JP3292437B2 - Conductive bonding method - Google Patents

Conductive bonding method

Info

Publication number
JP3292437B2
JP3292437B2 JP29850395A JP29850395A JP3292437B2 JP 3292437 B2 JP3292437 B2 JP 3292437B2 JP 29850395 A JP29850395 A JP 29850395A JP 29850395 A JP29850395 A JP 29850395A JP 3292437 B2 JP3292437 B2 JP 3292437B2
Authority
JP
Japan
Prior art keywords
curing agent
adhesive
latent curing
temperature
conductive bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29850395A
Other languages
Japanese (ja)
Other versions
JPH09137131A (en
Inventor
努 佐々木
幸廣 斎藤
淳 吉野
勝吾 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP29850395A priority Critical patent/JP3292437B2/en
Publication of JPH09137131A publication Critical patent/JPH09137131A/en
Application granted granted Critical
Publication of JP3292437B2 publication Critical patent/JP3292437B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Adhesives Or Adhesive Processes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、材料を電気的に導
通させて接着接合する導通接着方法に関するものであ
り、特に、圧電素子におけるセラミックス上の電極材料
と振動板の導通接着方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive bonding method for electrically bonding and bonding materials, and more particularly to a conductive bonding method between an electrode material on ceramics of a piezoelectric element and a diaphragm. is there.

【0002】[0002]

【従来の技術】従来、金属材料間で導通をとり、かつ物
理的あるいは機械的に接合させる場合には、アクリル樹
脂系あるいはエポキシ樹脂系の接着剤が広く用いられて
いた。エポキシ樹脂系の接着剤では、1液型接着剤に金
属粉末等の導電物質を混合したもの、あるいは2液型接
着剤が用いられていた。
2. Description of the Related Art Conventionally, an acrylic resin-based or epoxy resin-based adhesive has been widely used to establish electrical continuity between metal materials and to physically or mechanically join them. As the epoxy resin-based adhesive, one obtained by mixing a conductive material such as metal powder with a one-component adhesive or a two-component adhesive has been used.

【0003】一例として、2液型エポキシ樹脂接着剤を
用いた場合の圧電素子の接着組立て工程を以下に示す。
例えば、主剤:硬化剤を重量比で100±5:33±1
となるように混合し、これを5分以上攪拌した後、圧電
素子表面に形成された銀電極の上に均一に塗布する。こ
の接着剤塗布面にパーマロイを圧着し、5±1kg/c
2の加圧条件において100±5℃で1.5時間加熱
し、硬化(第1段階硬化)させた後、ガラス転移温度よ
り高温の150±5℃で1.5時間熱処理(第2段階硬
化)することにより、接着剤を硬化させていた。
As an example, a bonding and assembling process of a piezoelectric element when a two-pack type epoxy resin adhesive is used will be described below.
For example, the base agent: the curing agent is 100 ± 5: 33 ± 1 by weight ratio.
After stirring for 5 minutes or more, the mixture is uniformly applied on a silver electrode formed on the surface of the piezoelectric element. Combine permalloy on this adhesive coated surface and apply 5 ± 1kg / c
After heating at 100 ± 5 ° C. for 1.5 hours under a pressure of m 2 and curing (first stage curing), heat treatment at 150 ± 5 ° C. higher than the glass transition temperature for 1.5 hours (second stage) By curing, the adhesive was cured.

【0004】[0004]

【発明が解決しようとする課題】1液型接着剤のうちア
クリル樹脂接着剤は、系が均一であり、薄膜成形性に優
れ、導通の面では問題ないが、耐熱性、耐湿性等の耐久
性の面で劣るものであった。1液型エポキシ樹脂接着剤
に導電物質を混合したものは、導電物質そのものが薄膜
成形を阻害し、接着力の低下の原因になっていた。一
方、2液型接着剤は、薄膜成形性は優れるが、これもま
た、調合の必要性、さらにはポットライフ(可使時間)
の制約があった。本発明は、上記のような問題点を解決
し、耐熱性、耐湿性等の耐久性に優れる導通接着を実現
するものである。
Among the one-component adhesives, the acrylic resin adhesive has a uniform system, is excellent in thin-film moldability, and has no problem in terms of conduction, but has durability such as heat resistance and moisture resistance. The sex was inferior. In the case where a conductive material is mixed with a one-component epoxy resin adhesive, the conductive material itself hinders the formation of a thin film, causing a reduction in adhesive strength. On the other hand, two-part adhesives have excellent thin film moldability, but this also necessitates compounding, and furthermore, pot life (pot life).
There were restrictions. The present invention solves the above-mentioned problems and realizes conductive adhesion having excellent durability such as heat resistance and moisture resistance.

【0005】[0005]

【課題を解決するための手段】本発明の導通接着方法
は、溶融熱により作用する融点が40〜100℃の潜在
性硬化剤を含む1液型エポキシ樹脂接着剤を、接着しよ
うとする材料の少なくとも一方の表面に塗布する工程
と、前記材料の接着剤塗布面に他方の材料を圧着し、2
g/cm2以上の圧力で加圧しながら前記潜在性硬化剤
の融点より10℃以上高い温度に昇温させ、前記潜在性
硬化剤を均一に溶融させることにより前記接着剤を硬化
させる工程と、硬化した前記接着剤を、ガラス転移温度
以上の温度で熱処理する工程を含むものである。
SUMMARY OF THE INVENTION According to the present invention, there is provided a conductive bonding method for bonding a one-pack type epoxy resin adhesive containing a latent curing agent having a melting point of 40 to 100.degree . Applying at least one surface, pressing the other material onto the adhesive applied surface of the material,
raising the temperature to a temperature higher than the melting point of the latent curing agent by 10 ° C. or more while applying pressure at a pressure of g / cm 2 or more, and curing the adhesive by uniformly melting the latent curing agent; The method further comprises a step of heat-treating the cured adhesive at a temperature equal to or higher than the glass transition temperature.

【0006】また、溶融熱により作用する融点が40〜
100℃の潜在性硬化剤を含む1液型エポキシ樹脂接着
剤を、接着しようとする材料の少なくとも一方の表面に
塗布する工程と、前記材料の接着剤塗布面に他方の材料
を圧着し、2g/cm2以上の圧力で加圧しながら5〜
30℃/minの昇温速度で前記潜在性硬化剤の融点以
上に昇温させ、前記潜在性硬化剤を均一に溶融させるこ
とにより前記接着剤を硬化させる工程と、硬化した前記
接着剤をガラス移転温度以上の温度で熱処理する工程を
含むものである。
Further, the melting point acting by the heat of fusion is 40 to
A step of applying a one-pack type epoxy resin adhesive containing a latent curing agent at 100 ° C. to at least one surface of a material to be bonded; / Cm 2
Heating the latent curing agent at a temperature rising rate of 30 ° C./min or higher to a temperature equal to or higher than the melting point of the latent curing agent, and curing the adhesive by uniformly melting the latent curing agent; This includes a step of performing a heat treatment at a temperature equal to or higher than the transfer temperature.

【0007】いわゆる1液型接着剤には、主剤(例えば
ビスフェノールA)とともに潜在性硬化剤があらかじめ
配合されている。潜在性硬化剤は、主剤に配合して室温
に放置する限りにおいては長期間に渡って安定である
が、熱、光、湿気または圧力の作用(例えば、潜在性硬
化剤の溶融熱等)で掛金が外されると、主剤は直ちに硬
化反応を開始する。これらのうち、溶融熱により作用す
る潜在性硬化剤を使用することで、系全体で安定した硬
化反応を行うことができ、安定した導通接着性が得られ
る。また、上記のような2液型接着剤の使い難さが改善
され、同時にエポキシ樹脂であるため、耐熱性、耐湿性
等の信頼性も確保できる。潜在性硬化剤の反応開始を抑
えている掛金の外し方で分類すると以下のようになる。
[0007] A so-called one-pack type adhesive contains a latent curing agent in advance together with a main component (for example, bisphenol A). The latent curing agent is stable for a long period of time as long as it is blended with the main component and left at room temperature, but is affected by the action of heat, light, moisture or pressure (for example, the heat of fusion of the latent curing agent). As soon as the latch is removed, the base begins to cure. Of these, by using a latent curing agent that acts by the heat of fusion, a stable curing reaction can be performed in the entire system, and stable conductive adhesion can be obtained. Further, the difficulty of using the two-component adhesive as described above is improved, and at the same time, since it is an epoxy resin, reliability such as heat resistance and moisture resistance can be secured. The classification by the method of removing the latch that suppresses the start of the reaction of the latent curing agent is as follows.

【0008】[0008]

【表1】 [Table 1]

【0009】これらの中で、加熱溶融できる潜在性硬化
剤としては、掛金を外す手段が「熱」であれば原則とし
てどれでも適用することができるが、導通接着するため
には系が均一化する必要があり、硬化開始機構が「溶
融」によるものが好適である。潜在性硬化剤としては、
表1に示すようにジシアンジアミド、有機酸ヒドラジ
ド、メラミン誘導体、イミダゾール化合物、ジアミノマ
レオニトリル、またはポリアミン塩等がある。このよう
な溶融性の潜在性硬化剤が主剤中に分散された系を均一
に硬化させることで導通接着するものである。
Of these, any latent curing agent that can be heated and melted can be applied in principle, as long as the means for releasing the latch is "heat". It is preferable that the curing initiation mechanism is based on “melting”. As the latent curing agent,
As shown in Table 1, there are dicyandiamide, organic acid hydrazide, melamine derivative, imidazole compound, diaminomaleonitrile, polyamine salt and the like. Conductive adhesion is achieved by uniformly curing a system in which such a fusible latent curing agent is dispersed in a main agent.

【0010】また、潜在性硬化剤の融点が40〜100
℃であるものが好ましい。常温での反応開始を防ぐため
には、融点が40℃以上であることが好ましい。また、
100℃を超えた高温環境下では、不純物、水分等の影
響により主剤のみでも硬化反応が開始される。そのた
め、系全体の反応の進行を均一化させるためには上記範
囲が適当である。さらに、潜在性硬化剤の平均粒径が、
30μm以下であるものが好ましい。潜在性硬化剤の平
均粒径を30μm以下とすることで、主剤の硬化反応を
系全体で均一化させることができる。また、接着しよう
とする材料の一方がパーマロイであり、他方が銀である
ことが好ましい。
The latent curing agent has a melting point of 40 to 100.
C. is preferred. In order to prevent the reaction from starting at room temperature, the melting point is preferably 40 ° C. or higher. Also,
In a high-temperature environment exceeding 100 ° C., the curing reaction is started only with the main agent due to the influence of impurities, moisture and the like. Therefore, in order to make the progress of the reaction of the entire system uniform, the above range is appropriate. Furthermore, the average particle size of the latent curing agent is
Those having a size of 30 μm or less are preferred. By setting the average particle size of the latent curing agent to 30 μm or less, the curing reaction of the main agent can be made uniform throughout the system. Preferably, one of the materials to be bonded is permalloy and the other is silver.

【0011】[0011]

【発明の実施の形態】本発明の導通接着方法を、実施例
により具体的に説明する。本発明はこれらに限定されな
い。 [実施例] 1液型エポキシ樹脂接着剤(潜在性硬化剤混合タイプ) ・主剤 …ビスフェノールA 『エピコート 828』(シェル ジャパン(株)) ・硬化剤 …潜在性硬化剤 『アミキュア PN−23』(味の素(株)) 平均粒径 10μm ・配合比(重量比) 主剤100:硬化剤25
BEST MODE FOR CARRYING OUT THE INVENTION The conductive bonding method of the present invention will be specifically described with reference to examples. The present invention is not limited to these. [Example] One-pack type epoxy resin adhesive (latent curing agent mixed type) Main agent: Bisphenol A "Epicoat 828" (Shell Japan Co., Ltd.) Curing agent: Latent curing agent "Amicure PN-23" ( (Ajinomoto Co., Inc.) Average particle size 10 μm ・ Blending ratio (weight ratio) Main agent 100: curing agent 25

【0012】[比較例1] 2液型エポキシ樹脂接着剤 ・主剤 …ビスフェノールA 『エコボンド 55』(グレースジャパン(株)) ・硬化剤 …変性芳香族アミン 『キャタリスト 11J』(グレースジャパン(株)) ・配合比(重量比) 主剤100:硬化剤33 [比較例2] 1液型エポキシ樹脂接着剤(潜在性硬化剤混合タイプ) ・主剤 …ビスフェノールA 『エピコート 828』(シェル ジャパン(株)) ・硬化剤 …潜在性硬化剤 『アミキュア MY−24』(味の素(株)) 平均粒径 10μm ・配合比(重量比) 主剤100:硬化剤25[Comparative Example 1] Two-part epoxy resin adhesive ・ Main agent: bisphenol A “Ecobond 55” (Grace Japan Co., Ltd.) ・ Curing agent: Modified aromatic amine “Catalyst 11J” (Grace Japan Co., Ltd.) -Mixing ratio (weight ratio) Main agent 100: Hardener 33 [Comparative Example 2] One-pack type epoxy resin adhesive (latent hardener mixed type)-Main agent: Bisphenol A "Epicoat 828" (Shell Japan Co., Ltd.)・ Curing agent: Latent curing agent “Amicure MY-24” (Ajinomoto Co., Inc.) Average particle size 10 μm ・ Blending ratio (weight ratio) Main agent 100: Curing agent 25

【0013】実施例および比較例1、2の接着剤を、そ
れぞれ2枚のスライドガラス(10mm×10mm)で
挟み、接着剤の層(以下、接着層とする)の厚さの変位
をTMA(熱機械的分析)により、昇温速度10℃/m
in、圧縮荷重2.0gの設定条件において測定した。
その結果を図1に示す。図1に示すように、1液型エポ
キシ樹脂接着剤である実施例および比較例2の接着剤
は、ともに70〜80℃付近に接着層厚の低下が確認で
きる。これは、主剤の硬化反応が開始され、ゲル化によ
って粘度が低下したことによるもので、この温度近辺で
硬化剤の溶融により主剤の硬化反応が開始されたことを
示す。また、これらの接着剤をJIS K−6850鉄
試験片(面積3.125cm2)で挟み、荷重2.0k
gで加圧しながら、昇温速度20℃/minの設定条件
で昇温させ、硬化過程における接着剤の抵抗値変化を測
定した。その結果を図2に示す。
Each of the adhesives of the embodiment and comparative examples 1 and 2 was sandwiched between two slide glasses (10 mm × 10 mm), and the displacement of the thickness of the adhesive layer (hereinafter referred to as an adhesive layer) was determined by TMA ( According to thermomechanical analysis), the heating rate was 10 ° C / m
in, and measured under a set condition of a compression load of 2.0 g.
The result is shown in FIG. As shown in FIG. 1, in the adhesives of Example and Comparative Example 2, which are one-pack type epoxy resin adhesives, a decrease in the thickness of the adhesive layer can be confirmed at around 70 to 80 ° C. This is because the curing reaction of the main agent was started and the viscosity was lowered by gelation, and it indicates that the curing reaction of the main agent was started by melting of the curing agent around this temperature. Further, these adhesives were sandwiched between JIS K-6850 iron test pieces (area 3.125 cm 2 ) and a load of 2.0 k
While pressurizing with g, the temperature was raised under the set conditions of a temperature rising rate of 20 ° C./min, and the change in the resistance value of the adhesive during the curing process was measured. The result is shown in FIG.

【0014】図1、2に示すように、1液型エポキシ樹
脂接着剤である実施例および比較例2の接着剤は、いず
れも70〜80℃付近に接着層厚の低下および抵抗値の
低下が確認できる。実施例の接着剤の抵抗値が比較例1
の2液型接着剤と同レベル(10〜20mΩ)にまで低
下するのに対し、比較例2の接着剤は、TMA結果に示
すように接着層が薄膜化しないため、抵抗値の変化幅が
小さく、導通接着レベル(100mΩ以下)まで低下し
ない。比較例1に用いた2液型エポキシ樹脂接着剤は、
既に圧電素子により導通接着が確認されており、接着剤
硬化後の接着層の抵抗値(導通性)は、常温において1
00mΩ以下になる。
As shown in FIGS. 1 and 2, the adhesives of Examples and Comparative Example 2, which are one-pack type epoxy resin adhesives, all have a decrease in the thickness of the adhesive layer and a decrease in the resistance value around 70 to 80 ° C. Can be confirmed. Comparative Example 1
On the other hand, the adhesive of Comparative Example 2 does not have a thin adhesive layer as shown in the TMA result. It is small and does not decrease to the conductive adhesion level (100 mΩ or less). The two-part epoxy resin adhesive used in Comparative Example 1 was:
Conductive adhesion has already been confirmed by the piezoelectric element, and the resistance value (conductivity) of the adhesive layer after curing of the adhesive is 1 at room temperature.
00 mΩ or less.

【0015】図3に、実施例及び比較例2の1液型接着
剤を、昇温速度5℃/minで硬化させた時のDSC
(示差走査熱量測定)結果を示す。実施例の接着剤の硬
化反応が急激に進行するのに対して、比較例2の接着剤
では、緩やかに進行することがわかる。また、実施例お
よび比較例2の接着剤に用いた硬化剤の融点をそれぞれ
図4および図5に示す。DSC結果より、実施例の接着
剤の場合、硬化剤が57.5℃(図4)で溶融した後、
主剤が図3に示すような硬化発熱を起こすのに対し、比
較例2に用いた硬化剤の融点は68.3℃、83.1
℃、136.9℃(図5)と分散し、主剤の硬化反応開
始後にも溶融する成分が存在する。そのため、主剤の硬
化反応の進行は遅く、硬化の際のゲル化による粘度低下
の度合いは小さくなり、接着層の薄膜化、導通を妨げて
いると考えられる。
FIG. 3 shows the DSC obtained when the one-component adhesives of Example and Comparative Example 2 were cured at a heating rate of 5 ° C./min.
(Differential scanning calorimetry) The result is shown. It can be seen that the curing reaction of the adhesive of the example progresses rapidly, while the adhesive of the comparative example 2 progresses slowly. 4 and 5 show the melting points of the curing agents used in the adhesives of Example and Comparative Example 2, respectively. From the DSC results, in the case of the adhesive of Example, after the curing agent was melted at 57.5 ° C. (FIG. 4),
While the base material generates heat of curing as shown in FIG. 3, the curing agent used in Comparative Example 2 has a melting point of 68.3 ° C. and 83.1 ° C.
C. and 136.9 ° C. (FIG. 5), and there is a component that melts even after the curing reaction of the main agent is started. Therefore, it is considered that the curing reaction of the main agent progresses slowly, and the degree of viscosity decrease due to gelation at the time of curing becomes small, thereby preventing the adhesive layer from becoming thinner and conducting.

【0016】上記の実施例および比較例1の接着剤を用
いて、表面に銀電極を有する圧電セラミックス素子とパ
ーマロイを接着した。直径15.8mm、中央部に直径
3.1mmの空孔部を有する円板状圧電セラミックスの
一方の平面の銀電極上に実施例1の1液型エポキシ樹脂
接着剤を塗布し、その塗布面に円板状のパーマロイを圧
着した。これらを、昇温速度30℃/min、圧縮荷重
2.0g/cm2で100℃まで昇温させ、その温度で
1.5時間保持した後、さらにガラス転移温度(135
℃)より高い150℃で1.5時間熱処理した。また、
比較例1の2液型エポキシ樹脂接着剤を用いて、圧縮荷
重5.0kg/cm2とした以外は実施例と同様にし
て、圧電セラミックスとパーマロイを接着した。実施例
および比較例1の導通接着方法により接着された圧電素
子は、ともに導通が確認された。また、これらの接着剥
離強度を測定した。表2にその結果を示す。
Using the adhesives of the above Examples and Comparative Example 1, a permalloy was bonded to a piezoelectric ceramic element having a silver electrode on the surface. One-part epoxy resin adhesive of Example 1 is applied to one flat silver electrode of a disc-shaped piezoelectric ceramic having a diameter of 15.8 mm and a central hole of 3.1 mm in diameter, and the coated surface thereof Then, a disk-shaped permalloy was pressed. These were heated to 100 ° C. at a temperature rising rate of 30 ° C./min and a compressive load of 2.0 g / cm 2 , kept at that temperature for 1.5 hours, and further heated to a glass transition temperature (135 ° C.).
C.) at 150 ° C. for 1.5 hours. Also,
Piezoelectric ceramics and permalloy were bonded in the same manner as in Example 1 except that the two-component epoxy resin adhesive of Comparative Example 1 was used and the compression load was changed to 5.0 kg / cm 2 . Both the piezoelectric elements bonded by the conductive bonding method of Example and Comparative Example 1 were confirmed to be conductive. The adhesive peel strength was measured. Table 2 shows the results.

【0017】[0017]

【表2】 [Table 2]

【0018】実施例の導通接着方法の場合、接着強度の
平均値は7.76kg/cm2となり、比較例1の導通
接着方法の値(8.24kg/cm2)と比べると若干
低い値を示すが、実用上、十分な強度が得られる。ま
た、バラツキ(σ)は大きく改善され、安定した接着強
度が得られることがわかる。
In the case of the conductive bonding method of the example, the average value of the bonding strength was 7.76 kg / cm 2 , which was slightly lower than the value of the conductive bonding method of Comparative Example 1 (8.24 kg / cm 2 ). As shown, practically sufficient strength is obtained. Further, it can be seen that the variation (σ) is greatly improved, and a stable adhesive strength can be obtained.

【0019】上記実施例では、加える圧力を2g/cm
2としたが、接着材料間の導通を図るためには接着層の
厚さは薄い方が好ましいため、さらに大きな圧力で加圧
することが好ましい。接着層を導通させるためには、接
着層の薄膜化が必要となる。そのためには主剤の硬化反
応の進行を系全体で均一化させ、反応開始時のゲル化に
よる粘度低下を大きくすることが望ましい。接着剤を硬
化させるためには、潜在性硬化剤の融点より高い温度に
昇温させる必要があるが、融点よりも10℃以上高い温
度に昇温させることにより、接着剤全体において均一に
硬化剤を溶融させ、主剤の硬化反応の進行を均一化する
ことができる。また、速い速度で昇温させると、接着剤
中の温度分布が不均一となり、系の硬化反応の進行が不
均一となるため、30℃/min以下の温度で昇温させ
ることが好ましい。一方、昇温速度が遅すぎると、硬化
反応が徐々に進行し、反応開始時の粘度が高くなるた
め、接着層の薄膜化が図れない。また、接着力の低下や
系の不均一をもたらすため、少なくとも5℃/min以
上の昇温速度が望ましい。
In the above embodiment, the applied pressure is 2 g / cm
Although it is set to 2 , it is preferable that the thickness of the adhesive layer be thin in order to achieve conduction between the adhesive materials, and therefore it is preferable to apply a higher pressure. In order to make the adhesive layer conductive, it is necessary to reduce the thickness of the adhesive layer. For this purpose, it is desirable to make the progress of the curing reaction of the main agent uniform throughout the entire system and to increase the viscosity decrease due to gelation at the start of the reaction. In order to cure the adhesive, it is necessary to raise the temperature to a temperature higher than the melting point of the latent curing agent. To make the progress of the curing reaction of the main agent uniform. Further, if the temperature is raised at a high rate, the temperature distribution in the adhesive becomes non-uniform, and the progress of the curing reaction of the system becomes non-uniform. Therefore, it is preferable to raise the temperature at a temperature of 30 ° C./min or less. On the other hand, if the rate of temperature rise is too slow, the curing reaction proceeds gradually, and the viscosity at the start of the reaction increases, so that the adhesive layer cannot be made thinner. In addition, a rate of temperature increase of at least 5 ° C./min is desirable in order to cause a decrease in adhesive strength and an uneven system.

【0020】硬化剤の融点が低すぎると、室温で偶発的
に硬化反応が開始される恐れがあり、安定した導通接着
は望めない。そのため、硬化剤の融点は40℃以上であ
ることが好ましい。また、100℃を超える高温環境下
では、不純物、水分等の影響により主剤のみでも硬化反
応が開始される。この場合、反応の安定性に欠き、さら
には反応速度は遅く、反応開始時の粘度が高くなる。そ
のため、導通接着するために求められる接着層の薄膜化
が困難となる。また、接着材料との接着性も低下する。
そのため、100℃以下で主剤の硬化反応が開始される
こと、すなわち硬化剤の融点が100℃以下であること
が好ましい。さらに常温での保存性、高温での反応の安
定性を考慮すると、50〜80℃が好適である。1液型
接着剤は、主剤と硬化剤の分散系であるが、硬化反応の
進行を均一化するためには、硬化剤の平均粒径は小さい
方が好ましく、具体的には30μm以下であることが好
ましい。特に上記実施例で用いたように10μm以下が
好ましい。
If the melting point of the curing agent is too low, a curing reaction may be accidentally started at room temperature, and stable conductive adhesion cannot be expected. Therefore, the melting point of the curing agent is preferably 40 ° C. or higher. Further, in a high-temperature environment exceeding 100 ° C., the curing reaction is started only with the main agent due to the influence of impurities, moisture and the like. In this case, the stability of the reaction is lacking, the reaction speed is low, and the viscosity at the start of the reaction is high. Therefore, it is difficult to reduce the thickness of the adhesive layer required for conductive bonding. Further, the adhesiveness with the adhesive material is also reduced.
Therefore, it is preferable that the curing reaction of the main agent starts at 100 ° C. or less, that is, the melting point of the curing agent is 100 ° C. or less. Considering the storage stability at normal temperature and the stability of the reaction at high temperature, the temperature is preferably 50 to 80 ° C. The one-component adhesive is a dispersion of a main agent and a curing agent, and in order to make the progress of the curing reaction uniform, the average particle size of the curing agent is preferably smaller, specifically, 30 μm or less. Is preferred. In particular, as used in the above embodiment, the thickness is preferably 10 μm or less.

【0021】[0021]

【発明の効果】本発明により、1液型エポキシ樹脂接着
剤を用いた導通接着が可能となる。その結果、接着剤の
調合の煩雑さやポットライフの制限といった従来の問題
を解決し、かつアクリル樹脂接着剤よりも耐久性の優れ
た導通接着が可能となる。
According to the present invention, conductive bonding using a one-pack type epoxy resin adhesive can be performed. As a result, the conventional problems such as the complicated preparation of the adhesive and the limitation of the pot life can be solved, and the conductive bonding with more excellent durability than the acrylic resin adhesive can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例および比較例1、2の接着剤の硬化過程
における接着層厚の変化を示す特性図(TMA結果)で
ある。
FIG. 1 is a characteristic diagram (TMA result) showing a change in the thickness of an adhesive layer during the curing process of the adhesives of Example and Comparative Examples 1 and 2.

【図2】同接着層の抵抗値を示す特性図である。FIG. 2 is a characteristic diagram showing a resistance value of the adhesive layer.

【図3】実施例および比較例2の接着剤の硬化過程にお
ける熱的挙動を示す特性図(DSC結果)である。
FIG. 3 is a characteristic diagram (DSC result) showing a thermal behavior in a curing process of the adhesives of Example and Comparative Example 2.

【図4】実施例の接着剤に用いた硬化剤の昇温過程にお
ける熱的挙動を示す特性図(DSC結果)である。
FIG. 4 is a characteristic diagram (DSC result) showing the thermal behavior of the curing agent used in the adhesive of the example in the temperature rising process.

【図5】比較例2の接着剤に用いた硬化剤の昇温過程に
おける熱的挙動を示す特性図(DSC結果)である。
FIG. 5 is a characteristic diagram (DSC result) showing a thermal behavior of a curing agent used for an adhesive of Comparative Example 2 in a temperature rising process.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浅野 勝吾 横浜市港北区綱島東四丁目3番1号 松 下通信工業株式会社内 (56)参考文献 特開 平5−47212(JP,A) 特開 昭55−1123(JP,A) 特開 平3−29207(JP,A) 特開 平4−142383(JP,A) (58)調査した分野(Int.Cl.7,DB名) C09J 5/00 - 5/06 C09J 11/06 C09J 163/00 - 163/10 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Shogo Asano 4-3-1 Tsunashima Higashi, Kohoku-ku, Yokohama-shi Matsushita Communication Industrial Co., Ltd. (56) References JP-A-5-47212 (JP, A) 555-1123 (JP, A) JP-A-3-29207 (JP, A) JP-A-4-142383 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C09J5 / 00-5/06 C09J 11/06 C09J 163/00-163/10

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 溶融熱により作用する融点が40〜10
0℃の潜在性硬化剤を含む1液型エポキシ樹脂接着剤
を、接着しようとする材料の少なくとも一方の表面に塗
布する工程と、前記材料の接着剤塗布面に他方の材料を
圧着し、2g/cm2以上の圧力で加圧しながら前記潜
在性硬化剤の融点より10℃以上高い温度に昇温させ、
前記潜在性硬化剤を均一に溶融させることにより前記接
着剤を硬化させる工程と、硬化した前記接着剤を、ガラ
ス転移温度以上の温度で熱処理する工程を含む導通接着
方法。
The melting point acting by the heat of fusion is 40 to 10.
Applying a one-component epoxy resin adhesive containing a latent curing agent at 0 ° C. to at least one surface of the material to be bonded; pressing the other material on the adhesive applied surface of the material; / Cm 2 while pressurizing at a pressure of not less than 10 ° C. higher than the melting point of the latent curing agent,
A conductive bonding method comprising: a step of curing the adhesive by uniformly melting the latent curing agent; and a step of heat-treating the cured adhesive at a temperature equal to or higher than a glass transition temperature.
【請求項2】 溶融熱により作用する融点が40〜10
0℃の潜在性硬化剤を含む1液型エポキシ樹脂接着剤
を、接着しようとする材料の少なくとも一方の表面に塗
布する工程と、前記材料の接着剤塗布面に他方の材料を
圧着し、2g/cm2以上の圧力で加圧しながら5〜3
0℃/minの昇温速度で前記潜在性硬化剤の融点以上
に昇温させ、前記潜在性硬化剤を均一に溶融させること
により前記接着剤を硬化させる工程と、硬化した前記接
着剤をガラス転移温度以上の温度で熱処理する工程を含
む導通接着方法。
2. The melting point acting by the heat of fusion is 40 to 10.
Applying a one-pack type epoxy resin adhesive containing a latent curing agent at 0 ° C. to at least one surface of the material to be bonded; pressing the other material onto the adhesive applied surface of the material; 5-3 while pressurizing at a pressure of / cm 2 or more
Raising the temperature of the latent curing agent to a temperature equal to or higher than the melting point of the latent curing agent at a temperature rising rate of 0 ° C./min, and curing the adhesive by uniformly melting the latent curing agent; A conductive bonding method including a step of performing a heat treatment at a temperature equal to or higher than a transition temperature.
【請求項3】 前記潜在性硬化剤の平均粒径が30μm
以下である請求項1または2記載の導通接着方法。
3. The latent curing agent has an average particle size of 30 μm.
The conductive bonding method according to claim 1 or 2, wherein:
【請求項4】 前記接着しようとする材料の一方がパー
マロイであり、他方が銀である請求項1または2記載の
導通接着方法。
4. The conductive bonding method according to claim 1, wherein one of the materials to be bonded is permalloy and the other is silver.
JP29850395A 1995-11-16 1995-11-16 Conductive bonding method Expired - Fee Related JP3292437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29850395A JP3292437B2 (en) 1995-11-16 1995-11-16 Conductive bonding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29850395A JP3292437B2 (en) 1995-11-16 1995-11-16 Conductive bonding method

Publications (2)

Publication Number Publication Date
JPH09137131A JPH09137131A (en) 1997-05-27
JP3292437B2 true JP3292437B2 (en) 2002-06-17

Family

ID=17860562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29850395A Expired - Fee Related JP3292437B2 (en) 1995-11-16 1995-11-16 Conductive bonding method

Country Status (1)

Country Link
JP (1) JP3292437B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5728804B2 (en) * 2009-10-07 2015-06-03 デクセリアルズ株式会社 Thermosetting adhesive composition, thermosetting adhesive sheet, method for producing the same, and reinforced flexible printed wiring board

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551123A (en) * 1978-06-20 1980-01-07 Sumitomo Bakelite Co Method of manufacturing flexible printec circuit board
US5001542A (en) * 1988-12-05 1991-03-19 Hitachi Chemical Company Composition for circuit connection, method for connection using the same, and connected structure of semiconductor chips
JPH04142383A (en) * 1990-10-03 1992-05-15 Ube Ind Ltd Adhesive composition
JPH0547212A (en) * 1991-08-21 1993-02-26 Oki Electric Ind Co Ltd Single-fluid type conductive adhesive

Also Published As

Publication number Publication date
JPH09137131A (en) 1997-05-27

Similar Documents

Publication Publication Date Title
JP3678547B2 (en) Multilayer anisotropic conductive adhesive and method for producing the same
US4147669A (en) Conductive adhesive for providing electrical and thermal conductivity
US5641996A (en) Semiconductor unit package, semiconductor unit packaging method, and encapsulant for use in semiconductor unit packaging
EP1850351B1 (en) Adhesive for circuit connection
EP1098361B1 (en) Particle material, anisotropic conductive connection and anisotropic conductive connection material, method of manufacturing the same, and use of the same
JPS6147760A (en) Anisotropic electrically conductive adhesive
EP2287262A1 (en) Connecting material
JPH0346774A (en) Anisotropic conductive adhesive, method of electrical connection between electrodes using such adhesive, and electric circuit base formed in such method
JPH10510091A (en) Electrical connection method
JP3292437B2 (en) Conductive bonding method
AU695142B2 (en) Semiconductor unit package, semiconductor unit packaging method and encapsulant for use in semiconductor unit packaging
JP2004155957A (en) Anisotropic conductive adhesive and film
JP2001302881A (en) Stabilized cationic polymerizable composition and adhesive film and conductive circuit using the same
JPH08193186A (en) Conductive particle for anisotropically conductive adhesive and anisotropically conductive adhesive containing same
JPS62127194A (en) Production of anisotropic conductive solder joining material
JPH08188760A (en) Anisotropic electroconductive adhesive and anisotropic electroconductive adhesive sheet using the same
KR100341316B1 (en) Low temperature curable anisotropic conductive film for bonding circuit
JP2001085824A (en) Adhesive for mounting electronic parts and mounting method for electronic parts using the same
JPH11219982A (en) Conductive particle and anisotropic conductive adhesive agent provided therewith
JP3595944B2 (en) Method for producing anisotropic conductive film
JP3292907B2 (en) Anisotropic conductive film
JP2002222833A (en) Conductive adhesive, and electronic component package and its manufacturing method
JP2012017375A (en) Film-like electroconductive adhesive
JP3894781B2 (en) Anisotropic conductive film
JP7459048B2 (en) conductive adhesive composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees