JP3305555B2 - Carbon steel wire rod - Google Patents

Carbon steel wire rod

Info

Publication number
JP3305555B2
JP3305555B2 JP34721395A JP34721395A JP3305555B2 JP 3305555 B2 JP3305555 B2 JP 3305555B2 JP 34721395 A JP34721395 A JP 34721395A JP 34721395 A JP34721395 A JP 34721395A JP 3305555 B2 JP3305555 B2 JP 3305555B2
Authority
JP
Japan
Prior art keywords
wire
carbon steel
steel wire
ferrite
seconds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34721395A
Other languages
Japanese (ja)
Other versions
JPH09165650A (en
Inventor
望 河部
剛 吉岡
義弘 橋本
忠明 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP34721395A priority Critical patent/JP3305555B2/en
Publication of JPH09165650A publication Critical patent/JPH09165650A/en
Application granted granted Critical
Publication of JP3305555B2 publication Critical patent/JP3305555B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Wire Processing (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、伸線で強加工を行
った後も優れた強度と靱性が得られる線材とその製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wire capable of obtaining excellent strength and toughness even after strong working by drawing, and a method of manufacturing the same.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】炭素
鋼の圧延および圧延線材に関しては多くの開発が進めら
れている。その主な目的は伸線加工後の高強度化、高靱
性化や伸線・より線断線の低減などである。従来の一般
的な技術として次の工程により線材を得ることが知られ
ている。 仕上げ圧延(900℃前後)→水冷却(数秒)→巻き
取り(800℃前後)→沸騰水・ミスト・衝風・ソルト
などへの導入によるパーライト変態 その他、特公昭63-57484号公報、特開昭62-142725
号公報、特開平6-10054号公報記載の技術がある。し
かし、の方法で得られた線材は強度と靱性の点で必ず
しも十分とはいえない。また、〜の技術で得られた
線材はいずれも高強度もしくは高靱性などを達成してい
るが、オフライン鉛パテンティングを施した線材のよう
に引張強度2200N/mm以上、伸び3%以上(4
00℃×7秒のブルーイング後)を達成できるものは得
られていない。
2. Description of the Related Art Many developments have been made on the rolling and rolling of carbon steel. Its main purpose is to increase strength and toughness after wire drawing and to reduce wire drawing and wire breakage. It is known as a conventional general technique to obtain a wire by the following steps. Finish rolling (around 900 ° C) → water cooling (several seconds) → winding (around 800 ° C) → pearlite transformation by introduction into boiling water, mist, blast, salt, etc. JP-B-63-57484, JP 62-142725
And Japanese Patent Application Laid-Open No. 6-10054. However, the wire obtained by the above method is not necessarily sufficient in strength and toughness. In addition, the wires obtained by the techniques of (1) to (4) achieve high strength or high toughness, but have a tensile strength of 2200 N / mm 2 or more and an elongation of 3% or more (such as a wire subjected to off-line lead patenting). 4
(After baking at 00 ° C. × 7 seconds) has not been obtained.

【0003】さらに、線材では中間パテンティングを行
わずに大きな加工度が得られることも生産性向上の目的
で必要である。しかし、中間パテンティングを行わずに
総減面率94%以上の伸線加工をしても伸び3%以上
(400℃×7秒のブルーイング後)が確保できる線材
は得られていない。このような特性はビードワイヤを例
にとると、4φmmの線材から0.95φまでの加工
(総減面率94.4%)や5φmmの線材から1.2φ
(総減面率94.2%)までの加工を中間熱処理なしに
行えるなど、生産性、低コスト化の点で多大なメリット
がある。従って、本発明の目的は、オフライン鉛パテン
ティングを行わなくても強加工が可能で、加工後に強度
と靱性が両立できる線材とその製造方法を提供すること
にある。
[0003] Further, it is necessary for the purpose of improving productivity that a large workability can be obtained without performing intermediate patenting for a wire. However, even if wire drawing with a total area reduction rate of 94% or more is performed without intermediate patenting, a wire material that can secure an elongation of 3% or more (after bluing at 400 ° C. for 7 seconds) has not been obtained. Taking bead wire as an example, such characteristics can be achieved by processing from a 4 mm wire to 0.95 mm (total area reduction rate 94.4%) or 1.2 mm from a 5 mm wire.
There is a great advantage in terms of productivity and cost reduction, such as processing up to (total area reduction rate of 94.2%) without intermediate heat treatment. Accordingly, an object of the present invention is to provide a wire rod capable of performing strong working without performing off-line lead patenting and achieving both strength and toughness after working, and a method of manufacturing the same.

【0004】[0004]

【課題を解決するための手段】本発明は上記の課題を解
消するためになされたもので、その特徴は、線径が5.
5mm以下の炭素鋼線材で、C:0.6〜0.85重量
%、Cr:0.05〜0.5重量%を含有し、ラメラ間
隔が0.11〜0.17μmで、フェライト塊を1〜5
体積%含有することにある。上記の線径はビードワイヤ
などを製造するのに好適な数値を選択したもので、化学
成分は従来の炭素鋼成分から大きく外れることのないよ
う考慮したものである。また、このような線材における
パーライト組織のブロックサイズの分布として、30μ
m以上のブロックが面積率で60%以上、20μm以上
のブロックが80%以上で、大きさ20μm2 以上のフ
ェライト塊の存在率が400μm2 の面積当りに3つ未
満であることを特徴とする。さらに、線材断面における
線材表面から50μmの範囲において、1つのコロニー
接するフェライト塊の数が3つ以下で、同範囲におい
て、2つ以上のフェライト塊と接しているコロニーの面
積率が30%以下であることを特徴とする。以上の線材
におけるラメラ間隔、フェライト塊の含有量、特定サイ
ズのブロックの分布率、フェライト塊の存在率、コロニ
ーとフェライト塊の構成関係は全て後に説明する試験に
基づいて限定されたものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and has a feature that the wire diameter is 5.
A carbon steel wire rod of 5 mm or less, containing 0.6 to 0.85% by weight of C and 0.05 to 0.5% by weight of Cr, having a lamella spacing of 0.11 to 0.17 μm, 1-5
% By volume. The above-mentioned wire diameter is a value selected so as to be suitable for manufacturing a bead wire or the like, and the chemical composition is considered so as not to largely deviate from the conventional carbon steel composition. The distribution of the block size of the pearlite structure in such a wire is 30 μm.
Blocks with m or more are 60% or more in area ratio, blocks with 20 μm or more are 80% or more, and the abundance ratio of ferrite lumps with a size of 20 μm 2 or more is less than 3 per 400 μm 2 area. . Furthermore, in the range of 50 μm from the surface of the wire in the wire section, the number of ferrite masses in contact with one colony is 3 or less, and in the same range, the area ratio of colonies in contact with two or more ferrite masses is 30% or less. There is a feature. The lamellar spacing, ferrite lump content, distribution ratio of blocks of a specific size, ferrite lump abundance, and constitutional relationship between colonies and ferrite lump in the above-mentioned wire are all limited based on tests described later.

【0005】このような線材を得る方法は、C:0.6
〜0.85重量%、Cr:0.05〜0.5重量%を含
有する鋼材を目的の線径まで熱間圧延し室温まで冷却す
る炭素鋼線材の製造方法であって、仕上げ圧延を950
〜1050℃で行い、その後900℃までの冷却を3秒
〜10秒で行い、この鋼材を冷却過程でパーライト変態
させ、さらに室温まで冷却することを特徴とする。ここ
で、鋼材をパーライト変態させる具体的手段としては、
衝風、ミスト、沸騰水、鉛浴、ソルトなどに鋼材を導入
することが挙げられる。このような処理によりγ粒を2
0μm以上に均一化できる。さらに、パーライト変態さ
せた後、50〜200℃で3分以上保持することが望ま
しい。
[0005] A method for obtaining such a wire rod is C: 0.6.
A method for producing a carbon steel wire rod in which a steel material containing 0.85% by weight and Cr: 0.05-0.5% by weight is hot-rolled to a target wire diameter and cooled to room temperature.
It is characterized in that the steel material is cooled to 900 ° C. in 3 seconds to 10 seconds, the steel material is transformed into pearlite in the cooling process, and further cooled to room temperature. Here, as concrete means for transforming the steel material to pearlite,
Introducing steel into blast, mist, boiling water, lead bath, salt, and the like. By such a treatment, γ grains are reduced to 2
It can be uniformized to 0 μm or more. Further, after the pearlite transformation, it is desirable to maintain the temperature at 50 to 200 ° C. for 3 minutes or more.

【0006】[0006]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(試験例1)C:0.7%、Si:0.2%、Mn:
0.5%、Cr:0.04%を含む炭素鋼に次の条件で
従来より行われている圧延を行った。 仕上げ圧延温度:1000℃→900℃までの冷却:水
冷により0.5秒→巻取り後の冷却:衝風 上記圧延後の線材に種々の加工度で伸線加工を行い、加
工後の線材に400℃×7秒間のブルーイングを行って
得られた鋼線を引っ張り試験し、加工度と伸びの関係を
調べた。その関係を図1のグラフに示す。なお、真歪に
おけるDoは加工前の線径、Dは加工後の線径を示す。
図示のように、加工度が高くなるに従い伸びが低下し、
減面率93%では要求特性の伸び3%を満たしている
が、減面率94%以上ではそれを十足していないことが
わかる。
(Test Example 1) C: 0.7%, Si: 0.2%, Mn:
Conventional rolling was performed on carbon steel containing 0.5% and Cr: 0.04% under the following conditions. Finish rolling temperature: 1000 ° C → Cooling down to 900 ° C: 0.5 seconds by water cooling → Cooling after winding: Impulse Winding is performed on the wire after rolling at various degrees of work, A steel wire obtained by performing blueing at 400 ° C. for 7 seconds was subjected to a tensile test, and the relationship between the working ratio and the elongation was examined. The relationship is shown in the graph of FIG. In the true strain, Do represents the wire diameter before processing, and D represents the wire diameter after processing.
As shown, the elongation decreases as the degree of processing increases,
It can be seen that the required characteristic elongation of 3% is satisfied at the area reduction rate of 93%, but is not sufficient at the area reduction rate of 94% or more.

【0007】(試験例2)表1に示すCr量の異なる炭
素鋼を950〜1050℃の範囲で温度を変えて仕上げ
圧延した後、時間を変えて放冷し4mmφの圧延材を得
た。
Test Example 2 Carbon steels having different Cr contents shown in Table 1 were finish-rolled at different temperatures in the range of 950 to 1050 ° C., and then allowed to cool for different times to obtain a rolled material of 4 mmφ.

【0008】[0008]

【表1】 [Table 1]

【0009】この圧延材を0.95mmφまで冷間伸線
(減面率94.4%)し、沸騰水中に導入してパーライ
ト変態させた後、420℃×7秒間のブルーイングを施
して引張試験を行った。なお、サンプルE(Cr:0.
21%)は中心にマルテンサイトが存在したため伸線で
きなかった。仕上げ圧延温度を1000℃とした場合の
放冷時間と伸びとの関係を図2のグラフに示す。同グラ
フに示すように、Crの含有量が0.05〜0.15重
量%の鋼材を用い、900℃までの冷却を3秒〜10秒
としたときに3%以上の伸びを確保できることがわか
る。3秒未満では得られる線材の伸びが不十分である。
また、10秒を越えて保持するには長大な製造ラインが
必要とされる上、線材の表面脱炭層が多くなる。その他
の仕上げ圧延温度においても同様にCrの含有量が0.
05〜0.15重量%、放冷時間が3秒から10秒のと
きに伸び3%以上が確保されていた。
This rolled material is cold drawn (0.94% area reduction) to 0.95 mmφ, introduced into boiling water and transformed into pearlite, and then subjected to blueing at 420 ° C. for 7 seconds to be stretched. The test was performed. In addition, sample E (Cr: 0.
21%) could not be drawn due to the presence of martensite at the center. The relationship between the cooling time and the elongation when the finish rolling temperature is 1000 ° C. is shown in the graph of FIG. As shown in the graph, it is possible to secure elongation of 3% or more when using a steel material having a Cr content of 0.05 to 0.15% by weight and cooling to 900 ° C. for 3 seconds to 10 seconds. Understand. If the time is less than 3 seconds, elongation of the obtained wire is insufficient.
In addition, a longer production line is required to hold the wire for more than 10 seconds, and the surface decarburized layer of the wire is increased. At other finish rolling temperatures, the content of Cr is also 0.
When the cooling time was 3 to 10 seconds, the elongation was 3% or more.

【0010】(試験例3) 次に、1000℃で仕上げした圧延材を5秒間で900
℃まで冷却し、大気中もしくは冷媒に導入してパーライ
ト変態させ、その後の伸線加工後における伸びと引張強
度との関係を調べた。用いた線材は4mmφで伸線加工
後に420℃×7秒のブルーイングを行ったものと、5
mmφで伸線加工後に420℃×7〜10秒のブルーイ
ングを行ったものである。その結果を図4のグラフに示
す。図において、実線のグラフは沸騰水によりパーライ
ト変態させた線材、破線のグラフは衝風でパーライト変
態させた線材、□は5mmφの線材、△は4mmφの線
材を示す。図示のように、真歪3.8程度までの強加工
を行っても伸び3%以上が維持されていることがわか
る。また、2200N/mm以上の引張強度が実現で
きていることも確認された。
(Test Example 3) Next, a rolled material finished at 1000 ° C. was 900
After cooling to ℃, it was introduced into the air or a refrigerant to transform pearlite, and the relationship between elongation and tensile strength after wire drawing was examined. The wire used was a wire that had been drawn at 4 mmφ and then subjected to bluing at 420 ° C. for 7 seconds.
After drawing at 420 mm, bluing was performed at 420 ° C. for 7 to 10 seconds. The results are shown in the graph of FIG . In the figure, the solid line graph indicates a wire rod transformed with pearlite by boiling water, the broken line graph indicates a wire rod transformed with blast by blast, □ indicates a 5 mmφ wire rod, and Δ indicates a 4 mmφ wire rod. As shown in the drawing, it can be seen that the elongation of 3% or more is maintained even when the strong processing is performed up to a true strain of about 3.8. It was also confirmed that a tensile strength of 2200 N / mm 2 or more was realized.

【0011】(試験例4) 試験例2で得られた線材のフェライト量とラメラ間隔を
測定し、伸線加工後の伸びとの関係を調べてみた。その
結果を図3のグラフに示す。図示のように、フェライト
量、ラメラ間隔、伸びの間には強い相関関係のあること
がわかる。即ち、ラメラ間隔が0.11〜0.18μm
で、フェライト量が1〜10体積%のときに伸び3%以
上が得られていることがわかる。また、これらの引張強
度も測定したところ、2200N/mm以上の強度を
有するのはラメラ間隔が0.11〜0.17μmで、フ
ェライト量が1〜5体積%の鋼材であった。
(Test Example 4) The amount of ferrite and the lamellar spacing of the wire obtained in Test Example 2 were measured, and the relationship between the amount of elongation after wire drawing was examined. The results are shown in the graph of FIG . As shown, there is a strong correlation between the amount of ferrite, the lamella spacing, and the elongation. That is, the lamella spacing is 0.11 to 0.18 μm
It can be seen that elongation of 3% or more was obtained when the amount of ferrite was 1 to 10% by volume. The tensile strength was also measured, and it was found that the steel material having a strength of 2200 N / mm 2 or more had a lamella spacing of 0.11 to 0.17 μm and a ferrite content of 1 to 5% by volume.

【0012】(試験例5)さらに試験例2で得られた線
材断面の組織を顕微鏡写真により詳細に調べた。用いた
鋼材の化学組成は試験例2のサンプルA〜Dで、試験材
と従来材の各製造工程は次の通りである。 試験例:仕上げ圧延温度950〜1050℃→900℃
までの冷却時間3〜10秒・巻き取り→沸騰水への導入 従来例:仕上げ圧延温度1000℃→約0.5秒の水冷
により840℃まで冷却・巻き取り→沸騰水への導入 図5は線材の組織を示す顕微鏡写真で、(A)は従来
材、(B)は表1のサンプルCを用いた試験材である。
図示のように、従来例では線材表層部、特に表面から約
50μmの範囲においてフェライト(黒い部分)が多く
見られる。これに対し、試験例では線材内部はもちろん
表層部にもフェライトが少なく、組織の大部分がパーラ
イト(灰色部分)で占められていることがわかる。
(Test Example 5) Further, the structure of the cross section of the wire rod obtained in Test Example 2 was examined in detail by a micrograph. The chemical composition of the steel material used was Samples A to D of Test Example 2, and the manufacturing steps of the test material and the conventional material were as follows. Test example: Finish rolling temperature 950-1050 ° C → 900 ° C
Conventional example: Finish rolling temperature 1000 ° C → Cooling to 840 ° C by water cooling for about 0.5 seconds → Winding into boiling water In the micrograph showing the structure of the wire, (A) is a conventional material, and (B) is a test material using sample C in Table 1.
As shown, in the conventional example, many ferrites (black portions) are observed in the surface layer of the wire, particularly in a range of about 50 μm from the surface. On the other hand, in the test example, ferrite was little in the surface layer as well as in the inside of the wire, and it was found that most of the structure was occupied by pearlite (gray part).

【0013】(試験例6)これらの顕微鏡写真を走査型
電子顕微鏡でさらに拡大し、ブロックやコロニーの状態
について調べてみた。図6の模式図に示すように、フェ
ライトの結晶方位が同じものがブロック1、セメンタイ
トの結晶方位が同じものがコロニー2である。組織の拡
大写真を図7に示す。同図も(A)が比較例、(B)が
実施例である。図示のように、従来材では1つのコロニ
ーが多くのフェライト塊(黒い部分)に囲まれているの
に対し、試験材では3つ以下となっている。なお、これ
らのフェライト塊は、圧延後冷却した際に析出した初析
フェライトであると考えられる
(Test Example 6) These micrographs were further enlarged with a scanning electron microscope to examine the state of blocks and colonies. As shown in the schematic diagram of FIG. 6, blocks 1 have the same crystal orientation of ferrite, and colonies 2 have the same crystal orientation of cementite. FIG. 7 shows an enlarged photograph of the tissue. Also in this figure, (A) is a comparative example, and (B) is an example. As shown in the drawing, one colony is surrounded by many ferrite clumps (black portions) in the conventional material, whereas the number is three or less in the test material. Incidentally, these ferrite lumps are considered to be pro-eutectoid ferrite precipitated when cooled after rolling.

【0014】(試験例7)次に、パーライト組織のブロ
ックサイズを測定し、30μm以上と20μm以上のブ
ロックが単位面積当りに占める割合を求め、この割合と
伸びの関係についても調べてみた。その結果を図8に示
す。図示のように、30μm以上のブロックが面積比で
60%以上、20μm以上のブロックが面積比で80%
以上の場合に伸び3%以上となっていることがわかる。
さらに、各試験材と従来材について1つのコロニーと接
するフェライト塊の数と、2つ以上のフェライト塊に接
しているコロニーの面積比を求め、これらと伸びの関係
を調べた。その結果を図9に示す。1つのコロニーと接
するフェライト塊の数が3つ以下、2つ以上のフェライ
ト塊と接するコロニーの面積率が30%以下の場合に3
%以上の伸びが得られていることがわかる。
(Test Example 7) Next, the block size of the pearlite structure was measured, the ratio of blocks having a size of 30 μm or more and 20 μm or more per unit area was determined, and the relationship between this ratio and elongation was examined. FIG. 8 shows the result. As shown in the figure, blocks having a size of 30 μm or more have an area ratio of 60% or more, and blocks having a size of 20 μm or more have an area ratio of 80%.
It can be seen that the elongation is 3% or more in the above cases.
Furthermore, the number of ferrite masses in contact with one colony and the area ratio of colonies in contact with two or more ferrite masses were determined for each test material and the conventional material, and the relationship between these and the elongation was examined. FIG. 9 shows the result. If the number of ferrite masses in contact with one colony is 3 or less, and the area ratio of colonies in contact with two or more ferrite masses is 30% or less, 3
% Elongation is obtained.

【0015】(試験例8)次に、走査型電子顕微鏡によ
り組織を撮影し、400μm2 の面積中に存在するフェ
ライト塊の数を測定した。1試料に対して5視野測定
し、その平均数とその試料の伸線加工後の伸びとの関係
を調べた。図10に示すように、フェライト塊の数が3
つ以下の場合に3%以上の伸びが得られる。
Test Example 8 Next, the structure was photographed with a scanning electron microscope, and the number of ferrite blocks existing in an area of 400 μm 2 was measured. Five visual fields were measured for one sample, and the relationship between the average number and the elongation of the sample after wire drawing was examined. As shown in FIG.
When the number is less than 3%, an elongation of 3% or more is obtained.

【0016】(試験例9)試験例2の線材をパーライト
変態させてから30〜300℃で時間を変えて保持し、
その後に伸線加工(4.0→0.95mmφ)と400
℃×7秒のブルーイングを行い、保持時間と伸びの関係
について調べてみた。その結果を図11に示す。50〜
200℃で3分以上保持したときに3%以上の伸びが得
られることが確認された。なお、圧延から冷却中にこの
保持が行われても同様の効果はある。
(Test Example 9) After the wire rod of Test Example 2 was transformed into pearlite, it was held at 30 to 300 ° C. for a different time,
After that, wire drawing (4.0 → 0.95mmφ) and 400
Blueing was performed at 7 ° C. × 7 seconds, and the relationship between holding time and elongation was examined. The result is shown in FIG. 50 ~
It was confirmed that elongation of 3% or more was obtained when the temperature was maintained at 200 ° C. for 3 minutes or more. Note that the same effect is obtained even if the holding is performed during the cooling from the rolling.

【0017】[0017]

【発明の効果】以上説明したように、本発明線材により
強度と靱性の両立が実現できる。特に、減面率94%以
上の強加工を行っても2200N/mm2 以上の強度と
3%以上の伸びを維持することができ、ビードワイヤな
どの製造に好適である。また、本発明製造方法により伸
線前または伸線段階のオフライン鉛パテンティング工程
を省略することができる。この工程を行えば上記の強度
と靱性の両立が可能であるが、同工程は温度管理などが
煩雑な上、コスト高になる。本発明方法ではこの工程を
回避することで製造性向上とコスト低減を図ることがで
きる。
As described above, both strength and toughness can be realized by the wire of the present invention. In particular, it is possible to maintain a strength of 2200 N / mm 2 or more and an elongation of 3% or more even when performing a strong working with a reduction in area of 94% or more, which is suitable for manufacturing a bead wire or the like. Further, according to the manufacturing method of the present invention, the off-line lead patenting step before or at the stage of drawing can be omitted. If this step is performed, both the above strength and toughness can be achieved. However, this step requires complicated temperature control and the like, and increases the cost. In the method of the present invention, productivity can be improved and cost can be reduced by avoiding this step.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の鋼材の加工度と伸びとの関係を示すグラ
フ。
FIG. 1 is a graph showing the relationship between the workability and elongation of a conventional steel material.

【図2】Cr量と放冷時間および伸びの関係を示すグラ
フ。
FIG. 2 is a graph showing the relationship between the amount of Cr and the cooling time and elongation.

【図3】フェライト量とラメラ間隔および伸びの関係を
示すグラフ。
FIG. 3 is a graph showing the relationship between the amount of ferrite and lamella spacing and elongation.

【図4】本発明線材の加工度と伸びおよび引張強度の関
係を示すグラフ。
FIG. 4 is a graph showing the relationship between the degree of work and the elongation and tensile strength of the wire of the present invention.

【図5】鋼材の組織を示す顕微鏡写真で、(A)は従来
材、(B)は試験材。
FIG. 5 is a micrograph showing the structure of a steel material, where (A) is a conventional material and (B) is a test material.

【図6】パーライト組織の模式図。FIG. 6 is a schematic diagram of a pearlite structure.

【図7】図5の写真を拡大した鋼材組織の顕微鏡写真で
(A)は従来材、(B)は試験材。
7 is a micrograph of a steel structure in which the photograph of FIG. 5 is enlarged, (A) is a conventional material, and (B) is a test material.

【図8】特定サイズのブロックの面積比と伸びの関係を
示すグラフ。
FIG. 8 is a graph showing the relationship between the area ratio of blocks of a specific size and elongation.

【図9】コロニーとフェライトの構成関係と伸びとの関
係を示すグラフ。
FIG. 9 is a graph showing the relationship between the constitutive relationship between colonies and ferrite and elongation.

【図10】フェライト塊の数と伸びの関係を示すグラ
フ。
FIG. 10 is a graph showing the relationship between the number of ferrite lumps and elongation.

【図11】パーライト変態後に所定の温度で保持した時
間と伸びの関係を示すグラフ。
FIG. 11 is a graph showing the relationship between the time maintained at a predetermined temperature after pearlite transformation and elongation.

【符号の説明】[Explanation of symbols]

1 ブロック 2 コロニー 1 block 2 colonies

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松田 忠明 兵庫県伊丹市昆陽北一丁目1番1号 住 友電気工業株式会社伊丹製作所内 (56)参考文献 特開 昭62−14725(JP,A) 特開 昭53−2330(JP,A) 特開 平6−322480(JP,A) 特開 昭57−89429(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 C21D 8/06 - 8/08 C21D 9/52 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Tadaaki Matsuda 1-1-1, Kunyokita, Itami-shi, Hyogo Prefecture Itami Works, Sumitomo Electric Industries, Ltd. (56) References JP-A-62-14725 (JP, A) JP-A-53-2330 (JP, A) JP-A-6-322480 (JP, A) JP-A-57-89429 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 38/00-38/60 C21D 8/06-8/08 C21D 9/52

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 線径が5.5mm以下で、 C:0.6〜0.85重量%、Cr:0.05〜0.5
重量%を含有し、 ラメラ間隔が0.11〜0.17μmで、 フェライト塊を1〜5体積%含有し、残部がパーライト
組織であることを特徴とする炭素鋼線材。
1. A wire diameter of 5.5 mm or less, C: 0.6 to 0.85% by weight, Cr: 0.05 to 0.5.
Weight%, lamella spacing 0.11-0.17 μm, ferrite lump 1-5 volume% , balance pearlite
A carbon steel wire rod having a texture .
【請求項2】 ブロックサイズの分布として、30μm
以上のブロックが面積率で60%以上、20μm以上の
ブロックが80%以上で、 大きさ20μm以上のフェライト塊の存在率が400
μmの面積当りに3つ以下であることを特徴とする請
求項1記載の炭素鋼線材。
2. A block size distribution of 30 μm
The above blocks have an area ratio of 60% or more, the blocks having a size of 20 μm or more have a content of 80% or more, and the abundance of ferrite lumps having a size of 20 μm 2 or more is 400%.
2. The carbon steel wire according to claim 1, wherein the number is three or less per μm 2 area.
【請求項3】 線材断面における線材表面から50μm
の範囲において、1つのコロニーと接するフェライト塊
の数が3つ以下で、 同範囲において、2つ以上のフェライト塊と接している
コロニーの面積率が30%以下であることを特徴とする
請求項1又は2記載の炭素鋼線材。
3. A wire having a cross section of 50 μm from the surface of the wire.
The number of ferrite masses in contact with one colony in the range of 3 or less, and the area ratio of colonies in contact with two or more ferrite masses in the same range is 30% or less. 3. The carbon steel wire according to 1 or 2 .
【請求項4】 鋼材を目的の線径まで熱間圧延し、 仕上げ圧延を950〜1050℃で行い、 3秒以上〜10秒以内で900℃まで冷却し、 この鋼材を冷却過程でパーライト変態させ、さらに室温
まで冷却することで製造されることを特徴とする請求項
1〜3のいずれかに記載の炭素鋼線材。
4. A steel material is hot-rolled to a target wire diameter, finish rolling is performed at 950 to 1050 ° C., and is cooled to 900 ° C. within 3 seconds to 10 seconds, and the steel is subjected to pearlite transformation in a cooling process. And room temperature
Characterized by being manufactured by cooling to
The carbon steel wire according to any one of claims 1 to 3.
【請求項5】 C:0.6〜0.85重量%、Cr:
0.05〜0.5重量%を含有する鋼材を目的の線径ま
で熱間圧延し室温まで冷却する炭素鋼線材の製造方法で
あって、 仕上げ圧延を950〜1050℃で行い、 3秒以上〜10秒以内で900℃まで冷却し、 この鋼材を冷却過程でパーライト変態させ、さらに室温
まで冷却することを特徴とする炭素鋼線材の製造方法。
5. C: 0.6 to 0.85% by weight, Cr:
A method for producing a carbon steel wire rod in which a steel material containing 0.05 to 0.5% by weight is hot-rolled to a target wire diameter and cooled to room temperature, wherein finish rolling is performed at 950 to 1050 ° C. for 3 seconds or more. A method for producing a carbon steel wire, comprising cooling to 900 ° C. within 10 seconds, transforming the steel into pearlite in a cooling process, and further cooling to room temperature.
【請求項6】 パーライト変態させた後、50〜200
℃で3分以上保持することを特徴とする請求項記載の
炭素鋼線材の製造方法。
6. After transformation to pearlite, 50-200.
The method for producing a carbon steel wire according to claim 5 , wherein the carbon steel wire is held at a temperature of at least 3 minutes.
JP34721395A 1995-12-13 1995-12-13 Carbon steel wire rod Expired - Fee Related JP3305555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34721395A JP3305555B2 (en) 1995-12-13 1995-12-13 Carbon steel wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34721395A JP3305555B2 (en) 1995-12-13 1995-12-13 Carbon steel wire rod

Publications (2)

Publication Number Publication Date
JPH09165650A JPH09165650A (en) 1997-06-24
JP3305555B2 true JP3305555B2 (en) 2002-07-22

Family

ID=18388695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34721395A Expired - Fee Related JP3305555B2 (en) 1995-12-13 1995-12-13 Carbon steel wire rod

Country Status (1)

Country Link
JP (1) JP3305555B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120024609A (en) * 2009-06-05 2012-03-14 후지쇼지 가부시키가이샤 Tyre bead wire and process for production thereof
JP6497156B2 (en) * 2015-03-24 2019-04-10 新日鐵住金株式会社 Steel wire with excellent conductivity
CN105483556B (en) * 2015-12-24 2017-10-10 江苏兴达钢帘线股份有限公司 A kind of preparation method of high intensity steel bead wire material reinforcement method and steel bead wire

Also Published As

Publication number Publication date
JPH09165650A (en) 1997-06-24

Similar Documents

Publication Publication Date Title
EP0657557B1 (en) Spring steel of high strength and high corrosion resistance
JP3997867B2 (en) Steel wire, method for producing the same, and method for producing steel wire using the steel wire
EP1293582B1 (en) High-strength steel wire excelling in resistance to strain aging embrittlement and longitudinal cracking, and method for production thereof
MX2013001724A (en) Special steel steel-wire and special steel wire material.
JP2001011575A (en) Bar steel and steel wire for machine structure excellent in cold workability and its production
JP3292671B2 (en) Hot-rolled steel strip for cold-rolled steel sheet with good deep drawability and aging resistance
JP3527641B2 (en) Steel wire with excellent cold workability
KR20200016289A (en) High strength liner
JP4008320B2 (en) Rolled and drawn wire rods for bearings
CN108368583B (en) Steel wire for non-heat-treated machine part and non-heat-treated machine part
JP2001220650A (en) Steel wire, spring and producing method therefor
JP3305555B2 (en) Carbon steel wire rod
JP3536684B2 (en) Steel wire with excellent wire drawing workability
JPH08283867A (en) Production of hyper-eutectoid steel wire rod for wiredrawing
JP3277878B2 (en) Wire drawing reinforced high-strength steel wire and method of manufacturing the same
JP2641081B2 (en) Steel cord manufacturing method
JP2000328143A (en) Manufacture of dual-phase steel having microstructure
JP3216404B2 (en) Method of manufacturing wire for reinforced high strength steel wire
JP6501036B2 (en) Steel wire
JP4180839B2 (en) Manufacturing method of medium carbon steel high strength steel wire
JP3479724B2 (en) Metal wire for rubber product reinforcement
JP3242019B2 (en) High-strength bead wire, wire material for bead wire, and production method thereof
JP2000063987A (en) High carbon steel wire rod excellent in wire drawability
JP3539866B2 (en) Steel wire excellent in fatigue property and manufacturing method thereof
JP3582371B2 (en) Method for manufacturing high carbon chromium steel wire and mechanical structural parts

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110510

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees