JP3299416B2 - Vector control method of induction motor - Google Patents

Vector control method of induction motor

Info

Publication number
JP3299416B2
JP3299416B2 JP19333595A JP19333595A JP3299416B2 JP 3299416 B2 JP3299416 B2 JP 3299416B2 JP 19333595 A JP19333595 A JP 19333595A JP 19333595 A JP19333595 A JP 19333595A JP 3299416 B2 JP3299416 B2 JP 3299416B2
Authority
JP
Japan
Prior art keywords
current
phase
voltage
primary
induction motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19333595A
Other languages
Japanese (ja)
Other versions
JPH0947099A (en
Inventor
裕明 湯浅
幸彦 岡村
智昭 泉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP19333595A priority Critical patent/JP3299416B2/en
Publication of JPH0947099A publication Critical patent/JPH0947099A/en
Application granted granted Critical
Publication of JP3299416B2 publication Critical patent/JP3299416B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、誘導電動機のベク
トル制御方法に係り、特に誘導電動機の一次抵抗測定方
法に関する。
The present invention relates to a vector control method for an induction motor, and more particularly to a method for measuring a primary resistance of an induction motor.

【0002】[0002]

【従来の技術】ベクトル制御方法では誘導電動機の等価
回路を制御モデルとして制御するため等価回路の定数を
正確に設定する必要がある。
2. Description of the Related Art In a vector control method, constants of an equivalent circuit must be accurately set in order to control an equivalent circuit of an induction motor as a control model.

【0003】[0003]

【発明が解決しようとする課題】そこで、一次抵抗を自
動調整する機能がいる。しかし従来の技術では、U相−
V相間又はV相−W相間又はW相−U相間に電圧を加
え、そこに流れる電流から抵抗を測定していた。そのた
め、各相の一次抵抗にばらつきがあると正確な調整が出
来なかった。また、適当な電圧を印加すると過電流が流
れることもある。また、過電流を流さないために、しか
も一次抵抗のばらつきにも対処するために、U相−V相
間、V相−W相間、W相−U相に印加する電圧を電流
により制御するため、ノイズ等で電流制御するのに時
がかかり、自動調整に時間がかかった。
Therefore, there is a function for automatically adjusting the primary resistance. However, in the conventional technology, the U phase
A voltage was applied between the V phases or between the V and W phases or between the W and U phases, and the resistance was measured from the current flowing therethrough. Therefore, accurate adjustment could not be performed if the primary resistance of each phase varied. When an appropriate voltage is applied, an overcurrent may flow. Further, in order to prevent an overcurrent from flowing and to cope with a variation in the primary resistance, the voltage applied between the U phase and the V phase, between the V phase and the W phase, and between the W phase and the U phase is controlled by the current. , hours to current control by noise or the like
And automatic adjustment took time.

【0004】本発明は上記問題点に鑑みて為されたもの
で、過電流を流すことなく短時間に一次抵抗を自動調整
できる誘導電動機のベクトル制御方法を提供するにあ
る。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a vector control method of an induction motor that can automatically adjust a primary resistance in a short time without flowing an overcurrent.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに、請求項1の発明では、誘導電動機の一次電流から
検出される励磁電流及びトルク電流により一次周波数及
び電圧が制御され、一次抵抗の設定値と励磁電流と一次
周波数とを乗算して求められた値とから励磁分電圧を求
め、一次抵抗の設定値とトルク電流とを乗算して求めら
れた乗算値と、磁束指令値と一次周波数とを乗算して求
められた乗算値とからトルク分電圧を求め、これら励磁
分電圧とトルク分電圧から電圧型インバータの指令電圧
を得る誘導電動機のベクトル制御方法おいて誘導電動機
の各相の巻線の内、第一の相間に電流を流す期間と、第
二の相間に電流を流す期間と、第三の相間に電流を流す
期間とを順次設定し、第一の相間に電流を流す期間では
予め設定した設定電流に流れる電流が一致するように電
流制御を行いながら誘導電動機の印加電圧を決めるとと
もに電流測定を行い、第二の相間、第三の相間に電流を
流す夫々の期間では第一の相に電流を流す期間で求め
た印加電圧を誘導電動機に印加しながら電流を測定し、
これらの期間の測定電流の平均値と印加電圧とから一次
抵抗の設定値を調整することを特徴とし、過電流を流す
ことなく一次抵抗値を短時間で自動調整することができ
る。
According to the first aspect of the present invention, a primary frequency and a voltage are controlled by an exciting current and a torque current detected from a primary current of an induction motor, and a primary resistance is controlled. The exciting component voltage is obtained from the value obtained by multiplying the set value of the exciting current and the primary frequency, and the multiplied value obtained by multiplying the set value of the primary resistance by the torque current, the magnetic flux command value and In the vector control method of the induction motor, a torque component voltage is obtained from the multiplied value obtained by multiplying the primary frequency, and the command voltage of the voltage type inverter is obtained from the excitation component voltage and the torque component voltage. Of the windings, a period during which a current flows between the first phase, a period during which the current flows between the second phase, and a period during which the current flows between the third phase are sequentially set. Set in advance during the flowing period Performs current measurement with determining the voltage applied to the induction motor while the current control such that the current flowing in the flow matches during the second phase, the duration of each passing a current between the third phase between the first phase The current is measured while applying the applied voltage determined during the current flowing period to the induction motor,
It is characterized in that the set value of the primary resistance is adjusted from the average value of the measured current and the applied voltage during these periods, and the primary resistance can be automatically adjusted in a short time without flowing an overcurrent.

【0006】請求項2の発明では、請求項1の発明にお
いて、一次抵抗値を調整する時に測定電流の平均値が設
定電流値の一致幅内になければ一次抵抗値を調整しない
ことを特徴とし、一次抵抗を自動調整する際に誤った調
整をすることがない。
According to a second aspect of the present invention, in the first aspect of the present invention, the primary resistance value is not adjusted unless the average value of the measured current is within the matching width of the set current value when the primary resistance value is adjusted. There is no erroneous adjustment when automatically adjusting the primary resistance.

【0007】[0007]

【発明の実施の形態】誘導電動機の電圧方程式は、二次
鎖交磁束の角周波数(一次周波数)ωで回転する直交座
標系(以下d−q座標系とする)において(1)式で与
えられる。
Voltage equation of the embodiment of the invention] induction motor, given by equation (1) in an orthogonal coordinate system that rotates at the secondary interlinkage flux angular frequency (primary frequency) omega (hereinafter referred to as d-q coordinate system) Can be

【0008】[0008]

【数1】 (Equation 1)

【0009】(1)式において、r1 、r2 はそれぞれ
誘導電動機の一次及び二次抵抗値を、L1 、L2 はそれ
ぞれ漏れインダクタンス分を含んだ一次及び二次インダ
クタンス値を、Mは一次巻線二次巻線間の相互インダク
タンス値を、σは1−M2 /(L1 2 )なる漏れ係数
を、ωsはすべり角周波数を、pはd/dtなる微分演
算子を、V1d、V1qは夫々一次電圧のd軸及びq伽成分
を、i1d、i1qはそれぞ一次電流のd軸及びq軸成分す
なわち励磁電流、トルク電流を、φ2d、φ2qはそれぞれ
二次鎖交磁束のd軸及びq軸成分を表す。
In the equation (1), r 1 and r 2 are the primary and secondary resistances of the induction motor, respectively, L 1 and L 2 are the primary and secondary inductances including the leakage inductance, and M is Mutual inductance between primary winding and secondary winding
The wardrobe values, the σ is 1-M 2 / (L 1 L 2) becomes leakage factor, .omega.s is a slip angular frequency, p is the d / dt becomes a differential operator, V 1d, V 1q are each primary voltage The d-axis and q-axis components, i 1d and i 1q are the d-axis and q-axis components of the primary current, ie, the exciting current and the torque current, and φ 2d and φ 2q are the d-axis and q of the secondary interlinkage flux, respectively. Represents the axis component.

【0010】また、二次鎖交磁束は以下のように表せ
る。 φ2d=Mi1d+L2 2d φ2q=Mi1qq+L2 2q …(2) i2d、i2q はそれぞれ二次電流のd軸及びq軸成分を
示す。ベクトル制御とは、φ2d=Mi1d(一定)、φ2q
=0となるように一次電圧或いは一次電流を制御するこ
とであり、この条件が成立すればすべり角周波数ωsは
(3)式で与えられる。
[0010] The secondary flux linkage can be expressed as follows. φ 2d = Mi 1d + L 2 i 2d φ 2q = Mi 1q q + L 2 i 2q (2) i 2d and i 2q indicate the d-axis and q-axis components of the secondary current, respectively. Vector control means φ 2d = Mi 1d (constant), φ 2q
The primary voltage or the primary current is controlled so that = 0. If this condition is satisfied, the slip angular frequency ωs is given by equation (3).

【0011】[0011]

【数2】 (Equation 2)

【0012】…(3) 電圧型インバータでは、定常状態(微分項が零)におい
て、(1)式にφ2d=Mi1d(一定)、φ2q=0を代入
して(4)式で与えられる電圧を印加することで実現で
きる。
(3) In the voltage-type inverter, in a steady state (the differential term is zero), φ 2d = Mi 1d (constant) and φ 2q = 0 are substituted into equation (1) and given by equation (4). It can be realized by applying a given voltage.

【0013】[0013]

【数3】 [Equation 3]

【0014】…(4) しかし、過渡状態においては、微分項による誤差項が現
れ、すべり角周波数ωsは(5)式のようになる。
(4) However, in the transient state, an error term due to the differential term appears, and the slip angular frequency ωs becomes as shown in equation (5).

【0015】[0015]

【数4】 (Equation 4)

【0016】…(5) これは上記(1)式を状態方程式に変形した(6)式に
(4)式を代入しωsについて解くことで得られる。
(5) This is obtained by substituting equation (4) into equation (6) obtained by transforming equation (1) into a state equation and solving for ωs.

【0017】[0017]

【数5】 (Equation 5)

【0018】 ・・・(6) l1 、l2 =1次及び二次漏れインダクタンス r2 ’=r2 (M/L2 22 ’=l2 M/L2 次に、図2に示す実施形態の回路に基づいてベクトル演
算装置1で行っている演算を説明する。ベクトル演算装
置1は励磁電流指令i1d * と一次抵抗r1 の設定値を乗
算したものに励磁電流指令i1d * から励磁電流i1d
減算して得た補正値Δi1d更に電流制御器12 を通じ
て得た値加算し、その加算値から漏れ係数σと一次
ンダクタンス1 の乗算値σL1 と一次周波数ωとを乗
算器13で乗算したものを、減算することによって励磁
分電圧V1d * を求める。ベクトル演算装置1は、まず一
インダクタンス1 と励磁電流指令を乗算して励磁指
令値φを求める。次に、トルク電流値i1qと一次抵抗r
1 の設定値を乗算したものと、磁束指令値φと一次周波
数ωを乗算器11 で乗算したものとを加算することによ
りトルク分電圧V1q * を求める。座標変換器は、PW
M制御のインバータ2の3相の出力電圧を求めるところ
で、(7)式のような演算を行い、一次電圧V1 を求
め、またこの一次電圧V1 と、一次周波数ωから演算を
行い、3相の出力電圧を求める。
(6) l 1 , l 2 = primary and secondary leakage inductance r 2 ′ = r 2 (M / L 2 ) 2 l 2 ′ = l 2 M / L 2 Next, FIG. An operation performed by the vector operation device 1 based on the circuit of the embodiment shown in FIG. Vector processor 1 to multiplication setting value of the excitation current command i 1d * and primary resistance r 1, further current control compensation value .DELTA.i 1d of the excitation current i 1d obtained by subtracting from the exciting current command i 1d * adds a value obtained through vessel 1 2, leakage factor σ primary Lee from the added value
Those multiplied by the multiplier 1 3 multiplication values? L 1 of inductance L 1 and the primary frequency omega, obtains the excitation-related voltage V 1d * by subtracting. Vector operation unit 1 first primary inductance L 1 and by multiplying the excitation current command determining the excitation command value phi. Next, the torque current value i 1q and the primary resistance r
And multiplied by the first set value, it obtains a torque portion voltage V 1q * by adding the one obtained by multiplying a magnetic flux command value φ and the primary frequency ω in the multiplier 1 1. The coordinate converter 3 has a PW
Where obtaining the three-phase output voltages of the M control of the inverter 2 performs operations such as (7), performs seek primary voltage V 1, also this primary voltage V 1, the operation from the primary frequency omega, 3 Find the output voltage of the phase.

【0019】[0019]

【数6】 (Equation 6)

【0020】…(7) 更に詳説すると、ベクトル演算装置1はφ2d=Mi
1d(一定)、φ2q=0となるように励磁電流指令
1d * 、トルク電流i1q及び一次周波数ωより一次電圧
のd軸及びq軸成分V1d * 、V1q * を(3)式により演
算する。座標変換器3はベクトル演算装置1よりの電圧
1d * 、V1q * を二次鎖交磁束ベクトルの位相角指令θ
に従って固定座標系に変換するものであり、インバータ
2は座標変換器3よりの電圧Vu* 、Vv* 、Vw*
よって誘導電動機4への印加電圧を制御するPWMイン
バータからなり、誘導電動機4はインバータ2により速
度制御される。電流検出器5は誘導電動機4の相電流i
u、iv、iwを検出するものである。座標変換器6は
相電流iu、iv、iwを二次鎖交磁束ベクトルの位相
角指令θに従って回転座標系に変換し励磁電流i1d、ト
ルク電流i1qを出力する。遅延回路7はトルク電流i1q
を遅延させて遅延トルク電流i1q’を出力する。乗算器
8は遅延トルク電流i1q’とすべり定数(Km)を乗算
してすべり角周波数ωsを出力する。加算器9はすべり
角周波数ωsに回転速度ωr* を加算して一次周波数ω
を出力する。積分器10は一次周波数ωを積分して二次
鎖交磁束ベクトルの位相角指令θを出力する。乗算器1
1 は一次インダクタンスL1 と励磁電流指令i1d * を乗
算して得られる磁束指令値φを初期値として設定されて
おり、この磁束指令値φに一次周波数ωを乗算して出力
する。
.. (7) More specifically, the vector operation device 1 determines that φ 2d = Mi
1d (constant), the d-axis and q-axis components V 1d * and V 1q * of the primary voltage are calculated from the excitation current command i 1d * , the torque current i 1q, and the primary frequency ω so that φ 2q = 0 (3) Is calculated by The coordinate converter 3 converts the voltages V 1d * and V 1q * from the vector operation device 1 into the phase angle command θ of the secondary linkage flux vector.
The inverter 2 is composed of a PWM inverter that controls the voltage applied to the induction motor 4 by the voltages Vu * , Vv * , Vw * from the coordinate converter 3, and the induction motor 4 is an inverter. 2 is speed controlled. The current detector 5 detects the phase current i of the induction motor 4.
u, iv, and iw are detected. The coordinate converter 6 converts the phase currents iu, iv, iw into a rotating coordinate system according to the phase angle command θ of the secondary flux linkage vector, and outputs an excitation current i 1d and a torque current i 1q . The delay circuit 7 has a torque current i 1q
And outputs a delayed torque current i 1q ′. The multiplier 8 multiplies the delay torque current i 1q ′ by the slip constant (Km) and outputs a slip angular frequency ωs. The adder 9 adds the rotational speed ωr * to the slip angular frequency ωs to obtain a primary frequency ω
Is output. The integrator 10 integrates the primary frequency ω and outputs a phase angle command θ of the secondary flux linkage vector. Multiplier 1
Reference numeral 1 designates a magnetic flux command value φ obtained by multiplying the primary inductance L 1 and the exciting current command i 1d * as an initial value. The magnetic flux command value φ is multiplied by the primary frequency ω and output.

【0021】遅延回路7は減算器71 と制御器72 とで
構成され、減算器71 はトルク電流i1qから遅延トルク
電流i1q’との差を制御器72 に出力し、制御器72
その差が零となるように遅延トルク電流i1q’を出力す
るもので、例えば比例・積分制御がある。上記のベクト
ル制御に用いる一次抵抗r1 値を自動調整するための本
発明の実施形態を図1に基づいて説明する。この図1に
示される構成は図2の全体構成に併設される形で設けら
れ一次抵抗測定時に使用される。
The delay circuit 7 is composed of a subtractor 7 1 and a controller 7 2. The subtracter 7 1 outputs a difference between the torque current i 1q and the delayed torque current i 1q ′ to the controller 7 2 for controlling. bowl 7 2 outputs a delayed torque current i 1q 'as the difference becomes zero, for example, a proportional-integral control. The embodiments of the present invention for automatically adjusting the primary resistance r 1 value to be used in the above vector control will be described with reference to FIG. The configuration shown in FIG. 1 is provided alongside the overall configuration of FIG. 2 and is used at the time of measuring the primary resistance.

【0022】図1に2示す指令電圧演算部11は、設定
電流とU相電流の偏差から、比例・積分制御で指令電圧
Vを演算し、次段の指令器12に電流を流す相をかえる
ための信号とともに出力する制御部を構成し、指令器1
2は指令電圧を記憶する機能を有し、印加する相と電圧
を決定して図2の構成でも示すPWM型のインバータ2
に印加する電圧の指令Vu* ,Vv *,Vw* を与える
ものである。インバータ2は指令Vu* ,Vv *,Vw
* に基づいて誘導電動機4をPWM制御する。検出器5
は図1に示す検出器で構成され、一次抵抗測定時には検
出した電流を一次抵抗演算部13へ出力するとともに、
U相の検出電流を設定電流と減算して偏差を求めるため
に減算器14へ送る。一次抵抗演算部13は検出器5か
らの検出電流値を記憶する記憶機能と、検出電流値と誘
導電動機4の巻線の印加電圧から一次抵抗r1 の値を演
算し、その演算して求めた一次抵抗r1 の値を一次抵抗
設定器15に設定するものである。
The command voltage calculator 11 shown in FIG. 1 calculates the command voltage V by proportional / integral control from the deviation between the set current and the U-phase current, and changes the phase in which the current flows to the commander 12 at the next stage. And a control unit that outputs a signal together with a signal for
2 has a function of storing a command voltage, determines a phase and a voltage to be applied, and determines a phase and a voltage to be applied.
, The commands Vu * , Vv * , Vw * of the voltage to be applied. Inverter 2 receives commands Vu * , Vv * , Vw
PWM control of the induction motor 4 is performed based on * . Detector 5
Is composed of the detector shown in FIG. 1 and outputs the detected current to the primary resistance calculating unit 13 when measuring the primary resistance,
The detected current of the U phase is subtracted from the set current and sent to the subtractor 14 to obtain a deviation. The primary resistance calculation unit 13 calculates a value of the primary resistance r 1 from the detected current value and the voltage applied to the winding of the induction motor 4, and calculates and obtains the value of the primary resistance r 1 from the storage function of storing the detected current value from the detector 5. The value of the primary resistance r 1 is set in the primary resistance setting device 15.

【0023】一次抵抗設定器15は図2のベクトル演算
装置1に内蔵されるもので、図1では一次抵抗r1 とし
て示している。次に一次抵抗r1 の調整について説明す
る。まず、図3、4のように、誘導電動機Mの各巻線C
Lu,CLv,CLwにおいて、U相とW相との相間に
電流を流すA期間と、U相とV相との相間に電流を流す
B期間と、W相とV相との間に電流を流すC期間とを設
定する。ここで、A期は電流制御を行い、B期間、C
は、A期で求めた電圧を印加する。つまりA期間
では、U相−W相間に電流を流すように指令電圧演算部
11から指令器12に指令電圧V及び電流を流す相を指
示する信号を与える。この指令電圧V及び電流を流す相
を指示する信号に基づいて指令器12はインバータ2へ
印加電圧の指令、この場合Vu* 、Vw*を与え、イン
バータ2はこの指令Vu* 、Vw* に基づいて対応する
巻線CLu、CLwに電圧を印加する。ここで検出器5
で検出したU相電流と設定電流とは減算器14で減算さ
れており、指令電圧演算部11は図4(a)に示すよう
にU相電流と設定電流の差の絶対値が予め設定してある
電流一致幅X内に連続してTa時間存在しているかどう
かを検出しており、一致したと検出すると指令器12に
一致信号を出力する。指令器12はその時の指令電圧V
を記憶し、一次抵抗演算部13に信号を与える。この信
号を受けて一次抵抗演算部13は検出器5からのU相電
流の検出出力によりU相電流を複数回測定してその測定
値を記憶する。尚この時のW相電流は図4(c)に示す
ようにU相電流の値と同じである。この測定が終われば
一次抵抗演算部13は、測定終了信号を指令器12に出
力する。指令器12は、記憶した指令電圧Vに基づく電
圧をU相−V相間に印加する指令Vu* 、Vv* をイン
バータ2に与え、インバータ2はこれによりU相ーV相
の巻線CLu、CLvに電圧を印加して電流を流す。つ
まりB期間へ移行する。
The primary resistance setting device 15 is intended to be incorporated in the vector arithmetic unit 1 of FIG. 2, it is shown as a primary resistance r 1 in FIG. 1. Next, a description will be given of adjustment of the primary resistance r 1. First, as shown in FIGS.
In Lu, CLv, and CLw, a current flows between the U phase and the W phase, a B period flows a current between the U phase and the V phase, and a current flows between the W phase and the V phase. A period C to be set is set. Here, between the A phase performs current control, B period, C
Period applies a voltage determined between A phase. In other words, in the period A, the command voltage calculation unit 11 gives the command unit 12 a signal indicating the command voltage V and the phase in which the current flows so that the current flows between the U phase and the W phase. Based on the command voltage V and the signal indicating the phase in which the current flows, the command device 12 gives a command of the applied voltage to the inverter 2, in this case, Vu * , Vw * , and the inverter 2 receives the command Vu * , Vw * . To apply a voltage to the corresponding windings CLu and CLw. Here the detector 5
Is subtracted by the subtractor 14 from the U-phase current and the set current, and the command voltage calculator 11 sets the absolute value of the difference between the U-phase current and the set current in advance as shown in FIG. It is detected whether or not there is a continuous Ta time within the current matching width X, and a matching signal is output to the commander 12 when it is determined that the matching has occurred. The command device 12 outputs the command voltage V at that time.
Is stored, and a signal is given to the primary resistance calculating unit 13. Upon receiving this signal, the primary resistance calculating unit 13 measures the U-phase current a plurality of times based on the detection output of the U-phase current from the detector 5 and stores the measured value. The W-phase current at this time is the same as the value of the U-phase current as shown in FIG. When the measurement is completed, the primary resistance calculating section 13 outputs a measurement end signal to the command device 12. The commander 12 gives commands Vu * and Vv * for applying a voltage based on the stored command voltage V between the U-phase and the V-phase to the inverter 2. To apply a voltage to flow a current. That is, the process shifts to the period B.

【0024】B期間では指令器14はTb時間経過する
と、一次抵抗演算部13に信号を出力し、上述と同様に
一次抵抗演算部13は検出器5からのU相電流の検出出
力によりU相電流を複数回測定してその測定値を記憶す
る。尚この時のV相電流ha4(b)に示すようにU相
電流の値と同じである。この測定が終われば一次抵抗演
算部13は、測定終了信号を指令器12に出力する。指
令器12は、記憶した指令電圧Vに基づく電圧をW相−
V相間に印加する指令Vw* 、Vv* をインバータ2に
与え、インバータ2はこれによりW相ーV相の巻線CL
w、CLvに電圧を印加して電流を流す。つまりC期間
へ移行する。
In the period B, the commander 14 outputs a signal to the primary resistance calculator 13 when the time Tb has elapsed, and the primary resistance calculator 13 detects the U-phase current from the detector 5 in the same manner as described above. The current is measured a plurality of times and the measured value is stored. Note that the value is the same as the value of the U-phase current as indicated by the V-phase current ha4 (b) at this time. When the measurement is completed, the primary resistance calculating section 13 outputs a measurement end signal to the command device 12. The command device 12 outputs a voltage based on the stored command voltage V to the W phase-
Commands Vw * and Vv * to be applied between the V phases are given to the inverter 2, and the inverter 2 thereby performs the W-phase to V-phase winding CL.
A voltage is applied to w and CLv to flow a current. That is, the process proceeds to the period C.

【0025】C期間では指令器14はB期間と同様にT
b時間経過すると、一次抵抗演算部13に信号を出力
し、一次抵抗演算部13は検出器5からのW相電流の検
出出力によりW相電流を複数回測定してその測定値を記
憶する。尚この時のV相電流ha4(b)に示すように
U相電流の値と同じである。この測定が終われば出力を
止める。
In the period C, the command unit 14 outputs T
After the elapse of the time b, a signal is output to the primary resistance calculation unit 13, and the primary resistance calculation unit 13 measures the W-phase current a plurality of times based on the detection output of the W-phase current from the detector 5, and stores the measured value. Note that the value is the same as the value of the U-phase current as indicated by the V-phase current ha4 (b) at this time. When this measurement is completed, the output is stopped.

【0026】次に、一次抵抗演算部13は演算機能によ
りA、B、C期間でそれぞれ複数回測定したU相電流,
V相電流,W相電流の各平均値と印加電圧から一次抵抗
1を演算し、一次抵抗設定器15に設定する。ここ
で、A期間、B期、C期間のそれぞれの複数回測定し
た各相の電流の平均値が設定電流に対する電流一致幅X
内に無い場合には、一次抵抗r1 の設定は行なわない。
また設定電流の数倍の電流が測定中に流れたときにはイ
ンバータ2の出力を停止させて一次抵抗r1 の調整動作
を止める。
Next, the primary resistance calculation unit 13 calculates the U-phase current, which is measured a plurality of times in the periods A, B, and C, by the calculation function .
The primary resistance r 1 is calculated from the average value of the V-phase current and the W-phase current and the applied voltage, and is set in the primary resistance setting device 15. Here, A period between B phase, was measured the plurality of times of period C
The average value of the current of each phase is the current matching width X with respect to the set current.
If not within the set of primary resistance r 1 is not performed.
The stop primary resistance r 1 of the adjustment operation by stopping the output of the inverter 2 when the number times the current setting current flows during measurement.

【0027】尚ここで電圧を印加する相や電流を流す相
を決めて説明しているが、相をかえて同じこともするこ
とができる。
Although the description has been made with reference to the phase to which the voltage is applied and the phase to which the current flows, the same can be done by changing the phase.

【0028】[0028]

【発明の効果】請求項1の発明は、誘導電動機の一次電
流から検出される励磁電流及びトルク電流により一次周
波数及び電圧が制御され、一次抵抗の設定値と励磁電流
と一次周波数とを乗算して求められた値とから励磁分電
圧を求め、一次抵抗の設定値とトルク電流とを乗算して
求められた乗算値と、磁束指令値と一次周波数とを乗算
して求められた乗算値とからトルク分電圧を求め、これ
ら励磁分電圧とトルク分電圧から電圧型インバータの指
令電圧を得る誘導電動機のベクトル制御方法おいて誘導
電動機の各相の巻線の内、第一の相間に電流を流す期間
と、第二の相間に電流を流す期間と、第三の相間に電流
を流す期間とを順次設定し、第一の相間に電流を流す期
間では予め設定した設定電流に流れる電流が一致するよ
うに電流制御を行いながら誘導電動機の印加電圧を決め
るとともに電流測定を行い、第二の相間、第三の相間に
電流を流す夫々の期間では第一の相に電流を流す期間
で求めた印加電圧を誘導電動機に印加しながら電流を測
定し、これらの期間の測定電流の平均値と印加電圧とか
ら一次抵抗の設定値を調整するので、過電流を流すこと
なく一次抵抗値を短時間で自動調整することができると
いう効果がある。
According to the first aspect of the present invention, the primary frequency and the voltage are controlled by the exciting current and the torque current detected from the primary current of the induction motor, and the set value of the primary resistance is multiplied by the exciting current and the primary frequency. The excitation component voltage is obtained from the value obtained by the above, the multiplication value obtained by multiplying the set value of the primary resistance by the torque current, and the multiplication value obtained by multiplying the magnetic flux command value and the primary frequency are obtained. In the vector control method of the induction motor, which obtains the command voltage of the voltage-type inverter from the excitation voltage and the torque voltage, a current is applied between the first phase of the windings of each phase of the induction motor. A current flowing period, a current flowing period between the second phases, and a current flowing period between the third phases are sequentially set, and during the current flowing between the first phases, the current flowing to the preset current matches. Current control so that While current measurement with determining the voltage applied to the induction motor, during the second phase, the in the period of each passing a current between the third phase induction motor applied voltage determined by the period of time in which current is supplied between the first phase The current is measured while the voltage is being applied, and the set value of the primary resistance is adjusted based on the average value of the measured current and the applied voltage during these periods, so the primary resistance can be automatically adjusted in a short time without flowing overcurrent. There is an effect that can be.

【0029】請求項2の発明は、請求項1の発明におい
て、一次抵抗値を調整する時に測定電流の平均値が設定
電流値の一致幅内になければ一次抵抗値を調整しないの
で、一次抵抗を自動調整する際に誤った調整をすること
がないという効果がある。
According to a second aspect of the present invention, in the first aspect of the present invention, when the primary resistance value is adjusted, the primary resistance value is not adjusted unless the average value of the measured current is within the matching width of the set current value. There is an effect that erroneous adjustment is not performed when automatically adjusting.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態の主要部の構成図である。FIG. 1 is a configuration diagram of a main part of an embodiment of the present invention.

【図2】本発明の一実施形態に用いる誘導電動機のベク
トル制御装置のシステム構成図である。
FIG. 2 is a system configuration diagram of an induction motor vector control device used in an embodiment of the present invention.

【図3】同上の誘導電動機の巻線に流すの動作説明図で
ある。
FIG. 3 is an explanatory diagram of an operation of flowing through a winding of the induction motor according to the first embodiment.

【図4】同上の誘導電動機の巻線に流す電流の動作説明
図である。
FIG. 4 is an explanatory diagram of an operation of a current flowing through a winding of the induction motor according to the first embodiment.

【符号の説明】[Explanation of symbols]

2 インバータ 4 誘導電動機 5 検出器 11 指令電圧演算部 12 指令器 13 一次抵抗演算部 14 減算器 15 一次抵抗測定器 V 指令電圧 Vu* ,Vv* ,Vw* 指令 r1 一次抵抗2 Inverter 4 Induction motor 5 Detector 11 Command voltage calculator 12 Commander 13 Primary resistance calculator 14 Subtractor 15 Primary resistance measuring instrument V Command voltage Vu * , Vv * , Vw * command r 1 Primary resistance

フロントページの続き (56)参考文献 特開 平8−33194(JP,A) 特開 平7−143800(JP,A) 特開 平1−136596(JP,A) 特開 平6−222118(JP,A) (58)調査した分野(Int.Cl.7,DB名) H02P 21/00 H02P 5/41 302 Continuation of the front page (56) References JP-A-8-33194 (JP, A) JP-A-7-143800 (JP, A) JP-A-1-136596 (JP, A) JP-A-6-222118 (JP) , A) (58) Field surveyed (Int. Cl. 7 , DB name) H02P 21/00 H02P 5/41 302

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】誘導電動機の一次電流から検出される励磁
電流及びトルク電流により一次周波数及び電圧が制御さ
れ、一次抵抗の設定値と励磁電流と一次周波数とを乗算
して求められた値とから励磁分電圧を求め、一次抵抗の
設定値とトルク電流とを乗算して求められた乗算値と、
磁束指令値と一次周波数とを乗算して求められた乗算値
とからトルク分電圧を求め、これら励磁分電圧とトルク
分電圧から電圧型インバータの指令電圧を得る誘導電動
機のベクトル制御方法おいて誘導電動機の各相の巻線
の内、第一の相間に電流を流す期間と、第二の相間に電
流を流す期間と、第三の相間に電流を流す期間とを順次
設定し、第一の相間に電流を流す期間では予め設定した
設定電流に流れる電流が一致するように電流制御を行い
ながら誘導電動機の印加電圧を決めるとともに電流測定
を行い、第二の相間、第三の相間に電流を流す夫々の期
間では第一の相に電流を流す期間で求めた印加電圧を
誘導電動機に印加しながら電流を測定し、これらの期間
の測定電流の平均値と印加電圧とから一次抵抗の設定値
を調整することを特徴とする誘導電動機のベクトル制御
方法。
A primary frequency and a voltage are controlled by an exciting current and a torque current detected from a primary current of an induction motor, and a primary resistance set value is multiplied by a value obtained by multiplying the exciting current by the primary frequency. A multiplied value obtained by multiplying the excitation component voltage by the set value of the primary resistance and the torque current,
Obtaining the torque portion voltage and a multiplied value obtained by multiplying the magnetic flux command value and the primary frequency, Oite the vector control method for an induction motor from these exciting component voltage and the torque portion voltage to obtain a command voltage of the voltage-type inverter Among the windings of each phase of the induction motor, a period in which current flows between the first phase, a period in which current flows in the second phase, and a period in which current flows in the third phase are sequentially set. In the period during which the current flows between the phases, the applied voltage of the induction motor is determined and the current is measured while controlling the current so that the current flowing to the preset current matches, and the current is measured between the second phase and the third phase. In each of the periods, the current is measured while applying the applied voltage determined during the period in which the current flows between the first phases to the induction motor, and the average value of the measured current and the applied voltage during these periods are used to determine the primary resistance. Adjusting the set value Vector control method for an induction motor according to symptoms.
【請求項2】一次抵抗値を調整する時に測定電流の平均
値が設定電流値の一致幅内になければ一次抵抗の設定値
を調整しないことを特徴とする請求項1の記載の誘導電
動機のベクトル制御方法。
2. The induction motor according to claim 1, wherein, when adjusting the primary resistance, the set value of the primary resistance is not adjusted unless the average value of the measured currents is within the matching width of the set current value. Vector control method.
JP19333595A 1995-07-28 1995-07-28 Vector control method of induction motor Expired - Fee Related JP3299416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19333595A JP3299416B2 (en) 1995-07-28 1995-07-28 Vector control method of induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19333595A JP3299416B2 (en) 1995-07-28 1995-07-28 Vector control method of induction motor

Publications (2)

Publication Number Publication Date
JPH0947099A JPH0947099A (en) 1997-02-14
JP3299416B2 true JP3299416B2 (en) 2002-07-08

Family

ID=16306189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19333595A Expired - Fee Related JP3299416B2 (en) 1995-07-28 1995-07-28 Vector control method of induction motor

Country Status (1)

Country Link
JP (1) JP3299416B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5600989B2 (en) * 2010-03-26 2014-10-08 サンケン電気株式会社 Control device and control method for induction motor

Also Published As

Publication number Publication date
JPH0947099A (en) 1997-02-14

Similar Documents

Publication Publication Date Title
US6462492B1 (en) Position-sensorless controlling method of synchronous motor
US6281659B1 (en) Induction motor drive and a parameter estimation method thereof
US6774664B2 (en) Method for automated measurement of the ohmic rotor resistance of an asynchronous machine
JP2001352800A (en) Constant identification method of synchronous motor and control unit with constant identification function therefor
JP2580101B2 (en) Method of setting control operation constants for induction motor control system
JP3337039B2 (en) Tuning method of vector control inverter for induction motor
JP3299416B2 (en) Vector control method of induction motor
JP2943377B2 (en) Vector controller for induction motor
JP4238652B2 (en) Speed sensorless vector control method and apparatus
JP3231553B2 (en) Inverter control device control parameter setting method
JPH07123798A (en) Speed sensorless vector control system for induction motor
JP2847092B2 (en) Automatic adjustment method of vector control device
JP3121525B2 (en) Vector control method and device for induction motor
JP3226258B2 (en) Induction motor vector control device and method
JPH06101954B2 (en) Induction motor vector controller
JPS6159071B2 (en)
JP3032681B2 (en) Method and apparatus for measuring secondary resistance of induction motor
JPH0570394B2 (en)
JP3770302B2 (en) Induction motor speed control device
JP2897373B2 (en) DC brushless motor controller
JP2654547B2 (en) Induction motor control device
KR100351299B1 (en) Measuring method for mutual inductance of induction motor
JPH0530792A (en) Equipment for controlling induction motor
JPH03135389A (en) Method and device for controlling voltage type inverter
JP3056977B2 (en) Induction motor vector control device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020326

LAPS Cancellation because of no payment of annual fees