JP3280139B2 - Display panel - Google Patents

Display panel

Info

Publication number
JP3280139B2
JP3280139B2 JP31284493A JP31284493A JP3280139B2 JP 3280139 B2 JP3280139 B2 JP 3280139B2 JP 31284493 A JP31284493 A JP 31284493A JP 31284493 A JP31284493 A JP 31284493A JP 3280139 B2 JP3280139 B2 JP 3280139B2
Authority
JP
Japan
Prior art keywords
particles
conductive particles
connection
layer
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31284493A
Other languages
Japanese (ja)
Other versions
JPH07140481A (en
Inventor
功 塚越
貢 藤縄
直行 塩沢
泰史 後藤
共久 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP31284493A priority Critical patent/JP3280139B2/en
Publication of JPH07140481A publication Critical patent/JPH07140481A/en
Application granted granted Critical
Publication of JP3280139B2 publication Critical patent/JP3280139B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Landscapes

  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は液晶パネル、エレクトロ
ルミネッセンスパネル、エレクトロクロミックパネル等
の電気光学的物質を利用した表示パネルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a display panel using an electro-optical material such as a liquid crystal panel, an electroluminescent panel, and an electrochromic panel.

【0002】[0002]

【従来の技術】表示パネルの上下接続構造として、例え
ば特開昭58−182685号公報記載の構造が知られ
ている。これは基板上に設けられた回路間に電気光学的
物質が狭持され、スペーサにより一定厚みに隔てられた
上下回路を導電性粒子と接着剤よりなる上下導通材を用
いて接続するものである。該公報には、グラスファイバ
ーやアルミナ等の硬質スペーサ材の表面をめっき(メタ
ライジング)した導電性粒子、あるいはプラスチックボ
ールやプラスチックファイバー等のスペーサより粒子径
の大きな弾力性物質の表面をめっき(メタライジング)
した導電性粒子を接着剤に分散した接続部材を用いて上
下回路を接続する例が示されている。
2. Description of the Related Art As a vertical connection structure of a display panel, for example, a structure described in Japanese Patent Application Laid-Open No. 58-182885 is known. In this method, an electro-optical substance is interposed between circuits provided on a substrate, and upper and lower circuits separated by a certain thickness by spacers are connected by using an upper and lower conductive material made of conductive particles and an adhesive. . The publication discloses conductive particles obtained by plating (metallizing) the surface of a hard spacer material such as glass fiber or alumina, or plating the surface of an elastic material having a larger particle diameter than a spacer such as a plastic ball or plastic fiber (metaizing). Rising)
An example is shown in which the upper and lower circuits are connected using a connection member in which the conductive particles thus dispersed are dispersed in an adhesive.

【0003】導電性粒子として硬質スペーサ材にめっき
したものを使用した場合、導電性粒子は回路面と点接触
で接触しており、温度変化があったり、高湿度の環境下
などでは接着剤と導電性粒子の熱膨張率や弾性率が異な
ることから接触点が十分に確保できず、十分な接続信頼
性が得られない。
[0003] In the case of using a plated hard spacer material as the conductive particles, the conductive particles are in point contact with the circuit surface, and may change with temperature or in an environment of high humidity, etc. with the adhesive. Since the thermal expansion coefficient and the elastic modulus of the conductive particles are different, sufficient contact points cannot be secured, and sufficient connection reliability cannot be obtained.

【0004】また弾力性物質にめっきした導電性粒子を
使用した場合、ギャップ厚みと同じ厚みで接続管理する
ことが極めて難しく、表示パネルの上下導通部の多くが
パネル端部に設けられることと併せて、パネル基板に残
留応力が生じ、やはり十分な接続信頼性が得られない。
When conductive particles plated on an elastic material are used, it is extremely difficult to control the connection with the same thickness as the gap thickness, and in addition to the fact that many of the upper and lower conductive portions of the display panel are provided at the panel end. As a result, residual stress is generated in the panel substrate, and sufficient connection reliability cannot be obtained.

【0005】加えて良好な接続信頼性を得るため、導電
性粒子と電極との接触面積をより大きくしようとして接
続時の温度や圧力を高く設定すると、金属薄層が弾力性
物質から剥離したり部分的に破壊するなどして接続回路
の周辺に飛散し、微細回路の接続時に隣接回路との絶縁
性が不十分となる。
[0005] In addition, if the temperature and pressure at the time of connection are set high to increase the contact area between the conductive particles and the electrode in order to obtain good connection reliability, the thin metal layer may peel off from the elastic material. It scatters around the connection circuit due to partial destruction or the like, and the insulation between adjacent circuits becomes insufficient when a fine circuit is connected.

【0006】更に、上記した2種類の導電性粒子を混合
して接着剤に分散することも考えられる。この場合、こ
れら混合粒子を均一に分散させる必要があるが、比重の
差や表面電荷の相違により微小部分における均一分散性
が不十分である。
Further, it is conceivable to mix the two types of conductive particles described above and disperse them in an adhesive. In this case, it is necessary to uniformly disperse these mixed particles, but uniform dispersibility in a minute portion is insufficient due to a difference in specific gravity or a difference in surface charge.

【0007】また、一般的に表示パネルは、回路厚み2
μm以下の薄膜で形成される場合が多く、回路部とスペ
ース部の段差が少ない。従来公知の弾力性物質にめっき
した導電性粒子である変形性導電性粒子の接続信頼性向
上手段である、回路部の粒子を大きく変形させて面接触
させスペース部の導電性粒子の変形を少なくして隣接回
路との絶縁性を得る手段は、回路部とスペース部の断差
が少ないために表示パネルの接続構造には不適当であ
る。
In general, a display panel has a circuit thickness of 2
It is often formed of a thin film having a thickness of μm or less, and the step between the circuit portion and the space portion is small. It is a means for improving the connection reliability of deformable conductive particles, which are conductive particles plated on a conventionally known elastic material. Means for obtaining insulation from an adjacent circuit is not suitable for a connection structure of a display panel because there is little difference between a circuit portion and a space portion.

【0008】[0008]

【発明が解決しようとする課題】本発明は、以上の問題
点に鑑みなされたもので、実質的に上下回路の間隔が硬
質粒子の粒径の間隔に隔てられ、かつ導電性粒子の金属
薄層が接続回路面に対して面接触した信頼性に優れた表
示パネルを提供するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and the space between the upper and lower circuits is substantially separated by the size of the hard particles, and the conductive particles are made of thin metal. An object of the present invention is to provide a highly reliable display panel in which a layer is in surface contact with a connection circuit surface.

【0009】[0009]

【課題を解決するための手段】すなわち、本発明は、回
路が形成された2枚の対向基板の回路(6、7)間に電
気光学的物質8と共にスペーサ粒子9を挟持し、かつ上
下回路(6、7)間を一定厚みに隔て、上下回路(6、
7)を導電性粒子と接着剤5により接続する表示パネル
において、前記導電性粒子が前記スペーサ粒子9と実質
的に同一径の硬質粒子1の表面にこれより軟質な高分子
重合体層2を被覆し更に導電性金属薄層3を被覆してな
る導電性粒子であり、実質的に上下回路(6、7)の間
隔が硬質粒子9の粒径の間隔に隔てられ回路面に導電性
粒子の金属薄層3が面接触していることを特徴とする表
示パネルを提供するものである。
That is, according to the present invention, a spacer particle 9 is sandwiched together with an electro-optical substance 8 between circuits (6, 7) of two opposing substrates on which circuits are formed, and an upper and lower circuit is formed. The upper and lower circuits (6, 7) are separated by a certain thickness between (6, 7).
7) connecting the conductive particles to the hard particles 1 having substantially the same diameter as the spacer particles 9 in the display panel connecting the conductive particles with the adhesive 5. The conductive particles formed by coating and further covering the conductive metal thin layer 3, wherein the distance between the upper and lower circuits (6, 7) is substantially separated by the distance of the particle diameter of the hard particles 9, and the conductive particles The display panel is characterized in that the metal thin layers 3 are in surface contact with each other.

【0010】図1は本発明に用いられる導電性粒子の一
例の断面模式図である。
FIG. 1 is a schematic cross-sectional view of one example of the conductive particles used in the present invention.

【0011】1は導電性粒子の核となる硬質粒子であ
り、ニッケル等の金属粒子、グラスファイバーやアルミ
ナ、シリカ等の無機物粒子、硬化ベンゾグアナミン等の
樹脂硬化物粒子が好適に用いられる。また、エポキシ樹
脂やポリスチレン等の高分子粒子でもよい。ここで硬質
の意味は、導電性粒子の使用環境下の最高温度と考えら
れる接続条件下で、軟質な高分子重合体層2に比べて相
対的に硬いことを意味する。すなわち一定温度における
弾性率や硬度などの一般的な硬さの指標や、例えば融点
やガラス転移温度及び軟化点などの熱的変態点の差を目
安として判定することができる。
Reference numeral 1 denotes hard particles serving as nuclei of the conductive particles. Metal particles such as nickel, inorganic particles such as glass fiber, alumina and silica, and resin cured particles such as cured benzoguanamine are preferably used. Also, polymer particles such as epoxy resin and polystyrene may be used. Here, the meaning of “hard” means that the conductive particles are relatively harder than the soft polymer layer 2 under the connection condition considered to be the highest temperature in the usage environment of the conductive particles. That is, a general index of hardness such as elastic modulus or hardness at a certain temperature or a difference between thermal transformation points such as a melting point, a glass transition temperature, and a softening point can be determined as a guide.

【0012】硬質粒子1の平均粒径は0.1〜20μ
m、好ましくは0.5〜12μm、より好ましくは1〜
8μmとすることが、接続後の電極間距離を狭めて接続
信頼性を向上させることができる点から好ましい。硬質
粒子1の粒径は均一とすることが好ましく、電気光学的
物質が挟持された回路間のスペーサ粒子をそのまま硬質
粒子として用いることが好ましい。この場合は、硬質粒
子の径はスぺーサ粒子と同径となる。また、軟質な高分
子重合体層2や導電性金属薄層3の厚みを差し引き、接
続後の厚みをスペーサ粒子の径とより一致させてもよ
く、この場合も硬質粒子の径はスぺーサ粒子の径と実質
的に同一であるとする。
The average particle size of the hard particles 1 is 0.1 to 20 μm.
m, preferably 0.5 to 12 μm, more preferably 1 to
The thickness of 8 μm is preferable because the distance between electrodes after connection can be reduced to improve connection reliability. The particle size of the hard particles 1 is preferably uniform, and it is preferable to use the spacer particles between circuits in which the electro-optical material is sandwiched as the hard particles as they are. In this case, the hard particles have the same diameter as the spacer particles. The thickness of the soft polymer layer 2 or the conductive metal thin layer 3 may be subtracted to make the thickness after connection more consistent with the diameter of the spacer particles. It is assumed that the diameter is substantially the same as the particle diameter.

【0013】軟質な高分子重合体層2はポリスチレンや
ナイロン、各種ゴム類等の高分子重合体をそのままある
いは架橋体として用いる。この架橋体は耐溶剤性に優れ
ているので、接着剤中に溶剤が含有されている場合に接
着剤中への溶出がなく接着剤の特性に影響が少ないこと
から好ましく用いられる。具体的にはポリスチレンをジ
ビニルベンゼンで架橋したもの等が好適に用いられる。
軟質な高分子重合体層2の厚みとしては、0.1〜10
μm程度が好適である。0.1μm未満では変形量が十
分に得られず信頼性が不足し、10μmを超すと変形量
が過剰となり金属薄層の被覆が剥離し易くなる。このよ
うな理由から、0.3〜5μmが好ましく、0.5〜3
μmがより好ましい。このとき軟質な高分子重合体層2
の厚みは、硬質粒子1の粒径以下、より好ましくは1/
2以下とすると、導電性粒子の変形量が制御しやすい。
The soft polymer layer 2 is made of a polymer such as polystyrene, nylon, or various rubbers as it is or as a crosslinked body. Since this crosslinked product has excellent solvent resistance, it is preferably used because when a solvent is contained in the adhesive, it does not elute into the adhesive and has little effect on the properties of the adhesive. Specifically, those obtained by crosslinking polystyrene with divinylbenzene are preferably used.
The thickness of the soft polymer layer 2 is 0.1 to 10
About μm is preferable. If the thickness is less than 0.1 μm, sufficient deformation cannot be obtained and reliability is insufficient. If the thickness exceeds 10 μm, the deformation is excessive and the coating of the thin metal layer is easily peeled off. For these reasons, 0.3 to 5 μm is preferable, and 0.5 to 3 μm is preferable.
μm is more preferred. At this time, the soft polymer layer 2
Is less than or equal to the particle size of the hard particles 1, more preferably 1 /
When it is 2 or less, the amount of deformation of the conductive particles is easily controlled.

【0014】軟質な高分子重合体層2は、図2に示すよ
うに粒子状で存在してもよく、単層若しくは複層以上の
構成とすることもできる。複層以上の構成のものは、強
度保持性、耐溶剤性、接着性、柔軟性、耐熱性、耐めっ
き液性等の機能を各層に分担させることが可能なため好
適に用いられる。軟質な高分子重合体層2の形成手段と
しては制限はなく、例えば噴霧法、高速攪拌法、スプレ
ードライヤ法、熱溶融固定化法などがある。
The soft high-molecular polymer layer 2 may be present in the form of particles as shown in FIG. 2, or may have a single-layer structure or a multi-layer structure. Those having a multilayer structure or more are preferably used because functions such as strength retention, solvent resistance, adhesiveness, flexibility, heat resistance, and plating solution resistance can be assigned to each layer. The means for forming the soft polymer layer 2 is not limited, and examples thereof include a spraying method, a high-speed stirring method, a spray dryer method, and a hot-melt fixing method.

【0015】金属薄層3は導電性を有する各種の金属や
合金、酸化物などが採用できる。導電性と耐腐食性を加
味して好ましく用いられる材料としては、Ni、Cu、
Al、Sn、Zn、Au、Pd、Ag、Co、Pb等が
あり、これらは単層若しくは複層以上の構成とすること
ができる。
The metal thin layer 3 can be made of various conductive metals, alloys, oxides and the like. Materials preferably used in view of conductivity and corrosion resistance include Ni, Cu,
There are Al, Sn, Zn, Au, Pd, Ag, Co, Pb, and the like, and these can have a single-layer structure or a multilayer structure.

【0016】金属薄層3の形成手段としては、蒸着法、
スパッタリング法、イオンプレーティング法、溶射法、
めっき法、などの一般的な方法でよいが、無電解めっき
法が均一厚みの被覆層が得られることから好ましく、厚
みは変形追随性を得るため1μm以下とすることが好ま
しい。
The means for forming the thin metal layer 3 includes a vapor deposition method,
Sputtering, ion plating, thermal spraying,
Although a general method such as a plating method may be used, an electroless plating method is preferable because a coating layer having a uniform thickness is obtained, and the thickness is preferably 1 μm or less in order to obtain deformation followability.

【0017】図3に示すように、必要に応じて更に金属
薄層3の表面を、接続条件下で溶融可能な樹脂層4で被
覆してもよい。この場合、加熱加圧下において電極との
接触面においては樹脂層が溶融し接続が可能となるが、
隣接電極方向は熱量が不十分なため樹脂層が溶融し難い
ので絶縁性の低下が少なく、より高密度の微細電極の実
装が可能となる。樹脂層4は接着性樹脂とすることもで
きる。
As shown in FIG. 3, if necessary, the surface of the thin metal layer 3 may be further covered with a resin layer 4 that can be melted under connection conditions. In this case, the resin layer is melted on the contact surface with the electrode under heating and pressurization, and connection becomes possible.
In the adjacent electrode direction, the amount of heat is insufficient, so that the resin layer hardly melts, so that the insulating property is hardly reduced, so that a finer electrode with higher density can be mounted. The resin layer 4 can be made of an adhesive resin.

【0018】上記した各被覆層間には必要に応じて、密
着性向上のためのカップリング剤やプライマ等の補助層
を形成できる。
An auxiliary layer such as a coupling agent or a primer for improving adhesion can be formed between the above-mentioned coating layers, if necessary.

【0019】上記の導電性粒子と接着剤を用いて上下回
路を接続する。導電性粒子は接着剤中に均一に分散させ
ておくことが好ましい。導電性粒子の粒径は隣接配線パ
ターン間距離の最小幅よりも小さくすることが、隣接配
線パターンとのショートを防止し配線の細線化に対応す
る上で必要である。この導電性粒子を接着剤に分散させ
たものは、上下回路を接続する役割と、2枚の対向基板
の回路間に電気光学的物質を挟持するためのシール材と
しての役割を兼ねることができる。分散形態は液状、ペ
ースト状、フィルム状などのいずれでも良い。この場合
フィルム状であると、一定の厚みが得やすく塗布作業も
不要であり作業性の向上に特に有益である。上記の接着
剤としてはエポキシ樹脂等が好適に用いられる。熱可塑
性材料でもよいが、熱、光、電子線等のエネルギーによ
る硬化性材料が耐熱性や耐湿性に優れることから好まし
く適用できる。シール材としては接着剤の不純物レベル
を低くする必要があり、純水で100℃、10h抽出後
の抽出水のNa+、Cl-がそれぞれ20ppm以下のレ
ベルの接着剤を使用することが好ましい。
The upper and lower circuits are connected using the conductive particles and the adhesive. It is preferable that the conductive particles are uniformly dispersed in the adhesive. It is necessary to make the particle size of the conductive particles smaller than the minimum width of the distance between adjacent wiring patterns in order to prevent short circuit with adjacent wiring patterns and to cope with thinning of wiring. The conductive particles dispersed in the adhesive can serve both to connect the upper and lower circuits and to serve as a sealant for sandwiching the electro-optical substance between the circuits of the two opposing substrates. . The dispersion form may be any of a liquid form, a paste form, and a film form. In this case, when the film is in the form of a film, a constant thickness can be easily obtained, and a coating operation is not required, which is particularly useful for improving workability. An epoxy resin or the like is preferably used as the adhesive. Although a thermoplastic material may be used, a curable material using energy such as heat, light, or an electron beam is preferably used because of its excellent heat resistance and moisture resistance. As the sealing material, it is necessary to lower the impurity level of the adhesive, and it is preferable to use an adhesive having Na + and Cl of 20 ppm or less, respectively, in the extraction water after extraction with pure water at 100 ° C. for 10 hours.

【0020】接着剤中に混合する導電性粒子の割合は、
接着剤と導電性粒子の合計量に対して0.1〜20体積
%、好ましくは0.2〜10体積%、より好ましくは
0.5〜6体積%である。添加量が少ないと接続すべき
電極(回路)上の導電性粒子数が減少するため信頼性が
低下し、過多であると隣接電極方向の絶縁性が低下し微
細電極の接続が困難となる。
The proportion of the conductive particles mixed in the adhesive is as follows:
It is 0.1 to 20% by volume, preferably 0.2 to 10% by volume, more preferably 0.5 to 6% by volume, based on the total amount of the adhesive and the conductive particles. If the addition amount is small, the number of conductive particles on the electrode (circuit) to be connected is reduced, so that the reliability is reduced. If the addition amount is too large, the insulating property in the direction of the adjacent electrode is reduced, and it becomes difficult to connect the fine electrode.

【0021】本発明の導電性粒子を用いた表示パネルの
接続構造を図4及び図5により説明する。図4におい
て、液晶等の電気光学的物質8が上下回路6、7間にス
ペーサも兼ねた硬質粒子1により一定厚みに挟持されて
いる。これらの回路は、図示してないがガラスやプラス
チック等の基板上に形成されている。
A connection structure of a display panel using the conductive particles of the present invention will be described with reference to FIGS. In FIG. 4, an electro-optical material 8 such as a liquid crystal is sandwiched between upper and lower circuits 6 and 7 to a certain thickness by hard particles 1 which also serve as spacers. These circuits are formed on a substrate such as glass or plastic (not shown).

【0022】末端部の上下回路6、7間を接続するにあ
たり、接続時の加熱加圧により、上下回路間の間隔は導
電性粒子中の硬質粒子1の粒径に制御されて接着剤5で
固定される。このとき硬質粒子1上の軟質な高分子重合
体層2は変形性を有するので、加熱加圧で回路との接触
部で極めて薄くなり、これに付随して金属薄層3が小さ
く破壊して回路と面接触する。このとき金属薄層3は軟
質な高分子重合体層2に追隨するので剥離がない。電極
の横方向は、導電性粒子の添加量や粒径の制御により絶
縁性が保てる。
In connecting the upper and lower circuits 6 and 7 at the end, the distance between the upper and lower circuits is controlled to the particle size of the hard particles 1 in the conductive particles by the heating and pressurizing at the time of connection, and the adhesive 5 is used. Fixed. At this time, since the soft high-molecular polymer layer 2 on the hard particles 1 has a deformability, it becomes extremely thin at a contact portion with a circuit by heating and pressing, and accompanying this, the thin metal layer 3 is broken small. Makes surface contact with circuit. At this time, since the thin metal layer 3 follows the soft polymer layer 2, there is no peeling. Insulating properties can be maintained in the lateral direction of the electrode by controlling the amount of conductive particles added and the particle size.

【0023】図3に示した樹脂層4を表面に有する導電
性粒子の場合は、図5に示すように、接着剤に分散させ
ずに、樹脂層4を接着剤として導電性粒子を加熱加圧等
により回路面に固定することもできる。この場合、図5
のように、通常のシール材である接着剤5を用いてシー
ル手段を別途設けて電気光学的物質8をシールしてもよ
く、あるいは図4と同様に接着剤5に混合し併用しても
よい。
In the case of the conductive particles having the resin layer 4 on the surface shown in FIG. 3, as shown in FIG. 5, the conductive particles are heated and heated using the resin layer 4 as an adhesive without being dispersed in the adhesive. It can also be fixed to the circuit surface by pressure or the like. In this case, FIG.
As shown in FIG. 4, the electro-optical material 8 may be sealed by separately providing a sealing means using an adhesive 5 which is a normal sealing material, or may be mixed with the adhesive 5 and used together as in FIG. Good.

【0024】[0024]

【作用】本発明において、導電性金属薄層3は軟質な高
分子重合体層2上に形成されているため変形追隨性があ
り、最大変形量が核となる硬質粒子1により制御される
ので、接続時の過度の変形にも剥離し難い。また硬質粒
子1上の軟質な高分子重合体層2は金属に比べ変形性を
得やすく、金属や硬質粒子との接着性も得やすい。その
ため、低抵抗で信頼性に優れた接続が得られる。また、
接続電極や基板の耐熱性や硬さに応じて、適宜組み合わ
せを設定することが可能である。
In the present invention, since the conductive metal thin layer 3 is formed on the soft polymer layer 2, it has a deformation follow-up property, and the maximum deformation amount is controlled by the hard particles 1 serving as nuclei. Also, it is hard to peel off due to excessive deformation at the time of connection. Further, the soft polymer layer 2 on the hard particles 1 can easily obtain deformability as compared with metal, and can easily obtain adhesion to metal and hard particles. Therefore, a connection with low resistance and excellent reliability can be obtained. Also,
Combinations can be set as appropriate depending on the heat resistance and hardness of the connection electrodes and the substrate.

【0025】核となる硬質粒子1は、電極接続時の加熱
加圧の際に軟質な高分子重合体層2に比べ硬質としたこ
とにより、変形がほとんど無いか、あってもごく僅かと
することができる。そのため、加熱加圧による接続後の
厚みを硬質粒子1の粒径の大きさに制御可能なので、接
続条件の考慮が少なくても安定した接続が得られる。
The hard particles 1 serving as nuclei are hardly deformed or hardly deformed when heated and pressurized at the time of electrode connection because they are harder than the soft polymer layer 2. be able to. Therefore, since the thickness after connection by heating and pressing can be controlled to the size of the particle size of the hard particles 1, a stable connection can be obtained even if the connection conditions are not taken into account.

【0026】本発明の表示パネルは回路高さが低い薄膜
の場合でも確実に導電性粒子が面接触できるので信頼性
に優れている。
The display panel of the present invention is excellent in reliability because the conductive particles can surely make surface contact even in the case of a thin film having a low circuit height.

【0027】[0027]

【実施例】以下実施例で更に詳細に説明するが、本発明
はこれに限定されない。
The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto.

【0028】実施例1 平均粒径3μmの硬化ベンゾグアナミン粒子(ガラス転
移点180℃以上)の表面に、ポリスチレン/ジビニル
ベンゼン(重量比)=100/2(ガラス転移点120
℃)よりなる平均粒径1μmの粒子を、アルコールを分
散剤としてスプレイドライヤを用いて形成し、次いでこ
の装置により130℃で加熱し、被覆層を固定化した。
Example 1 On the surface of cured benzoguanamine particles having an average particle size of 3 μm (glass transition point of 180 ° C. or higher), polystyrene / divinylbenzene (weight ratio) = 100/2 (glass transition point of 120)
° C) having an average particle diameter of 1 µm was formed using a spray dryer using alcohol as a dispersant, and then heated at 130 ° C with this apparatus to fix the coating layer.

【0029】この粒子を水中に分散し、塩化パラジウム
系の活性化処理の後、無電解Niめっき液を用いてNi
めっきを90℃で行った後、Auめっき液を用い置換め
っきを70℃で行ない導電性粒子を得た。このときNi
/Auの厚さは0.2/0.02μmであった。この粒
子は該略、図1の構成であった。
After dispersing the particles in water and activating a palladium chloride system, the particles are dispersed in Ni using an electroless Ni plating solution.
After plating was performed at 90 ° C., displacement plating was performed at 70 ° C. using an Au plating solution to obtain conductive particles. At this time, Ni
The thickness of / Au was 0.2 / 0.02 μm. The particles had the structure shown in FIG.

【0030】高分子量エポキシ樹脂を主成分とする接着
剤に、前記導電性粒子を2体積%添加し、厚み20μm
の接着剤(純水で100℃10h抽出後の抽出水のNa
+、Cl-がそれぞれ10ppm以下)層をポリテトラフ
ルオロエチレンフィルム50μm上に形成した接続部材
を得た。
The above-mentioned conductive particles were added at 2% by volume to an adhesive mainly composed of a high molecular weight epoxy resin, and the thickness was 20 μm.
Adhesive (Na of extraction water after extraction with pure water at 100 ° C for 10h)
+ And Cl - are each 10 ppm or less) to obtain a connection member having a layer formed on a polytetrafluoroethylene film of 50 μm.

【0031】厚み1.1mmのガラス基板上に、酸化イ
ンジウム厚み0.2μm(ITO、表面抵抗20Ω/
□)の薄膜回路を有する2枚のパネルの端部に、前記接
続部材を1.5mm幅で載置し上下回路の位置合わせ
後、評価のために接続条件を変化させて上下回路を接続
した。各回路は、回路ピッチ100μm、電極幅50μ
mの平行回路からなる電極である。接続条件は、接続部
の温度を150、170、190℃と、圧力を5、2
0、100kgf/mm2と広く変動させた。その後で
平均粒径3.5μmの硬化ベンゾグアナミン粒子をスペ
ーサとし液晶を封入し、表示パネルを作製した。
On a glass substrate having a thickness of 1.1 mm, indium oxide having a thickness of 0.2 μm (ITO, surface resistance 20 Ω /
□) The connection members were placed at 1.5 mm width on the ends of two panels having thin film circuits, and after positioning of the upper and lower circuits, the connection conditions were changed for evaluation and the upper and lower circuits were connected. . Each circuit has a circuit pitch of 100 μm and an electrode width of 50 μm
The electrodes are composed of m parallel circuits. The connection conditions were as follows: connection temperature: 150, 170, 190 ° C .;
It was widely varied to 0 and 100 kgf / mm 2 . Thereafter, a liquid crystal was sealed using the cured benzoguanamine particles having an average particle size of 3.5 μm as spacers to produce a display panel.

【0032】評価の結果、上記した広範囲の接続条件下
で、接続厚みがスぺーサの平均粒径と金属薄層の厚みの
和にほぼ等しい3.5μmに制御され、これらはいずれ
も優れた長期接続信頼性を示した。また接続条件の異な
る接続部の導電性粒子を走査型電子顕微鏡で観察したと
ころ、いずれも電極との接触部が座屈し微小なクラック
が見られ菊の花状となっているものの、金属層の剥離が
見られず面接触していた。
As a result of the evaluation, the connection thickness was controlled to 3.5 μm, which was substantially equal to the sum of the average grain size of the spacer and the thickness of the thin metal layer, under the above-described wide range of connection conditions. It showed long-term connection reliability. In addition, when the conductive particles at the connection part under different connection conditions were observed with a scanning electron microscope, the contact part with the electrode was buckled and small cracks were observed, and the shape of the metal layer was Peeling was not seen and surface contact was made.

【0033】また接着剤の不純物レベルが低く、液晶の
シール材として兼用可能であった。
Further, the impurity level of the adhesive was low, so that it could be used also as a liquid crystal sealing material.

【0034】実施例2 実施例1と同様であるが、平均粒径3μmの硬化ベンゾ
グアナミン粒子を平均粒径5μmのシリカ粒子(100
0℃で安定)に変更し図1の構成の粒子を得て、同様な
評価を行った。実施例1と同様に広範囲の接続条件下で
良好な接続信頼性を示し、接続厚みは硬質粒子の平均粒
径である5μmに制御されていた。本例においては硬質
粒子がより硬質な無機粒子のため、ギャップコントロー
ルを一層精度良く行うことができた。
Example 2 As in Example 1, but cured benzoguanamine particles having an average particle size of 3 μm were replaced with silica particles (100
(Stable at 0 ° C.) to obtain particles having the configuration shown in FIG. 1, and the same evaluation was performed. As in Example 1, good connection reliability was exhibited under a wide range of connection conditions, and the connection thickness was controlled to 5 μm, which is the average particle size of the hard particles. In this example, since the hard particles were harder inorganic particles, the gap control could be performed more accurately.

【0035】実施例3 ポリスチレン/ジビニルベンゼン(重量比)=100/
20(ガラス転移点170℃)の粒径6μm粒子上に、
被覆層としてポリスチレン/ジビニルベンゼン(重量
比)=100/1(ガラス転移点115℃)の層を設
け、次いで80℃で重合させて粒径8μmの複合粒子と
した。次いで、実施例1と同様にしてこの複合粒子の表
面に金属薄層を形成し導電性粒子を作製し、これを用い
て接続部材を得た。この接続部材を用いて上下回路を1
50℃、20kgf/mm2、20秒で接続した。この
場合も接続厚みは硬質粒子の平均粒径である6μmに制
御されていた。本例においては硬質粒子と被覆層の材質
を架橋密度の変更のみで行ったので、層間の密着性に優
れた粒子を簡単に入手できた。
Example 3 Polystyrene / divinylbenzene (weight ratio) = 100 /
On a 6 μm particle having a particle size of 20 (glass transition point 170 ° C.),
A layer of polystyrene / divinylbenzene (weight ratio) = 100/1 (glass transition point: 115 ° C.) was provided as a coating layer, and then polymerized at 80 ° C. to obtain composite particles having a particle size of 8 μm. Next, a thin metal layer was formed on the surface of the composite particles in the same manner as in Example 1 to produce conductive particles, and a connection member was obtained using the conductive particles. Using this connecting member, one upper and lower circuit
The connection was performed at 50 ° C., 20 kgf / mm 2 for 20 seconds. Also in this case, the connection thickness was controlled to 6 μm, which is the average particle size of the hard particles. In this example, since the materials of the hard particles and the coating layer were changed only by changing the crosslink density, particles having excellent adhesion between the layers could be easily obtained.

【0036】実施例4 実施例1の導電性粒子をナイロン(ガラス転移点110
℃)のアルコールの溶液で処理後、60℃で乾燥し、表
面に厚み1〜2μmのナイロン層を有する図3の構成の
粒子を得た。この粒子を実施例1と同様の接着剤中に、
添加量を6体積%と増加して同様な評価を行った。
Example 4 The conductive particles of Example 1 were converted to nylon (glass transition point 110
C.), dried at 60.degree. C. to obtain particles having a nylon layer having a thickness of 1 to 2 .mu.m on the surface and having the structure shown in FIG. The particles were placed in the same adhesive as in Example 1,
The same evaluation was performed by increasing the addition amount to 6% by volume.

【0037】この場合も広範囲の接続条件下で良好な接
続信頼性であり、電極間距離は硬質粒子の平均粒径であ
る3μmに制御されていた。
Also in this case, good connection reliability was obtained under a wide range of connection conditions, and the distance between the electrodes was controlled to 3 μm, which is the average particle size of the hard particles.

【0038】本例においては導電性粒子の添加量を6体
積%と増加したにもかかわらず、隣接方向の絶縁性は良
好であった。
In this example, the insulation in the adjacent direction was good even though the addition amount of the conductive particles was increased to 6% by volume.

【0039】[0039]

【発明の効果】以上詳述したように本発明によれば、硬
質粒子の表面をこれより軟質な高分子重合体層で被覆
し、更に導電性金属薄層で被覆してなる導電性粒子とす
ることで、広い接続条件下で安定した一定の接続厚みと
導電粒子の面接触による良好な接続信頼性を有する表示
パネルが簡単に得られる。
As described in detail above, according to the present invention, the conductive particles formed by covering the surface of the hard particles with a softer polymer polymer layer, and further coating with a conductive metal thin layer. By doing so, it is possible to easily obtain a display panel having a stable and constant connection thickness under a wide range of connection conditions and good connection reliability due to surface contact of the conductive particles.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施に好適な導電性粒子を示す断面模
式図である。
FIG. 1 is a schematic sectional view showing conductive particles suitable for carrying out the present invention.

【図2】本発明の実施に好適な導電性粒子を示す断面模
式図である。
FIG. 2 is a schematic cross-sectional view showing conductive particles suitable for carrying out the present invention.

【図3】本発明の実施に好適な導電性粒子を示す断面模
式図である。
FIG. 3 is a schematic sectional view showing conductive particles suitable for carrying out the present invention.

【図4】本発明の一実施例を示す表示パネルを示す断面
模式図である。
FIG. 4 is a schematic sectional view showing a display panel according to an embodiment of the present invention.

【図5】本発明の一実施例を示す表示パネルを示す断面
模式図である。
FIG. 5 is a schematic sectional view showing a display panel according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 硬質粒子 2 軟質な高分子重合体層 3 金属薄層 4 樹脂層 5 接着剤 6 上回路 7 下回路 8 電気光学的物質 9 スペーサ粒子 DESCRIPTION OF SYMBOLS 1 Hard particle 2 Soft polymer layer 3 Metal thin layer 4 Resin layer 5 Adhesive 6 Upper circuit 7 Lower circuit 8 Electro-optical material 9 Spacer particle

───────────────────────────────────────────────────── フロントページの続き (72)発明者 後藤 泰史 茨城県下館市大字小川1500番地 日立化 成工業株式会社 下館研究所内 (72)発明者 太田 共久 茨城県下館市大字小川1500番地 日立化 成工業株式会社 下館研究所内 (56)参考文献 特開 平4−153625(JP,A) 特開 平4−333025(JP,A) 特開 平5−249483(JP,A) 実開 平2−83530(JP,U) (58)調査した分野(Int.Cl.7,DB名) G02F 1/1345 G09F 9/30 331 G02F 1/1339 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Yasushi Goto 1500 Ogawa Ogawa, Shimodate City, Ibaraki Pref.Hitachi Chemical Industry Co., Ltd. (56) References JP-A-4-153625 (JP, A) JP-A-4-3333025 (JP, A) JP-A-5-249483 (JP, A) Jpn. (JP, U) (58) Field surveyed (Int. Cl. 7 , DB name) G02F 1/1345 G09F 9/30 331 G02F 1/1339

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 回路が形成された2枚の対向基板の回路
(6、7)間に電気光学的物質8と共にスペーサ粒子9
を挟持し、かつ上下回路(6、7)間を一定厚みに隔
て、上下回路(6、7)を導電性粒子と接着剤5により
接続する表示パネルにおいて、前記導電性粒子が前記ス
ペーサ粒子9と実質的に同一径の硬質粒子1の表面にこ
れより軟質な高分子重合体層2を被覆し更に導電性金属
薄層3を被覆してなる導電性粒子であり、実質的に上下
回路(6、7)の間隔が硬質粒子9の粒径の間隔に隔て
られ回路面に導電性粒子の金属薄層3が面接触している
ことを特徴とする表示パネル。
A spacer particle (9) together with an electro-optical substance (8) between circuits (6, 7) of two opposing substrates on which circuits are formed.
In a display panel in which the upper and lower circuits (6, 7) are connected to each other by a conductive material and an adhesive 5 with a predetermined thickness between the upper and lower circuits (6, 7), the conductive particles are The conductive particles are formed by coating the surface of hard particles 1 having substantially the same diameter as the polymer polymer layer 2 which is softer than this, and further covering the conductive metal thin layer 3. 6. A display panel wherein the intervals of 6 and 7) are separated by the interval of the particle size of the hard particles 9 and the thin metal layer 3 of conductive particles is in surface contact with the circuit surface.
JP31284493A 1993-11-19 1993-11-19 Display panel Expired - Fee Related JP3280139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31284493A JP3280139B2 (en) 1993-11-19 1993-11-19 Display panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31284493A JP3280139B2 (en) 1993-11-19 1993-11-19 Display panel

Publications (2)

Publication Number Publication Date
JPH07140481A JPH07140481A (en) 1995-06-02
JP3280139B2 true JP3280139B2 (en) 2002-04-30

Family

ID=18034113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31284493A Expired - Fee Related JP3280139B2 (en) 1993-11-19 1993-11-19 Display panel

Country Status (1)

Country Link
JP (1) JP3280139B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106125410A (en) * 2016-06-28 2016-11-16 京东方科技集团股份有限公司 Conducting sphere and preparation method thereof, anisotropy conductiving glue, display device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3234188B2 (en) 1997-03-31 2001-12-04 キヤノン株式会社 Image forming apparatus and manufacturing method thereof
KR100713999B1 (en) 2005-09-30 2007-05-04 삼성에스디아이 주식회사 Organic light emitting display with conductive spacer and the producing method thereof
JP4852311B2 (en) * 2006-01-12 2012-01-11 積水化学工業株式会社 Conductive particle, anisotropic conductive material, and conductive connection structure
JP5841319B2 (en) * 2010-08-10 2016-01-13 株式会社日本触媒 Polymer fine particles and conductive fine particles
JP2014071341A (en) * 2012-09-28 2014-04-21 Jvc Kenwood Corp Display element and method for manufacturing the same
CN104684970B (en) 2013-01-24 2018-01-30 积水化学工业株式会社 Substrate particle, electroconductive particle, conductive material and connection structural bodies
KR102172942B1 (en) 2013-01-24 2020-11-02 세키스이가가쿠 고교가부시키가이샤 Base material particle, conductive particle, conductive material, and connection structure
JP6739988B2 (en) * 2015-04-30 2020-08-12 積水化学工業株式会社 Base particle, method for producing base particle, conductive particle, conductive material, and connection structure
WO2018181897A1 (en) * 2017-03-31 2018-10-04 株式会社クラレ Resin composition containing multilayered structure and method for producing same
CN108254977A (en) * 2018-01-29 2018-07-06 深圳市华星光电半导体显示技术有限公司 Liquid crystal cell
JP7107788B2 (en) * 2018-09-03 2022-07-27 積水化学工業株式会社 Electric module and method of manufacturing an electric module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106125410A (en) * 2016-06-28 2016-11-16 京东方科技集团股份有限公司 Conducting sphere and preparation method thereof, anisotropy conductiving glue, display device
CN106125410B (en) * 2016-06-28 2019-08-02 京东方科技集团股份有限公司 Conducting sphere and preparation method thereof, anisotropy conductiving glue, display device

Also Published As

Publication number Publication date
JPH07140481A (en) 1995-06-02

Similar Documents

Publication Publication Date Title
KR100559937B1 (en) Method of microelectrode connection and connected srtucture thereby
CN1148696C (en) High-reliability touch panel
EP0242025B1 (en) Anisotropic-electroconductive adhesive composition, method for connecting circuits using the same, and connected circuit structure thus obtained
JP3280139B2 (en) Display panel
KR20010085434A (en) Anisotropic conductive adhesive film
KR102517498B1 (en) Conductive material and manufacturing method of connection body
US6495758B2 (en) Anisotropically electroconductive connecting material
JPH08148213A (en) Connection member and structure and method for connecting electrode using the same
JPH0750104A (en) Conductive particle and connection member using conductive particle
JPH07157720A (en) Film having anisotropic electrical conductivity
JP2995993B2 (en) Circuit connection method
JP3622792B2 (en) Connection member and electrode connection structure and connection method using the connection member
KR930004858B1 (en) Electrically conductive adhesive sheet circuit board and electrical connection structure
JPS63231889A (en) Circuit connection member
JPS60225828A (en) Packaging method of liquid crystal panel
KR100735211B1 (en) Anisotropic conductive film with conductive ball of highly reliable electric connection
JP2004006417A (en) Connecting element and connection structure of electrode using this
JPH08188760A (en) Anisotropic electroconductive adhesive and anisotropic electroconductive adhesive sheet using the same
JP2001035248A (en) Conductivity imparting particle and anisotropically conductive adhesive using the same
JP2003318502A (en) Electrode connection structure
JP3783791B2 (en) Connection member and electrode connection structure and connection method using the connection member
EP0605689B1 (en) Anisotropic electrical connection
JPH09147928A (en) Connecting member
JP2001297631A (en) Anisotropic conductive film
JP4155470B2 (en) Electrode connection method using connecting members

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080222

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090222

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20120222

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20120222

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20130222

LAPS Cancellation because of no payment of annual fees