JP3286212B2 - Method for purifying gold electrolyte containing Pd - Google Patents

Method for purifying gold electrolyte containing Pd

Info

Publication number
JP3286212B2
JP3286212B2 JP18182697A JP18182697A JP3286212B2 JP 3286212 B2 JP3286212 B2 JP 3286212B2 JP 18182697 A JP18182697 A JP 18182697A JP 18182697 A JP18182697 A JP 18182697A JP 3286212 B2 JP3286212 B2 JP 3286212B2
Authority
JP
Japan
Prior art keywords
electrolysis
gold
solution
electrolyte
precipitate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18182697A
Other languages
Japanese (ja)
Other versions
JPH1112778A (en
Inventor
次男 木村
茂 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP18182697A priority Critical patent/JP3286212B2/en
Publication of JPH1112778A publication Critical patent/JPH1112778A/en
Application granted granted Critical
Publication of JP3286212B2 publication Critical patent/JP3286212B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金電解液の浄液方
法に関するものであり、特にはPdを比較的多く含有す
る金電解液においても毎回低Pd濃度で電解することを
可能ならしめるよう各回電解后液から簡便にPdを除去
することのできる金電解液の浄液方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying a gold electrolyte, and more particularly to a method for purifying a gold electrolyte containing a relatively large amount of Pd at a low Pd concentration every time. The present invention relates to a method for purifying a gold electrolyte solution that can easily remove Pd from a solution after each electrolysis.

【0002】[0002]

【従来の技術】金の電解精製は、銀の電解からのアノー
ドスライムを硝酸で処理し、Ag、Pd等を溶解後、A
u:95〜98%、Ag:1〜3%含有する粗金を陽極
用原金板とし、純金又は電気金の薄板を陰極として用い
て所謂「Wholwill」法により電解を行い、陰極に純金を
析出させることにより実施される。この陰極に析出した
金を電気金と称する。金電解液は、粗金を濃塩酸中で造
液電解法により、あるいは濃塩酸と過酸化水素水とを用
いて溶解することにより作製した液を稀釈して用いてい
る。遊離塩酸濃度は50〜200g/lである。
2. Description of the Related Art In the electrorefining of gold, anode slime from electrolysis of silver is treated with nitric acid to dissolve Ag, Pd, etc.
u: 95 to 98%, Ag: 1 to 3% is used as a raw metal plate for the anode, and a thin plate of pure gold or electric gold is used as a cathode to perform electrolysis by a so-called “Wholwill” method. It is carried out by precipitation. The gold deposited on the cathode is called electric gold. As the gold electrolyte, a solution prepared by dissolving crude gold in concentrated hydrochloric acid by a liquid electrolysis method or by using concentrated hydrochloric acid and aqueous hydrogen peroxide is diluted and used. The free hydrochloric acid concentration is between 50 and 200 g / l.

【0003】金電解液は、一般に、約100g/lの金
の他、不純物としてPd、Pt、Te、Ti、Fe、C
u等を含有している。不純物濃度は、使用する鉱石の品
位に依存することが多い。この電解液を用い、金の電解
精製を行うが、電解が進行すると、陽極中に含まれてい
るPd、Pt等の不純物が溶出し、電解液中の不純物濃
度が次第に高くなり、電気金の純度が悪化する事態を招
く。
A gold electrolyte generally contains about 100 g / l of gold and, as impurities, Pd, Pt, Te, Ti, Fe, C
u and the like. The impurity concentration often depends on the grade of the ore used. The electrolytic solution of gold is performed using this electrolytic solution. As the electrolysis proceeds, impurities such as Pd and Pt contained in the anode elute, and the impurity concentration in the electrolytic solution gradually increases. This leads to a situation where the purity is deteriorated.

【0004】近年、状況によっては、使用する鉱石の関
係から、Pd含有量が増加する場合があり、例えば第1
回目の電解後の電解后液には0.3〜0.9g/lのP
dが含まれ、その場合電気金のPd含有量は5ppm前
後となり、そして第2回目の電解後の電解后液には0.
6〜1.8g/lのPdが含まれ、その場合電気金のP
d含有量は10ppm前後にも達し、もはや許容限を超
える。
[0004] In recent years, depending on the ore used, the Pd content may increase in some cases.
0.3 to 0.9 g / l of P is contained in the post-electrolysis solution after the second electrolysis.
d, in which case the Pd content of the electric gold is around 5 ppm, and the post-electrolysis solution after the second electrolysis has a Pd content of 0.1 ppm.
6 to 1.8 g / l of Pd, in which case P
The d-content reaches around 10 ppm and is no longer above the permissible limit.

【0005】従って、従来法では、電解液中のPd濃度
上昇に伴う電気金の汚染防止のために、電解2回終了
後、電解后液全量を処理していた。図3は、従来法に従
い、電解2回終了後、電解后液全量を銅粉により還元処
理する工程のフローシートを示す(Cu置換浄液法とも
呼ばれる)。ここでは、電解2回終了後、電解后液全量
を銅粉を添加して還元処理し、濾過洗浄により還元金と
濾液とに分離し、還元金を硝酸パーチング後、溶解アノ
ード化し、金電解を行い、電気金として製品化する一
方、還元金から分離された濾液を亜鉛還元し、Pdを含
む還元物と濾液とに分離し、還元物は精殿工程に戻すと
共に、濾液は鉄還元後廃棄されていた。又、還元金の硝
酸パーチングにより生じた濾液は、Pd回収工程に入
れ、生産化している。これらの工程は全体で何日もの日
数、例えば一週間前後を要し、2回の電解終了毎にこの
作業を行う必要があり、このため、停滞金利はかなりに
及んだ。
[0005] Therefore, in the conventional method, in order to prevent contamination of electric gold due to an increase in the Pd concentration in the electrolytic solution, the entire amount of the electrolytic solution is treated after the completion of the second electrolysis. FIG. 3 shows a flow sheet of a step of reducing the entire amount of the post-electrolysis solution with copper powder after the completion of the second electrolysis according to the conventional method (also referred to as a Cu replacement liquid purification method). Here, after the completion of the second electrolysis, the entire amount of the post-electrolysis solution was reduced by adding copper powder, separated by filtration and washing into reduced gold and a filtrate, and the reduced gold was subjected to nitric acid parchmentation, dissolved anodized, and subjected to gold electrolysis. Then, while the product is produced as electric gold, the filtrate separated from the reduced gold is reduced with zinc and separated into a reduced product containing Pd and a filtrate. The reduced product is returned to the refinement process, and the filtrate is discarded after iron reduction. It had been. Further, the filtrate generated by the nitric acid parchmenting of the reduced gold is put into a Pd recovery step to produce it. These steps take a number of days in total, for example around a week, and this work has to be performed every two electrolysis ends, which has resulted in considerable stagnation rates.

【0006】この他の金電解液の浄液方法として、例え
ば特開平1−127691号は、電解槽より連続的に抜
き出される電解液に塩素ガスを吹き込むと共に、炭酸ア
ンモニウム等を電解液中の遊離塩酸濃度が80〜140
g/lになるよう添加し、得られたスラリーの温度を3
0℃以下にすることにより白金、パラジウム、銀等の不
純物を固液分離した後、得られた浄化液を電解槽に繰り
返すことを記載している。しかしながら、この方法は、
電解液中への塩素ガスの吹き込みやスラリーの温度を一
旦30℃以下に下げることを必要とし、またPd含有量
の多い電解液の場合必ずしも効果的とは言えなかった。
As another method for purifying a gold electrolytic solution, for example, Japanese Patent Application Laid-Open No. 1-127691 discloses a method in which chlorine gas is blown into an electrolytic solution continuously extracted from an electrolytic cell and ammonium carbonate or the like is removed from the electrolytic solution. Free hydrochloric acid concentration of 80 to 140
g / l, and the temperature of the resulting slurry is 3
It describes that after the impurities such as platinum, palladium and silver are separated into solid and liquid by lowering the temperature to 0 ° C. or lower, the obtained purified liquid is repeatedly used in an electrolytic cell. However, this method
It was necessary to blow chlorine gas into the electrolyte and lower the temperature of the slurry once to 30 ° C. or lower, and it was not necessarily effective in the case of an electrolyte having a high Pd content.

【0007】[0007]

【発明が解決しようとする課題】本発明の課題は、停滞
金利の低減と電気金品質の向上を目的として、毎回低P
d濃で電解を行うことを可能ならしめる、簡便な、金電
解液の浄液方法を確立することである。
SUMMARY OF THE INVENTION The object of the present invention is to reduce the stagnation interest rate and to improve the quality of electric money every time by setting a low P.
An object of the present invention is to establish a simple method for purifying a gold electrolyte, which enables electrolysis at a concentration of d.

【0008】[0008]

【課題を解決するための手段】本発明者は、ジメチルグ
リオキシムキレート(以下DMGと略す)がPdと錯体
を形成し、Pdの定量試薬として用いられていることに
注目し、大量の処理量を要し、様々の成分を含む金電解
液の浄液現場への応用可能性を検討した。検討の結果、
Pdを含有する金電解液にジメチルグリオキシムを粉末
もしくはエタノール溶液の形で添加して反応せしめるこ
とによりPdの除去が可能であることが確認された。こ
の知見に基づいて、本発明は、Pdを含有する金電解液
にジメチルグリオキシムを粉末もしくはエタノール溶液
の形で添加して反応せしめ、生成するPd錯体を沈殿さ
せ、金電解液から沈殿物を分離することを特徴とするP
dを含有する金電解液の浄液方法を提供する。実際的に
は、ジメチルグリオキシムを粉末もしくはエタノール溶
液の形で添加して攪拌しながら反応せしめ、その後沈殿
熟成させることにより実施される。具体的には、Pdを
含有する金電解液が各回電解后液であり、沈殿物を分離
した各回電解后液が各回電解に使用される。過剰のDM
Gを添加すると、液中のAuも沈殿する危険があるの
で、DMGをPdの1〜1.2当量添加することが好ま
しい。沈殿物は粒子が細かいので、沈殿物を0.8〜
1.2μmメッシュ、例えば1μmメッシュのフィルタ
ーで分離することが推奨される。
The present inventors have noticed that dimethylglyoxime chelate (hereinafter abbreviated as DMG) forms a complex with Pd and is used as a reagent for quantifying Pd. And examined the feasibility of applying gold electrolyte containing various components to the purification site. As a result of the examination,
It was confirmed that Pd can be removed by adding dimethylglyoxime in the form of a powder or an ethanol solution to a Pd-containing gold electrolyte and reacting it. Based on this finding, the present invention provides a Pd-containing gold electrolyte solution to which dimethylglyoxime is added in the form of a powder or an ethanol solution to cause a reaction, precipitates a generated Pd complex, and removes the precipitate from the gold electrolyte solution. P characterized by separating
A method for purifying a gold electrolyte containing d. Practically, it is carried out by adding dimethylglyoxime in the form of a powder or ethanol solution, reacting with stirring, and then ripening the precipitate. Specifically, a gold electrolyte containing Pd is a post-electrolysis solution each time, and a post-electrolysis solution obtained by separating a precipitate is used for each electrolysis. Excess DM
When G is added, there is a danger that Au in the liquid will also precipitate. Therefore, it is preferable to add 1 to 1.2 equivalents of Pd of DMG. The sediment has a fine particle, so
It is recommended to separate with a filter of 1.2 μm mesh, for example 1 μm mesh.

【0009】[0009]

【発明の実施の形態】図1は、本発明に従う各回電解液
の浄化工程のフローシートである。金電解液は、一般
に、約100g/lの金の他、不純物としてPd、P
t、Te、Ti、Fe、Cu等を含有している。この電
解液を用い、金の電解精製を行うが、電解が進行する
と、陽極中に含まれているPd、Pt等の不純物が溶出
し、電解液中の不純物濃度が次第に高くなり、電気金の
純度が悪化する事態を招く。近年、使用する鉱石の関係
から、Pd含有量が増加しており、例えば第1回目の電
解後の電解后液には0.3〜0.9g/lのPdが含ま
れ、その場合電気金のPd含有量は5ppm前後であ
る。第2回目の電解後の電解后液には0.6〜1.8g
/lのPdが含まれ、その場合、電気金のPd含有量は
10ppm前後にも達し、もはや許容限を超える。そこ
で、従来は、第2回目の電解後、図3に示したように、
電解后液全量を銅粉を添加して還元処理し、濾過洗浄に
より還元金と濾液とに分離し、還元金を硝酸パーチング
後、溶解アノード化し、金電解を行い、電気金として製
品化していたのであるが、多くの日数を要した。本発明
は、1回の電解終了毎にメチルグリオキシム(DMG)
を用いて金電解液を浄化して、金電解液のPd含有量を
常に1回電解後のPd水準である0〜0.9g/lに維
持しようとするものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a flow sheet of a process for purifying an electrolytic solution each time according to the present invention. The gold electrolyte generally contains about 100 g / l of gold and Pd and P as impurities.
It contains t, Te, Ti, Fe, Cu and the like. The electrolytic solution of gold is performed using this electrolytic solution. As the electrolysis proceeds, impurities such as Pd and Pt contained in the anode elute, and the impurity concentration in the electrolytic solution gradually increases. This leads to a situation where the purity is deteriorated. In recent years, the content of Pd has been increasing due to the ore used. For example, the post-electrolysis solution after the first electrolysis contains 0.3 to 0.9 g / l of Pd. Has a Pd content of about 5 ppm. 0.6 to 1.8 g in the post-electrolysis solution after the second electrolysis
/ L of Pd, in which case the Pd content of the electrogold reaches around 10 ppm, which is no longer acceptable. Therefore, conventionally, after the second electrolysis, as shown in FIG.
After the electrolysis, the entire amount of the solution was reduced by adding copper powder, and separated by filtration and washing into reduced gold and a filtrate.The reduced gold was subjected to nitric acid parchmenting, dissolved anodized, gold electrolyzed, and commercialized as electric gold. However, it took many days. In the present invention, methylglyoxime (DMG)
Is used to purify the gold electrolyte and always maintain the Pd content of the gold electrolyte at the Pd level of 0 to 0.9 g / l after one electrolysis.

【0010】各回電解后液は、そのPd含有量を定量す
るために例えば原子吸光分析法により分析される。そし
て、Pd含有量から添加されるべきジメチルグリオキシ
ム(DMG)の量が決定される。過剰のDMGを添加す
ると、液中のAuも沈殿する危険があるので、DMGを
Pdの1〜1.2当量添加することが好ましい。
[0010] Each electrolysis solution is analyzed by, for example, atomic absorption spectrometry in order to quantify its Pd content. Then, the amount of dimethylglyoxime (DMG) to be added is determined from the Pd content. If excess DMG is added, Au in the solution may also precipitate, so it is preferable to add 1 to 1.2 equivalents of DMG to Pd.

【0011】DMGは、ジアセチルジオキシムまたは
2,3−ブタンジオンジオキシムに当るもので、白色の
結晶である。Pd、Feなどの定量試薬としては知られ
ているが、大量の処理量を要し、様々の成分を含む金電
解液の浄液現場で、Pd除去のために使用できるかどう
かは未知であった。DMGは、金電解液に粉末もしくは
エタノール溶液の形で添加して、攪拌しながら反応せし
めることにより、Pdと錯体を形成し、沈殿分離するこ
とができる。Pd−DMG錯体の沈殿・熟成には例えば
10〜20時間を必要とするが、これは例えば夜間を利
用して静置状態に保持することにより実施できる。
DMG corresponds to diacetyldioxime or 2,3-butanedionedioxime, and is a white crystal. Although it is known as a quantitative reagent for Pd, Fe, etc., it requires a large amount of treatment, and it is unknown whether it can be used for Pd removal at a purification site of a gold electrolyte containing various components. Was. DMG is added to a gold electrolyte in the form of a powder or an ethanol solution and reacted with stirring to form a complex with Pd and precipitate and separate. Precipitation and aging of the Pd-DMG complex requires, for example, 10 to 20 hours, and this can be performed, for example, by keeping the mixture still at night.

【0012】その後、濾過によりPd沈殿物と濾液に分
離され、Pd沈殿物は精殿工程に回され、濾液は浄化済
の金電解液として電解工程に供される。こうして、電解
は常時、Pd含有量を常に1回電解後のPd水準である
0〜0.9g/l以内に維持しながら、行われる。Pd
−DMG錯体沈殿物は、粒子が非常に細かく、濾過に際
して濾液に通りやすく、沈殿物が電解液に入ると電気金
に付着し、製品中のPd含有量が高くなるので、メッシ
ュサイズの小さな、例えば0.8〜1.2μmメッシュ
フィルターを使用することが必要である。例えば、2枚
濾紙で濾過すると共に、カートリッジフィルター(1μ
mフィルター)の使用により、そうした事態を回避する
ことができる。
Thereafter, the precipitate is separated into a Pd precipitate and a filtrate by filtration, the Pd precipitate is sent to a refining process, and the filtrate is subjected to an electrolysis process as a purified gold electrolytic solution. Thus, electrolysis is always performed while maintaining the Pd content within the Pd level of 0 to 0.9 g / l after one electrolysis. Pd
-DMG complex precipitates are very fine particles, easy to pass through the filtrate at the time of filtration, adhere to the electric gold when the precipitate enters the electrolytic solution, the Pd content in the product is high, the mesh size is small, For example, it is necessary to use a 0.8-1.2 μm mesh filter. For example, while filtering with two sheets of filter paper, cartridge filter (1μ)
m filter) can avoid such a situation.

【0013】浄化に要する時間全体は、処理量にもよる
が、一般に18〜19時間である。浄液は室温で行わね
ばならない。これは、60℃程度まで温度が上がると、
Pd−DMGの分解によるPdの再溶出が生じるからで
ある。従来のCu全量置換法による処理は6カ月に(約
25回電解)一回行えば良い。こうして、各回電解ごと
に本発明によるDMGを用いての浄化を行い、6カ月に
(約25回電解)一回Cu全量置換法による浄化を行う
ことにより、停滞金利を低減しまた電気金のPd含有率
を1〜3ppmに維持して、金電解を長期間効果的に実
施することができる。
The total time required for purification is generally 18 to 19 hours, depending on the throughput. Purification must be performed at room temperature. This is because when the temperature rises to about 60 ° C,
This is because Pd is re-eluted due to the decomposition of Pd-DMG. The conventional treatment using the total Cu replacement method may be performed once every six months (about 25 times of electrolysis). In this way, the purification using the DMG according to the present invention is carried out for each electrolysis, and the purification is carried out once every six months (about 25 times of electrolysis) by the Cu total replacement method, thereby reducing the stagnation interest rate and reducing the Pd of electric gold. By maintaining the content at 1 to 3 ppm, gold electrolysis can be effectively performed for a long time.

【0014】[0014]

【実施例】ビーカ試験及び実操試験を行った結果を示
す。
EXAMPLE The results of a beaker test and an actual operation test are shown.

【0015】(ビーカ試験)253mg/lのPd濃度
を有する模擬電解液500mlにDMGをPdの1.1
当量に相当する量添加した。液温は20℃である。DM
G添加は、粉末DMGとして(固体DMG)及び1g/
100mlのC25 OH溶液として(液体DMG)行
った。結果を図3のグラフに示す。反応時間20分まで
Pd濃度は急激に下がり、20分後には、Pd濃度は固
体DMGの場合には30mg/lにそして液体DMGの
場合には38mg/lに低下した。Pd濃度が劇的に減
少することがわかる。その後のPd濃度の変化は少な
い。
(Beaker test) In 500 ml of a simulated electrolyte having a Pd concentration of 253 mg / l,
The equivalent amount was added. The liquid temperature is 20 ° C. DM
G addition is as powdered DMG (solid DMG) and 1 g / g
(Liquid DMG) was carried out as C 2 H 5 OH solution 100 ml. The results are shown in the graph of FIG. The Pd concentration dropped sharply up to a reaction time of 20 minutes, after 20 minutes the Pd concentration dropped to 30 mg / l for solid DMG and to 38 mg / l for liquid DMG. It can be seen that the Pd concentration decreases dramatically. Subsequent changes in Pd concentration are small.

【0016】(実操試験)金濃度:100g/l、銀濃
度:0.1g/l、白金濃度:0.1g/l、パラジウ
ム濃度:0.2g/l、遊離塩酸濃度:100g/l
で、微量のTe、Ti、Fe、Cu等の不純物を含む電
解始液を用いて、粗金を陽極としてまた電気金薄板を陰
極として、金電解を行った。電解条件は次の通りであっ
た:電解電流は平均+200A、−50Aの−交流側を
一部カットした不健全整流を用い、陽極電流密度を33
3A/m2 、陰極電流密度を250A/m2 とし、電解
温度は50℃とした。通電時間は65時間とした。
(Actual test) Gold concentration: 100 g / l, silver concentration: 0.1 g / l, platinum concentration: 0.1 g / l, palladium concentration: 0.2 g / l, free hydrochloric acid concentration: 100 g / l
Then, gold electrolysis was performed by using an electrolysis starting solution containing a trace amount of impurities such as Te, Ti, Fe, and Cu, using coarse gold as an anode and an electric gold thin plate as a cathode. The electrolysis conditions were as follows: the electrolysis current was +200 A on average, −50 A, using an unhealthy rectification with the −AC side partially cut, and the anode current density was 33%.
3 A / m 2 , the cathode current density was 250 A / m 2 , and the electrolysis temperature was 50 ° C. The energization time was 65 hours.

【0017】一回電解後の電解后液のPd濃度は平均
0.3〜0.9g/lであり、電気金のPd濃度は5p
pmであった。ちなみに、二回電解後の電解后液のPd
濃度は平均0.6〜1.8g/lであり、電気金のPd
濃度は10ppmであった。一回電解後の電解后液に攪
拌しながらDMG粉末を1.1当量添加し、16時間沈
殿熟成した。2枚濾紙で濾過すると共に、カートリッジ
フィルター(1μmフィルター)を使用して濾過を行
い、その濾過液を用いて電解を行う作業を繰り返した。
一回の浄化操作には18.5時間を必要とした。電解后
液のPd含有量は0〜0.9g/lに維持され、電気金
のPd含有量は3〜6ppmに維持された。10カ月後
の(50回電解)電解后液中の不純物含有量は次の通り
であった: Pt:1.64g/l、Te:0.18g/l、Ti:
0.003g/l、Fe:0.17g/l、Cu:0.
26g/l このように、本発明に従う浄液を各回電解毎に行えば、
10カ月後の連続使用後でも電解后液中の不純物含有量
は非常に少ない。
The Pd concentration of the electrolyzed solution after one electrolysis is 0.3 to 0.9 g / l on average, and the Pd concentration of
pm. By the way, Pd of post-electrolysis solution after double electrolysis
The concentration is 0.6-1.8 g / l on average and the Pd
The concentration was 10 ppm. To the post-electrolysis solution after one electrolysis, 1.1 equivalents of DMG powder were added while stirring, and the mixture was subjected to precipitation aging for 16 hours. The operation of filtering with two filter papers, performing filtration using a cartridge filter (1 μm filter), and performing electrolysis using the filtrate was repeated.
One purification operation required 18.5 hours. The Pd content of the post-electrolysis solution was maintained at 0 to 0.9 g / l, and the Pd content of electric gold was maintained at 3 to 6 ppm. After 10 months (50 times electrolysis) the content of impurities in the solution after electrolysis was as follows: Pt: 1.64 g / l, Te: 0.18 g / l, Ti:
0.003 g / l, Fe: 0.17 g / l, Cu: 0.
26 g / l As described above, when the purified solution according to the present invention is used for each electrolysis,
Even after 10 months of continuous use, the content of impurities in the post-electrolysis solution is very low.

【0018】[0018]

【発明の効果】停滞金利を低減しまた電気金のPd含有
率を1〜3ppmに維持して、金電解を長期間効果的に
実施することができる。
According to the present invention, the stagnation interest rate is reduced, and the Pd content of electric gold is maintained at 1 to 3 ppm, so that gold electrolysis can be effectively performed for a long time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に従う各回電解液の浄化工程のフローシ
ートである。
FIG. 1 is a flow sheet of a process for purifying an electrolytic solution each time according to the present invention.

【図2】Pd含有電解液に粉末DMGとして(固体DM
G)及び1g/100mlのC25 OH溶液として
(液体DMG)DMG添加を行った結果を示すグラフで
ある。
FIG. 2 shows a Pd-containing electrolyte as powdered DMG (solid DM
G) and a graph showing the results of adding DMG (liquid DMG) as a 1 g / 100 ml C 2 H 5 OH solution.

【図3】従来法に従い、電解2回終了後、電解后液全量
を銅粉により還元処理する工程のフローシートである。
FIG. 3 is a flow sheet showing a step of reducing the whole amount of the post-electrolysis solution with copper powder after the completion of two times of electrolysis according to a conventional method.

フロントページの続き (56)参考文献 特開 平1−127691(JP,A) 特開 昭61−104095(JP,A) 特開 平2−254191(JP,A) 特開 昭53−77827(JP,A) 特公 昭55−1994(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C25C 1/00 - 7/08 Continuation of front page (56) References JP-A-1-127691 (JP, A) JP-A-61-104095 (JP, A) JP-A-2-254191 (JP, A) JP-A-53-77827 (JP) , A) Japanese Patent Publication No. 55-1994 (JP, B1) (58) Fields investigated (Int. Cl. 7 , DB name) C25C 1/00-7/08

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Pdを含有する塩酸酸性金電解液にジメ
チルグリオキシムを粉末もしくはエタノール溶液の形で
添加して撹拌しながら反応せしめ、生成するPd錯体を
沈殿させ、その後沈殿を熟成させ、金電解液から沈殿物
を分離することを特徴とするPdを含有する金電解液の
浄液方法。
1. A reacted with dimethylglyoxime in hydrochloric acid gold electrolyte containing Pd was added and stirred in the form of a powder or an ethanolic solution to precipitate the Pd complex to produce, aged after which the precipitate gold A method for purifying a Pd-containing gold electrolyte, comprising separating a precipitate from the electrolyte.
【請求項2】 Pdを含有する金電解液が各回電解后液
であり、沈殿物を分離した各回電解后液が各回電解に使
用される請求項1の金電解液の浄液方法。
2. The method for purifying a gold electrolyte according to claim 1, wherein the gold electrolyte containing Pd is a post-electrolysis solution each time, and the post-electrolysis solution obtained by separating a precipitate is used for each electrolysis.
【請求項3】 ジメチルグリオキシムをPdの1〜1.
2当量添加する請求項1または2の金電解液の浄液方
法。
3. The method of claim 1, wherein the dimethylglyoxime is composed of Pd.
2 solution purification process according to claim 1 or 2 gold electrolyte equivalents are added.
【請求項4】 沈殿物を0.8〜1.2μmメッシュの
フィルターで分離することを特徴とする請求項1または
のいずれか一項の金電解液の浄液方法。
Wherein the precipitate and separating a filter of 0.8~1.2μm mesh claim 1 or
3. The method for purifying a gold electrolyte according to any one of the above items 3 .
JP18182697A 1997-06-24 1997-06-24 Method for purifying gold electrolyte containing Pd Expired - Lifetime JP3286212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18182697A JP3286212B2 (en) 1997-06-24 1997-06-24 Method for purifying gold electrolyte containing Pd

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18182697A JP3286212B2 (en) 1997-06-24 1997-06-24 Method for purifying gold electrolyte containing Pd

Publications (2)

Publication Number Publication Date
JPH1112778A JPH1112778A (en) 1999-01-19
JP3286212B2 true JP3286212B2 (en) 2002-05-27

Family

ID=16107501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18182697A Expired - Lifetime JP3286212B2 (en) 1997-06-24 1997-06-24 Method for purifying gold electrolyte containing Pd

Country Status (1)

Country Link
JP (1) JP3286212B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009108922A1 (en) * 2008-02-28 2009-09-03 Aeromet Technologies, Inc. Methods for removing precious metal-containing coatings and recovery of precious metals therefrom
CN103526233A (en) * 2013-10-11 2014-01-22 金川集团股份有限公司 Method for high-efficiency separation of palladium from silver electrolyte

Also Published As

Publication number Publication date
JPH1112778A (en) 1999-01-19

Similar Documents

Publication Publication Date Title
US6126720A (en) Method for smelting noble metal
JP4816897B2 (en) Electrolytic extraction method of metal manganese and high purity metal manganese
JPH0382720A (en) Method for recovering indium
JP3286212B2 (en) Method for purifying gold electrolyte containing Pd
RU2093606C1 (en) Electrolytic method for purifying concentrated hydrochloric acid solutions of alloys of platinum with rhodium, iridium, and/or palladium
JP4842426B2 (en) Method for producing high purity silver
JPH11229053A (en) Production of high purity gold
JP2619893B2 (en) Precious metal recovery method
JP3753554B2 (en) Silver recovery method
JP3666337B2 (en) How to recover palladium
JP2000038692A (en) Production of high purity silver
JPH0657348A (en) Production of high-purity gold
JP3296170B2 (en) How to remove osmium from chloride solutions
JP3431427B2 (en) Extraction method of palladium
JP3690989B2 (en) Methods for removing antimony from tantalum, niobium, and other collection and purification solutions
RU2792512C1 (en) Method for purification of rhodium solution from impurities
JP2937184B1 (en) How to remove platinum and palladium
RU2231568C1 (en) Method of selectively recovering palladium
US5997719A (en) Electrochemical process for refining platinum group metals with ammonium chloride electrocyte
JPS5888124A (en) Palladium purification and recovery
JP4418909B2 (en) Manufacturing method of high purity gold
JP2619892B2 (en) Precious metal recovery method
JPS58197233A (en) Manufacture of high purity gold from intermediate treated liquid of slime generated in copper electrolysis
JP3113762B2 (en) Separation method of copper and lead from precious metal solution
JPH03199392A (en) Liquid purifying method for silver electrolyte

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020212

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100308

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110308

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110308

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110308

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120308

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120308

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130308

Year of fee payment: 11