JP3219492B2 - Electrophotographic photoreceptor - Google Patents

Electrophotographic photoreceptor

Info

Publication number
JP3219492B2
JP3219492B2 JP29577092A JP29577092A JP3219492B2 JP 3219492 B2 JP3219492 B2 JP 3219492B2 JP 29577092 A JP29577092 A JP 29577092A JP 29577092 A JP29577092 A JP 29577092A JP 3219492 B2 JP3219492 B2 JP 3219492B2
Authority
JP
Japan
Prior art keywords
phthalocyanine
group
degrees
charge
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29577092A
Other languages
Japanese (ja)
Other versions
JPH06148917A (en
Inventor
幹男 板垣
芳伊 森下
孝幸 秋元
恵 松井
茂 林田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP29577092A priority Critical patent/JP3219492B2/en
Publication of JPH06148917A publication Critical patent/JPH06148917A/en
Application granted granted Critical
Publication of JP3219492B2 publication Critical patent/JP3219492B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電子写真感光体に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrophotographic photosensitive member.

【0002】[0002]

【従来の技術】従来の電子写真感光体としては、アルミ
ニウム等の導電性基板の上に50μm程度のセレン(S
e)膜を真空蒸着法により形成したものがある。しか
し、このSe感光体は、波長500nm付近までしか感度
を有していない等の問題がある。また、導電性基板の上
に50μm程度のSe層を形成し、この上に更に数μmの
セレン−テルル(Se−Te)合金層を形成した感光体
があるが、この感光体は上記Se−Te合金のTeの含
有率が高い程、分光感度が長波長にまで伸びる反面、T
eの添加量が増加するにつれて表面電荷の保持特性が不
良となり、事実上、感光体として使用できなくなるとい
う重大な問題がある。
2. Description of the Related Art As a conventional electrophotographic photosensitive member, selenium (S) of about 50 μm is formed on a conductive substrate such as aluminum.
e) Some films are formed by a vacuum evaporation method. However, this Se photoconductor has a problem that it has sensitivity only up to a wavelength of about 500 nm. Further, there is a photoconductor in which a Se layer of about 50 μm is formed on a conductive substrate, and a selenium-tellurium (Se—Te) alloy layer of several μm is further formed thereon. The higher the Te content of the Te alloy, the longer the spectral sensitivity extends to longer wavelengths.
As the addition amount of e increases, there is a serious problem in that the surface charge retention characteristics become poor, and in fact, the photoreceptor cannot be used.

【0003】また、アルミニウム基板の上に1μm程度
のクロロシアンブルー又はスクウアリリウム酸誘導体を
コーティングして電荷発生層を形成し、この上に絶縁抵
抗の高いポリビニルカルバゾール又はピラゾリン誘導体
とポリカーボネート樹脂との混合物を10〜20μmの
厚さにコーティングして電荷輸送層を形成した所謂複合
二層型の感光体もあるが、この感光体は700nm以上の
光に対して感度を有していないのが実状である。
A charge generating layer is formed by coating a chlorocyan blue or squarylylate derivative of about 1 μm on an aluminum substrate, and a mixture of a polyvinyl carbazole or pyrazoline derivative having high insulation resistance and a polycarbonate resin is formed thereon. There is also a so-called composite two-layer type photoreceptor in which a charge transport layer is formed by coating to a thickness of 10 to 20 μm, but in reality this photoreceptor has no sensitivity to light of 700 nm or more. .

【0004】近年、この複合二層型の感光体において、
上記欠点を改善した、即ち、半導体レーザ発振領域80
0nm前後に感度を有する感光体も多く報告されている
が、これらのうち多くのものが電荷発生材料としてフタ
ロシアニン顔料を用い、その膜厚が0.5〜1μm程度
の電荷発生層上にポリビニルカルバゾール、ピラゾリン
誘導体又はヒドラゾン誘導体とポリカーボネート樹脂又
はポリエステル樹脂との絶縁抵抗の高い混合物を10〜
20μmの厚さにコーティングして電荷輸送層を形成し
複合二層型の感光体を形成している。
In recent years, in this composite two-layer type photoreceptor,
The above-mentioned disadvantage has been improved, that is, the semiconductor laser oscillation region 80
Although many photoreceptors having a sensitivity of about 0 nm have been reported, many of them use a phthalocyanine pigment as a charge generating material and have a polyvinyl carbazole film on a charge generating layer having a thickness of about 0.5 to 1 μm. A mixture of a pyrazoline derivative or hydrazone derivative and a polycarbonate resin or polyester resin having a high insulation resistance
A charge transport layer is formed by coating to a thickness of 20 μm to form a composite two-layer type photoreceptor.

【0005】フタロシアニン類は、中心金属の種類によ
り吸収スペクトルや、光導電性が異なるだけでなく、結
晶型によってもこれらの物性には差があり、同じ中心金
属のフタロシアニンでも、特定の結晶型が電子写真用感
光体用に選択されている例がいくつか報告されている。
Phthalocyanines not only have different absorption spectra and photoconductivity depending on the type of the central metal, but also have different physical properties depending on the crystal type. Several examples have been reported that have been selected for electrophotographic photoreceptors.

【0006】例えばチタニルフタロシアニンには種々の
結晶形が存在し、その結晶形の違いによって帯電性、暗
減衰、感度等に大きな差があることが報告されている。
[0006] For example, it is reported that titanyl phthalocyanine has various crystal forms, and there is a large difference in chargeability, dark decay, sensitivity, etc. depending on the crystal form.

【0007】特開昭59−49544号公報には、チタ
ニルフタロシアニンの結晶形としては、ブラッグ角(2
θ±0.2度)が9.2度、13.1度、20.7度、
26.2度及び27.1度に強い回折ピークを与えるも
のが好適であると記されており、X線回折スペクトル図
が示されている。この結晶形のチタニルフタロシアニン
を電荷発生材料として用いた感光体の電子写真特性は、
暗減衰(DDR):85%、感度(E1/2):0.57l
ux・secとされている。
JP-A-59-49544 discloses that the crystal form of titanyl phthalocyanine includes a Bragg angle (2
θ ± 0.2 degrees) are 9.2 degrees, 13.1 degrees, 20.7 degrees,
Those which give strong diffraction peaks at 26.2 degrees and 27.1 degrees are described as suitable, and the X-ray diffraction spectrum is shown. The electrophotographic properties of a photoreceptor using this crystalline form of titanyl phthalocyanine as a charge generating material are as follows:
Dark decay (DDR): 85%, sensitivity (E1 / 2 ): 0.57 l
ux ・ sec.

【0008】また特開昭59−166959号公報に
は、チタニルフタロシアニンの蒸着膜をテトラヒドロフ
ランの飽和蒸気中に1〜24時間放置し、結晶形を変化
させて、電荷発生層としている。X線回折スペクトル
は、ピークの数が少なく、かつ幅が広く、ブラッグ角
(2θ)が7.5度、12.6度、13.0度、25.
4度、26.2度及び28.6度に強い回折ピークを与
えることが示されている。この結晶形のチタニルフタロ
シアニンを電荷発生材料として用いた感光体の電子写真
特性は、暗減衰(DDR):86%、感度(E1/2):
0.7lux・secとされている。
In JP-A-59-166959, a deposited film of titanyl phthalocyanine is left in saturated vapor of tetrahydrofuran for 1 to 24 hours to change the crystal form to form a charge generation layer. The X-ray diffraction spectrum has a small number of peaks and a wide width, and has a Bragg angle (2θ) of 7.5 degrees, 12.6 degrees, 13.0 degrees, and 25 degrees.
It has been shown to give strong diffraction peaks at 4, 26.2 and 28.6 degrees. The electrophotographic characteristics of a photoreceptor using this crystalline form of titanyl phthalocyanine as a charge generation material are as follows: dark decay (DDR): 86%, sensitivity (E 1/2 ):
It is 0.7lux · sec.

【0009】特開平2−131243号公報では、チタ
ニルフタロシアニンの結晶形としては、ブラッグ角が2
7.3度に主たる回折ピークを有するものが好適である
と記されている。この結晶形のチタニルフタロシアニン
を電荷発生材料として用いた感光体の電子写真特性は、
暗減衰(DDR):77.2%、感度(E1/2):0.
38lux・secとされている。
In JP-A-2-131243, the crystal form of titanyl phthalocyanine has a Bragg angle of 2
Those having a main diffraction peak at 7.3 degrees are described as being suitable. The electrophotographic properties of a photoreceptor using this crystalline form of titanyl phthalocyanine as a charge generating material are as follows:
Dark decay (DDR): 77.2%, sensitivity (E 1/2 ): 0.
It is 38 lux · sec.

【0010】このように、フタロシアニン類は結晶形の
違いによって電子写真特性が大きく異なり、その結晶形
は電子写真感光体としての性能を左右する重要な因子で
ある。
As described above, the electrophotographic properties of phthalocyanines greatly differ depending on the crystal form, and the crystal form is an important factor which affects the performance as an electrophotographic photosensitive member.

【0011】特開平3−255456号公報では、2種
以上のフタロシアニンを用いた例も報告されており、チ
タニルフタロシアニンと無金属フタロシアニンの混合物
を電荷発生材料として用いた例が示されている
Japanese Patent Application Laid-Open No. 3-255456 discloses an example using two or more phthalocyanines, and shows an example using a mixture of titanyl phthalocyanine and metal-free phthalocyanine as a charge generating material.

【0012】このようにチタニルフタロシアニンは結晶
形変換によって非常に感度が高く、優れた特性を示して
いる。しかし、その用途であるレーザプリンタ等では、
高画質、高精細化が進んでおり、更に高感度な特性を有
する電子写真感光体が求められている。
As described above, titanyl phthalocyanine has a very high sensitivity due to the conversion of the crystal form and exhibits excellent characteristics. However, in laser printers and the like,
Higher image quality and higher definition have been developed, and an electrophotographic photoreceptor having higher sensitivity characteristics has been demanded.

【0013】電荷輸送層に用いられる電荷輸送物質とし
ては、ポリビニルカルバゾールとトリニトロフルオレノ
ン(モル比1対1)の混合物のような電子輸送能を有す
る電荷輸送物質、ヒドラゾン、エナミン、ベンジジン誘
導体(特公昭55−42380号公報、特開昭62−2
37458号公報、特公昭59−9049号公報、特開
昭55−7940号公報、特開昭61−295558号
公報、米国特許4,265,990号、米国特許4,3
06,008号、米国特許4,588,666号等)の
ような正孔輸送能を有する電荷輸送物質がある。
The charge transporting material used in the charge transporting layer may be a charge transporting material having an electron transporting ability, such as a mixture of polyvinyl carbazole and trinitrofluorenone (molar ratio 1: 1), hydrazone, enamine, benzidine derivative (particularly, JP-B-55-42380, JP-A-62-2
37458, JP-B-59-9049, JP-A-55-7940, JP-A-61-295558, U.S. Pat. No. 4,265,990, U.S. Pat.
No. 6,008, U.S. Pat. No. 4,588,666) and the like.

【0014】ベンジジン誘導体としては、N,N,
N′,N′−テトラフェニルベンジジン、N,N′−ジ
フェニル−N,N′−ビス(3−メチルフェニル)−ベ
ンジジン、N,N,N′,N′−テトラキス(4−メチ
ルフェニル)−ベンジジン、N,N′−ジフェニル−
N,N′−ビス(4−メトキシフェニル)−ベンジジン
などが知られているが、これらのベンジジン誘導体は、
有機溶剤に対する溶解度が低く、また、比較的酸化され
やすいという欠点がある。つまり、有機溶剤及び/又は
結合剤に対する溶解度が低いために、電荷輸送層を形成
するための塗布液を調製することが困難であったり、塗
膜作成時にベンジジン誘導体の結晶が析出してしまうこ
とがある。また、電荷輸送層を良好な塗膜として形成で
きた場合でも、ベンジジン誘導体の耐酸化性が劣るため
に、くり返し使用した場合に帯電性、暗減衰、感度及び
画質等が低下してしまうという欠点がある。
[0014] Benzidine derivatives include N, N,
N ', N'-tetraphenylbenzidine, N, N'-diphenyl-N, N'-bis (3-methylphenyl) -benzidine, N, N, N', N'-tetrakis (4-methylphenyl)- Benzidine, N, N'-diphenyl-
N, N'-bis (4-methoxyphenyl) -benzidine and the like are known, and these benzidine derivatives are
There are drawbacks in that it has low solubility in organic solvents and is relatively easily oxidized. That is, it is difficult to prepare a coating solution for forming the charge transport layer due to low solubility in the organic solvent and / or the binder, or crystals of the benzidine derivative are precipitated during the formation of the coating film. There is. Further, even when the charge transport layer can be formed as a good coating film, the oxidation resistance of the benzidine derivative is inferior, so that the chargeability, dark decay, sensitivity, image quality, etc. are deteriorated when used repeatedly. There is.

【0015】[0015]

【発明が解決しようとする課題】本発明は、上記の問題
点を解決し、高感度の電子写真感光体を提供するもので
ある。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems and provides a high-sensitivity electrophotographic photosensitive member.

【0016】[0016]

【課題を解決するための手段】本発明は、電荷発生物質
及び電荷輸送物質を含む光導電層を設けた電子写真感光
体において、上記電荷発生物質がCuKαのX線回折ス
ペクトルにおいてブラッグ角(2θ±0.2度)が7.
5度、22.5度、24.3度、25.3度及び28.
6度に主な回折ピークを有するチタニルフタロシアニン
と中心金属が3価のハロゲン化金属フタロシアニンとを
含むフタロシアニン組成物であり、かつ、上記電荷輸送
物質が一般式(I)で表される含フッ素N,N,N′,
N′−テトラアリールベンジジン誘導体である電子写真
感光体に関する。
According to the present invention, there is provided an electrophotographic photosensitive member provided with a photoconductive layer containing a charge generating material and a charge transporting material, wherein the charge generating material has a Bragg angle (2θ) in an X-ray diffraction spectrum of CuKα. (± 0.2 degrees).
5 degrees, 22.5 degrees, 24.3 degrees, 25.3 degrees and 28.
A phthalocyanine composition containing a titanyl phthalocyanine having a main diffraction peak at 6 degrees and a trivalent halogenated metal phthalocyanine as a central metal, and wherein the charge transporting substance is a fluorine-containing N represented by the general formula (I) , N, N ',
The present invention relates to an electrophotographic photoreceptor that is an N′-tetraarylbenzidine derivative.

【化2】 (R1及びR2は、それぞれ独立して水素原子、ハロゲン
原子、アルキル基、アルコキシ基、アリール基、フルオ
ロアルキル基又はフルオロアルコキシ基を表し、R1
びR2のうち少なくとも一方は、フルオロアルキル基又
はフルオロアルコキシ基であり、2個のR3は、それぞ
れ独立して水素原子又はアルキル基を表し、Ar1及び
Ar2は、それぞれ独立してアリール基を表し、m及び
nは、それぞれ独立して0〜5の整数を表す)
Embedded image (R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, an aryl group, a fluoroalkyl group or a fluoroalkoxy group, and at least one of R 1 and R 2 is a fluoroalkyl A group or a fluoroalkoxy group, two R 3 each independently represent a hydrogen atom or an alkyl group, Ar 1 and Ar 2 each independently represent an aryl group, and m and n each independently represent Represents an integer of 0 to 5)

【0017】以下、本発明について詳述する。本発明で
用いられるチタニルフタロシアニンは、例えば、次のよ
うにして製造することができる。フタロニトリル18.
4g(0.144モル)をα−クロロナフタレン120
ml中に加え、次に窒素雰囲気下で四塩化チタン4ml
(0.0364モル)を滴下する。滴下後、昇温し撹拌
しながら200〜220℃で3時間反応させた後、10
0〜130℃で熱時濾過して、α−クロロナフタレンつ
いでメタノールで洗浄する。140mlのイオン交換水で
加水分解(90℃、1時間)を行い、溶液が中性になる
までこの操作を繰り返し、メタノールで洗浄する。次
に、100℃に加熱したN−メチル−2−ピロリドンで
洗浄し、さらに、メタノールで洗浄する。このようにし
て得られた化合物を60℃で真空加熱乾燥してチタニル
フタロシアニンが得られる(収率46%)。
Hereinafter, the present invention will be described in detail. The titanyl phthalocyanine used in the present invention can be produced, for example, as follows. Phthalonitrile
4 g (0.144 mol) of α-chloronaphthalene 120
of titanium tetrachloride in a nitrogen atmosphere.
(0.0364 mol) is added dropwise. After dropping, the mixture was reacted at 200 to 220 ° C. for 3 hours while heating and stirring.
Filter hot at 0-130 ° C and wash with α-chloronaphthalene then methanol. Hydrolysis (90 ° C., 1 hour) is performed with 140 ml of ion-exchanged water, and this operation is repeated until the solution becomes neutral, and washed with methanol. Next, the substrate is washed with N-methyl-2-pyrrolidone heated to 100 ° C., and further washed with methanol. The compound thus obtained is dried by heating under vacuum at 60 ° C. to obtain titanyl phthalocyanine (yield 46%).

【0018】本発明で用いられる中心金属が3価のハロ
ゲン化金属フタロシアニン化合物において中心金属とし
ての3価の金属は、In、Ga、Al等が挙げられハロ
ゲンとしては、Cl、Br等が挙げられ、またフタロシ
アニン環にハロゲン等の置換基を有していてもよい。該
化合物は公知の化合物であるが、これらのうち、例え
ば、モノハロゲン金属フタロシアニンおよびモノハロゲ
ン金属ハロゲンフタロシアニンの合成法は、インオーガ
ニック ケミストリー〔Inorganic Chemistry〕19、313
1(1980)および特開昭59−44054号公報に記載さ
れている。
In the phthalocyanine metal halide compound having a trivalent central metal used in the present invention, examples of the trivalent metal as the central metal include In, Ga, and Al, and examples of the halogen include Cl and Br. Further, the phthalocyanine ring may have a substituent such as halogen. The compound is a known compound. Of these, for example, monohalogen metal phthalocyanine and a method for synthesizing monohalogen metal phthalocyanine are described in Inorganic Chemistry 19 , 313.
1 (1980) and JP-A-59-44054.

【0019】モノハロゲン金属フタロシアニンは、例え
ば、次のようにして製造することができる。フタロニト
リル78.2ミリモルおよび三ハロゲン化金属15.8
ミリモルを二回蒸留し脱酸素したキノリン100ml中に
入れ、0.5〜3時間加熱還流した後放冷、続いて室温
まで冷した後ろ過し、結晶をメタノール、トルエンつい
でアセトンで洗浄した後、60℃で乾燥する。
The monohalogen metal phthalocyanine can be produced, for example, as follows. 78.2 mmol of phthalonitrile and 15.8 metal trihalides
Millimol was placed in 100 ml of quinoline which had been distilled twice and deoxygenated, heated to reflux for 0.5 to 3 hours, allowed to cool, then cooled to room temperature, and filtered, and the crystals were washed with methanol, toluene, and then acetone. Dry at 60 ° C.

【0020】また、モノハロゲン金属ハロゲンフタロア
ニンは、次のようにして製造することができる。フタロ
ニトリル156ミリモルおよび三ハロゲン化金属37.
5ミリモルを混合して300℃で、溶融してから0.5
〜3時間加熱してモノハロゲン金属ハロゲンフタロシア
ニンの粗製物を得、これをソックスレー抽出器を用いて
α−クロロナフタレンで洗浄する。
Further, the monohalogen metal halogenphthaloanine can be produced as follows. 156 mmol of phthalonitrile and metal trihalide
5 mmol was mixed and melted at 300 ° C.
Heat for ~ 3 hours to obtain crude monohalogen metal halogen phthalocyanine, which is washed with α-chloronaphthalene using a Soxhlet extractor.

【0021】本発明において、チタニルフタロシアニン
および中心金属が3価のハロゲン化金属フタロシアニン
を含むフタロシアニン混合物の組成比率は、帯電性、暗
減衰、感度等の電子写真特性の点からチタニルフタロシ
アニンの含有率が、20〜95重量%の範囲であること
が好ましく、50〜90重量%の範囲であることがより
好ましく、65〜90重量%の範囲が特に好ましく、7
5〜90重量%の範囲であることが最も好ましい。
In the present invention, the composition ratio of the phthalocyanine mixture containing titanyl phthalocyanine and a metal halide phthalocyanine whose central metal is a trivalent metal is such that the content of the titanyl phthalocyanine in terms of electrophotographic properties such as chargeability, dark decay, and sensitivity is reduced. The range is preferably from 20 to 95% by weight, more preferably from 50 to 90% by weight, particularly preferably from 65 to 90% by weight.
Most preferably, it is in the range of 5 to 90% by weight.

【0022】フタロシアニン混合物はアシッドペースト
法によりアモルファス状態とすることができる。例え
ば、フタロシアニン混合物1gを濃硫酸50mlに溶解
し、これを氷水で冷却した純水1リツトルに滴下し再沈
させる。ろ過後沈殿を純水でpH=2〜5になるまで洗浄
し、ついでメタノールで洗浄した後60℃で乾燥しフタ
ロシアニン組成物の粉末を得る。このようにして得られ
るフタロシアニン組成物のX線回折スペクトルは、明確
な鋭いピークがなくなり幅の広いアモルファス状態を表
わすスペクトルとなる。アモルファス状態とする方法と
しては、上記濃硫酸を用いるアシッドペースト法以外に
乾式のミリングによる方法もある。
The phthalocyanine mixture can be made amorphous by an acid paste method. For example, 1 g of the phthalocyanine mixture is dissolved in 50 ml of concentrated sulfuric acid, and the solution is dropped into 1 liter of pure water cooled with ice water to cause reprecipitation. After filtration, the precipitate is washed with pure water until the pH becomes 2 to 5, then washed with methanol, and dried at 60 ° C. to obtain a powder of the phthalocyanine composition. The X-ray diffraction spectrum of the phthalocyanine composition thus obtained is a spectrum showing a wide amorphous state without clear sharp peaks. As a method for forming an amorphous state, there is a method by dry milling in addition to the acid paste method using concentrated sulfuric acid.

【0023】このようにしてフタロシアニン混合物をア
モルファス状態としたものを有機溶剤で処理することに
よって結晶変換し、本発明の特定の回折ピークを有する
フタロシアニン組成物を得ることができる。例えば、ア
モルファス状態としたフタロシアニン混合物の粉末1g
を有機溶剤としてのN−メチル−2−ピロリドン10ml
に入れ加熱撹拌する(上記粉末/溶剤(重量比)は、1
/1〜1/100である)。加熱温度は50℃〜200
℃、好ましくは80℃〜150℃であり、加熱時間は1
時間〜12時間、好ましくは2時間〜6時間である。加
熱撹拌終了後ろ過しメタノールで洗浄し60℃で真空乾
燥し本発明のフタロシアニン組成物の結晶700mgを得
ることができる。
The phthalocyanine mixture thus obtained in an amorphous state is subjected to crystal transformation by treating with an organic solvent, whereby the phthalocyanine composition having a specific diffraction peak of the present invention can be obtained. For example, 1 g of a phthalocyanine mixture powder in an amorphous state
With 10 ml of N-methyl-2-pyrrolidone as an organic solvent
And heat and stir (the above powder / solvent (weight ratio) is 1
/ 1 to 1/100). Heating temperature is 50 ° C ~ 200
℃, preferably 80 ℃ ~ 150 ℃, the heating time is 1
Hours to 12 hours, preferably 2 hours to 6 hours. After completion of the heating and stirring, the mixture is filtered, washed with methanol, and dried in vacuum at 60 ° C. to obtain 700 mg of crystals of the phthalocyanine composition of the present invention.

【0024】本処理に用いられる有機溶剤としては、例
えば、メタノール、エタノール、イソプロパノール、ブ
タノール等のアルコール類、n−ヘキサン、オクタン、
シクロヘキサン等の脂環族炭化水素、ベンゼン、トルエ
ン、キシレン等の芳香族炭化水素、テトラヒドロフラ
ン、ジオキサン、ジエチルエーテル、エチレングリコー
ルジメチルエーテル、エチレングリコールジエチルエー
テル等のエーテル類、アセテートセロソルブ、アセト
ン、メチルエチルケトン、シクロヘキサノン、イソホロ
ン等のケトン類、酢酸メチル、酢酸エチル等のエステル
類、ジメチルスルホキシド、ジメチルホルムアミド、フ
ェノール、クレゾール、アニソール、ニトロベンゼン、
アセトフェノン、ベンジルアルコール、ピリジン、N−
メチル−2−ピロリドン、1,3−ジメチル−2−イミ
ダゾリジノン、キノリン、ピコリン等の非塩素系有機溶
剤、ジクロロメタン、ジクロロエタン、トリクロロエタ
ン、テトラクロロエタン、四塩化炭素、クロロホルム、
クロロメチルオキシラン、クロロベンゼン、ジクロロベ
ンゼンなどの塩素系有機溶剤などが挙げられる。
Examples of the organic solvent used in this treatment include alcohols such as methanol, ethanol, isopropanol and butanol, n-hexane, octane, and the like.
Alicyclic hydrocarbons such as cyclohexane, benzene, toluene, aromatic hydrocarbons such as xylene, tetrahydrofuran, dioxane, diethyl ether, ethylene glycol dimethyl ether, ethers such as ethylene glycol diethyl ether, acetate cellosolve, acetone, methyl ethyl ketone, cyclohexanone, Ketones such as isophorone, esters such as methyl acetate and ethyl acetate, dimethyl sulfoxide, dimethylformamide, phenol, cresol, anisole, nitrobenzene,
Acetophenone, benzyl alcohol, pyridine, N-
Non-chlorinated organic solvents such as methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, quinoline, picoline, dichloromethane, dichloroethane, trichloroethane, tetrachloroethane, carbon tetrachloride, chloroform,
Chlorine organic solvents such as chloromethyloxirane, chlorobenzene and dichlorobenzene are exemplified.

【0025】これらのうちケトン類及び非塩素系有機溶
剤が好ましく、そのうちでもN−メチル−2−ピロリド
ン、1,3−ジメチル−2−イミダゾリジノン、ピリジ
ン、メチルエチルケトン及びジエチルケトンが好まし
い。
Of these, ketones and non-chlorine organic solvents are preferred, and among them, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, pyridine, methyl ethyl ketone and diethyl ketone are preferred.

【0026】一般に、フタロシアニン混合物とは、原料
に用いたフタロシアニンの単なる物理的混合物であり、
フタロシアニン混合物のX線回折パタ−ンは、原料に用
いたそれぞれのフタロシアニン単体のピ−クパタ−ンの
重ね合わせからなる。一方、本発明のフタロシアニン組
成物とは、原料に用いたフタロシアニンが分子レべルで
混合したもので、X線回折パタ−ンは、原料に用いたそ
れぞれのフタロシアニン単体のピ−クパタ−ンとは異な
るパタ−ンを示す。
In general, a phthalocyanine mixture is a mere physical mixture of phthalocyanine used as a raw material,
The X-ray diffraction pattern of the phthalocyanine mixture consists of a superposition of the peak patterns of the individual phthalocyanines used as raw materials. On the other hand, the phthalocyanine composition of the present invention is a mixture of phthalocyanine used as a raw material at a molecular level, and the X-ray diffraction pattern is the same as the peak pattern of each phthalocyanine used alone as a raw material. Indicates a different pattern.

【0027】本発明に係る電子写真感光体は、導電性支
持体の上に光導電層を設けたものである。本発明におい
て、光導電層は、有機光導電性物質を含む層であり、有
機光導電性物質の被膜、有機光導電性物質と結合剤を含
む被膜、電荷発生層及び電荷輸送層からなる複合型被膜
等がある。
The electrophotographic photoreceptor according to the present invention has a photoconductive layer provided on a conductive support. In the present invention, the photoconductive layer is a layer containing an organic photoconductive substance, and is composed of a coating of an organic photoconductive substance, a coating containing an organic photoconductive substance and a binder, a charge generation layer and a charge transport layer. There is a mold coating and the like.

【0028】上記有機光導電性物質としては、上記フタ
ロシアニン組成物が必須成分として用いられ、さらに公
知のものを併用することができる。また、有機光導電性
物質としては上記フタロシアニン組成物に電荷を発生す
る有機顔料及び/又は電荷輸送物質を併用することが好
ましい。なお、上記電荷発生層には該フタロシアニン組
成物及び/又は電荷を発生する有機顔料が含まれ、電荷
輸送層には電荷輸送物質が含まれる。
As the organic photoconductive substance, the above-mentioned phthalocyanine composition is used as an essential component, and further, known substances can be used in combination. In addition, as the organic photoconductive substance, it is preferable to use an organic pigment and / or a charge transporting substance that generates charges in the phthalocyanine composition. The charge generation layer contains the phthalocyanine composition and / or an organic pigment that generates charges, and the charge transport layer contains a charge transport material.

【0029】上記電荷を発生する有機顔料としては、ア
ゾキシベンゼン系、ジスアゾ系、トリスアゾ系、ベンズ
イミダゾール系、多環キノン系、インジゴイド系、キナ
クリドン系、ペリレン系、メチン系、α型、β型、γ
型、δ型、ε型、χ型等の各種結晶構造を有する無金属
タイプ又は金属タイプのフタロシアニン系などの電荷を
発生することが知られている顔料が使用できる。これら
の顔料は、例えば、特開昭47−37543号公報、特
開昭47−37544号公報、特開昭47−18543
号公報、特開昭47−18544号公報、特開昭48−
43942号公報、特開昭48−70538号公報、特
開昭49−1231号公報、特開昭49−105536
号公報、特開昭50−75214号公報、特開昭53−
44028号公報、特開昭54−17732号公報等に
開示されている。また、特開昭58−182640号公
報及びヨーロッパ特許公開第92,255号公報などに
開示されているτ、τ′、η及びη′型無金属フタロシ
アニンも使用可能である。このようなもののほか、光照
射により電荷担体を発生する有機願料はいずれも使用可
能である。
Examples of the organic pigments that generate electric charges include azoxybenzene, disazo, trisazo, benzimidazole, polycyclic quinone, indigoid, quinacridone, perylene, methine, α-type and β-type. , Γ
Pigments known to generate electric charges such as non-metal type or metal type phthalocyanine having various crystal structures such as type, δ type, ε type and χ type can be used. These pigments are described in, for example, JP-A-47-37543, JP-A-47-37544, and JP-A-47-18543.
JP-A-47-18544, JP-A-48-18544
43942, JP-A-48-70538, JP-A-49-1231, JP-A-49-105536
JP, JP-A-50-75214, JP-A-53-75214
No. 44028, JP-A-54-17732, and the like. Further, τ, τ ′, η and η ′ type metal-free phthalocyanines disclosed in JP-A-58-182640 and European Patent Publication No. 92,255 can be used. In addition to these, any organic application that generates charge carriers by light irradiation can be used.

【0030】電荷輸送物質としては、上記一般式(I)
で表される含フッ素N,N,N′,N′−テトラアリー
ルベンジジン誘導体が必須成分として使用される。これ
以外の電荷輸送物質を供用することができるが、そのよ
うなものとしては、高分子化合物では、ポリ−N−ビニ
ルカルバゾール、ハロゲン化ポリ−N−ビニルカルバゾ
ール、ポリビニルピレン、ポリビニルインドロキノキサ
リン、ポリビニルベンゾチオフエン、ポリビニルアント
ラセン、ポリビニルアクリジン、ポリビニルピラゾリン
等が挙げられ、低分子化合物のものではフルオレノン、
フルオレン、2,7−ジニトロ−9−フルオレノン、4
H−インデノ(1,2,6)チオフエン−4−オン、
3,7−ジニトロ−ジベンゾチオフエン−5−オキサイ
ド、1−ブロムピレン、2−フェニルピレン、カルバゾ
ール、N−エチルカルバゾール、3−フェニルカルバゾ
ール、3−(N−メチル−N−フェニルヒドラゾン)メ
チル−9−エチルカルバゾール、2−フェニルインドー
ル、2−フェニルナフタレン、オキサジアゾール、2,
5−ビス(4−ジエチルアミノフェニル)−1,3,4
−オキサジアゾール、1−フェニル−3−(4−ジエチ
ルアミノスチリル)−5−(4−ジエチルアミノスチリ
ル)−5−(4−ジエチルアミノフェニル)ピラゾリ
ン、1−フェニル−3−(p−ジエチルアミノフェニ
ル)ピラゾリン、p−(ジメチルアミノ)−スチルベ
ン、2−(4−ジプロピルアミノフェニル)−4−(4
−ジメチルアミノフェニル)−5−(2−クロロフェニ
ル)−1,3−オキサゾール、2−(4−ジメチルアミ
ノフェニル)−4−(4−ジメチルアミノフェニル)−
5−(2−フルオロフェニル)−1,3−オキサゾー
ル、2−(4−ジエチルアミノフェニル)−4−(4−
ジメチルアミノフェニル)−5−(2−フルオロフェニ
ル)−1,3−オキサゾール、2−(4−ジプロピルア
ミノフェニル)−4−(4−ジメチルアミノフェニル)
−5−(2−フルオロフェニル)−1,3−オキサゾー
ル、イミダゾール、クリセン、テトラフェン、アクリデ
ン、トリフェニルアミン、ベンジジン、これらの誘導体
等がある。一般式(I)で表わされる含フッ素N,N,
N′,N′−テトラアリールベンジジン誘導体は例え
ば、次のように製造することができる。 一般式
The charge transporting material is represented by the above general formula (I)
The fluorine-containing N, N, N ', N'-tetraarylbenzidine derivative represented by the following formula is used as an essential component. Other charge transporting substances can be used, and examples of such a polymer include poly-N-vinylcarbazole, halogenated poly-N-vinylcarbazole, polyvinylpyrene, polyvinylindoloquinoxaline, and the like. Polyvinyl benzothiophene, polyvinyl anthracene, polyvinyl acridine, polyvinyl pyrazoline, and the like.
Fluorene, 2,7-dinitro-9-fluorenone, 4
H-indeno (1,2,6) thiophen-4-one;
3,7-dinitro-dibenzothiophene-5-oxide, 1-bromopyrene, 2-phenylpyrene, carbazole, N-ethylcarbazole, 3-phenylcarbazole, 3- (N-methyl-N-phenylhydrazone) methyl-9 -Ethylcarbazole, 2-phenylindole, 2-phenylnaphthalene, oxadiazole, 2,
5-bis (4-diethylaminophenyl) -1,3,4
-Oxadiazole, 1-phenyl-3- (4-diethylaminostyryl) -5- (4-diethylaminostyryl) -5- (4-diethylaminophenyl) pyrazoline, 1-phenyl-3- (p-diethylaminophenyl) pyrazoline , P- (dimethylamino) -stilbene, 2- (4-dipropylaminophenyl) -4- (4
-Dimethylaminophenyl) -5- (2-chlorophenyl) -1,3-oxazole, 2- (4-dimethylaminophenyl) -4- (4-dimethylaminophenyl)-
5- (2-fluorophenyl) -1,3-oxazole, 2- (4-diethylaminophenyl) -4- (4-
Dimethylaminophenyl) -5- (2-fluorophenyl) -1,3-oxazole, 2- (4-dipropylaminophenyl) -4- (4-dimethylaminophenyl)
-5- (2-fluorophenyl) -1,3-oxazole, imidazole, chrysene, tetraphen, acridene, triphenylamine, benzidine, derivatives thereof and the like. Fluorine-containing N, N, represented by the general formula (I)
The N ', N'-tetraarylbenzidine derivative can be produced, for example, as follows. General formula

【化3】 〔ただし、式中、R3は上記一般式(I)におけると同
意義であり、Xはヨウ素又は臭素を表す〕で表わされる
ハロゲン化ビフェニル誘導体と一般式
Embedded image [Wherein, R 3 has the same meaning as in the above general formula (I), and X represents iodine or bromine] and a halogenated biphenyl derivative represented by the following general formula:

【化4】 〔ただし、式中、R1、R2、Ar1及びAr2は上記一般
式(I)におけると同意義である〕で表わされるジアリ
ールアミン化合物とを銅系触媒(銅粉末、酸化銅、ハロ
ゲン化銅等の銅化合物)及び塩基性化合物(炭酸カリウ
ム、炭酸ナトリウム、水酸化カリウム、水酸化ナトリウ
ム等のアルカリ金属の炭酸塩又は水酸化物)の存在下
で、無溶媒又は有機溶媒(ニトロベンゼン、ジクロロベ
ンゼン、キノリン、N,N−ジメチルホルムアミド、N
−メチル−2−ピロリドン、スルホラン等)の共存下
で、180〜260℃で5〜30時間加熱撹拌した後、
反応混合物を塩化メチレンやトルエンなどの有機溶剤に
溶解し、不溶物を分離、溶剤を留去した後、残留物をア
ルミナカラム等で精製し、ヘキサン、シクロヘキサン等
で再結晶することにより一般式(I)で表わされる含フ
ッ素N,N,N′,N′−テトラアリールベンジジンを
製造することができる。
Embedded image [Wherein, R 1 , R 2 , Ar 1 and Ar 2 have the same meaning as in the above general formula (I)] and a copper-based catalyst (copper powder, copper oxide, halogen) In the presence of a copper compound such as copper oxide) and a basic compound (a carbonate or hydroxide of an alkali metal such as potassium carbonate, sodium carbonate, potassium hydroxide or sodium hydroxide), a solvent-free or organic solvent (nitrobenzene, Dichlorobenzene, quinoline, N, N-dimethylformamide, N
-Methyl-2-pyrrolidone, sulfolane and the like), and after heating and stirring at 180 to 260 ° C for 5 to 30 hours,
The reaction mixture is dissolved in an organic solvent such as methylene chloride or toluene, insolubles are separated, and the solvent is distilled off. The residue is purified by an alumina column or the like, and recrystallized by hexane, cyclohexane, or the like to obtain a compound represented by the general formula ( The fluorine-containing N, N, N ', N'-tetraarylbenzidine represented by I) can be produced.

【0031】また、ハロゲン化ビフェニル誘導体、ジア
リールアミン化合物、銅系触媒及び塩基性化合物の使用
量は、通常、化学量論量を使用すればよいが、好ましく
は、ハロゲン化ビフェニル誘導体1モルに対して、ジア
リールアミン化合物2〜3モル銅系触媒0.5〜2モ
ル、塩基性化合物1〜2モルの範囲で使用すればよい。
The amount of the halogenated biphenyl derivative, the diarylamine compound, the copper-based catalyst and the basic compound may be generally used in a stoichiometric amount, but is preferably based on 1 mol of the halogenated biphenyl derivative. The diarylamine compound may be used in the range of 2 to 3 moles of the copper catalyst in the range of 0.5 to 2 moles and the basic compound in the range of 1 to 2 moles.

【0032】一般式(I)において、アルキル基として
は、メチル基、エチル基、n−プロピル基、iso−プロ
ピル基、n−ブチル基、tert−ブチル基等が挙げられ
る。アルコキシ基としては、メトキシ基、エトキシ基、
n−プロポキシ基、iso−プロポキシ基等が挙げられ
る。アリール基としては、フェニル基、トリル基、ビフ
ェニル基、ターフェニル基、ナフチル基等が挙げられ
る。フルオロアルキル基としては、トリフルオロメチル
基、トリフルオロエチル基、ヘプタフルオロプロピル基
等が挙げられる。フルオロオルコキシ基としては、トリ
フルオロメトキシ基、2,3−ジフルオロエトキシ基、
2,2,2−トリフルオロエトキシ基、1H、1H−ペ
ンタフルオロプロポキシ基、ヘキサフルオロ−iso−プ
ロポキシ基、1H、1H−ペンタフルオロブトキシ基、
2,2,3,4,4,4−ヘキサフルオロブトキシ基、
4,4,4−トリフルオロブトキシ基等のフルオロアル
コキシ基が挙げられる。
In the general formula (I), examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group and a tert-butyl group. As the alkoxy group, a methoxy group, an ethoxy group,
Examples thereof include an n-propoxy group and an iso-propoxy group. Examples of the aryl group include a phenyl group, a tolyl group, a biphenyl group, a terphenyl group, a naphthyl group and the like. Examples of the fluoroalkyl group include a trifluoromethyl group, a trifluoroethyl group, and a heptafluoropropyl group. Examples of the fluoroalkoxy group include a trifluoromethoxy group, a 2,3-difluoroethoxy group,
2,2,2-trifluoroethoxy group, 1H, 1H-pentafluoropropoxy group, hexafluoro-iso-propoxy group, 1H, 1H-pentafluorobutoxy group,
2,2,3,4,4,4-hexafluorobutoxy group,
And a fluoroalkoxy group such as a 4,4,4-trifluorobutoxy group.

【0033】本発明における一般式(I)で表される含
フッ素N,N,N’,N’−テトラアリールベンジジン
誘導体としては、例えば、下記のNo.1〜No.6の化合物
等が挙げられる。
The fluorine-containing N, N, N ', N'-tetraarylbenzidine derivatives represented by the general formula (I) in the present invention include, for example, the following compounds No. 1 to No. 6 and the like. Can be

【化5】 Embedded image

【化6】 Embedded image

【0034】上記フタロシアニン組成物及び必要に応じ
て用いる電荷を発生する有機顔料(両方で前者とする)
と電荷輸送物質(後者とする)とを混合して使用する場
合(単層型の光導電層を形成する場合)は、後者/前者
が重量比で10/1〜2/1の割合で配合するのが好ま
しい。このとき、結合剤をこれらの化合物全量(前者+
後者)に対して0〜500重量%、特に30〜500重
量%の範囲で使用するのが好ましい。これらの結合剤を
使用する場合、さらに、可塑剤、流動性付与剤、ピンホ
ール抑制剤等の添加剤を必要に応じて添加することがで
きる。
The above-mentioned phthalocyanine composition and optionally used organic pigments which generate electric charges (both are the former)
And a charge transport material (hereinafter, the latter) is used as a mixture (in the case of forming a single-layer photoconductive layer), the latter / the former are mixed at a weight ratio of 10/1 to 2/1. Is preferred. At this time, the binder is added to the total amount of these compounds (the former +
It is preferable to use 0 to 500% by weight, especially 30 to 500% by weight, based on the latter). When these binders are used, additives such as a plasticizer, a fluidity-imparting agent, and a pinhole inhibitor can be further added as necessary.

【0035】電荷発生層及び電荷輸送層からなる複合型
の光導電層を形成する場合、電荷発生層中には、上記フ
タロシアニン組成物及び必要に応じて電荷を発生する有
機顔料が含有され、結合剤をフタロシアニン組成物と該
有機顔料の総量に対して500重量%以下の量で含有さ
せてもよく、また、上記した添加剤を該フタロシアニン
組成物と有機顔料の総量に対して5重量%以下で添加し
てもよい。また、電荷輸送層には、上記した電荷輸送物
質が含有され、さらに、結合剤を該電荷輸送物質に対し
て500重量%以下で含有させてもよい。電荷輸送物質
が低分子量化合物の場合は、結合剤を該化合物に対して
50重量%以上含有させることが好ましい。
When a composite photoconductive layer comprising a charge generation layer and a charge transport layer is formed, the charge generation layer contains the phthalocyanine composition and, if necessary, an organic pigment which generates a charge. The agent may be contained in an amount of not more than 500% by weight based on the total amount of the phthalocyanine composition and the organic pigment, and the above-mentioned additive may be contained in an amount of not more than 5% by weight based on the total amount of the phthalocyanine composition and the organic pigment. May be added. The charge transport layer contains the above-described charge transport substance, and may further contain a binder at 500% by weight or less based on the charge transport substance. When the charge transporting substance is a low molecular weight compound, it is preferable to contain the binder in an amount of 50% by weight or more based on the compound.

【0036】上記した場合すべてに使用し得る結合剤と
しては、シリコーン樹脂、ポリアミド樹脂、ポリウレタ
ン樹脂、ポリエステル樹脂、エポキシ樹脂、ポリケトン
樹脂、ポリカーボネート樹脂、ポリアクリル樹脂、ポリ
スチレン樹脂、スチレン−ブタジエン共重合体、ポリメ
タクリル酸メチル樹脂、ポリ塩化ビニル、エチレン−酢
酸ビニル共重合体、塩化ビニル−酢酸ビニル共重合体、
ポリアクリルアミド樹脂、ポリビニルカルバゾール、ポ
リビニルピラゾリン、ポリビニルピレン等が挙げられ
る。また、熱及び/又は光によって架橋される熱硬化型
樹脂及び光硬化型樹脂も使用できる。
The binders usable in all of the above cases include silicone resins, polyamide resins, polyurethane resins, polyester resins, epoxy resins, polyketone resins, polycarbonate resins, polyacryl resins, polystyrene resins, and styrene-butadiene copolymers. , Polymethyl methacrylate resin, polyvinyl chloride, ethylene-vinyl acetate copolymer, vinyl chloride-vinyl acetate copolymer,
Polyacrylamide resin, polyvinyl carbazole, polyvinyl pyrazoline, polyvinyl pyrene and the like can be mentioned. Further, a thermosetting resin and a photocurable resin which are crosslinked by heat and / or light can also be used.

【0037】いずれにしても絶縁性で通常の状態で被膜
を形成しうる樹脂、並びに熱及び/又は光によつて硬化
し、被膜を形成する樹脂であれば特に制限はない。上記
添加剤としての可塑剤としては、ハロゲン化パラフィ
ン、ジメチルナフタリン、ジブチルフタレート等が挙げ
られ、流動性付与剤としては、モダフロー(モンサント
ケミカル社製)、アクロナール4F(バスフ社製)等が
挙げられ、ピンホール抑制剤としては、ベンゾイン、ジ
メチルフタレート等が挙げられる。これらは適宜選択し
て使用され、その量も適宜決定されればよい。
In any case, there is no particular limitation as long as it is an insulating resin capable of forming a film in a normal state, and a resin which is cured by heat and / or light to form a film. Examples of the plasticizer as the additive include halogenated paraffin, dimethylnaphthalene, dibutyl phthalate, and the like. Examples of the fluidity-imparting agent include Modaflow (manufactured by Monsanto Chemical), Acronal 4F (manufactured by Basff), and the like. Examples of the pinhole inhibitor include benzoin and dimethyl phthalate. These may be appropriately selected and used, and the amounts thereof may be appropriately determined.

【0038】本発明において導電性基材とは、導電処理
した紙又はプラスチツクフィルム、アルミニウムのよう
な金属箔を積層したプラスチツクフィルム、金属板等の
導電体である。
In the present invention, the conductive substrate is a conductive material such as paper or plastic film subjected to conductive treatment, a plastic film laminated with a metal foil such as aluminum, or a metal plate.

【0039】本発明の電子写真感光体は、導電性基材の
上に光導電層を形成したものである。光導電層の厚さは
5〜50μmが好ましい。光導電層として電荷発生層及
び電荷輸送層の複合型を使用する場合、電荷発生層は好
ましくは0.001〜10μm、特に好ましくは0.2
〜5μmの厚さにする。0.001μm未満では、電荷発
生層を均一に形成するのが困難になり、10μmを越え
ると、電子写真特性が低下する傾向にある。電荷輸送層
の厚さは好ましくは5〜50μm、特に好ましくは8〜
25μmである。5μm未満の厚さでは、初期電位が低く
なり、50μmを越えると、感度が低下する傾向があ
る。
The electrophotographic photoreceptor of the present invention has a photoconductive layer formed on a conductive substrate. The thickness of the photoconductive layer is preferably 5 to 50 μm. When a composite type of a charge generation layer and a charge transport layer is used as the photoconductive layer, the charge generation layer is preferably 0.001 to 10 μm, particularly preferably 0.2 to 10 μm.
厚 5 μm thick. When the thickness is less than 0.001 μm, it is difficult to form the charge generation layer uniformly, and when the thickness exceeds 10 μm, the electrophotographic characteristics tend to deteriorate. The thickness of the charge transport layer is preferably 5 to 50 μm, particularly preferably 8 to 50 μm.
25 μm. If the thickness is less than 5 μm, the initial potential becomes low, and if it exceeds 50 μm, the sensitivity tends to decrease.

【0040】導電性基材上に、光導電性基材を形成する
には、有機光導電性物質を導電性基材に蒸着する方法、
有機光導電性物質及び必要に応じその他の成分をトルエ
ン、キシレン等の芳香族系溶剤、塩化メチレン、四塩化
炭素等のハロゲン化炭化水素系溶剤、メタノール、エタ
ノール、プロパノール等のアルコール系溶剤に均一に溶
解又は分散させて導電性基材上に塗布し、乾燥する方法
などがある。塗布法としては、スピンコート法、浸漬法
等を採用できる。電荷発生層及び電荷輸送層を形成する
場合も同様に行うことができるが、この場合、電荷発生
層と電荷輸送層は、どちらを上層としてもよく、電荷発
生層を二層の電荷輸送層ではさむようにしてもよい。
To form the photoconductive substrate on the conductive substrate, a method of depositing an organic photoconductive substance on the conductive substrate,
Uniform organic photoconductive substance and other components as necessary in aromatic solvents such as toluene and xylene, halogenated hydrocarbon solvents such as methylene chloride and carbon tetrachloride, and alcohol solvents such as methanol, ethanol and propanol. Or a method of dissolving or dispersing it on a conductive substrate, followed by drying. As a coating method, a spin coating method, a dipping method, or the like can be adopted. In the case where the charge generation layer and the charge transport layer are formed, the same operation can be performed.In this case, the charge generation layer and the charge transport layer may be either upper layers. It may be soaked.

【0041】本発明のフタロシアニン組成物をスピンコ
ート法により塗布する場合、フタロシアニン組成物をク
ロロホルム等又はトルエン等のハロゲン化溶剤又は非極
性溶剤に溶かして得た塗布液を用いて回転数3000〜
7000rpmでスピンコーティングするのが好ましく、
また、浸漬法によって塗布する場合には、フタロシアニ
ン組成物をメタノール、ジメチルホルムアミド、クロロ
ホルム、塩化メチレン、1,2−ジクロロエタン等のハ
ロゲン溶剤にボールミル、超音波等を用いて分散させた
塗液に導電性基板を浸漬するのが好ましい。
When the phthalocyanine composition of the present invention is applied by a spin coating method, the number of rotation is 3,000 to 3,000 using a coating solution obtained by dissolving the phthalocyanine composition in a halogenated solvent such as chloroform or toluene or a non-polar solvent.
Spin coating at 7000 rpm is preferred,
When the phthalocyanine composition is applied by a dipping method, the phthalocyanine composition is applied to a coating liquid obtained by dispersing the phthalocyanine composition in a halogen solvent such as methanol, dimethylformamide, chloroform, methylene chloride, 1,2-dichloroethane using a ball mill, ultrasonic waves or the like. It is preferable to immerse the conductive substrate.

【0042】本発明に係る電子写真感光体は、さらに導
電性支持体と光導電層間に下引き層を有してもよい。該
下引き層には、熱可塑性樹脂を使用することが好まし
い。該熱可塑性樹脂としては、例えば、ポリアミド樹
脂、ポリウレタン樹脂、ポリビニルブチラール樹脂、メ
ラミン樹脂、カゼイン、フェノール樹脂、エポキシ樹
脂、エチレン−酢酸ビニル共重合体樹脂、エチレン−ア
クリル酸共重合体樹脂などがあげられるが、ポリアミド
樹脂が好ましい。ポリアミド樹脂としては、具体的に
は、トレジンMF30、トレジンF30、トレジンEF
30T(以下帝国化学産業(株)製ポリアミド樹脂の商
品名)、M−1276(日本リルサン(株)製ポリアミ
ド樹脂の商品名)等がある。
The electrophotographic photosensitive member according to the present invention may further have an undercoat layer between the conductive support and the photoconductive layer. It is preferable to use a thermoplastic resin for the undercoat layer. Examples of the thermoplastic resin include polyamide resin, polyurethane resin, polyvinyl butyral resin, melamine resin, casein, phenol resin, epoxy resin, ethylene-vinyl acetate copolymer resin, ethylene-acrylic acid copolymer resin and the like. However, a polyamide resin is preferred. As the polyamide resin, specifically, Resin MF30, Resin F30, Resin EF
30T (trade name of polyamide resin manufactured by Teikoku Chemical Industry Co., Ltd.), M-1276 (trade name of polyamide resin manufactured by Nippon Rilsan Co., Ltd.) and the like.

【0043】下引き層に含有されるこれらの樹脂は、単
独で又は2種類以上混合して用いてもよい。本発明にお
いて、ポリアミド樹脂を使用して下引き層を設ける場合
は、熱硬化性樹脂及び硬化剤をポリアミド樹脂と併用す
ることが好ましい。熱硬化性樹脂及び硬化剤の併用によ
って下引き層の耐溶剤性及び膜の強度は向上し、下引き
層の上に光導電層を設ける際に光導電層形成用溶液中の
溶媒等によるダメージを受けにくくなる。
These resins contained in the undercoat layer may be used alone or in combination of two or more. In the present invention, when the undercoat layer is provided using a polyamide resin, it is preferable to use a thermosetting resin and a curing agent together with the polyamide resin. The combined use of a thermosetting resin and a curing agent improves the solvent resistance of the undercoat layer and the strength of the film. Hard to receive.

【0044】熱硬化性樹脂としては、例えば、メラミン
樹脂、ベンゾグアナミン樹脂、ポリウレタン樹脂、エポ
キシ樹脂、シリコン樹脂、ポリエステル樹脂、アクリル
樹脂、尿素樹脂等の熱硬化性樹脂が使用でき通常の状態
で被膜を形成できる熱硬化性樹脂であれば特に制限はな
い。これらは熱可塑性樹脂に対して300重量%以下で
使用するのが好ましい。
As the thermosetting resin, for example, a thermosetting resin such as a melamine resin, a benzoguanamine resin, a polyurethane resin, an epoxy resin, a silicone resin, a polyester resin, an acrylic resin, and a urea resin can be used. There is no particular limitation as long as it is a thermosetting resin that can be formed. These are preferably used in an amount of 300% by weight or less based on the thermoplastic resin.

【0045】硬化剤としては、例えば、トリメリット
酸、ピロメリツト酸などのカルボン酸や、カルボン酸を
有するアミドのオリゴマーなどがあげられる。これら
は、上記熱硬化性樹脂に対して20重量%以下で使用す
ることが好ましい。
Examples of the curing agent include carboxylic acids such as trimellitic acid and pyromellitic acid, and oligomers of amides having a carboxylic acid. These are preferably used in an amount of 20% by weight or less based on the thermosetting resin.

【0046】下引き層を形成する方法としては、例え
ば、熱可塑性樹脂、必要に応じて使用される、熱硬化性
樹脂、硬化剤等をメタノール、エタノール、イソプロパ
ノールなどのアルコール溶剤と塩化メチレン、1,1,
2−トリクロロエタンなどのハロゲン系溶剤の混合溶剤
に均一に溶解し、これを導電性基体上に浸漬塗工法、ス
プレー塗工法、ロール塗工法、アプリケータ塗工法、ワ
イヤバー塗工法等の塗工法を用いて塗工し乾燥して形成
することができる。
As a method for forming the undercoat layer, for example, a thermoplastic resin, a thermosetting resin used as necessary, a curing agent, etc. may be mixed with an alcohol solvent such as methanol, ethanol, isopropanol and methylene chloride, and , 1,
Uniformly dissolved in a mixed solvent of a halogen-based solvent such as 2-trichloroethane, and this is coated on a conductive substrate by a coating method such as a dip coating method, a spray coating method, a roll coating method, an applicator coating method, and a wire bar coating method. Coating and drying.

【0047】下引き層の厚さは、0.01μm〜5.0
μmが好ましく、特に0.05μm〜2.0μmが好まし
い。薄すぎると均一な電荷発生層が形成出来ず黒ポチや
白ポチが発生する傾向がある。又厚すぎると残留電位の
蓄積が大きくなり、印字枚数が増加するに従い印字濃度
の低下が発生する傾向がある。
The thickness of the undercoat layer is 0.01 μm to 5.0.
μm is preferable, and particularly preferably 0.05 μm to 2.0 μm. If it is too thin, a uniform charge generation layer cannot be formed, and black spots and white spots tend to be generated. On the other hand, if the thickness is too large, the accumulation of the residual potential increases, and the print density tends to decrease as the number of prints increases.

【0048】本発明に係る電子写真感光体は、更に、表
面に保護層を有していてもよい。
The electrophotographic photosensitive member according to the present invention may further have a protective layer on the surface.

【0049】上記電子写真感光体は、感光層が、上記フ
タロシアニン組成物を含有しているので、帯電性、暗減
衰、感度、残留電位等の電気特性だけでなく、帯電及び
除電を繰り返した後の画像の解像度(1mmあたりに判別
できる細線の数として定義)も優れている。従って、上
記電子写真感光体は、レ−ザビ−ムプリンタに限らず、
複写機やファクシミリ等の画像形成装置に用いる感光体
として有用である。
In the above electrophotographic photoreceptor, since the photosensitive layer contains the above phthalocyanine composition, not only electric characteristics such as chargeability, dark decay, sensitivity, residual potential, but also after repeated charging and discharging, The resolution of the image (defined as the number of fine lines per 1 mm) is also excellent. Therefore, the electrophotographic photosensitive member is not limited to a laser beam printer,
It is useful as a photoconductor used in an image forming apparatus such as a copying machine or a facsimile.

【0050】[0050]

【実施例】以下、実施例をあげて、本発明を詳細に説明
する。
The present invention will be described below in detail with reference to examples.

【0051】実施例1 チタニルフタロシアニン0.75gと塩化インジウムフ
タロシアニン0.25gからなるフタロシアニン混合物
1gを硫酸50mlに溶解し、これを氷水で冷却した純水
1リットルに滴下し再沈させた。ろ過後沈殿を純水でpH
=2〜5になるまで洗浄し、ついで、メタノールで洗浄
した後60℃で乾燥し粉末を得た。この粉末1gを1,
3−ジメチル−2−イミダゾリジノン10mlに入れ加熱
撹拌(150℃,1時間)した。濾過後、メタノール洗
浄して60℃で真空乾燥し、本発明のフタロシアニン組
成物の結晶0.78gを得た。この結晶のX線回折スペ
クトルを図1として示した。
Example 1 1 g of a phthalocyanine mixture consisting of 0.75 g of titanyl phthalocyanine and 0.25 g of indium chloride phthalocyanine was dissolved in 50 ml of sulfuric acid, and the solution was added dropwise to 1 liter of pure water cooled with ice water to cause reprecipitation. After filtration, the precipitate is adjusted to pH with pure water.
= 2-5, then washed with methanol and dried at 60 ° C. to obtain a powder. 1 g of this powder
The mixture was placed in 10 ml of 3-dimethyl-2-imidazolidinone and stirred with heating (150 ° C., 1 hour). After filtration, washing with methanol and vacuum drying at 60 ° C gave 0.78 g of crystals of the phthalocyanine composition of the present invention. The X-ray diffraction spectrum of this crystal is shown in FIG.

【0052】上記のフタロシアニン組成物1.5g、ポ
リビニルブチラール樹脂エスレックBL−S(積水化学
社製)0.9g、メラミン樹脂ML351W(日立化成
工業社製)0.1g、エチルセロソルブ49g及びテト
ラヒドロフラン49gを配合し、ボールミルで分散し
た。得られた分散液を浸漬法によりアルミニウム板(導
電性基材100mm×100mm×0.1mm)上に塗工し、
140℃で1時間乾燥して厚さ0.5μmの電荷発生層
を形成した。上記のNo.1の電荷輸送性物質1.5g、
ポリカーボネート樹脂ユーピロンS−3000(三菱瓦
斯化学社製)1.5g及び塩化メチレン15.5gを配
合して得られた塗布液を上記基板上に浸漬法により塗工
し、120℃で1時間乾燥して厚さ20μmの電荷輸送
層を形成した。この電子写真感光体の電子写真特性を静
電複写紙試験装置(川口電気社製、モデルSP−42
8)により測定した。暗時で−5kVのコロナ放電によ
り帯電させて10秒後の初期帯電Vo(−V)、30秒
後の暗減衰DDR(%)、照度2luxの白色光で露光し
た時の白色光感度E1/2(lux・sec)を求めた。分光感
度はシンシア30HC(緑屋電気製)により測定した。
初期表面電位−700V、露光波長780nm、露光時間
50mSで、露光後、0.2秒間で表面電位を半減させる
のに要する照射エネルギ−量、すなわち、分光感度E50
(μJ/cm2)を求めた。解像度は、電子写真感光体の表面
電位が−600V〜−700Vになるようにコロナ放電
によって帯電させ、次いで、電子写真学会チャ−トNo.
1−Tを原画として100lux・secで像露光し、次い
で、正帯電しているトナ−で現像し、作成されたトナ−
像を白紙に転写し、定着して試験画像を得、1mm当りに
判別できる細線の数によって評価した。なお、各試験に
おいて使用したトナ−及び転写・定着方法は同一とし
た。電子写真感光体の製造直後(初期)の解像度、及
び、コロナ帯電(表面電位−1000V±100V)及
び除電(波長500nmの光を照射:露光量約5μJ/c
m2)を10,000回繰り返した後の解像度を評価し
た。
1.5 g of the above phthalocyanine composition, 0.9 g of polyvinyl butyral resin ESLEK BL-S (manufactured by Sekisui Chemical Co., Ltd.), 0.1 g of melamine resin ML351W (manufactured by Hitachi Chemical Co., Ltd.), 49 g of ethyl cellosolve and 49 g of tetrahydrofuran Compounded and dispersed with a ball mill. The obtained dispersion is applied on an aluminum plate (conductive substrate 100 mm x 100 mm x 0.1 mm) by a dipping method,
After drying at 140 ° C. for 1 hour, a charge generation layer having a thickness of 0.5 μm was formed. 1.5 g of the above-mentioned No. 1 charge transporting substance,
A coating solution obtained by blending 1.5 g of polycarbonate resin Iupilon S-3000 (manufactured by Mitsubishi Gas Chemical Company) and 15.5 g of methylene chloride is applied on the above substrate by a dipping method, and dried at 120 ° C. for 1 hour. Thus, a charge transport layer having a thickness of 20 μm was formed. The electrophotographic characteristics of the electrophotographic photoreceptor were measured using an electrostatic copying paper tester (Model SP-42, manufactured by Kawaguchi Electric Co., Ltd.).
8). White light sensitivity E 1 when exposed to white light having an initial charge Vo (−V) after 10 seconds, a dark decay DDR (%) after 30 seconds, and an illuminance of 2 lux after being charged by a −5 kV corona discharge in the dark. / 2 (lux · sec). The spectral sensitivity was measured by Cynthia 30HC (manufactured by Midoriya Denki).
At an initial surface potential of -700 V, an exposure wavelength of 780 nm, and an exposure time of 50 ms, the amount of irradiation energy required to reduce the surface potential to half in 0.2 seconds after exposure, that is, the spectral sensitivity E 50.
(μJ / cm 2 ). The resolution was determined by charging by corona discharge so that the surface potential of the electrophotographic photosensitive member would be -600 V to -700 V.
1-T was used as an original image and exposed at 100 lux.sec, and then developed with a positively charged toner.
The image was transferred to white paper and fixed to obtain a test image, which was evaluated based on the number of fine lines per mm. The toner and the transfer / fixing method used in each test were the same. Immediately after the production of the electrophotographic photoreceptor (initial stage), corona charging (surface potential -1000 V ± 100 V) and static elimination (irradiation with light having a wavelength of 500 nm: exposure amount of about 5 μJ / c)
The resolution after repeating m 2 ) 10,000 times was evaluated.

【0053】実施例2〜4 実施例1においてチタニルフタロシアニンと塩化インジ
ウムフタロシアニンとの組成比率を表1に示すようにし
た以外は実施例1に準じて結晶を製造した。
Examples 2 to 4 Crystals were produced in the same manner as in Example 1 except that the composition ratio between titanyl phthalocyanine and indium phthalocyanine was as shown in Table 1.

【0054】比較例1 実施例1においてフタロシアニン混合物に代えてチタニ
ルフタロシアニンのみを用いた以外は実施例1に準じて
結晶を製造した。この結晶のX線回折スペクトルを図2
として示した。 比較例2 実施例1においてフタロシアニン組成物の代わりに塩化
インジウムフタロシアニンのみを用いた以外は実施例1
に準じて結晶を製造した。この結晶のX線回折スペクト
ルを図3として示した。 比較例3 チタニルフタロシアニン0.75gと塩化インジウムフ
タロシアニン0.25gからなるフタロシアニン混合物
1gを硫酸50mlに溶解し、これを氷水で冷却した純水
1リットルに滴下し再沈させた。ろ過後沈殿を純水でpH
=2〜5になるまで洗浄し、ついで、メタノールで洗浄
した後60℃で乾燥し粉末を得た。この粉末のX線回折
スペクトルを図4に示した。電子写真特性は、実施例1
に準じて評価した。
Comparative Example 1 A crystal was produced in the same manner as in Example 1 except that only the titanyl phthalocyanine was used instead of the phthalocyanine mixture. The X-ray diffraction spectrum of this crystal is shown in FIG.
As shown. Comparative Example 2 Example 1 was repeated except that only indium phthalocyanine chloride was used in place of the phthalocyanine composition.
Crystals were produced according to The X-ray diffraction spectrum of this crystal is shown in FIG. Comparative Example 3 1 g of a phthalocyanine mixture composed of 0.75 g of titanyl phthalocyanine and 0.25 g of indium phthalocyanine was dissolved in 50 ml of sulfuric acid, and the solution was added dropwise to 1 liter of pure water cooled with ice water to cause reprecipitation. After filtration, the precipitate is adjusted to pH with pure water.
= 2-5, then washed with methanol and dried at 60 ° C. to obtain a powder. The X-ray diffraction spectrum of this powder is shown in FIG. The electrophotographic characteristics were measured in Example 1.
It evaluated according to.

【0055】実施例1〜4及び比較例1,2,3の電子
写真特性を表1に示した。
Table 1 shows the electrophotographic characteristics of Examples 1 to 4 and Comparative Examples 1, 2, and 3.

【表1】 [Table 1]

【0056】実施例5〜8 実施例1〜4においてN−メチル−2−ピロリドンの代
わりにメチルエチルケトンを用いて有機溶剤処理した以
外は実施例1〜4に準じて結晶を製造した。この結晶の
X線回折スペクトルを図5として示した。
Examples 5 to 8 Crystals were produced in the same manner as in Examples 1 to 4, except that the organic solvent treatment was performed using methyl ethyl ketone instead of N-methyl-2-pyrrolidone. The X-ray diffraction spectrum of this crystal is shown in FIG.

【0057】比較例4,5 比較例1,2においてN−メチル−2−ピロリドンの代
わりにメチルエチルケトンを用いて有機溶剤処理した以
外は比較例1,2に準じて結晶を製造した。結晶のX線
回折スペクトルを、それぞれ、図6,7に示す。
Comparative Examples 4 and 5 Crystals were produced in the same manner as in Comparative Examples 1 and 2, except that the organic solvent treatment was performed using methyl ethyl ketone instead of N-methyl-2-pyrrolidone. The X-ray diffraction spectra of the crystals are shown in FIGS.

【0058】実施例5〜8及び比較例4,5の電子写真
特性を表2に示した。
Table 2 shows the electrophotographic characteristics of Examples 5 to 8 and Comparative Examples 4 and 5.

【表2】 [Table 2]

【0059】実施例9〜12 実施例1〜4において塩化インジウムフタロシアニンの
代わりに臭化インジウムフタロシアニンを用い、かつ、
電荷輸送材料として上記のNo.1の電荷輸送物質の代わ
りに上記のNo.2の電荷輸送物質を用いた以外は実施例
1〜4に準じて結晶及びこれを用いた電子写真感光体を
製造した。
Examples 9 to 12 In Examples 1 to 4, indium phthalocyanine bromide was used in place of indium phthalocyanine chloride, and
A crystal and an electrophotographic photoreceptor using the same were prepared in the same manner as in Examples 1 to 4, except that the charge transport material of No. 2 was used instead of the charge transport material of No. 1 as the charge transport material. did.

【0060】比較例6 比較例1において電荷輸送材料として上記のNo.1の電
荷輸送物質の代わりに上記のNo.2の電荷輸送物質を用
いた以外は比較例1に準じて電子写真感光体を製造し
た。 比較例7 比較例2において塩化インジウムフタロシアニンの代わ
りに臭化インジウムフタロシアニンを用い、かつ、電荷
輸送材料として上記のNo.1の電荷輸送物質の代わりに
上記のNo.2の電荷輸送物質を用いた以外は比較例2に
準じて結晶及びこれを用いた電子写真感光体を製造し
た。 比較例8 比較例3において塩化インジウムフタロシアニンの代わ
りに臭化インジウムフタロシアニンを用いた以外は比較
例3に準じて粉末を得、これを用いた電子写真感光体を
製造した。この粉末のX線回折スペクトルは図4と同じ
であった。
Comparative Example 6 An electrophotographic photosensitive member according to Comparative Example 1 except that the charge transporting material of No. 2 was used instead of the charge transporting material of No. 1 in Comparative Example 1. Was manufactured. Comparative Example 7 In Comparative Example 2, indium phthalocyanine bromide was used instead of indium phthalocyanine chloride, and the charge transport material of No. 2 was used instead of the charge transport material of No. 1 as the charge transport material. A crystal and an electrophotographic photoreceptor using the same were produced according to Comparative Example 2 except for the above. Comparative Example 8 A powder was obtained in the same manner as in Comparative Example 3 except that indium phthalocyanine bromide was used instead of indium phthalocyanine chloride, and an electrophotographic photoreceptor was produced using the powder. The X-ray diffraction spectrum of this powder was the same as in FIG.

【0061】実施例9〜12と比較例6、7及び8の電
子写真特性を表3に示した。
The electrophotographic characteristics of Examples 9 to 12 and Comparative Examples 6, 7 and 8 are shown in Table 3.

【表3】 [Table 3]

【0062】実施例13〜16 実施例1〜4において塩化インジウムフタロシアニンの
代わりに塩化ガリウムフタロシアニンを用い、かつ、電
荷輸送材料として上記のNo.1の電荷輸送物質の代わり
に上記のNo.3の電荷輸送物質を用いた以外は実施例1
〜4に準じて結晶及びこれを用いた電子写真感光体を製
造した。
Examples 13 to 16 In Examples 1 to 4, gallium phthalocyanine chloride was used in place of indium phthalocyanine chloride, and the above-mentioned No. 3 charge-transporting material was used in place of the above-mentioned No. 1 charge-transporting material. Example 1 except that a charge transport material was used
Crystals and electrophotographic photoreceptors using the crystals were manufactured according to the methods described in Nos. 1 to 4.

【0063】比較例9 比較例1において電荷輸送材料として上記のNo.1の電
荷輸送物質の代わりに上記のNo.3の電荷輸送物質を用
いた以外は比較例1に準じて電子写真感光体を製造し
た。 比較例10 比較例2において塩化インジウムフタロシアニンの代わ
りに塩化ガリウムフタロシアニンを用い、かつ、電荷輸
送材料として上記のNo.1の電荷輸送物質の代わりに上
記のNo.3の電荷輸送物質を用いた以外は比較例2に準
じて結晶及び電子写真感光体を製造した。 比較例11 比較例3において塩化インジウムフタロシアニンの代わ
りに塩化ガリウムフタロシアニンを用いた以外は比較例
3に準じて粉末を得、これを用いた電子写真感光体を製
造した。この粉末のX線回折スペクトルは図4と同じで
あった。
Comparative Example 9 An electrophotographic photoreceptor was prepared in the same manner as in Comparative Example 1 except that the charge transporting material of No. 3 was used instead of the charge transporting material of No. 1 in Comparative Example 1. Was manufactured. Comparative Example 10 In Comparative Example 2, except that gallium chloride phthalocyanine was used instead of indium phthalocyanine chloride, and that the above-mentioned No. 3 charge transport material was used instead of the above No. 1 charge transport material as the charge transport material. Prepared a crystal and an electrophotographic photosensitive member according to Comparative Example 2. Comparative Example 11 A powder was obtained in the same manner as in Comparative Example 3 except that gallium phthalocyanine was used instead of indium phthalocyanine chloride, and an electrophotographic photoreceptor was manufactured using the powder. The X-ray diffraction spectrum of this powder was the same as in FIG.

【0064】実施例13〜16と比較例9、10及び1
1の電子写真特性を表4に示した。
Examples 13 to 16 and Comparative Examples 9, 10 and 1
Table 4 shows the electrophotographic characteristics of No. 1.

【表4】 [Table 4]

【0065】実施例17〜20 実施例1〜4において塩化インジウムフタロシアニンの
代わりに塩化アルミニウムフタロシアニンを用い、か
つ、電荷輸送材料として上記のNo.1の化合物1.5g
の代わりに上記のNo.4の化合物1gを用いた以外は実
施例1〜4に準じて結晶及びこれを用いた電子写真感光
体を製造した。
Examples 17 to 20 In Examples 1 to 4, aluminum chloride phthalocyanine was used in place of indium phthalocyanine chloride, and 1.5 g of the above No. 1 compound was used as a charge transport material.
A crystal and an electrophotographic photoreceptor using the same were prepared in the same manner as in Examples 1 to 4, except that 1 g of the above-mentioned No. 4 compound was used in place of the above.

【0066】比較例12 比較例1において電荷輸送材料として上記のNo.1の電
荷輸送物質1.5gの代わりに上記のNo.4の電荷輸送
物質1gを用いた以外は比較例1に準じて電子写真感光
体を製造した。 比較例13 比較例2において塩化インジウムフタロシアニンの代わ
りに塩化アルミニウムフタロシアニンを用い、かつ、電
荷輸送材料として上記のNo.1の電荷輸送物質1.5g
の代わりに上記のNo.4の電荷輸送物質1gを用いた以
外は比較例2に準じて結晶及びこれを用いた電子写真感
光体を製造した。 比較例14 比較例3において塩化インジウムフタロシアニンの代わ
りに塩化アルミニウムフタロシアニンを用いた以外は比
較例3に準じて粉末を得、これを用いた電子写真感光体
を製造した。この粉末のX線回折スペクトルは図4と同
じであった。
Comparative Example 12 Comparative Example 1 was carried out in the same manner as in Comparative Example 1, except that 1 g of the above-mentioned No. 4 charge transport material was used instead of 1.5 g of the above-mentioned No. 1 charge transport material. An electrophotographic photoreceptor was manufactured. Comparative Example 13 In Comparative Example 2, aluminum chloride phthalocyanine was used instead of indium phthalocyanine chloride, and 1.5 g of the above-mentioned No. 1 charge transport material was used as a charge transport material.
A crystal and an electrophotographic photoreceptor using the same were prepared in the same manner as in Comparative Example 2 except that 1 g of the above-mentioned No. 4 charge transporting substance was used instead of. Comparative Example 14 A powder was obtained according to Comparative Example 3 except that aluminum chloride phthalocyanine was used instead of indium phthalocyanine in Comparative Example 3, and an electrophotographic photoreceptor was produced using the same. The X-ray diffraction spectrum of this powder was the same as in FIG.

【0067】実施例17〜20と比較例12、13及び
14の電子写真特性を表5に示した。
Table 5 shows the electrophotographic properties of Examples 17 to 20 and Comparative Examples 12, 13 and 14.

【表5】 [Table 5]

【0068】[0068]

【発明の効果】フタロシアニン組成物と含フッ素N,
N,N’,N’−テトラアリ−ルベンジジン誘導体を用
いた電子写真感光体は、帯電性、暗減衰、感度等の電子
写真特性が優れており、従来よりも更に高密度、高画質
が要求される電子写真プロセスに好適に応用することが
できる。
The phthalocyanine composition and fluorine-containing N,
An electrophotographic photosensitive member using an N, N ', N'-tetraallylbenzidine derivative has excellent electrophotographic characteristics such as chargeability, dark decay, and sensitivity, and is required to have higher density and higher image quality than before. It can be suitably applied to an electrophotographic process.

【0069】[0069]

【図面の簡単な説明】[Brief description of the drawings]

【図1】N−メチル−2−ピロリドンで処理したフタロ
シアニン組成物のX線回折スペクトル。
FIG. 1 is an X-ray diffraction spectrum of a phthalocyanine composition treated with N-methyl-2-pyrrolidone.

【図2】N−メチル−2−ピロリドンで処理したチタニ
ルフタロシアニンのX線回折スペクトル。
FIG. 2 is an X-ray diffraction spectrum of titanyl phthalocyanine treated with N-methyl-2-pyrrolidone.

【図3】N−メチル−2−ピロリドンで処理した塩化イ
ンジウムフタロシアニンのX線回折スペクトル。
FIG. 3 is an X-ray diffraction spectrum of indium phthalocyanine chloride treated with N-methyl-2-pyrrolidone.

【図4】硫酸処理したフタロシアニン組成物のX線回折
スペクトル。
FIG. 4 is an X-ray diffraction spectrum of a phthalocyanine composition treated with sulfuric acid.

【図5】メチルエチルケトンで処理したフタロシアニン
組成物のX線回折スペクトル。
FIG. 5 is an X-ray diffraction spectrum of a phthalocyanine composition treated with methyl ethyl ketone.

【図6】メチルエチルケトンで処理したチタニルフタロ
シアニンのX線回折スペクトル。
FIG. 6 is an X-ray diffraction spectrum of titanyl phthalocyanine treated with methyl ethyl ketone.

【図7】メチルエチルケトンで処理した塩化インジウム
フタロシアニンのX線回折スペクトル。
FIG. 7 is an X-ray diffraction spectrum of indium phthalocyanine chloride treated with methyl ethyl ketone.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松井 恵 茨城県日立市東町四丁目13番1号 日立 化成工業株式会社 茨城研究所内 (72)発明者 林田 茂 茨城県日立市東町四丁目13番1号 日立 化成工業株式会社 茨城研究所内 (56)参考文献 特開 平4−97159(JP,A) 特開 平3−174543(JP,A) 特開 平3−50554(JP,A) 特開 平3−50553(JP,A) 特開 平1−257967(JP,A) 特開 平1−230055(JP,A) 特開 昭63−198068(JP,A) 特開 昭62−195667(JP,A) (58)調査した分野(Int.Cl.7,DB名) G03G 5/06 ──────────────────────────────────────────────────続 き Continued on the front page (72) Megumi Matsui 4-3-1-1, Higashicho, Hitachi City, Ibaraki Prefecture Inside Hitachi Chemical Co., Ltd. Ibaraki Research Laboratory (72) Inventor Shigeru Hayashida 4-3-1, Higashimachi, Hitachi City, Ibaraki Prefecture No. Hitachi Chemical Co., Ltd. Ibaraki Research Laboratories (56) References JP-A-4-97159 (JP, A) JP-A-3-174543 (JP, A) JP-A-3-50554 (JP, A) 3-50553 (JP, A) JP-A-1-257967 (JP, A) JP-A-1-230055 (JP, A) JP-A-63-198068 (JP, A) JP-A-62-195667 (JP, A A) (58) Field surveyed (Int. Cl. 7 , DB name) G03G 5/06

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電荷発生物質及び電荷輸送物質を含む光
導電層を設けた電子写真感光体において、上記電荷発生
物質がCuKαのX線回折スペクトルにおいてブラッグ
角(2θ±0.2度)が7.5度、22.5度、24.
3度、25.3度及び28.6度に主な回折ピークを有
するチタニルフタロシアニンと中心金属が3価のハロゲ
ン化金属フタロシアニンとを含むフタロシアニン組成物
であり、かつ、上記電荷輸送物質が、一般式(I)で表
される含フッ素N,N,N′,N′−テトラアリールベ
ンジジン誘導体である電子写真感光体。 【化1】 (R1及びR2は、それぞれ独立して水素原子、ハロゲン
原子、アルキル基、アルコキシ基、アリール基、フルオ
ロアルキル基又はフルオロアルコキシ基を表し、R1
びR2のうち少なくとも一方は、フルオロアルキル基又
はフルオロアルコキシ基であり、2個のR3は、それぞ
れ独立して水素原子又はアルキル基を表し、Ar1及び
Ar2は、それぞれ独立してアリール基を表し、m及び
nは、それぞれ独立して0〜5の整数を表す)
1. An electrophotographic photoreceptor provided with a photoconductive layer containing a charge generating substance and a charge transporting substance, wherein the charge generating substance has a Bragg angle (2θ ± 0.2 degrees) of 7 in the X-ray diffraction spectrum of CuKα. 2.5 degrees, 22.5 degrees, 24.
A phthalocyanine composition containing titanyl phthalocyanine having main diffraction peaks at 3 degrees, 25.3 degrees and 28.6 degrees, and a metal halide phthalocyanine whose central metal is a trivalent metal; An electrophotographic photosensitive member, which is a fluorine-containing N, N, N ', N'-tetraarylbenzidine derivative represented by the formula (I). Embedded image (R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, an aryl group, a fluoroalkyl group or a fluoroalkoxy group, and at least one of R 1 and R 2 is a fluoroalkyl A group or a fluoroalkoxy group, two R 3 each independently represent a hydrogen atom or an alkyl group, Ar 1 and Ar 2 each independently represent an aryl group, and m and n each independently represent Represents an integer of 0 to 5)
【請求項2】 電荷発生物質及び電荷輸送物質がそれぞ
れ別個の層に含まれる請求項1記載の電子写真感光体。
2. The electrophotographic photoreceptor according to claim 1, wherein the charge generating substance and the charge transporting substance are contained in separate layers.
【請求項3】 導電性支持体と光導電層間に下引き層を
設けた請求項1又は2記載の電子写真感光体。
3. The electrophotographic photosensitive member according to claim 1, wherein an undercoat layer is provided between the conductive support and the photoconductive layer.
JP29577092A 1992-11-05 1992-11-05 Electrophotographic photoreceptor Expired - Fee Related JP3219492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29577092A JP3219492B2 (en) 1992-11-05 1992-11-05 Electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29577092A JP3219492B2 (en) 1992-11-05 1992-11-05 Electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JPH06148917A JPH06148917A (en) 1994-05-27
JP3219492B2 true JP3219492B2 (en) 2001-10-15

Family

ID=17824945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29577092A Expired - Fee Related JP3219492B2 (en) 1992-11-05 1992-11-05 Electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP3219492B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102595877B1 (en) * 2022-03-25 2023-10-30 다대산업주식회사 electric cable protection tube for installation on rail roadside

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5958637A (en) * 1996-07-24 1999-09-28 Hitachi Chemical Company, Ltd. Electrophotographic photoreceptor and coating solution for production of charge transport layer
KR100979868B1 (en) 2002-07-23 2010-09-02 오사까 가스 가부시키가이샤 Electrophotographic Photosensitive Element and Electrophotographic Apparatus Using the Same
JP4785366B2 (en) * 2004-10-20 2011-10-05 キヤノン株式会社 Image forming apparatus
US8409773B2 (en) * 2009-02-27 2013-04-02 Xerox Corporation Epoxy carboxyl resin mixture hole blocking layer photoconductors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102595877B1 (en) * 2022-03-25 2023-10-30 다대산업주식회사 electric cable protection tube for installation on rail roadside

Also Published As

Publication number Publication date
JPH06148917A (en) 1994-05-27

Similar Documents

Publication Publication Date Title
JP3463032B2 (en) Titanyl phthalocyanine crystal and method for producing the same, and electrophotographic photoreceptor and method for producing the same
US5304445A (en) Phthalocyanine composition, process for preparing the same and electrophotographic photoreceptor using the same
JPH09157540A (en) Phthalocyanine composition, its production, and electrophotographic photoreceptor and coating fluid for charge generation layer each using the same
JP3343275B2 (en) Phthalocyanine composition, method for producing the same, electrophotographic photoreceptor using the same, and coating liquid for charge generation layer
JP3219492B2 (en) Electrophotographic photoreceptor
US5958637A (en) Electrophotographic photoreceptor and coating solution for production of charge transport layer
JP3343268B2 (en) Phthalocyanine composition, process for producing the same, electrophotographic photoreceptor using the same, and coating solution for charge generation layer
JP3232738B2 (en) Phthalocyanine composition, method for producing the same, electrophotographic photoreceptor using the same, and coating solution for charge generation layer
JP2000019752A (en) Electrophotographic photoreceptor and coating solution for charge carrying layer
JP3343277B2 (en) Method for producing phthalocyanine composition intermediate
JP3284637B2 (en) Method for producing phthalocyanine composition and electrophotographic photoreceptor using the same
JPH10246972A (en) Electrophotographic photoreceptor, and coating liquid for charge transfer layer
JPH07104490A (en) Coating liquid for photosensitive layer and coating liquid for charge transport layer and electrophotographic photoreceptor using the liquid
JPH10142818A (en) Electrophotographic photoreceptor
JPH0841373A (en) Phthalocyanine composition, its production, and electrophotographic photoreceptor using the same
JPH10246970A (en) Electrophotographic photoreceptor, and coating liquid for charge transfer layer
JPH08176455A (en) Production of phthalocyanine composition, electrophotographic photoreceptor containing the same, and coating fluid used for charge generating layer and containing the same
JPH0570709A (en) Chlorinated indium phthalocyanine, its production, and electrophotographic photoreceptor containing the same
JP2002012790A (en) Phthalocyanine mixed crystal and electrophotographic photoconductor
JPH075703A (en) Electrophotographic sensitive body
JPH0598179A (en) Brominated indium phthalocyanine, its production and electrophotographic photoreceptor using the same
JPH10246971A (en) Electrophotographic photoreceptor, and coating liquid for charge transfer layer
JPH07191475A (en) Electrophotographic photoreceptor and coating liquid for photoconductive layer
JP2000019751A (en) Electrophotographic photoreceptor and coating solution for charge transport layer
JPH1090927A (en) Electrophotographic photoreceptor and coating liquid for charge transportation layer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees