP-A-59-44054. Monohalogen metal phthalocyanines are, for example,
It can be manufactured as follows.
【0023】フタロニトリル78.2ミリモルおよび三
ハロゲン化金属15.8ミリモルを二回蒸留し脱酸素し
たキノリン100ml中に入れ、0.5〜3時間加熱還流
した後徐冷、続いて0℃まで冷した後ろ過し、結晶をメ
タノール、トルエンついでアセトンで洗浄した後、11
0℃で乾燥する。78.2 mmol of phthalonitrile and 15.8 mmol of metal trihalide are placed in 100 ml of quinoline which has been distilled twice and deoxygenated, heated to reflux for 0.5 to 3 hours, then slowly cooled, and then cooled to 0 ° C. After cooling, the mixture was filtered, and the crystals were washed with methanol, toluene and acetone, and then washed with 11
Dry at 0 ° C.
【0024】また、モノハロゲン金属ハロゲンフタロア
ニンは、次のようにして製造することができる。フタロ
ニトリル156ミリモルおよび三ハロゲン化金属37.
5ミリモルを混合して300℃で、溶融してから0.5
〜3時間加熱してモノハロゲン金属ハロゲンフタロシア
ニンの粗製物を得、これをソックスレー抽出器を用いて
α−クロロナフタレンで洗浄する。The monohalogen metal halogenphthaloanine can be produced as follows. 156 mmol of phthalonitrile and metal trihalide
5 mmol was mixed and melted at 300 ° C.
Heat for ~ 3 hours to obtain crude monohalogen metal halogen phthalocyanine, which is washed with α-chloronaphthalene using a Soxhlet extractor.
【0025】本発明において、チタニルフタロシアニン
および中心金属が3価のハロゲン化金属フタロシアニン
を含むフタロシアニン混合物の組成比率は、帯電性、暗
減衰、感度等の電子写真特性の点からチタニルフタロシ
アニンの含有率が、20〜95重量%の範囲であること
が好ましく、50〜90重量%の範囲であることがより
好ましく、65〜90重量%の範囲が特に好ましく、7
5〜90重量%の範囲であることが最も好ましい。In the present invention, the composition ratio of the titanyl phthalocyanine and the phthalocyanine mixture containing a trivalent halogenated metal phthalocyanine as the central metal is such that the content of the titanyl phthalocyanine in terms of electrophotographic properties such as chargeability, dark decay and sensitivity is reduced. The range is preferably from 20 to 95% by weight, more preferably from 50 to 90% by weight, particularly preferably from 65 to 90% by weight.
Most preferably, it is in the range of 5 to 90% by weight.
【0026】フタロシアニン混合物はアシッドペーステ
ィング法により水中に再沈させアモルファス化される。
例えば、フタロシアニン混合物1gを濃硫酸50mlに溶
解し室温で撹拌した後、これを氷水で冷却したイオン交
換水1リットル中に約1時間、好ましくは40分〜50
分で滴下し再沈させる。一晩放置後、デカンテ−ション
により上澄み液を除去した後、遠心分離により沈殿物を
回収する。その後洗浄水としてのイオン交換水で、洗浄
水の洗浄後のpHが2〜5、好ましくはpHが3前後でかつ
伝導率が5〜500μS/cmとなるまで沈殿物を繰り返し
洗う。ついでメタノ−ルで充分に洗浄した後、60℃で
真空加熱乾燥し粉末を得る。このようにして生成するチ
タニルフタロシアニンと中心金属が3価のハロゲン化金
属フタロシアニンからなる沈殿物は、そのCuKαのX
線回折スペクトルにおいてブラック角(2θ±0.2
度)が27.2度に明瞭な解析ピークを示す以外は、ピ
ークが幅広くなっており明確にその値を規制できない。
pHが5を超えると、CuKαのX線回折スペクトルにお
いてブラック角(2θ±0.2度)が27.2度の特徴
的なピ−ク強度が低下し、新たに6.8度に27.2度
のピーク強度より強いピ−クが生じ、この粉末を有機溶
剤−水の混合溶媒を用いて結晶変換を行っても、本発明
のブラック角(2θ±0.2度)7.5度、24.2度
及び27.3度に特徴的なピ−クを有する組成物を得る
ことはできない。洗浄水の洗浄後のpHが2未満または5
を超える場合は、帯電性、暗減衰、感度等が劣る傾向が
ある。また、伝導率が5μS/cm未満又は500μS/cmを
超える場合は、帯電性、暗減衰、感度等が劣る傾向があ
る。The phthalocyanine mixture is reprecipitated in water by an acid pasting method to be made amorphous.
For example, after dissolving 1 g of the phthalocyanine mixture in 50 ml of concentrated sulfuric acid and stirring at room temperature, the mixture is added to 1 liter of ion-exchanged water cooled with ice water for about 1 hour, preferably 40 minutes to 50 minutes.
Drop and reprecipitate in minutes. After standing overnight, the supernatant is removed by decantation, and the precipitate is recovered by centrifugation. Thereafter, the precipitate is repeatedly washed with ion-exchanged water as washing water until the washed water has a pH of 2 to 5, preferably about 3 and a conductivity of 5 to 500 μS / cm. Then, after thoroughly washing with methanol, it is dried by heating under vacuum at 60 ° C. to obtain a powder. The precipitate formed in this way, comprising titanyl phthalocyanine and a metal halide phthalocyanine of which the central metal is trivalent, is the X of CuKα.
Angle (2θ ± 0.2)
Degree) shows a clear analysis peak at 27.2 degrees, and the peak is broad and its value cannot be regulated clearly.
When the pH exceeds 5, the characteristic peak intensity at a black angle (2θ ± 0.2 degrees) of 27.2 degrees in the X-ray diffraction spectrum of CuKα decreases, and the peak intensity newly decreases to 6.8 degrees. A peak stronger than the peak intensity of 2 degrees is generated. Even if this powder is subjected to crystal transformation using a mixed solvent of organic solvent and water, the black angle (2θ ± 0.2 degrees) of the present invention is 7.5 degrees. , 24.2 ° and 27.3 ° cannot be obtained. PH after washing water is less than 2 or 5
When it exceeds, the chargeability, dark decay, sensitivity and the like tend to be inferior. If the conductivity is less than 5 μS / cm or more than 500 μS / cm, the chargeability, dark decay, sensitivity and the like tend to be poor.
【0027】このようにして得られた沈殿物を有機溶剤
−水の混合溶媒で処理することによって結晶変換し、本
発明におけるフタロシアニン組成物を得ることができ
る。有機溶剤と水の使用割合は、有機溶剤/水(重量
比)が3/97〜97/3であることが好ましい。本処
理は、20℃〜100℃の有機溶剤−水の混合溶媒を沈
殿物に1分間〜12時間接触させることにより行うこと
ができる。本処理に用いられる有機溶剤としては、例え
ば、メタノール、エタノール、イソプロピルアルコー
ル、ブタノール等のアルコール類、n−ヘキサン、オク
タン、シクロヘキサン等の脂環族炭化水素、ベンゼン、
トルエン、キシレン等の芳香族炭化水素、テトラヒドロ
フラン、ジオキサン、ジエチルエーテル、エチレングリ
コールジメチルエーテル、エチレングリコールジエチル
エーテル等のエーテル類、アセテートセロソルブ、アセ
トン、メチルエチルケトン、シクロヘキサノン、イソホ
ロン等のケトン類、酢酸メチル、酢酸エチル等のエステ
ル類、ジメチルスルホキシド、ジメチルホルムアミド、
フェノール、クレゾール、アニソール、ニトロベンゼ
ン、アセトフェノン、ベンジルアルコール、ピリジン、
N−メチル−2−ピロリドン、キノリン、ピコリン等の
非塩素系有機溶剤、ジクロロメタン、ジクロロエタン、
トリクロロエタン、テトラクロロエタン、四塩化炭素、
クロロホルム、クロロメチルオキシラン、クロロベンゼ
ン、ジクロロベンゼン等の塩素系有機溶剤などが挙げら
れる。これらのうち、塩素系有機溶剤が好ましい。The precipitate thus obtained is treated with a mixed solvent of an organic solvent and water to transform the crystals, whereby the phthalocyanine composition of the present invention can be obtained. As for the usage ratio of the organic solvent and water, the ratio of organic solvent / water (weight ratio) is preferably from 3/97 to 97/3. This treatment can be performed by bringing a mixed solvent of organic solvent-water at 20 ° C to 100 ° C into contact with the precipitate for 1 minute to 12 hours. Examples of the organic solvent used in this treatment include alcohols such as methanol, ethanol, isopropyl alcohol, and butanol; alicyclic hydrocarbons such as n-hexane, octane, and cyclohexane; benzene;
Aromatic hydrocarbons such as toluene and xylene, ethers such as tetrahydrofuran, dioxane, diethyl ether, ethylene glycol dimethyl ether and ethylene glycol diethyl ether, ketones such as acetate cellosolve, acetone, methyl ethyl ketone, cyclohexanone, isophorone, methyl acetate and ethyl acetate Such as esters, dimethyl sulfoxide, dimethylformamide,
Phenol, cresol, anisole, nitrobenzene, acetophenone, benzyl alcohol, pyridine,
Non-chlorinated organic solvents such as N-methyl-2-pyrrolidone, quinoline, picoline, dichloromethane, dichloroethane,
Trichloroethane, tetrachloroethane, carbon tetrachloride,
Chlorine-based organic solvents such as chloroform, chloromethyloxirane, chlorobenzene, and dichlorobenzene are exemplified. Of these, chlorine-based organic solvents are preferred.
【0028】本発明の電子写真感光体は、導電性支持体
の上に光導電層を設けたものである。本発明において、
光導電層は、有機光導電性物質を含む層であり、有機光
導電性物質の被膜、有機光導電性物質と結合剤を含む被
膜、電荷発生層及び電荷輸送層からなる複合型被膜等が
ある。The electrophotographic photoreceptor of the present invention has a photoconductive layer provided on a conductive support. In the present invention,
The photoconductive layer is a layer containing an organic photoconductive substance, and includes a coating of an organic photoconductive substance, a coating containing an organic photoconductive substance and a binder, and a composite coating composed of a charge generation layer and a charge transport layer. is there.
【0029】上記有機光導電性物質としては、上記フタ
ロシアニン組成物が必須成分として用いられ、さらに公
知のものを併用することができる。また、有機光導電性
物質としては上記フタロシアニン組成物に電荷を発生す
る有機顔料及び/又は電荷輸送性物質を併用することが
好ましい。なお、上記電荷発生層には該フタロシアニン
組成物及び/又は電荷を発生する有機顔料が含まれ、電
荷輸送層には電荷輸送性物質が含まれる。As the organic photoconductive substance, the above-mentioned phthalocyanine composition is used as an essential component, and a known substance can be used in combination. In addition, as the organic photoconductive substance, it is preferable to use an organic pigment and / or a charge transporting substance that generates a charge in the phthalocyanine composition. The charge generation layer contains the phthalocyanine composition and / or an organic pigment that generates charges, and the charge transport layer contains a charge transporting substance.
【0030】上記電荷を発生する有機顔料としては、ア
ゾキシベンゼン系、ジスアゾ系、トリスアゾ系、ベンズ
イミダゾール系、多環キノン系、インジゴイド系、キナ
クリドン系、ペリレン系、メチン系、α型、β型、γ
型、δ型、ε型、χ型等の各種結晶構造を有する無金属
タイプ又は金属タイプのフタロシアニン系などの電荷を
発生することが知られている顔料が使用できる。これら
の顔料は、例えば、特開昭47−37543号公報、特
開昭47−37544号公報、特開昭47−18543
号公報、特開昭47−18544号公報、特開昭48−
43942号公報、特開昭48−70538号公報、特
開昭49−1231号公報、特開昭49−105536
号公報、特開昭50−75214号公報、特開昭53−
44028号公報、特開昭54−17732号公報等に
開示されている。また、特開昭58−182640号公
報及びヨーロッパ特許公開第92,255号公報などに
開示されているτ、τ′、η及びη′型無金属フタロシ
アニンも使用可能である。このようなもののほか、光照
射により電荷担体を発生する有機願料はいずれも使用可
能である。Examples of the organic pigments that generate electric charges include azoxybenzene, disazo, trisazo, benzimidazole, polycyclic quinone, indigoid, quinacridone, perylene, methine, α-type and β-type. , Γ
Pigments known to generate electric charges such as non-metal type or metal type phthalocyanine having various crystal structures such as type, δ type, ε type and χ type can be used. These pigments are described in, for example, JP-A-47-37543, JP-A-47-37544, and JP-A-47-18543.
JP-A-47-18544, JP-A-48-18544
43942, JP-A-48-70538, JP-A-49-1231, JP-A-49-105536
JP, JP-A-50-75214, JP-A-53-75214
No. 44028, JP-A-54-17732, and the like. Further, τ, τ ′, η and η ′ type metal-free phthalocyanines disclosed in JP-A-58-182640 and European Patent Publication No. 92,255 can be used. In addition to these, any organic application that generates charge carriers by light irradiation can be used.
【0031】上記電荷輸送性物質としては、高分子化合
物では、ポリ−N−ビニルカルバゾール、ハロゲン化ポ
リ−N−ビニルカルバゾール、ポリビニルピレン、ポリ
ビニルインドロキノキサリン、ポリビニルベンゾチオフ
エン、ポリビニルアントラセン、ポリビニルアクリジ
ン、ポリビニルピラゾリン等が挙げられ、低分子化合物
のものではフルオレノン、フルオレン、2,7−ジニト
ロ−9−フルオレノン、4H−インデノ(1,2,6)
チオフエン−4−オン、3,7−ジニトロ−ジベンゾチ
オフエン−5−オキサイド、1−ブロムピレン、2−フ
ェニルピレン、カルバゾール、N−エチルカルバゾー
ル、3−フェニルカルバゾール、3−(N−メチル−N
−フェニルヒドラゾン)メチル−9−エチルカルバゾー
ル、2−フェニルインドール、2−フェニルナフタレ
ン、オキサジアゾール、2,5−ビス(4−ジエチルア
ミノフェニル)−1,3,4−オキサジアゾール、1−
フェニル−3−(4−ジエチルアミノスチリル)−5−
(4−ジエチルアミノスチリル)−5−(4−ジエチル
アミノフェニル)ピラゾリン、1−フェニル−3−(p
−ジエチルアミノフェニル)ピラゾリン、p−(ジメチ
ルアミノ)−スチルベン、2−(4−ジプロピルアミノ
フェニル)−4−(4−ジメチルアミノフェニル)−5
−(2−クロロフェニル)−1,3−オキサゾール、2
−(4−ジメチルアミノフェニル)−4−(4−ジメチ
ルアミノフェニル)−5−(2−フルオロフェニル)−
1,3−オキサゾール、2−(4−ジエチルアミノフェ
ニル)−4−(4−ジメチルアミノフェニル)−5−
(2−フルオロフェニル)−1,3−オキサゾール、2
−(4−ジプロピルアミノフェニル)−4−(4−ジメ
チルアミノフェニル)−5−(2−フルオロフェニル)
−1,3−オキサゾール、イミダゾール、クリセン、テ
トラフェン、アクリデン、トリフェニルアミン、ベンジ
ジン、これらの誘導体等がある。電荷輸送性物質として
は、特に、前記一般式(I)で表されるベンジジン誘導
体が好ましい。一般式(I)において、アルキル基とし
ては、メチル基、エチル基、n−プロピル基、iso−プ
ロピル基、n−ブチル基、tert−ブチル基等が挙げられ
る。アルコキシ基としては、メトキシ基、エトキシ基、
n−プロポキシ基、iso−プロポキシ基等が挙げられ
る。アリール基としては、フェニル基、トリル基、ビフ
ェニル基、ターフェニル基、ナフチル基等が挙げられ
る。フルオロアルキル基としては、トリフルオロメチル
基、トリフルオロエチル基、ヘプタフルオロプロピル基
等が挙げられる。フルオロオルコキシ基としては、トリ
フルオロメトキシ基、2,3−ジフルオロエトキシ基、
2,2,2−トリフルオロエトキシ基、1H、1H−ペ
ンタフルオロプロポキシ基、ヘキサフルオロ−iso−プ
ロポキシ基、1H、1H−ペンタフルオロブトキシ基、
2,2,3,4,4,4−ヘキサフルオロブトキシ基、
4,4,4−トリフルオロブトキシ基等のフルオロアル
コキシ基が挙げられる。例えば、下記のNo.1〜No.6の
化合物等が挙げられる。As the above-mentioned charge transporting substance, high molecular compounds include poly-N-vinyl carbazole, halogenated poly-N-vinyl carbazole, polyvinyl pyrene, polyvinyl indoloquinoxaline, polyvinyl benzothiophene, polyvinyl anthracene, and polyvinyl acridine. And low-molecular-weight compounds such as fluorenone, fluorene, 2,7-dinitro-9-fluorenone, and 4H-indeno (1,2,6).
Thiofen-4-one, 3,7-dinitro-dibenzothiophene-5-oxide, 1-bromopyrene, 2-phenylpyrene, carbazole, N-ethylcarbazole, 3-phenylcarbazole, 3- (N-methyl-N
-Phenylhydrazone) methyl-9-ethylcarbazole, 2-phenylindole, 2-phenylnaphthalene, oxadiazole, 2,5-bis (4-diethylaminophenyl) -1,3,4-oxadiazole, 1-
Phenyl-3- (4-diethylaminostyryl) -5
(4-diethylaminostyryl) -5- (4-diethylaminophenyl) pyrazolin, 1-phenyl-3- (p
-Diethylaminophenyl) pyrazolin, p- (dimethylamino) -stilbene, 2- (4-dipropylaminophenyl) -4- (4-dimethylaminophenyl) -5
-(2-chlorophenyl) -1,3-oxazole, 2
-(4-dimethylaminophenyl) -4- (4-dimethylaminophenyl) -5- (2-fluorophenyl)-
1,3-oxazole, 2- (4-diethylaminophenyl) -4- (4-dimethylaminophenyl) -5
(2-fluorophenyl) -1,3-oxazole, 2
-(4-dipropylaminophenyl) -4- (4-dimethylaminophenyl) -5- (2-fluorophenyl)
Examples include -1,3-oxazole, imidazole, chrysene, tetraphen, acridene, triphenylamine, benzidine, and derivatives thereof. As the charge transporting substance, a benzidine derivative represented by the general formula (I) is particularly preferable. In the general formula (I), examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and a tert-butyl group. As the alkoxy group, a methoxy group, an ethoxy group,
Examples thereof include an n-propoxy group and an iso-propoxy group. Examples of the aryl group include a phenyl group, a tolyl group, a biphenyl group, a terphenyl group, a naphthyl group and the like. Examples of the fluoroalkyl group include a trifluoromethyl group, a trifluoroethyl group, and a heptafluoropropyl group. Examples of the fluoroalkoxy group include a trifluoromethoxy group, a 2,3-difluoroethoxy group,
2,2,2-trifluoroethoxy group, 1H, 1H-pentafluoropropoxy group, hexafluoro-iso-propoxy group, 1H, 1H-pentafluorobutoxy group,
2,2,3,4,4,4-hexafluorobutoxy group,
And a fluoroalkoxy group such as a 4,4,4-trifluorobutoxy group. For example, the following compounds No. 1 to No. 6 and the like can be mentioned.
【0032】[0032]
【化3】 Embedded image
【化4】 Embedded image
【0033】上記フタロシアニン組成物及び必要に応じ
て用いる電荷を発生する有機顔料(両方で前者とする)
と電荷輸送性物質(後者とする)とを混合して使用する
場合(単層型の光導電層を形成する場合)は、後者/前
者が重量比で10/1〜2/1の割合で配合するのが好
ましい。このとき、結合剤をこれらの化合物全量(前者
+後者)に対して0〜500重量%、特に30〜500
重量%の範囲で使用するのが好ましい。これらの結合剤
を使用する場合、さらに、可塑剤、流動性付与剤、ピン
ホール抑制剤等の添加剤を必要に応じて添加することが
できる。The above-mentioned phthalocyanine composition and, if necessary, an organic pigment generating an electric charge (both are the former)
And a charge transporting substance (the latter) is used in a mixture (when a single-layer type photoconductive layer is formed), the latter / the former being in a weight ratio of 10/1 to 2/1. It is preferable to mix them. At this time, the binder is used in an amount of 0 to 500% by weight, especially 30 to 500% by weight based on the total amount of these compounds (the former + the latter).
It is preferred to use in the range of weight%. When these binders are used, additives such as a plasticizer, a fluidity-imparting agent, and a pinhole inhibitor can be further added as necessary.
【0034】電荷発生層及び電荷輸送層からなる複合型
の光導電層を形成する場合、電荷発生層中には、上記フ
タロシアニン組成物及び必要に応じて電荷を発生する有
機顔料が含有され、結合剤をフタロシアニン組成物と該
有機顔料の総量に対して500重量%以下の量で含有さ
せてもよく、また、上記した添加剤を該フタロシアニン
組成物と有機顔料の総量に対して5重量%以下で添加し
てもよい。また、電荷輸送層には、上記した電荷輸送性
物質が含有され、さらに、結合剤を該電荷輸送性物質に
対して500重量%以下で含有させてもよい。電荷輸送
性物質が低分子量化合物の場合は、結合剤を該化合物に
対して50重量%以上含有させることが好ましい。When a composite photoconductive layer comprising a charge generation layer and a charge transport layer is formed, the charge generation layer contains the phthalocyanine composition and, if necessary, an organic pigment which generates a charge. The agent may be contained in an amount of 500% by weight or less based on the total amount of the phthalocyanine composition and the organic pigment, and the above-mentioned additive may be contained in an amount of 5% by weight or less based on the total amount of the phthalocyanine composition and the organic pigment. May be added. Further, the charge transport layer contains the above-described charge transporting substance, and may further contain a binder at 500% by weight or less based on the charge transporting substance. When the charge transporting substance is a low molecular weight compound, the binder is preferably contained at 50% by weight or more based on the compound.
【0035】上記した場合すべてに使用し得る結合剤と
しては、シリコーン樹脂、ポリアミド樹脂、ポリウレタ
ン樹脂、ポリエステル樹脂、エポキシ樹脂、ポリケトン
樹脂、ポリカーボネート樹脂、ポリアクリル樹脂、ポリ
スチレン樹脂、スチレン−ブタジエン共重合体、ポリメ
タクリル酸メチル樹脂、ポリ塩化ビニル、エチレン−酢
酸ビニル共重合体、塩化ビニル−酢酸ビニル共重合体、
ポリアクリルアミド樹脂、ポリビニルカルバゾール、ポ
リビニルピラゾリン、ポリビニルピレン等が挙げられ
る。また、熱及び/又は光によって架橋される熱硬化型
樹脂及び光硬化型樹脂も使用できる。いずれにしても絶
縁性で通常の状態で被膜を形成しうる樹脂並びに熱及び
/又は光によつて硬化し被膜を形成する樹脂であれば特
に制限はない。The binders that can be used in all of the above cases include silicone resins, polyamide resins, polyurethane resins, polyester resins, epoxy resins, polyketone resins, polycarbonate resins, polyacryl resins, polystyrene resins, and styrene-butadiene copolymers. , Polymethyl methacrylate resin, polyvinyl chloride, ethylene-vinyl acetate copolymer, vinyl chloride-vinyl acetate copolymer,
Polyacrylamide resin, polyvinyl carbazole, polyvinyl pyrazoline, polyvinyl pyrene and the like can be mentioned. Further, a thermosetting resin and a photocurable resin which are crosslinked by heat and / or light can also be used. In any case, there is no particular limitation as long as it is an insulating resin capable of forming a film in a normal state and a resin which is cured by heat and / or light to form a film.
【0036】上記添加剤としての可塑剤としては、ハロ
ゲン化パラフィン、ジメチルナフタリン、ジブチルフタ
レート等が挙げられ、流動性付与剤としては、モダフロ
ー(モンサントケミカル社製)、アクロナール4F(バ
スフ社製)等が挙げられ、ピンホール抑制剤としては、
ベンゾイン、ジメチルフタレート等が挙げられる。これ
らは適宜選択して使用され、その量も適宜決定されれば
よい。Examples of the plasticizer as the additive include halogenated paraffin, dimethylnaphthalene, dibutyl phthalate and the like. Examples of the fluidity-imparting agent include Modaflow (manufactured by Monsanto Chemical), Acronal 4F (manufactured by Basff) and the like. And as a pinhole inhibitor,
Benzoin, dimethyl phthalate and the like can be mentioned. These may be appropriately selected and used, and the amounts thereof may be appropriately determined.
【0037】本発明において導電性基材とは、導電処理
した紙又はプラスチツクフィルム、アルミニウムのよう
な金属箔を積層したプラスチツクフィルム、金属板等の
導電体である。In the present invention, the conductive substrate is a conductive material such as a paper or a plastic film subjected to a conductive treatment, a plastic film in which a metal foil such as aluminum is laminated, or a metal plate.
【0038】本発明の電子写真感光体は、導電性基材の
上に光導電層を形成したものである。光導電層の厚さは
5〜50μが好ましい。光導電層として電荷発生層及び
電荷輸送層の複合型を使用する場合、電荷発生層は好ま
しくは0.001〜10μm、特に好ましくは0.2〜
5μmの厚さにする。0.001μm未満では、電荷発生
層を均一に形成するのが困難になり、10μmを越える
と、電子写真特性が低下する傾向がある。電荷輸送層の
厚さは好ましくは5〜50μm、特に好ましくは8〜2
5μmである。5μm未満の厚さでは、初期電位が低くな
り、50μmを越えると、感度が低下する傾向がある。The electrophotographic photoreceptor of the present invention has a photoconductive layer formed on a conductive substrate. The thickness of the photoconductive layer is preferably 5 to 50 μm. When a composite type of a charge generation layer and a charge transport layer is used as the photoconductive layer, the charge generation layer is preferably 0.001 to 10 μm, and particularly preferably 0.2 to 10 μm.
The thickness is 5 μm. When the thickness is less than 0.001 μm, it is difficult to form the charge generation layer uniformly, and when it exceeds 10 μm, the electrophotographic properties tend to deteriorate. The thickness of the charge transport layer is preferably 5 to 50 μm, particularly preferably 8 to 2 μm.
5 μm. If the thickness is less than 5 μm, the initial potential becomes low, and if it exceeds 50 μm, the sensitivity tends to decrease.
【0039】導電性基材上に、光導電性基材を形成する
には、有機光導電性物質を導電性基材に蒸着する方法、
有機光導電性物質及び必要に応じその他の成分をトルエ
ン、キシレン等の芳香族系溶剤、塩化メチレン、四塩化
炭素等のハロゲン化炭化水素系溶剤、メタノール、エタ
ノール、プロパノール等のアルコール系溶剤などに均一
に溶解又は分散させて導電性基材上に塗布し、乾燥する
方法などがある。塗布法としては、スピンコート法、浸
漬法等を採用できる。電荷発生層及び電荷輸送層を形成
する場合も同様に行うことができるが、この場合、電荷
発生層と電荷輸送層は、どちらを上層としてもよく、電
荷発生層を二層の電荷輸送層ではさむようにしてもよ
い。To form a photoconductive substrate on a conductive substrate, a method of vapor-depositing an organic photoconductive substance on the conductive substrate,
Organic photoconductive substances and other components as necessary are converted into aromatic solvents such as toluene and xylene, halogenated hydrocarbon solvents such as methylene chloride and carbon tetrachloride, and alcohol solvents such as methanol, ethanol and propanol. There is a method of uniformly dissolving or dispersing, applying the solution on a conductive substrate, and drying. As a coating method, a spin coating method, a dipping method, or the like can be adopted. In the case where the charge generation layer and the charge transport layer are formed, the same operation can be performed.In this case, the charge generation layer and the charge transport layer may be either upper layers. It may be soaked.
【0040】本発明におけるフタロシアニン組成物をス
ピンコート法により塗布する場合、フタロシアニン組成
物をクロロホルム等又はトルエン等のハロゲン化溶剤又
は非極性溶剤に溶かして得た塗布液を用いて回転数50
0〜4000rpmでスピンコーティングすることが好ま
しく、また、浸漬法によって塗布する場合には、フタロ
シアニン組成物をメタノール、ジメチルホルムアミド、
クロロホルム、塩化メチレン、1,2−ジクロロエタン
等のハロゲン溶剤にボールミル、超音波等を用いて分散
させた塗液に導電性基板を浸漬することが好ましい。When the phthalocyanine composition of the present invention is applied by a spin coating method, the number of revolutions is 50 using a coating solution obtained by dissolving the phthalocyanine composition in a halogenated solvent such as chloroform or toluene or a non-polar solvent.
It is preferable to perform spin coating at 0 to 4000 rpm, and when applying by a dipping method, methanol, dimethylformamide,
The conductive substrate is preferably immersed in a coating solution dispersed in a halogen solvent such as chloroform, methylene chloride, 1,2-dichloroethane or the like by using a ball mill, ultrasonic waves or the like.
【0041】本発明に係る電子写真感光体は、更に、導
電性基材のすぐ上に薄い接着層又はバリア層を有してい
てもよく、表面に保護層を有していてもよい。The electrophotographic photoreceptor according to the present invention may further have a thin adhesive layer or barrier layer immediately above the conductive substrate, and may have a protective layer on the surface.
【0042】[0042]
【実施例】以下、フタロシアニン組成物の製造例、実施
例によって、本発明を詳細に説明する。EXAMPLES Hereinafter, the present invention will be described in detail with reference to Production Examples and Examples of phthalocyanine compositions.
【0043】製造例1 チタニルフタロシアニン0.75gおよび塩化インジウ
ムフタロシアニン0.25gからなるフタロシアニン混
合物1gを硫酸50mlに溶解し室温で30分撹拌した
後、これを氷水で冷却したイオン交換水1リットルに、
約40分で滴下し再沈させた。さらに冷却下で1時間撹
拌後、一晩放置した。デカンテ−ションにより上澄み液
を除去後、遠心分離により沈殿物を分離し、700mgの
沈殿物を得た。1回目の洗浄として、沈殿物700mgに
洗浄水としてのイオン交換水120mlを加え撹拌し、次
いで、遠心分離により沈殿物と洗浄水を分離除去した。
同様の洗浄操作をさらに5回続けて行った。6回目の操
作における分離除去した洗浄水(すなわち洗浄後の洗浄
水)のpH及び伝導率を測定した(23℃)。pHの測定
には、横河電機社製モデルPH51を使用した。また、
伝導率の測定は、柴田科学器械工業社製モデルSC−1
7Aを使用した。洗浄水のpHは3.3であり、伝導率
は、65.1μS/cmであった。その後、メタノ−ル60
mlで3回洗浄した後60℃で4時間真空加熱乾燥した。
この真空乾燥物のX線回折スペクトルを図1として示し
た。つぎにこの真空乾燥物1gにイオン交換水22.5
g及びオルト−ジクロロベンゼン1.5mlを加え、60
℃で1時間加熱撹拌し、ろ過後、メタノールで洗浄して
60℃で4時間真空加熱乾燥し、本発明におけるフタロ
シアニン組成物の結晶を得た。この結晶のX線回折スペ
クトルを図2として示した。Production Example 1 1 g of a phthalocyanine mixture composed of 0.75 g of titanyl phthalocyanine and 0.25 g of indium phthalocyanine was dissolved in 50 ml of sulfuric acid, stirred at room temperature for 30 minutes, and added to 1 liter of ion-exchanged water cooled with ice water.
In about 40 minutes, the solution was dropped and reprecipitated. The mixture was further stirred for 1 hour under cooling and then left overnight. After removing the supernatant by decantation, the precipitate was separated by centrifugation to obtain 700 mg of the precipitate. In the first washing, 120 mg of ion-exchanged water as washing water was added to 700 mg of the precipitate and stirred, and then the precipitate and the washing water were separated and removed by centrifugation.
The same washing operation was further continued five times. The pH and conductivity of the wash water separated and removed in the sixth operation (ie, wash water after washing) were measured (23 ° C.). Model PH51 manufactured by Yokogawa Electric Corporation was used for pH measurement. Also,
The conductivity was measured using a model SC-1 manufactured by Shibata Scientific Instruments.
7A was used. The pH of the washing water was 3.3, and the conductivity was 65.1 μS / cm. Then, methanol 60
After washing three times with ml, it was dried by heating under vacuum at 60 ° C. for 4 hours.
The X-ray diffraction spectrum of this vacuum dried product is shown in FIG. Next, 2 g of ion-exchanged water was added to 1 g of the vacuum dried product.
g and 1.5 ml of ortho-dichlorobenzene.
After heating and stirring at 1 ° C. for 1 hour, filtration, washing with methanol, and vacuum drying at 60 ° C. for 4 hours, crystals of the phthalocyanine composition of the present invention were obtained. The X-ray diffraction spectrum of this crystal is shown in FIG.
【0044】製造例2 製造例1と同様にして得られた真空乾燥物1gにイオン
交換水9g及び1,2−ジクロロエタン100mlを加
え、室温にて2時間撹拌し、本発明におけるフタロシア
ニン組成物の結晶を得た。この結晶のX線回折スペクト
ルを図3に示した。Production Example 2 9 g of ion-exchanged water and 100 ml of 1,2-dichloroethane were added to 1 g of the vacuum-dried product obtained in the same manner as in Production Example 1, and the mixture was stirred at room temperature for 2 hours to obtain the phthalocyanine composition of the present invention. Crystals were obtained. The X-ray diffraction spectrum of this crystal is shown in FIG.
【0045】製造例3 硫酸処理後の洗浄回数を変え、洗浄水のpHが4.0、伝
導率が17.8μS/cmまで洗浄する以外は、製造例1と
同様にして、フタロシアニン組成物を製造した。得られ
た組成物のX線回折スペクトルは図2と同じであった。Production Example 3 The phthalocyanine composition was prepared in the same manner as in Production Example 1 except that the number of washings after the sulfuric acid treatment was changed, and the washing water was washed to a pH of 4.0 and a conductivity of 17.8 μS / cm. Manufactured. The X-ray diffraction spectrum of the composition obtained was the same as in FIG.
【0046】比較製造例1 硫酸処理後の洗浄回数を変え、洗浄水のpHが6.0、伝
導率が3.4μS/cmまで洗浄する以外は製造例1同様に
してフタロシアニン組成物の結晶を製造した。ハロゲン
溶剤処理前の真空乾燥物X線回折スペクトルを図4に示
した。ハロゲン処理後に得られた結晶のX線回折スペク
トルを図5として示した。Comparative Production Example 1 The crystals of the phthalocyanine composition were prepared in the same manner as in Production Example 1 except that the number of washings after the sulfuric acid treatment was changed, and the washing water was washed to a pH of 6.0 and a conductivity of 3.4 μS / cm. Manufactured. FIG. 4 shows an X-ray diffraction spectrum of the vacuum dried product before the halogen solvent treatment. The X-ray diffraction spectrum of the crystal obtained after the halogen treatment is shown in FIG.
【0047】比較製造例2 硫酸処理後の洗浄回数を変え、洗浄水のpHが6.0、伝
導率が3.4μS/cmまで洗浄する以外は、製造例2と同
様にしてフタロシアニン組成物の結晶を製造した。得ら
れた結晶X線回折スペクトルを図6として示した。Comparative Production Example 2 A phthalocyanine composition was prepared in the same manner as in Production Example 2 except that the number of washings after the sulfuric acid treatment was changed, and the washing water was washed to pH 6.0 and conductivity to 3.4 μS / cm. Crystals were produced. The obtained crystal X-ray diffraction spectrum is shown in FIG.
【0048】比較製造例3 製造例1と同様にして得られた真空乾燥物1gにイソプ
ロピルアルコ−ル10mlを加え90℃、8時間加熱撹拌
しフタロシアニン組成物の結晶を得た。この結晶のX線
回折スペクトルを図7として示した。Comparative Production Example 3 To 1 g of the vacuum dried product obtained in the same manner as in Production Example 1, 10 ml of isopropyl alcohol was added, and the mixture was heated and stirred at 90 ° C. for 8 hours to obtain crystals of a phthalocyanine composition. The X-ray diffraction spectrum of this crystal is shown in FIG.
【0049】製造例4〜6 製造例1〜3において塩化インジウムフタロシアニンの
代わりに臭化インジウムフタロシアニンを用いた以外は
製造例1〜3に準じてフタロシアニン組成物の結晶を得
た。Preparation Examples 4 to 6 Crystals of a phthalocyanine composition were obtained according to Preparation Examples 1 to 3, except that indium phthalocyanine bromide was used instead of indium phthalocyanine chloride.
【0050】比較製造例4〜6 比較製造例1〜3において塩化インジウムフタロシアニ
ンの代わりに臭化インジウムフタロシアニンを用いた以
外は比較製造例1〜3に準じてフタロシアニン組成物の
結晶を得た。Comparative Production Examples 4 to 6 Crystals of the phthalocyanine composition were obtained according to Comparative Production Examples 1 to 3, except that indium phthalocyanine bromide was used instead of indium phthalocyanine chloride.
【0051】製造例7〜9 製造例1〜3において塩化インジウムフタロシアニンの
代わりに塩化ガリウムフタロシアニンを用いた以外は製
造例1〜3に準じてフタロシアニン組成物の結晶を得
た。Production Examples 7 to 9 Crystals of a phthalocyanine composition were obtained according to Production Examples 1 to 3, except that gallium phthalocyanine chloride was used instead of indium phthalocyanine chloride in Production Examples 1 to 3.
【0052】比較製造例7〜9 比較製造例1〜3において塩化インジウムフタロシアニ
ンの代わりに塩化ガリウムフタロシアニンを用いた以外
は比較製造例1〜3に準じてフタロシアニン組成物の結
晶を得た。Comparative Preparation Examples 7 to 9 Crystals of a phthalocyanine composition were obtained according to Comparative Preparation Examples 1 to 3, except that gallium phthalocyanine chloride was used instead of indium phthalocyanine chloride.
【0053】製造例10〜12 製造例1〜3において塩化インジウムフタロシアニンの
代わりに塩化アルミニウムフタロシアニンを用いた以外
は製造例1〜3に準じてフタロシアニン組成物の結晶を
得た。Production Examples 10 to 12 Crystals of a phthalocyanine composition were obtained according to Production Examples 1 to 3, except that aluminum chloride phthalocyanine was used instead of indium phthalocyanine chloride in Production Examples 1 to 3.
【0054】比較製造例10〜12 比較製造例1〜3において塩化インジウムフタロシアニ
ンの代わりに塩化アルミニウムフタロシアニンを用いた
以外は比較製造例1〜3に準じてフタロシアニン組成物
の結晶を得た。Comparative Production Examples 10 to 12 Crystals of the phthalocyanine composition were obtained in the same manner as in Comparative Production Examples 1 to 3, except that aluminum chloride phthalocyanine was used in place of indium phthalocyanine chloride.
【0055】実施例1 製造例1で製造したフタロシアニン組成物1.5g、ポ
リビニルブチラ−ル樹脂エスレックBL−S(積水化学
社製)0.9g、メラミン樹脂ML351W(日立化成
工業社製)0.1g、エチルセロソルブ49g及びテト
ラヒドロフラン49gを配合し、ボールミルで分散し
た。得られた分散液を浸漬法によりアルミニウム板(導
電性基材100mm×100mm×0.1mm)上に塗工し、
140℃で1時間乾燥して厚さ0.5μmの電荷発生層
を形成した。上記のNo.4の電荷輸送性物質1.5g、
ポリカーボネート樹脂ユーピロンS−3000(三菱瓦
斯化学社製)1.5gおよび塩化メチレン15.5gを
配合して得られた塗布液を上記基板上に浸漬法により塗
工し、120℃で1時間乾燥して厚さ20μmの電荷輸
送層を形成した。電子写真特性(感度、残留電位、暗減
衰率、光応答性)は、シンシア30HC(緑屋電気社
製)により評価した。コロナ帯電方式で感光体を−65
0Vまで帯電させ、780nmの単色光を50mS感光体に
露光し種々の特性測定を行った。上記の特性の定義は、
以下の通りである。感度(E50)は、初期帯電電位−6
50Vを露光0.2秒後に半減させるのに要する780
nmの単色光の照射エネルギ−量であり、残留電位(V
r)は、同波長の20mJ/m2の単色光を50mS露光し、
露光0.2秒後及び0.5秒後に感光体の表面に残る電
位である。暗減衰率(DDR)は、感光体の初期帯電電
位−650Vと初期帯電後暗所1秒放置後の表面電位V
1(−V)を用いて(V1/650)×100と定義し
た。光応答性(T1/2)は、波長780nmの20mJ/m2
の単色光を50mS露光し、初期帯電電位−650Vを半
減させるのに要する時間(sec)と定義した。Example 1 1.5 g of the phthalocyanine composition produced in Production Example 1, 0.9 g of polyvinyl butyral resin ESLEK BL-S (manufactured by Sekisui Chemical Co., Ltd.), and melamine resin ML351W (manufactured by Hitachi Chemical Co., Ltd.) 0 .1 g, 49 g of ethyl cellosolve and 49 g of tetrahydrofuran were mixed and dispersed by a ball mill. The obtained dispersion is applied on an aluminum plate (conductive substrate 100 mm x 100 mm x 0.1 mm) by a dipping method,
After drying at 140 ° C. for 1 hour, a charge generation layer having a thickness of 0.5 μm was formed. 1.5 g of the above-described No. 4 charge transporting substance,
A coating solution obtained by blending 1.5 g of a polycarbonate resin Iupilon S-3000 (manufactured by Mitsubishi Gas Chemical Company) and 15.5 g of methylene chloride is applied on the substrate by a dipping method, and dried at 120 ° C. for 1 hour. Thus, a charge transport layer having a thickness of 20 μm was formed. Electrophotographic characteristics (sensitivity, residual potential, dark decay rate, photoresponsiveness) were evaluated by Cynthia 30HC (manufactured by Midoriya Electric Co., Ltd.). -65 photoconductor by corona charging
After charging to 0 V, a monochromatic light of 780 nm was exposed to a 50 mS photoreceptor, and various characteristics were measured. The definition of the above characteristics is
It is as follows. Sensitivity (E 50 ) is the initial charge potential −6.
780 required to halve 50 V after 0.2 seconds of exposure
nm is the irradiation energy of monochromatic light, and the residual potential (V
r) exposes monochromatic light of the same wavelength of 20 mJ / m 2 for 50 mS,
This is the potential remaining on the surface of the photoreceptor after 0.2 seconds and 0.5 seconds of exposure. The dark decay rate (DDR) is the initial charging potential of the photoconductor -650 V, and the surface potential V after leaving the dark for 1 second after the initial charging.
1 defined (-V) with the (V 1/650) × 100 . The optical response (T 1/2 ) is 20 mJ / m 2 at a wavelength of 780 nm.
Is defined as the time (sec) required for exposing the monochromatic light of 50 mS to 50 ms and halving the initial charging potential -650 V.
【0056】実施例2,3 実施例1において製造例2及び3で得られたチタニルフ
タロシアニン組成物を用いた以外は実施例1に準じて電
子写真感光体を製造し評価した。その結果を表1に示し
た。Examples 2 and 3 An electrophotographic photosensitive member was produced and evaluated in the same manner as in Example 1 except that the titanyl phthalocyanine compositions obtained in Production Examples 2 and 3 were used. The results are shown in Table 1.
【0057】比較例1〜3 実施例1において比較製造例1〜3で得られたチタニル
フタロシアニン組成物を用いた以外は、実施例1に準じ
て電子写真感光体を製造し評価した。その結果を表1に
示すが、見かけ上高感度に見えるが、暗減衰率が、実用
に耐える値ではなかった。Comparative Examples 1 to 3 An electrophotographic photosensitive member was produced and evaluated in the same manner as in Example 1 except that the titanyl phthalocyanine compositions obtained in Comparative Production Examples 1 to 3 were used. The results are shown in Table 1. Although apparently high sensitivity, the dark decay rate was not a value that could withstand practical use.
【0058】比較例4 製造例1においてオルト−ジクロロベンゼン溶液で処理
する前の乾燥粉を用いた以外は、実施例1に準じて電子
写真感光体を製造し評価したが−650Vまで帯電する
ことができなかった。Comparative Example 4 An electrophotographic photosensitive member was produced and evaluated in the same manner as in Production Example 1 except that the dried powder before the treatment with the ortho-dichlorobenzene solution was used. Could not.
【表1】 [Table 1]
【0059】実施例4〜6 実施例1において製造例4〜6で得られたチタニルフタ
ロシアニン組成物を用い、かつ、電荷輸送材料としてN
o.4の化合物の代わりにNo.2を用いた以外は実施例1
〜3に準じて電子写真感光体を製造し評価した。その結
果を表2に示した。Examples 4 to 6 In Example 1, the titanyl phthalocyanine compositions obtained in Production Examples 4 to 6 were used, and N was used as a charge transport material.
Example 1 except that No. 2 was used instead of the compound of o.4
An electrophotographic photoreceptor was manufactured and evaluated according to Comparative Examples Nos. 1 to 3. The results are shown in Table 2.
【0060】比較例5〜7 実施例1において比較製造例4〜6で得られたチタニル
フタロシアニン組成物を用い、かつ、電荷輸送材料とし
てNo.4の化合物の代わりにNo.2を用いた以外は、実施
例1に準じて電子写真感光体を製造し評価した。その結
果を表2に示した。Comparative Examples 5 to 7 Except that the titanyl phthalocyanine compositions obtained in Comparative Production Examples 4 and 6 were used in Example 1 and that No. 2 was used instead of the No. 4 compound as the charge transporting material. Was used to produce and evaluate an electrophotographic photosensitive member according to Example 1. The results are shown in Table 2.
【0061】比較例8 製造例4においてオルト−ジクロロベンゼン溶液で処理
する前の乾燥粉を用いた以外は、実施例1に準じて電子
写真感光体を製造し評価したが、−650Vまで帯電す
ることができなかった。Comparative Example 8 An electrophotographic photosensitive member was manufactured and evaluated in the same manner as in Example 1 except that the dried powder before the treatment with the ortho-dichlorobenzene solution was used. I couldn't do that.
【表2】 [Table 2]
【0062】実施例7〜9 実施例1において製造例7〜9で得られたチタニルフタ
ロシアニン組成物を用い、かつ、電荷輸送材料としてN
o.4の化合物の代わりにNo.5を用いた以外は実施例1
〜3に準じて電子写真感光体を製造し評価した。その結
果を表3に示した。Examples 7 to 9 In Example 1, the titanyl phthalocyanine compositions obtained in Production Examples 7 to 9 were used, and N was used as a charge transport material.
Example 1 except that No. 5 was used instead of the compound of o.4
An electrophotographic photoreceptor was manufactured and evaluated according to Comparative Examples Nos. 1 to 3. Table 3 shows the results.
【0063】比較例9〜11 実施例1において比較製造例7〜9で得られたチタニル
フタロシアニン組成物を用い、かつ、電荷輸送材料とし
てNo.4の化合物の代わりにNo.5を用いた以外は、実施
例1に準じて電子写真感光体を製造し評価した。その結
果を表3に示した。Comparative Examples 9 to 11 Except that the titanyl phthalocyanine compositions obtained in Comparative Production Examples 7 to 9 were used in Example 1 and that No. 5 was used in place of the compound of No. 4 as a charge transporting material. Was used to produce and evaluate an electrophotographic photosensitive member according to Example 1. Table 3 shows the results.
【0064】比較例12 製造例7においてオルト−ジクロロベンゼン溶液で処理
する前の乾燥粉を用いた以外は、実施例1に準じて電子
写真感光体を製造し評価したが、−650Vまで帯電す
ることができなかった。Comparative Example 12 An electrophotographic photosensitive member was produced and evaluated in the same manner as in Example 1 except that the dried powder before the treatment with the ortho-dichlorobenzene solution was used. I couldn't do that.
【表3】 [Table 3]
【0065】実施例10〜12 実施例1において製造例10〜12で得られたチタニル
フタロシアニン組成物を用い、かつ、電荷輸送材料とし
てNo.4の化合物の代わりにNo.1を用いた以外は実施例
1〜3に準じて電子写真感光体を製造し評価した。その
結果を表4に示した。Examples 10 to 12 In Example 1, the titanyl phthalocyanine compositions obtained in Production Examples 10 to 12 were used, and No. 1 was used in place of the compound of No. 4 as the charge transporting material. An electrophotographic photosensitive member was manufactured and evaluated according to Examples 1 to 3. Table 4 shows the results.
【0066】比較例13〜15 実施例1において比較製造例10〜12で得られたチタ
ニルフタロシアニン組成物を用い、かつ、電荷輸送材料
としてNo.4の化合物の代わりにNo.1を用いた以外は、
実施例1に準じて電子写真感光体を製造し評価した。そ
の結果を表4に示した。Comparative Examples 13 to 15 Except that the titanyl phthalocyanine compositions obtained in Comparative Production Examples 10 to 12 were used in Example 1 and that No. 1 was used instead of the compound of No. 4 as the charge transport material. Is
An electrophotographic photosensitive member was manufactured and evaluated in the same manner as in Example 1. Table 4 shows the results.
【0067】比較例16 製造例10においてオルト−ジクロロベンゼン溶液で処
理する前の乾燥粉を用いた以外は、実施例1に準じて電
子写真感光体を製造し評価したが、−650Vまで帯電
することができなかった。Comparative Example 16 An electrophotographic photosensitive member was produced and evaluated in the same manner as in Example 1 except that the dried powder before the treatment with the ortho-dichlorobenzene solution was used. I couldn't do that.
【表4】 [Table 4]
【0068】[0068]
【発明の効果】本発明になるフタロシアニン組成物を用
いた電子写真感光体は、帯電性、暗減衰、感度等の電子
写真特性が優れており、従来よりも更に高密度、高画質
が要求される電子写真プロセスに好適に応用することが
できる。特に感度が優れることから、レーザービームプ
リンタに適用した場合、半導体レーザーの寿命を大幅に
延ばすことができる。また、フルカラーコピーにおいて
は、感度に対応させたハーフトーンの階調の裕度を大き
くできるので極めて有利である。The electrophotographic photoreceptor using the phthalocyanine composition according to the present invention has excellent electrophotographic properties such as chargeability, dark decay and sensitivity, and is required to have higher density and higher image quality than before. It can be suitably applied to an electrophotographic process. In particular, since the sensitivity is excellent, when applied to a laser beam printer, the life of a semiconductor laser can be greatly extended. Further, in full-color copying, the latitude of halftone gradation corresponding to sensitivity can be increased, which is extremely advantageous.
【0069】[0069]
【図1】製造例1において得られた真空乾燥物のX線回
折スペクトル。FIG. 1 is an X-ray diffraction spectrum of a vacuum dried product obtained in Production Example 1.
【図2】製造例1において得られたフタロシアニン組成
物のX線回折スペクトル。FIG. 2 is an X-ray diffraction spectrum of the phthalocyanine composition obtained in Production Example 1.
【図3】製造例2において得られたフタロシアニン組成
物のX線回折スペクトル。FIG. 3 is an X-ray diffraction spectrum of the phthalocyanine composition obtained in Production Example 2.
【図4】比較製造例1において得られた真空乾燥物のX
線回折スペクトル。FIG. 4 shows the X of the vacuum dried product obtained in Comparative Production Example 1.
Line diffraction spectrum.
【図5】比較製造例1において得られたフタロシアニン
組成物のX線回折スペクトル。FIG. 5 is an X-ray diffraction spectrum of the phthalocyanine composition obtained in Comparative Production Example 1.
【図6】比較製造例2において得られたフタロシアニン
組成物のX線回折スペクトル。FIG. 6 is an X-ray diffraction spectrum of the phthalocyanine composition obtained in Comparative Production Example 2.
【図7】比較製造例3において得られたフタロシアニン
組成物のX線回折スペクトル。FIG. 7 is an X-ray diffraction spectrum of the phthalocyanine composition obtained in Comparative Production Example 3.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 板垣 幹男 茨城県日立市東町四丁目13番1号 日立 化成工業株式会社 茨城研究所内 (56)参考文献 特開 平6−175382(JP,A) 特開 平5−345866(JP,A) 特開 平5−6013(JP,A) 特開 平3−217462(JP,A) 特開 平3−220392(JP,A) 特開 平3−54264(JP,A) 特開 平2−256059(JP,A) 特開 平2−198452(JP,A) 特開 平2−28265(JP,A) 特開 平1−299874(JP,A) 特開 平3−9962(JP,A) (58)調査した分野(Int.Cl.7,DB名) C09B 67/00 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Mikio Itagaki 4-3-1-1, Higashicho, Hitachi City, Ibaraki Prefecture Hitachi Chemical Co., Ltd. Ibaraki Research Laboratory (56) References JP-A-6-175382 (JP, A) JP-A-5-345866 (JP, A) JP-A-5-6013 (JP, A) JP-A-3-217462 (JP, A) JP-A-3-220392 (JP, A) JP-A-3-54264 ( JP, A) JP-A-2-256059 (JP, A) JP-A-2-198452 (JP, A) JP-A-2-28265 (JP, A) JP-A-1-299874 (JP, A) JP Hei 3-9962 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C09B 67/00
Claims (5)
ブラッグ角(2θ±0.2度)が7.5度、24.2度
および27.3度に主な回折ピークを有するフタロシア
ニン組成物。1. A phthalocyanine composition having major diffraction peaks at Bragg angles (2θ ± 0.2 degrees) of 7.5 degrees, 24.2 degrees and 27.3 degrees in an X-ray diffraction spectrum of CuKα.
3価のハロゲン化金属フタロシアニンを含むフタロシア
ニン混合物を、アシッドペ−スティング法により水中に
再沈させ、CuKαのX線回折スペクトルにおいてブラ
ッグ角(2θ±0.2度)の27.2度に特徴的な回折
ピ−クを有する沈殿物を得、引き続き該沈殿物を有機溶
剤−水の混合溶媒で処理することを特徴とするCuKα
のX線回折スペクトルにおいてブラッグ角(2θ±0.
2度)が7.5度、24.2度および27.3度に主な
回折ピークを有するフタロシアニン組成物の製造法。2. A phthalocyanine mixture containing titanyl phthalocyanine and a metal halide phthalocyanine whose central metal is trivalent is reprecipitated in water by an acid pasting method, and the Bragg angle (2θ ± 0.2) is obtained in the X-ray diffraction spectrum of CuKα. CuKα, wherein a precipitate having a characteristic diffraction peak at 27.2 ° is obtained, and the precipitate is subsequently treated with a mixed solvent of an organic solvent and water.
Of the Bragg angle (2θ ± 0.
(2 degrees), wherein the phthalocyanine composition has main diffraction peaks at 7.5 degrees, 24.2 degrees and 27.3 degrees.
する光導電層を有する電子写真感光体において、該有機
光導電性物質がCuKαのX線回折スペクトルにおいて
ブラッグ角(2θ±0.2度)が7.5度、24.2度
および27.3度に主な回折ピークを有するフタロシア
ニン組成物である電子写真感光体。3. An electrophotographic photosensitive member having a photoconductive layer containing an organic photoconductive substance on a conductive substrate, wherein the organic photoconductive substance has a Bragg angle (2θ ± 0) in an X-ray diffraction spectrum of CuKα. (2 °) is a phthalocyanine composition having main diffraction peaks at 7.5 °, 24.2 ° and 27.3 °.
シアニン組成物を電荷発生材料として含有する電荷発生
層と、下記の一般式〔I〕(R1及びR2は、それぞれ独
立して水素原子、ハロゲン原子、アルキル基、アルコキ
シ基、アリール基、フルオロアルキル基又はフルオロア
ルコキシ基を表し、2個のR3は、それぞれ独立して水
素原子又はアルキル基を表し、Ar1及びAr2は、それ
ぞれ独立してアリール基を表し、m及びnは、それぞれ
独立して0〜5の整数を表す)で表されるベンジジン誘
導体を電荷輸送物質として含有する電荷輸送層を有する
複合型電子写真感光体。 【化1】 4. A charge-generating layer containing the phthalocyanine composition obtained by the production method according to claim 2 as a charge-generating material, and the following general formula [I] (R 1 and R 2 are each independently hydrogen Represents an atom, a halogen atom, an alkyl group, an alkoxy group, an aryl group, a fluoroalkyl group or a fluoroalkoxy group, two R 3 each independently represent a hydrogen atom or an alkyl group, and Ar 1 and Ar 2 are Each of which independently represents an aryl group, and m and n each independently represent an integer of 0 to 5), which has a charge-transporting layer containing a benzidine derivative as a charge-transporting substance. . Embedded image
する電荷発生層用塗液5. A coating liquid for a charge generation layer containing the phthalocyanine composition according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29429592A JP3343268B2 (en) | 1992-11-02 | 1992-11-02 | Phthalocyanine composition, process for producing the same, electrophotographic photoreceptor using the same, and coating solution for charge generation layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29429592A JP3343268B2 (en) | 1992-11-02 | 1992-11-02 | Phthalocyanine composition, process for producing the same, electrophotographic photoreceptor using the same, and coating solution for charge generation layer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06145550A JPH06145550A (en) | 1994-05-24 |
JP3343268B2 true JP3343268B2 (en) | 2002-11-11 |
Family
ID=17805852
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29429592A Expired - Fee Related JP3343268B2 (en) | 1992-11-02 | 1992-11-02 | Phthalocyanine composition, process for producing the same, electrophotographic photoreceptor using the same, and coating solution for charge generation layer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3343268B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE60319081T2 (en) * | 2002-06-10 | 2009-02-05 | Orient Chemical Industries, Ltd. | μ-OXO-NETWORKED PHTHALOCYANINE COMPOUND WITH UNBELIEVABLE METALS AND A METHOD FOR THE SELECTIVE PRODUCTION THEREOF |
KR100979868B1 (en) | 2002-07-23 | 2010-09-02 | 오사까 가스 가부시키가이샤 | Electrophotographic Photosensitive Element and Electrophotographic Apparatus Using the Same |
CN101928474A (en) | 2004-03-04 | 2010-12-29 | 三菱化学株式会社 | Phthalocyanine composition, and photoconductive material, electrophotographic photoreceptor, electrophotographic photoreceptor cartridge and image-forming device using the same |
JP5106053B2 (en) * | 2007-11-09 | 2012-12-26 | 京セラドキュメントソリューションズ株式会社 | Multilayer electrophotographic photoreceptor and method for producing multilayer electrophotographic photoreceptor |
JP5768556B2 (en) * | 2011-07-22 | 2015-08-26 | 三菱化学株式会社 | Electrophotographic photosensitive member, electrophotographic photosensitive member cartridge, and image forming apparatus |
-
1992
- 1992-11-02 JP JP29429592A patent/JP3343268B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06145550A (en) | 1994-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5304445A (en) | Phthalocyanine composition, process for preparing the same and electrophotographic photoreceptor using the same | |
JP3343275B2 (en) | Phthalocyanine composition, method for producing the same, electrophotographic photoreceptor using the same, and coating liquid for charge generation layer | |
US5837411A (en) | Phthalocyanine electrophotographic photoreceptor for charge generation layer | |
JP3343268B2 (en) | Phthalocyanine composition, process for producing the same, electrophotographic photoreceptor using the same, and coating solution for charge generation layer | |
US4842970A (en) | Electrophotographic plate containing a naphthalocyanine compound | |
JP3219492B2 (en) | Electrophotographic photoreceptor | |
JP3232738B2 (en) | Phthalocyanine composition, method for producing the same, electrophotographic photoreceptor using the same, and coating solution for charge generation layer | |
JP2000019752A (en) | Electrophotographic photoreceptor and coating solution for charge carrying layer | |
JP3343277B2 (en) | Method for producing phthalocyanine composition intermediate | |
JP3284637B2 (en) | Method for producing phthalocyanine composition and electrophotographic photoreceptor using the same | |
JPH0841373A (en) | Phthalocyanine composition, its production, and electrophotographic photoreceptor using the same | |
JPH07104490A (en) | Coating liquid for photosensitive layer and coating liquid for charge transport layer and electrophotographic photoreceptor using the liquid | |
JPH0570709A (en) | Chlorinated indium phthalocyanine, its production, and electrophotographic photoreceptor containing the same | |
JPH08176455A (en) | Production of phthalocyanine composition, electrophotographic photoreceptor containing the same, and coating fluid used for charge generating layer and containing the same | |
JP3458169B2 (en) | Electrophotographic photoreceptor | |
JP2002012790A (en) | Phthalocyanine mixed crystal and electrophotographic photoconductor | |
JPH0598179A (en) | Brominated indium phthalocyanine, its production and electrophotographic photoreceptor using the same | |
JPH10142818A (en) | Electrophotographic photoreceptor | |
JPH10246972A (en) | Electrophotographic photoreceptor, and coating liquid for charge transfer layer | |
JP2002251027A (en) | Phthalocyanine composition, coating liquid containing the same, electrophotographic photoreceptor and method for producing electrophotographic photoreceptor | |
JPH10246970A (en) | Electrophotographic photoreceptor, and coating liquid for charge transfer layer | |
JPH075703A (en) | Electrophotographic sensitive body | |
JPH0598180A (en) | Brominated indium phthalocyanine, its production and electrophotographic photoreceptor using the same | |
JPH0570710A (en) | Chlorinated indium phthalocyanine, its production, and electrophotographic photoreceptor containing the same | |
JPH07191475A (en) | Electrophotographic photoreceptor and coating liquid for photoconductive layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |