JP2001035248A - Conductivity imparting particle and anisotropically conductive adhesive using the same - Google Patents

Conductivity imparting particle and anisotropically conductive adhesive using the same

Info

Publication number
JP2001035248A
JP2001035248A JP11202283A JP20228399A JP2001035248A JP 2001035248 A JP2001035248 A JP 2001035248A JP 11202283 A JP11202283 A JP 11202283A JP 20228399 A JP20228399 A JP 20228399A JP 2001035248 A JP2001035248 A JP 2001035248A
Authority
JP
Japan
Prior art keywords
particles
resin
adhesive
conductivity
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11202283A
Other languages
Japanese (ja)
Other versions
JP4107769B2 (en
Inventor
Kazuyoshi Yoshida
一義 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP20228399A priority Critical patent/JP4107769B2/en
Publication of JP2001035248A publication Critical patent/JP2001035248A/en
Application granted granted Critical
Publication of JP4107769B2 publication Critical patent/JP4107769B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide conductivity-imparting particles used for electrical connection between an LCD(liquid crystal display) or a PDP(plasma display) and a circuit board mounted with its drive circuit and to provide an anisotropically conductive adhesive using the same. SOLUTION: This conductivity-imparting particles A are made by covering surfaces of conductive particles 1 with an insulating resin 2, and the conductive particles 1 are made by applying metal plating 13 to surfaces of acrylic resin particles each comprising a flexible nucleus 11, and a shell 12 harder than the nucleus and coating the nucleus 11. The anisotropically conductive adhesive B is made by dispersing the conductivity-imparting particles A in an insulating adhesive 3. The anisotropically conductive adhesive is low in initial connection resistance, superior in reliability of connection over a long period of time, and moreover superior in short circuit (leakage) prevention.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、LCD(Liquid C
rystal Display)やPDP(Plasma Display)とそれら
の駆動回路を搭載した回路基板との間の電気的接続等に
利用される、導電性付与粒子及びこれを用いた異方導電
性接着剤に関する。なお、本件明細書中に記載の「接
着」には、粘着という概念を含むものであり、また、
「接着剤」には、粘着剤という概念を含むものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an LCD (Liquid C
The present invention relates to a conductivity-imparting particle used for electrical connection or the like between a crystal display (PDP) or a PDP (Plasma Display) and a circuit board on which the driving circuit is mounted, and an anisotropic conductive adhesive using the same. The term “adhesion” described in the present specification includes the concept of adhesion,
"Adhesive" includes the concept of an adhesive.

【0002】[0002]

【従来の技術】従来より異方導電性接着剤は、LCDや
PDPなどの表示体とPCB(Printed Circuit Boar
d)、FPC(Flexible Printed Circuit)との接続、
あるいはPCB、FPC間の接続などに用いられてい
る。この異方導電性接着剤は、絶縁性接着剤中に導電性
粒子を分散させたもので、その導電性粒子としては、例
えば、ファーネスブラック、チャンネルブラック、アセ
チレンブラックなどのカーボンブラックやグラファイト
などのカーボン系粒子、金、銀、銅、ニッケルアルミニ
ウムなどの金属粒子、表面を金属でメッキしたプラスチ
ック系粒子などが使用されている。更に、近年の電子機
器の高精密化に伴い、接続ピッチが非常に小さくなって
おり、粒子の存在密度が高くなってきている。
2. Description of the Related Art Conventionally, an anisotropic conductive adhesive is used for a display such as an LCD or a PDP and a printed circuit board (PCB).
d), connection with FPC (Flexible Printed Circuit),
Alternatively, it is used for connection between a PCB and an FPC. This anisotropic conductive adhesive is obtained by dispersing conductive particles in an insulating adhesive.Examples of the conductive particles include furnace black, channel black, carbon black such as acetylene black, and graphite. Carbon-based particles, metal particles such as gold, silver, copper, and nickel aluminum, and plastic-based particles whose surfaces are plated with metal are used. Further, with the recent increase in precision of electronic devices, the connection pitch has become extremely small, and the density of particles has been increasing.

【0003】しかしながら、これらの導電性粒子の中
で、金属粒子やカーボン系粒子などのように圧力(5〜
100kgf/cm2、通常は20〜40kgf/cm2)によって
変形しにくいものは、熱圧着時の加熱、加圧による絶縁
性接着剤の物性の変位量に容易に追従できず、接続後の
種々の使用環境下において絶縁性接着剤の残存応力を受
けて微視的に動き、部分的な導通不良、高抵抗値化など
を生じさせるので電気的接続の長期信頼性に重大な悪影
響を及ぼしている。従って、これらの悪影響等を解消す
るため、金属粒子やカーボン系粒子に比べ変形しやすい
プラスチック系粒子を核としてその表面に金属メッキを
施した導電性粒子を使用することが行われている。
[0003] However, among these conductive particles, pressure (5 to 5) such as metal particles and carbon-based particles is used.
100 kgf / cm 2, usually those that hardly deformed by 20~40kgf / cm 2), heating during thermocompression bonding can not easily follow the displacement of the physical properties of the insulating adhesive by pressure, various post-connection Under the use environment, the microscopic movement due to the residual stress of the insulating adhesive causes partial conduction failure, high resistance value, etc., which has a serious adverse effect on the long-term reliability of the electrical connection. I have. Therefore, in order to eliminate these adverse effects and the like, conductive particles whose core is plastic-based particles which are more easily deformed than metal particles or carbon-based particles and whose surface is plated with metal have been used.

【0004】このプラスチック系粒子を核に用いた導電
性粒子は、熱圧着された状態で被着体と面接触し、この
接触面積が広いほど接触抵抗が低く安定したものとな
り、また、プラスチック系粒子の復元性が高いほど、被
着体に強い接触圧で接触するために接触抵抗を低く保つ
ことができるものである。ところが、接触面積は、プラ
スチックの核が柔軟なほど大きくなり、復元性は硬いほ
ど強くなるといった相反するものであった。即ち、接触
面積を大きくするために柔軟にすると、導電性粒子は塑
性変形しやすくなり、弾性を持たないために、復元率が
低くなり、逆に、硬くすると復元率が大きくなり、接触
圧は上がるものの接触面積は小さく、点接触に近くな
り、どちらの場合も電気的接続の長期信頼性に欠けるも
のとなってしまう点に課題がある。更に、上述したとお
り、近年の電子機器の小型化、高精密化に伴い、接続ピ
ッチが非常に小さくなってきており、導電性粒子の存在
密度が高くなってきていることから、隣り合う端子同士
が短絡(リーク)する課題も発生してきている。
The conductive particles using the plastic particles as nuclei make surface contact with the adherend in a state of thermocompression bonding. The larger the contact area, the lower the contact resistance and the more stable the particles. The higher the resilience of the particles, the higher the contact pressure with the adherend and the lower the contact resistance. However, the contact area was contradictory such that the softer the core of the plastic, the larger the hardness, and the stronger the resilience, the stronger the core. In other words, when the conductive particles are made flexible to increase the contact area, the conductive particles tend to be plastically deformed, and since they do not have elasticity, the restoration rate is reduced. Conversely, when the particles are hard, the restoration rate is increased, and the contact pressure is increased. There is a problem in that the contact area is small, but the contact area is close to a point contact, but in both cases, the long-term reliability of the electrical connection is lacking. Furthermore, as described above, with the recent miniaturization and high precision of electronic devices, the connection pitch has become extremely small, and the density of conductive particles has been increasing. There is also a problem of short circuit (leak).

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記従来技
術の課題に鑑み、これを解消しようとするものであり、
特に、温湿度サイクル、及び熱衝撃によっても電気的接
続を確実に且つ高信頼性に保ち、かつ隣り合う端子間の
絶縁性をも向上する導電性付与粒子及びこれを用いた異
方導電性接着剤を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and aims to solve the problem.
In particular, conductivity-imparting particles which reliably and reliably maintain electrical connection even by temperature / humidity cycles and thermal shock, and also improve insulation between adjacent terminals, and anisotropically conductive bonding using the same. It is intended to provide an agent.

【0006】[0006]

【課題を解決するための手段】本発明者は、上記従来技
術の課題を解決する手段について種々検討した結果、導
電性粒子に3つの機能を持たせるべく、核(コア)と殻
(シェル)と絶縁膜を持つ構成とし、柔軟な核により接
触面積を大きくするとともに、硬質な殻により復元率を
持たせ、絶縁膜により絶縁性を保持させることとし、こ
れによって電気的接続の信頼性についても温湿度サイク
ルや熱衝撃での安定性が向上し、絶縁性も優れることを
見い出し、これら構成材料の成分の種類、硬度、厚さ、
熱的特性などについての研究を更に進めることにより、
本発明を完成するに至ったのである。すなわち、本発明
は、次の(1)〜(3)に存する。 (1) 柔軟性を有する核と、この核を被覆するこの核より
も硬質な殻とからなる合成樹脂系粒子の表面に金属メッ
キが施されてなる導電性粒子の更に表面を絶縁性樹脂で
覆ったことを特徴とする導電性付与粒子。 (2) 導電性粒子の10%圧縮強度が0.2〜5.0kg/m
m2であり、かつ、復元率が5〜90%である上記(1)記
載の導電性付与粒子。 (3) 上記(1)又は(2)記載の導電性付与粒子を絶縁性接着
剤中に分散してなることを特徴とする異方導電性接着
剤。
As a result of various studies on means for solving the above-mentioned problems of the prior art, the present inventor has found that a core (core) and a shell (shell) are provided so that conductive particles have three functions. In addition, the contact area is increased by the flexible core, the restoration rate is provided by the hard shell, and the insulation is maintained by the insulating film, thereby improving the reliability of the electrical connection. It has been found that the stability in temperature and humidity cycles and thermal shock is improved, and that the insulation properties are also excellent, and the types, hardness, thickness,
By further research on thermal properties, etc.,
The present invention has been completed. That is, the present invention resides in the following (1) to (3). (1) The surface of the synthetic resin-based particles comprising a core having flexibility and a shell harder than the core covering the core is coated with an insulating resin. Conductivity imparting particles characterized by being covered. (2) The 10% compressive strength of the conductive particles is 0.2 to 5.0 kg / m.
m 2 and a restoration rate of 5 to 90%. (3) An anisotropic conductive adhesive obtained by dispersing the conductive particles according to the above (1) or (2) in an insulating adhesive.

【0007】[0007]

【発明の実施の形態】以下に、本発明の実施の形態を図
面を参照しながら詳しく説明する。図1は、本発明の導
電性付与粒子の実施形態の一例を示す縦断面図である。
本実施形態の導電性付与粒子Aは、図1に示すように、
柔軟性を有する核11と、この核11を被覆するこの核
よりも硬質な殻12とからなる合成樹脂系粒子の表面に
金属メッキ13が施されてなる導電性粒子1の更に表面
を絶縁性樹脂2で覆ったものである。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a longitudinal sectional view showing an example of the embodiment of the conductivity-imparting particles of the present invention.
The conductivity-imparting particles A of the present embodiment are, as shown in FIG.
The surface of the synthetic resin-based particles composed of a core 11 having flexibility and a shell 12 harder than the core which covers the core 11 is coated with metal plating 13 so that the surface of the conductive particles 1 is further insulated. It is covered with resin 2.

【0008】本発明を構成する導電性付与粒子Aの核1
1、殻12の材料としては、スチレン系、シリコーン
系、ウレタン系、ジビニルベンゼン系、ベンゾグアナミ
ン系、メラミン系、フェノール系の樹脂が挙げられる
が、硬質な殻12の成分との密着性(接着性)を良好に
して、核11と殻12が熱圧着時やその後の熱衝撃など
によって界面剥離を起こさないように殻12に用いる樹
脂成分を重合度及び/又は添加剤を加えることによっ
て、硬度を変えて、含ませることが望ましく、特には、
核11、殻12ともに耐熱性に優れ、硬度調節が容易
で、懸濁重合しやすいアクリル系樹脂を使用するのがよ
い。勿論、密着性が良好である限り相異なる樹脂系のも
のを組み合わせても良い。殻12は、核11よりも硬質
である必要があるが、その硬度差は、両者を同一粒子径
の粒子としてときに、圧縮強度として、0.01〜10
kg/mm2である。また、殻12は、核11を完全に
(100%)被覆していることが硬度のバラツキ、後述
する金属メッキの容易性等の観点からは望ましいが、こ
れは核表面の60%以上、好ましくは、80%以上を被
覆していればよい。
The core 1 of the conductive particles A constituting the present invention
1. Examples of the material of the shell 12 include styrene-based, silicone-based, urethane-based, divinylbenzene-based, benzoguanamine-based, melamine-based, and phenol-based resins. ), The hardness of the resin component used for the shell 12 is added by adding a degree of polymerization and / or an additive so that the core 11 and the shell 12 do not undergo interface delamination during thermocompression bonding or subsequent thermal shock. It is desirable to change and include, especially,
Both the core 11 and the shell 12 are preferably made of an acrylic resin having excellent heat resistance, easy hardness adjustment, and easy suspension polymerization. Of course, different resin-based materials may be combined as long as the adhesion is good. The shell 12 needs to be harder than the core 11, but the difference in hardness is 0.01 to 10 as compressive strength when both are particles having the same particle diameter.
kg / mm 2 . It is desirable that the shell 12 completely covers the core 11 (100%) from the viewpoints of hardness variation, ease of metal plating described later, and the like. Should cover at least 80%.

【0009】核11としてアクリル系樹脂を使用すると
きは、柔軟性を持たせるためにアルキル基が分子量の大
きめな炭素数(アルキル基)4〜18のアクリル酸エス
テル、炭素数(アルキル基)4〜18のメタクリル酸エ
ステルの1種または数種から適宜選択し、これを架橋さ
せる多官能基モノマーとしてはエチレングリコールジメ
タクリレート、1,3ブチレングリコールジメタクリレ
ート、ネオペンチルグリコールジメタクリレート、ジエ
チレングリコールジメタクリレート、トリメチロールプ
ロパントリメタクリレート、アリルグリシジルエーテ
ル、N−メチロールメタクリルアミド、ジアリルフタレ
ート等のモノマーが用いられる。また、柔軟性の調節の
ために、塩化ビニル、酢酸ビニル、ブタジエンゴム、ア
クリロニトリルなどを共重合させてもよい。重合は、従
来公知の方法により行うことができ、特には懸濁重合に
よるものが良い。本発明を構成する殻12は、アクリル
系樹脂を用いる場合には、核の表面で硬くするようにア
ルキル基の分子量の小さめな炭素数(アルキル基)1〜
7のアクリル酸エステル、炭素数(アルキル基)1〜7
のメタクリル酸エステルなどを用い、適宜前記した共重
合物を混合してもよく、重合反応させ、核表面に殻を形
成させることにより得られる。
When an acrylic resin is used as the core 11, an alkyl group having an alkyl group having a large molecular weight of 4 to 18 carbon atoms (alkyl group) or 4 carbon atoms (alkyl group) is used for imparting flexibility. To methacrylic acid esters of -18 to 18, which are cross-linked by multifunctional monomers such as ethylene glycol dimethacrylate, 1,3 butylene glycol dimethacrylate, neopentyl glycol dimethacrylate, diethylene glycol dimethacrylate, Monomers such as trimethylolpropane trimethacrylate, allyl glycidyl ether, N-methylol methacrylamide, and diallyl phthalate are used. Further, in order to adjust flexibility, vinyl chloride, vinyl acetate, butadiene rubber, acrylonitrile and the like may be copolymerized. The polymerization can be carried out by a conventionally known method, and particularly preferably a suspension polymerization. When an acrylic resin is used, the shell 12 constituting the present invention has a small carbon number (alkyl group) of 1 to 1 in molecular weight of the alkyl group so as to be hard on the core surface.
7 acrylate, carbon number (alkyl group) 1 to 7
The above-mentioned copolymers may be appropriately mixed using methacrylic acid ester or the like, which is obtained by performing a polymerization reaction to form a shell on the core surface.

【0010】次に、核11と殻12の重量比は、後述す
る圧縮強度、復元率に大きな影響を与えるが、これらを
考慮しながら調節し、殻/核が1/10〜2/1の重量
比に設定される。殻11/核12が上記重量比の範囲外
であると、後述する圧縮強度、復元率の調整を上記した
材料の選択によって行うことが困難となる。すなわち、
殻/核の重量比が1/10未満であると、殻の性能とし
ての復元率を持たせることが困難になるし、また、2/
1を越えると、核の性能としての圧縮強度を発現させる
ことが困難になる。上記した核11は、通常、核だけで
0超〜3kg/mm2程度の圧縮強度を持ち、0超〜40%
の復元率を持つ。この核11に上記した殻12の材料や
重合反応によって核より硬質な殻を形成することによっ
て目的とする導電性粒子とほぼ同一の圧縮強度、復元率
を持つ合成樹脂系粒子を得ることができる。つまり、こ
の合成樹脂系粒子は、下記のように表面に金属メッキを
施すが、この金属メッキによって圧縮強度、復元率が大
きく変化することはなく、変化したとしても圧縮強度±
0.3kg/mm2程度、復元率±3%程度であるので、こ
れを考慮して核を形成すればよい。
Next, the weight ratio between the core 11 and the shell 12 has a great influence on the compressive strength and the recovery rate, which will be described later. Set to weight ratio. If the weight ratio of the shell 11 / nucleus 12 is out of the above range, it will be difficult to adjust the compressive strength and the recovery rate, which will be described later, by selecting the above materials. That is,
When the weight ratio of shell / core is less than 1/10, it is difficult to have a restoration rate as the performance of the shell.
If it exceeds 1, it becomes difficult to develop a compressive strength as a performance of the core. The core 11 described above usually has a compressive strength of more than 0 to 3 kg / mm 2 alone, and more than 0 to 40%
With a restoration rate. By forming a shell harder than the nucleus by the material of the shell 12 and the polymerization reaction on the nucleus 11, synthetic resin particles having almost the same compressive strength and recovery rate as the intended conductive particles can be obtained. . In other words, the synthetic resin-based particles are subjected to metal plating on the surface as described below. However, the compressive strength and the recovery rate are not significantly changed by this metal plating.
Since it is about 0.3 kg / mm 2 and the recovery rate is about ± 3%, the nucleus may be formed in consideration of these.

【0011】こうして製造された合成樹脂系粒子の表面
には、導通性を与えるために金属メッキ13が施され
る。良好な接続を得るために最表面は、貴金属メッキと
することが好ましく、例えば、Ni/Au、Ni/P
d、Ag/Au等の2層構造の貴金属メッキとされる。
このメッキ方法も従来公知の無電解めっき法等を用いる
ことにより形成することができる。メッキ厚としては、
Ni、Ag等を内層(1層目)に0.05〜0.3μ
m、更にこの上に再表面(2層目)としてAu、Pt、
Pd等の貴金属を50〜500オングストロームとする
ことが好ましい。また、こうして得られる導電性粒子の
比重は1.0〜3.0程度である。
A metal plating 13 is applied to the surface of the thus-produced synthetic resin-based particles in order to provide conductivity. In order to obtain a good connection, the outermost surface is preferably made of noble metal plating, for example, Ni / Au, Ni / P
d, noble metal plating of a two-layer structure such as Ag / Au.
This plating method can also be formed by using a conventionally known electroless plating method or the like. As plating thickness,
Ni, Ag, etc. for the inner layer (first layer) is 0.05 to 0.3 μm
m, and Au, Pt,
It is preferable that the precious metal such as Pd has a thickness of 50 to 500 angstroms. The specific gravity of the conductive particles thus obtained is about 1.0 to 3.0.

【0012】こうして得られた導電性粒子1の平均粒子
径(φ)は、接続すべき基板の端子ピッチにもよるが、
通常、1〜50μmの範囲である。基板の端子ピッチが
小さくなるほど、小さな平均粒子径の導電性粒子を使用
しなければ接続の信頼性、線間絶縁抵抗を両立できなく
なる。また、粒子径は、出来るだけ均一に揃っているこ
とが望ましく、CV値として40%以下がより好まし
い。なお、本発明で規定する「平均粒子径」とは、市販
のコールターカウンター(粒度分布測定器)による測定
の重量分布での平均粒子径を示し、また、CV値は(標
準偏差/平均粒子径)×100を示す。また、本発明に
おいて、導電性粒子は、真球形であっても、偏平球であ
っても良いが、偏平率(短軸/長軸)としては0.6以
上、好ましくは、0.8以上が接続の信頼性からは望ま
しい。
The average particle diameter (φ) of the conductive particles 1 thus obtained depends on the terminal pitch of the substrate to be connected.
Usually, it is in the range of 1 to 50 μm. As the terminal pitch of the substrate becomes smaller, the connection reliability and line-to-line insulation resistance cannot be compatible unless conductive particles having a smaller average particle size are used. Further, the particle diameter is desirably as uniform as possible, and more preferably 40% or less as the CV value. The “average particle size” defined in the present invention indicates an average particle size in a weight distribution measured by a commercially available Coulter counter (particle size distribution measuring device), and the CV value is (standard deviation / average particle size). ) × 100. In the present invention, the conductive particles may be spherical or flat spheres, but the flattening ratio (short axis / long axis) is 0.6 or more, preferably 0.8 or more. However, it is desirable from the viewpoint of connection reliability.

【0013】また、導電性粒子の10%圧縮強度は、
0.2〜5.0kg/mm2、好ましくは、0.5〜3.5k
g/mm2とすることが望ましく、後述するように絶縁性樹
脂の厚さ、溶融粘度との絡みから、10%圧縮強度が
0.2kg/mm2未満であると、容易に変形し過ぎて、導電
性粒子の周囲を覆う絶縁性樹脂の皮膜を突き破れなくな
る恐れがあり、接続が不安定になる可能性があり、ま
た、10%圧縮強度が5kg/mm2を越えると、前記したよ
うに被着体に面接触しづらくなる恐れがあり、点接触に
近くなるため、これにより、長期にわたる接続信頼性に
欠けてくる可能性がある。なお、本発明で規定する「1
0%圧縮強度」は、通常使用される微小圧縮試験機(島
津製作所:MCTM−500など)を用いた場合の導電
性粒子の粒子径が10%変位したときの強度を示すもの
である。
The 10% compressive strength of the conductive particles is as follows:
0.2-5.0 kg / mm 2 , preferably 0.5-3.5 k
g / mm 2, and as described later, if the 10% compressive strength is less than 0.2 kg / mm 2 due to the thickness of the insulating resin and the entanglement with the melt viscosity, it is easily deformed too much. However, there is a possibility that the coating of the insulating resin covering the periphery of the conductive particles may not be broken through, the connection may be unstable, and if the 10% compressive strength exceeds 5 kg / mm 2 , as described above, There is a possibility that the surface contact with the adherend may be difficult, and the contact may be close to the point contact, which may result in a lack of long-term connection reliability. It should be noted that “1” defined in the present invention
"0% compressive strength" indicates the strength when the particle size of the conductive particles is displaced by 10% when a commonly used microcompression tester (Shimadzu Corporation: MCTM-500 or the like) is used.

【0014】さらに、導電性粒子の復元率は、5〜90
%、好ましくは、10〜60%であることが望ましい。
復元率が5%未満であると、塑性変形に近く、接続に必
要な接触圧を高く保つことができない恐れがあり、ま
た、90%を超えると、前記圧縮強度との関係から製造
的に困難となる場合がある。なお、本発明で規定する
「復元率」とは、前記した微小圧縮試験機によって測定
されるもので、1gの荷重をかけた点から荷重を除去
し、変位が戻る程度を「%」で示したものである。詳細
に説明すれば、導電性粒子に微小圧縮試験機で荷重をか
けていくと荷重−圧縮変位の関係は、図2に示すよう
に、関係の増加とともに圧縮変位が増加し、図中Aの点
で荷重を除去すると変位が戻る。このときの圧縮量aに
対する復元量bの%、すなわち、(b/a)×100が
復元率(%)である。
Further, the restoration rate of the conductive particles is 5 to 90.
%, Preferably 10 to 60%.
If the recovery rate is less than 5%, the deformation is close to plastic deformation, and the contact pressure required for connection may not be kept high. If the recovery rate exceeds 90%, it is difficult to manufacture due to the relationship with the compressive strength. It may be. The "restoration rate" defined in the present invention is measured by the above-mentioned micro-compression tester, and the load is removed from the point where a load of 1 g is applied, and the degree to which the displacement returns is indicated by "%". It is a thing. More specifically, when a load is applied to the conductive particles using a micro-compression tester, the load-compression displacement relationship increases as the relationship increases, as shown in FIG. Removing the load at the point returns the displacement. At this time,% of the restoration amount b with respect to the compression amount a, that is, (b / a) × 100 is the restoration ratio (%).

【0015】更に、本発明では、上記導電性粒子1のま
わりに絶縁性樹脂2をコーティングするが、絶縁性樹脂
2の材料としては、加熱によって流動する熱可塑性、熱
硬化性の樹脂を使用する。具体的には、エチレン−酢酸
ビニル共重合体、カルボキシル変性エチレン−酢酸ビニ
ル共重合体、エチレン−イソブチルアクリレート共重合
体、ポリアミド、ポリエステル、ポリメチルメタクリレ
ート、ポリビニルエーテル、ポリビニルブチラール、ポ
リウレタン、スチレン−ブチレン−スチレン(SBS)
共重合体、カルボキシル変性SBS共重合体、スチレン
−イソプレン−スチレン(SIS)共重合体、スチレン
−エチレン−ブチレン−スチレン(SEBS)共重合
体、マレイン酸変性SBES共重合体、ポリブタジエン
ゴム、未加硫クロロプレンゴム(CR)、スチレン−ブ
タジエンゴム、イソブチレン−イソプレン共重合体、未
加硫アクリロニトリル−ブタジエンゴム(NBR)、固
形エポキシ樹脂、t−ブチルフェノール樹脂、p−ビニ
ルフェノール樹脂などから選ばれる1種または2種以上
の組み合わせにより得られるものを主剤として調製され
たものが挙げられる。これらの絶縁性樹脂を導電性粒子
のまわりにコーティングする方法としては、従来からの
方法が使用でき、例えば、エマルションや化学反応を用
いる化学的な方法(in-situ重合法、界面反応法等)
や、機械的な力を用いるメカノフュージョン法、メカノ
ケミカル法等が挙げられる。
Further, in the present invention, the insulating resin 2 is coated around the conductive particles 1. As the material of the insulating resin 2, a thermoplastic or thermosetting resin which flows by heating is used. . Specifically, ethylene-vinyl acetate copolymer, carboxyl-modified ethylene-vinyl acetate copolymer, ethylene-isobutyl acrylate copolymer, polyamide, polyester, polymethyl methacrylate, polyvinyl ether, polyvinyl butyral, polyurethane, styrene-butylene -Styrene (SBS)
Copolymer, carboxyl-modified SBS copolymer, styrene-isoprene-styrene (SIS) copolymer, styrene-ethylene-butylene-styrene (SEBS) copolymer, maleic acid-modified SBES copolymer, polybutadiene rubber, One selected from chloroprene sulfur rubber (CR), styrene-butadiene rubber, isobutylene-isoprene copolymer, unvulcanized acrylonitrile-butadiene rubber (NBR), solid epoxy resin, t-butylphenol resin, p-vinylphenol resin, etc. Alternatively, those prepared by using a compound obtained by a combination of two or more kinds as a main agent are exemplified. As a method for coating these insulating resins around the conductive particles, conventional methods can be used, for example, a chemical method using an emulsion or a chemical reaction (in-situ polymerization method, interface reaction method, etc.).
And a mechanofusion method using a mechanical force, a mechanochemical method, and the like.

【0016】また、上記絶縁性樹脂の平均厚さ(T)と
導電性粒子の平均粒子径(φ)との間には下記式(I)
の関係を有することが好ましい。 φ≧2T ……(I) このφ≧2Tを関係を有することにより、導通を更に安
定させることができることとなる。なお、上記式(I)
において、φ<2Tになると、導通が不安定になる可能
性が高くなり、好ましくないこととなる。更に、絶縁性
樹脂の平均厚さ(T)は、導電性粒子の平均粒子径にも
よるが、通常0.1〜25μmの範囲から適宜実験的に
選択される。なお、この絶縁性樹脂は、導電性粒子を完
全に(100%)被覆していることが望ましいが、被覆
割合としては導電性粒子表面の60%以上、好ましく
は、80%以上を被覆していれば、実用上十分である。
The following formula (I) is defined between the average thickness (T) of the insulating resin and the average particle diameter (φ) of the conductive particles.
It is preferable to have the following relationship. φ ≧ 2T (I) By having φ ≧ 2T, conduction can be further stabilized. The above formula (I)
In this case, when φ <2T, the possibility of unstable conduction increases, which is not preferable. Further, the average thickness (T) of the insulating resin depends on the average particle diameter of the conductive particles, but is appropriately experimentally selected from the range of usually 0.1 to 25 μm. It is desirable that the insulating resin completely (100%) cover the conductive particles, but the coating ratio covers 60% or more, preferably 80% or more of the surface of the conductive particles. It is practically sufficient.

【0017】このように構成される本発明の導電性付与
粒子は、上述の如く、柔軟性を有する核と、この核を被
覆するこの核よりも硬質な殻とからなる合成樹脂系粒子
の表面に金属メッキが施されてなる導電性粒子の更に表
面を絶縁性樹脂で被覆したことを特徴とするものであ
り、これにより、柔軟な核により接触面積を大きくする
とともに、硬質な殻により復元率を持たせ、絶縁膜によ
り絶縁性を保持させることができるので、電気的接続の
信頼性についても温湿度サイクルや熱衝撃での安定性が
向上し、絶縁性も優れたものとなる。
As described above, the conductivity-imparting particles of the present invention thus constituted have a surface of a synthetic resin-based particle comprising a core having flexibility and a shell covering the core which is harder than the core. In addition, the surface of the conductive particles coated with metal is coated with an insulating resin, thereby increasing the contact area with a flexible core and the restoration rate with a hard shell. In addition, since the insulating property can be maintained by the insulating film, the reliability of the electrical connection can be improved in the temperature / humidity cycle and the thermal shock, and the insulating property can be improved.

【0018】また、本発明の異方導電性接着剤は、上記
構成となる導電性付与粒子を絶縁性接着剤中に分散して
なることを特徴とするものである。この異方導電性接着
剤を構成する絶縁性接着剤としては、通常用いられてい
るものでよく、加熱によって接着性を示すものであれば
熱可塑性、熱硬化性のいずれでもよい。具体的には、エ
チレン−酢酸ビニル共重合体、カルボキシル変性エチレ
ン−酢酸ビニル共重合体、エチレン−イソブチルアクリ
レート共重合体、ポリアミド、ポリエステル、ポリメチ
ルメタクリレート、ポリビニルエーテル、ポリビニルブ
チラール、ポリウレタン、スチレン−ブチレン−スチレ
ン(SBS)共重合体、カルボキシル変性SBS共重合
体、スチレン−イソプレン−スチレン(SIS)共重合
体、スチレン−エチレン−ブチレン−スチレン(SEB
S)共重合体、マレイン酸変性SBES共重合体、ポリ
ブタジエンゴム、クロロプレンゴム(CR)、カルボキ
シル変性CR、スチレン−ブタジエンゴム、イソブチレ
ン−イソプレン共重合体、アクリロニトリル−ブタジエ
ンゴム(NBR)、カルボキシル変性NBR、アミン変
性NBR、エポキシ樹脂、フェノール樹脂、シリコーン
ゴム、アクリルゴムなどから選ばれる1種または2種以
上の組み合わせにより得られるものを主剤として調整さ
れたものが挙げられる。また、熱硬化性のものを使用す
る場合には、通常、熱圧着前の状態では樹脂は未硬化の
ものとするのがよいが、熱圧着前に硬化させるとしても
架橋点間の距離を大きくして、後述するような粘着付与
剤等の添加物を分子間に多量に混在させて、接着剤全体
として融点的メルティングポイントを持つようにして接
着性を持たせる必要がある。
Further, the anisotropic conductive adhesive of the present invention is characterized in that the conductive particles having the above-mentioned structure are dispersed in an insulating adhesive. The insulating adhesive constituting the anisotropic conductive adhesive may be a commonly used insulating adhesive, and may be either thermoplastic or thermosetting as long as it exhibits adhesiveness when heated. Specifically, ethylene-vinyl acetate copolymer, carboxyl-modified ethylene-vinyl acetate copolymer, ethylene-isobutyl acrylate copolymer, polyamide, polyester, polymethyl methacrylate, polyvinyl ether, polyvinyl butyral, polyurethane, styrene-butylene -Styrene (SBS) copolymer, carboxyl-modified SBS copolymer, styrene-isoprene-styrene (SIS) copolymer, styrene-ethylene-butylene-styrene (SEB)
S) Copolymer, maleic acid modified SBES copolymer, polybutadiene rubber, chloroprene rubber (CR), carboxyl modified CR, styrene-butadiene rubber, isobutylene-isoprene copolymer, acrylonitrile-butadiene rubber (NBR), carboxyl-modified NBR And those prepared by using, as a main component, one obtained by one or a combination of two or more selected from amine-modified NBR, epoxy resin, phenol resin, silicone rubber, acrylic rubber and the like. In addition, when using a thermosetting resin, it is usually preferable that the resin is uncured before the thermocompression bonding, but even if the resin is cured before the thermocompression bonding, the distance between the crosslinking points is large. Then, it is necessary to add a large amount of additives such as a tackifier as described below between the molecules so that the entire adhesive has a melting point of a melting point to impart adhesiveness.

【0019】この絶縁性接着剤には、上記した主剤に、
粘着付与剤としてのロジン、ロジン誘導体、テルペン樹
脂、テルペンフェノール樹脂、石油樹脂、クマロン−イ
ンデン樹脂、スチレン系樹脂、イソプレン系樹脂、アル
キルフェノール樹脂、キシレン樹脂などの1種または2
種以上;反応性助剤;架橋剤としてのポリオール、イソ
シアネート類、メラミン樹脂、尿素樹脂、ウトロピン
類、アミン類、酸無水物、過酸化物、金属酸化物、トリ
フルオロ酢酸クロム塩などの有機金属塩、チタン、ジル
コニア、アルミニウムなどのアルコキシド、ジブチル錫
ジオキサイドなどの有機金属化合物;2,2−ジエトキ
シアセトフェノン、ベンジルなどの光開始剤;アミン
類、燐化合物、塩素化合物などの増感剤などを添加する
ことは任意であり、これにはまた、硬化剤、加硫剤、劣
化防止剤、耐熱添加剤、熱伝導向上剤、軟化剤、着色
剤、各種カップリング剤、金属不活性剤などを適宜添加
してもよい。
This insulating adhesive includes the above-mentioned main ingredient,
One or two of rosin as a tackifier, rosin derivative, terpene resin, terpene phenol resin, petroleum resin, cumarone-indene resin, styrene resin, isoprene resin, alkylphenol resin, xylene resin, etc.
At least one kind; a reactive auxiliary; a polyol as a crosslinking agent, an isocyanate, a melamine resin, a urea resin, an utropine, an amine, an acid anhydride, a peroxide, a metal oxide, and a chromium trifluoroacetate salt. Salts, alkoxides such as titanium, zirconia and aluminum, organometallic compounds such as dibutyltin dioxide; photoinitiators such as 2,2-diethoxyacetophenone and benzyl; sensitizers such as amines, phosphorus compounds and chlorine compounds Is optional, and may also include a curing agent, a vulcanizing agent, a deterioration inhibitor, a heat-resistant additive, a heat conduction improver, a softener, a coloring agent, various coupling agents, a metal deactivator, and the like. May be appropriately added.

【0020】本発明の異方導電性接着剤は、前記した絶
縁性接着剤中に前記した導電性付与粒子を常法にしたが
って分散混合することによって得られる。導電性付与粒
子の配合量は、前記絶縁性接着剤100容量部に対し
て、0.01〜100容量部、好ましくは、1〜10容
量部の範囲である。導電性付与粒子の配合量が0.01
容量部未満であると、導通不良を起こしやすく、逆に1
00容量部を超えると、絶縁不良を起こしやすくなる。
なお、この絶縁性接着剤は、接着、粘着成分が常温で固
形、或いは高粘度液体の場合には、これをエステル系、
ケトン系、エーテルエステル系、エーテル系、アルコー
ル系、炭化水素系の溶剤、例えば、酢酸エチル、メチル
エチルケトン、酢酸ブチルセロソルブ、酢酸エチルカル
ビトール、ジイソアミルエーテル、シクロヘキサノー
ル、石油スピリット、トルエンなどの溶剤に溶解して溶
液とし、これを適宜の印刷法、コート法によって接続す
べき電極上の所望の位置に塗布すればよく、また、セパ
レーター上に形成した後、所望の寸法にカットし、これ
を接続電極上に転写して用いたり、或いは接着、粘着成
分が液状である場合には、接続作業時にこれを接続電極
上に塗布して用いることもできる。
The anisotropic conductive adhesive of the present invention can be obtained by dispersing and mixing the above-mentioned conductive particles in the above-mentioned insulating adhesive according to a conventional method. The amount of the conductive particles is 0.01 to 100 parts by volume, preferably 1 to 10 parts by volume, based on 100 parts by volume of the insulating adhesive. The compounding amount of the conductivity imparting particles is 0.01
If it is less than the capacitance part, conduction failure is likely to occur, and conversely, 1
If the capacity exceeds 00 capacity, insulation failure is likely to occur.
In addition, this insulating adhesive, when the adhesive and adhesive components are solid at room temperature, or when a high-viscosity liquid, this is an ester-based,
Dissolved in ketone, ether ester, ether, alcohol, and hydrocarbon solvents such as ethyl acetate, methyl ethyl ketone, butyl cellosolve, ethyl carbitol, diisoamyl ether, cyclohexanol, petroleum spirit, and toluene The solution may be applied to a desired position on the electrode to be connected by an appropriate printing method or a coating method.After forming on the separator, the solution is cut into a desired size, and then the connection electrode is formed. When the adhesive or tacky component is in a liquid state, it can be used by applying it to a connection electrode during connection work.

【0021】更に、上記絶縁性樹脂2の融点(M1
は、マトリックスとしての絶縁性接着剤3(図3参照)
の融点(M2)よりも低い温度(M1<M2)であり、か
つ、絶縁性接着剤の融点(M2)での絶縁性樹脂2の溶
融粘度ρ1(poise以下、単に「ポイズ」という)と絶
縁性接着剤の溶融粘度ρ2(ポイズ)との間に下記式
(II)の関係を有することが好ましい。 (ρ1−ρ2)≦12000(ポイズ) ……(II) 上記式(II)の関係を有することにより、熱圧着する際
に導電性粒子の上下から10〜60kg/cm2の圧力
をかけることにより確実に導電性粒子の表面が現れてか
ら接着剤が溶融して接着し、導通が得られ易くなるもの
である。なお、ρ1−ρ2>12000になると、導電
性粒子表面が現れづらくなる可能性が高くなり、好まし
くないこととなる。
Further, the melting point (M 1 ) of the insulating resin 2
Is an insulating adhesive 3 as a matrix (see FIG. 3)
Melting point (M 2) a temperature lower than (M 1 <M 2) is, and the melt viscosity of the insulating resin 2 in the melting point (M 2) of the insulating adhesive .rho.1 (poise hereinafter, simply "poise" ) And the melt viscosity ρ2 (poise) of the insulating adhesive preferably have the relationship of the following formula (II). (Ρ1−ρ2) ≦ 12000 (poise) (II) By having the relationship of the above formula (II), by applying a pressure of 10 to 60 kg / cm 2 from above and below the conductive particles during thermocompression bonding. The adhesive melts and adheres after the surface of the conductive particles has appeared with certainty, so that conduction can be easily obtained. When ρ1−ρ2> 12000, the possibility that the surface of the conductive particles hardly appears becomes high, which is not preferable.

【0022】このようにして得られた本発明の異方導電
性接着剤Bは、例えば、図3に示すように、柔軟性を有
する核11と、この核11を被覆するこの核よりも硬質
な殻12と、表面の金属メッキ13と、この周りの絶縁
性樹脂2とからなる導電性付与粒子Aを絶縁性接着剤3
中に分散させてなる異方導電性接着剤BをLCD基板4
とフレキシブルプリント基板5との間に設けることによ
って使用される。なお、6は導体(回路)を示す。この
異方導電性接着剤は、一般に2つの対向する電子、電気
回路基板等上の電極間に介在させ、一方の電子、電気回
路基板等の上方から加圧し、同時に加熱、或いは光、電
子線を照射して接着剤を活性化させ、2つの回路基板等
を異方導電性接着剤で固定し、相対向する電極を導電性
付与粒子を介して電気的に接続するものである。この回
路基板としては、例えば、表示パネルなどのガラス、L
SIチップなどの金属、金属酸化物、あるいはポリイミ
ド樹脂、ポリエステル樹脂などをベースとしたフレキシ
ブルプリント回路などが使用される。なお、接続に寄与
しない導電性付与粒子、即ち、相対向する電極に挟持さ
れない導電性粒子は、その表面が絶縁性樹脂2で実用上
被覆されているので、短絡(リーク)を引き起こす恐れ
がない。
The anisotropic conductive adhesive B of the present invention thus obtained is, for example, as shown in FIG. 3, a flexible core 11 and a harder core than the core 11 covering the core 11. The conductive imparting particles A composed of the shell 12, the metal plating 13 on the surface, and the insulating resin 2 around the shell 12 are bonded to the insulating adhesive 3.
Anisotropic conductive adhesive B dispersed in LCD substrate 4
And the flexible printed circuit board 5. Reference numeral 6 denotes a conductor (circuit). The anisotropic conductive adhesive is generally interposed between two opposing electrons, electrodes on an electric circuit board, etc., and is pressed from above one of the electrons, the electric circuit board, etc., and simultaneously heated, or irradiated with light or electron beam. To activate the adhesive, fix the two circuit boards and the like with the anisotropic conductive adhesive, and electrically connect the opposing electrodes via the conductivity imparting particles. As the circuit board, for example, glass such as a display panel, L
A flexible printed circuit based on a metal such as an SI chip, a metal oxide, a polyimide resin, a polyester resin, or the like is used. Note that the conductivity-imparting particles that do not contribute to the connection, that is, the conductive particles that are not sandwiched between the opposing electrodes are practically covered with the insulating resin 2 and thus do not cause a short circuit (leak). .

【0023】[0023]

【実施例】以下に、本発明を製造例、実施例及び比較例
により詳細に説明するが、本発明は下記実施例に限定さ
れるものではない。なお、実施例、比較例中の10%圧
縮強度、復元率の測定は微小圧縮試験機(島津製作所社
製、MCTM−500)を用い、10%圧縮強度は試験
モード1(圧縮試験)、試験荷重50.00gf、変位
フルスケール50μm、圧子平面50μmφ、負荷速度
1.975gf/secという条件で測定し、また、復
元率は試験モード2(負荷、除荷試験)、反転荷重値
1.00gf、負荷速度0.455gf/sec、変位
フルスケール50μm、圧子平面50μmφ、原点用荷
重値0.10gfという条件で測定した。
The present invention will be described below in more detail with reference to Production Examples, Examples and Comparative Examples, but the present invention is not limited to the following Examples. The 10% compressive strength and the restoring rate in the examples and comparative examples were measured using a micro compression tester (MCTM-500, manufactured by Shimadzu Corporation). The measurement was performed under the conditions of a load of 50.00 gf, a displacement full scale of 50 μm, an indenter plane of 50 μmφ, and a load speed of 1.975 gf / sec. The restoration rate was set in test mode 2 (load, unloading test), and the reverse load value was 1.00 gf. The measurement was performed under the conditions of a load speed of 0.455 gf / sec, a displacement full scale of 50 μm, an indenter plane of 50 μmφ, and a load value for the origin of 0.10 gf.

【0024】〔製造例1:導電性付与粒子の作製〕ステ
アリルアクリレート100重量部と、エチレングリコー
ルジメタクリレート4重量部と、ブタジエンゴム30重
量部と、過酸化ベンゾイル0.5重量部とを水200重
量部中で100℃、1000rpmの回転下で2時間懸濁
重合し、平均粒子径7μm、CV値28%の核を含む懸
濁液を得た。この核を少量取り圧縮強度と復元率を測定
したところ、圧縮強度0.8kg/mm2、復元率3%
であった。更に、この懸濁液の撹拌下にエチルメタクリ
レート50重量部、エチレングリコールジメタクリレー
ト2重量部を加えて90℃で1000rpmの回転下で2
時間重合して表面に殻を形成し、冷却、水洗、乾燥して
平均粒子径10μm、CV値35%のアクリル樹脂粒子
を得た。このアクリル樹脂粒子を少量取り圧縮強度と復
元率を測定したところ、圧縮強度2.1kg/mm2
復元率50%であった。次いで、この粒子表面にニッケ
ルメッキ0.3μm、金メッキ0.02μmの順で無電
界メッキを施して導電性粒子〔平均粒子径(φ)10.
32μm、CV値35%〕を得た。この導電性粒子の1
0%圧縮強度は、2.2kg/mm2、復元率は50.1%で
あっり、また、その比重は2.27であった。更に、上
記導電性粒子の回りにメカノフュージョン法を用いて融
点(M1)110℃、150℃時の溶融粘度(ρ1)1
00000ポイズの熱可塑性固形エポキシ樹脂(絶縁性
樹脂)を平均厚さ(T)2μmにコートして導電性付与
粒子を得た。
[Production Example 1: Production of Conductivity-imparting Particles] 100 parts by weight of stearyl acrylate, 4 parts by weight of ethylene glycol dimethacrylate, 30 parts by weight of butadiene rubber, and 0.5 parts by weight of benzoyl peroxide were mixed with 200 parts of water. Suspension polymerization was carried out for 2 hours at 100 ° C. and 1000 rpm in a weight part to obtain a suspension containing a core having an average particle diameter of 7 μm and a CV value of 28%. Where this core was measured small amounts up compression strength and recovery rate, compressive strength 0.8 kg / mm 2, restoration rate of 3%
Met. Further, 50 parts by weight of ethyl methacrylate and 2 parts by weight of ethylene glycol dimethacrylate were added to the suspension while stirring, and the suspension was stirred at 90 ° C. under 1,000 rpm.
A shell was formed on the surface by polymerization for a time, and then cooled, washed with water and dried to obtain acrylic resin particles having an average particle diameter of 10 μm and a CV value of 35%. When a small amount of the acrylic resin particles were taken and the compressive strength and the recovery rate were measured, the compressive strength was 2.1 kg / mm 2 ,
The restoration rate was 50%. Next, electroless plating is performed on the surface of the particles in the order of nickel plating 0.3 μm and gold plating 0.02 μm to form conductive particles [average particle diameter (φ) 10.
32 μm, CV value 35%]. 1 of this conductive particle
The 0% compressive strength was 2.2 kg / mm 2 , the restoration rate was 50.1%, and the specific gravity was 2.27. Further, the melting point (M 1 ) at 110 ° C. and the melt viscosity at 150 ° C. (ρ1) 1 around the above-mentioned conductive particles by mechanofusion method.
A 000 poise thermoplastic solid epoxy resin (insulating resin) was coated to an average thickness (T) of 2 μm to obtain conductive particles.

【0025】〔実施例1:異方導電性接着剤の作製〕 (1)絶縁性接着剤溶液の調製 NBR100重量部、エポキシ当量1000〜1200
のビスフェノール型エポキシ樹脂150重量部、2−メ
チルイミダゾール20重量部、酸化チタン(TiO2
50重量部に、シクロヘキサノン300重量部を加えて
これを溶解して絶縁性接着剤溶液を調製した。なお、こ
の絶縁性接着剤溶液を乾燥して得られる絶縁性接着剤の
融点(M2)は150℃であり、その時の溶融粘度(ρ
2)は480000ポイズであった。
Example 1: Preparation of anisotropic conductive adhesive (1) Preparation of insulating adhesive solution 100 parts by weight of NBR, epoxy equivalent of 1000 to 1200
150 parts by weight of bisphenol type epoxy resin, 20 parts by weight of 2-methylimidazole, titanium oxide (TiO 2 )
To 50 parts by weight, 300 parts by weight of cyclohexanone was added and dissolved to prepare an insulating adhesive solution. The melting point (M 2 ) of the insulating adhesive obtained by drying the insulating adhesive solution was 150 ° C., and the melt viscosity (ρ
2) was 480000 poise.

【0026】(2)異方導電性接着剤の作製 上記(1)で調製した絶縁性接着剤溶液の固形分100容
量部に、製造例1で作製した導電性付与粒子を10容量
部加えて異方導電性接着剤を作製した。
(2) Preparation of Anisotropic Conductive Adhesive 10 parts by volume of the conductivity-imparting particles prepared in Production Example 1 were added to 100 parts by volume of the solid content of the insulating adhesive solution prepared in (1) above. An anisotropic conductive adhesive was produced.

【0027】(3)異方導電性接着剤付フレキシブルプリ
ント基板(FPC)の作製 厚さ25μmのPETフィルムよりなる可撓性基材の上
に、市販の銀ペースト(DW−250H−5、東洋紡績
製)をスクリーン印刷により印刷して0.15mmピッチ
の導電ラインを形成したのち、130℃のオーブンで5
時間乾燥させ、硬化させた。次いで、上記接続端子部に
上記で作製した異方導電性接着剤の溶媒を除去した後の
厚さが9μmとなるように、スクリーン印刷で塗布して
異方導電性接着剤層を形成し、残る部位に市販の絶縁レ
ジスト(JEH−112、日本アチソン製)を設け、こ
れを所望の寸法に切断して異方導電性接着剤付FPCを
得た。次に、このようにして得た異方導電性接着剤付F
PCを面積抵抗率50Ω/□の透明導電酸化膜基板(I
TO)の接続端子とFPCの間に160℃、30kgf/cm
2、12秒の条件で熱圧着し、高温下(110℃)・3
0分〜低温下(−20℃)・30分の環境試験を100
0サイクル行って、両接続端子間の抵抗値(Ω)及び端
子間の絶縁抵抗(MΩ)を測定したところ、下記表1及
び表2に示す結果が得られた。
(3) Preparation of Flexible Printed Circuit Board (FPC) with Anisotropic Conductive Adhesive A commercially available silver paste (DW-250H-5, Toyo) was placed on a flexible substrate made of a PET film having a thickness of 25 μm. Spinning) is printed by screen printing to form conductive lines with a pitch of 0.15 mm, and then 5
Dry for a time and cure. Next, an anisotropic conductive adhesive layer is formed by screen printing so that the thickness of the connection terminal portion after removing the solvent of the anisotropic conductive adhesive prepared above becomes 9 μm, A commercially available insulating resist (JEH-112, manufactured by Acheson Japan) was provided on the remaining portion, and this was cut into desired dimensions to obtain an FPC with an anisotropic conductive adhesive. Next, the thus obtained F with anisotropic conductive adhesive
PC was used as a transparent conductive oxide film substrate (I
160 ° C, 30 kgf / cm between connection terminal of TO) and FPC
2 , thermocompression bonding for 12 seconds, under high temperature (110 ℃) ・ 3
100 minutes of environmental tests from 0 minutes to low temperature (-20 ° C) for 30 minutes
When the resistance value (Ω) between both connection terminals and the insulation resistance (MΩ) between the terminals were measured by performing 0 cycles, the results shown in Tables 1 and 2 below were obtained.

【0028】〔比較例1〕導電性粒子として、単一成分
のスチレン樹脂粒子にNi、Auメッキを行った導電性
粒子(10%圧縮強度12kg/mm2、復元率49%、平均
粒子径10.32μm、CV値35%、比重1.75)
を用いた以外は、実施例1と同様に異方導電性接着剤付
FPCを得た。実施例1と同様に両接続端子間の抵抗値
(Ω)及び端子間の絶縁抵抗(MΩ)を測定したとこ
ろ、下記表1及び表2に示す結果が得られた。
[Comparative Example 1] As conductive particles, conductive particles obtained by plating single-component styrene resin particles with Ni and Au (10% compressive strength 12 kg / mm 2 , recovery rate 49%, average particle diameter 10) .32 μm, CV value 35%, specific gravity 1.75)
A FPC with an anisotropic conductive adhesive was obtained in the same manner as in Example 1 except that was used. When the resistance value (Ω) between both connection terminals and the insulation resistance (MΩ) between the terminals were measured in the same manner as in Example 1, the results shown in Tables 1 and 2 below were obtained.

【0029】〔比較例2〕導電性粒子として単一成分の
アクリルゴム粒子にNi、Auメッキを行った導電性粒
子(10%圧縮強度1kg/mm2、復元率3%、平均粒子径
10.32μm、CV値45%、比重1.72)を用い
た以外は、上記実施例1と同様に異方導電性接着剤付F
PCを得た。実施例1と同様に両接続端子間の抵抗値
(Ω)及び端子間の絶縁抵抗(MΩ)を測定したとこ
ろ、下記表1及び表2に示す結果が得られた。
Comparative Example 2 Conductive particles obtained by plating Ni and Au on single-component acrylic rubber particles as the conductive particles (10% compressive strength: 1 kg / mm 2 , restoration rate: 3%, average particle diameter: 10%). 32 μm, a CV value of 45%, and a specific gravity of 1.72), except that F with an anisotropic conductive adhesive was used.
PC was obtained. When the resistance value (Ω) between both connection terminals and the insulation resistance (MΩ) between the terminals were measured in the same manner as in Example 1, the results shown in Tables 1 and 2 below were obtained.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】(表1及び表2の考察)上記表1及び表2
の結果から明らかなように、本発明範囲となる実施例1
は、本発明の範囲外となる比較例1〜2に較べて、初期
の接続抵抗を低く、かつ、高温下(110℃)・30分
〜低温下(−20℃)・30分の環境試験を1000サ
イクルにわたって行っても接続端子間の抵抗値(Ω)及
び端子間の絶縁抵抗(MΩ)に変化がなく、長期にわた
る接続の信頼性に優れ、かつ、絶縁性を保持しつづける
異方導電性接着剤であることが判明した。
(Consideration of Tables 1 and 2) The above Tables 1 and 2
As is clear from the results of Example 1, Example 1 within the scope of the present invention
Shows that the initial connection resistance is lower than that of Comparative Examples 1 and 2 which are out of the scope of the present invention, and that the environmental test is performed at a high temperature (110 ° C.) for 30 minutes to a low temperature (-20 ° C.) for 30 minutes The resistance value between the connection terminals (Ω) and the insulation resistance between the terminals (MΩ) do not change even if the process is performed for 1000 cycles, and the anisotropic conductivity that is excellent in long-term connection reliability and maintains insulation. It was found to be an adhesive.

【0033】更に、下記に、本発明となる実施例2及び
3を示す。 〔実施例2〕核を圧縮強度0.2kg/mm2、復元率2%、
平均粒子径7μm、CV値30%のSBS樹脂、殻をス
チレン樹脂として平均粒子径10μm、CV値33%、
圧縮強度0.25kg/mm2、復元率25%の樹脂粒子を使
用した以外は、実施例1と同様にして環境試験を行った
ところ、実施例1と同様、良好な結果を得た。
Further, Examples 2 and 3 according to the present invention will be described below. [Example 2] A nucleus having a compressive strength of 0.2 kg / mm 2 , a restoration rate of 2%,
SBS resin having an average particle diameter of 7 μm and a CV value of 30%, and a shell made of styrene resin, having an average particle diameter of 10 μm and a CV value of 33%;
When an environmental test was performed in the same manner as in Example 1 except that resin particles having a compressive strength of 0.25 kg / mm 2 and a restoration rate of 25% were used, good results were obtained as in Example 1.

【0034】〔実施例3〕エポキシ当量230〜270
のエポキシ樹脂100重量部、分子量15000〜17
000の飽和ポリエステル樹脂20重量部、潜在性硬化
剤(サンエイドSI−60:製品名)50重量部に、M
EK−トルエン=1:1溶剤を50重量部加えて絶縁性
接着剤とした。この絶縁性接着剤を乾燥して得られる絶
縁性接着剤の融点は120℃であり、その時の溶融粘度
は480000ポイズであった。この絶縁性接着剤を使
用した以外は、実施例1と同様にして環境試験を行った
ところ、実施例1と同様、良好な結果を得た。
Example 3 Epoxy equivalent 230 to 270
100 parts by weight of an epoxy resin having a molecular weight of 15,000 to 17
000 saturated polyester resin, 50 parts by weight of a latent curing agent (Sun-Aid SI-60: product name)
50 parts by weight of EK-toluene = 1: 1 solvent was added to obtain an insulating adhesive. The melting point of the insulating adhesive obtained by drying this insulating adhesive was 120 ° C., and the melt viscosity at that time was 480,000 poise. When an environmental test was performed in the same manner as in Example 1 except that this insulating adhesive was used, good results were obtained as in Example 1.

【0035】[0035]

【発明の効果】請求項1及び2の発明によれば、柔軟性
を有する核により接触面積を大きくするとともに、これ
よりも硬質な殻により復元率を持たせ、絶縁性樹脂膜に
より不必要な短絡(リーク)を防止させることができる
ので、電気的接続の信頼性についても温湿度サイクルや
熱衝撃での安定性が向上し、リーク防止性にも優れた、
異方導電性接着剤用に好適な導電性付与粒子が提供され
る。請求項3の発明によれば、導電性付与粒子が柔軟性
を有し、且つ復元力を高く保てるため、初期の接続抵抗
を低く、かつ、長期にわたる接続の信頼性に優れ、しか
も、絶縁性を保持しつづける異方導電性接着剤が提供さ
れる。
According to the first and second aspects of the present invention, the contact area is increased by the flexible core, the restoration ratio is provided by the harder shell, and the unnecessary portion is provided by the insulating resin film. Since short circuit (leak) can be prevented, the reliability of electrical connection is improved in temperature / humidity cycle and thermal shock, and the leak prevention is excellent.
Provided are conductive particles suitable for anisotropic conductive adhesives. According to the third aspect of the present invention, since the conductivity imparting particles have flexibility and can maintain a high restoring force, the initial connection resistance is low, the reliability of the connection for a long time is excellent, and the insulation property is high. Is provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の導電性付与粒子の実施形態の一例を示
す縦断面図である。
FIG. 1 is a longitudinal sectional view showing an example of an embodiment of a conductivity imparting particle of the present invention.

【図2】復元率を説明するための説明図である。FIG. 2 is an explanatory diagram for explaining a restoration rate.

【図3】本発明の異方導電性接着剤の一使用例を示す縦
断面図である。
FIG. 3 is a longitudinal sectional view showing one usage example of the anisotropic conductive adhesive of the present invention.

【符号の説明】[Explanation of symbols]

A 導電性付与粒子 B 異方導電性接着剤 1 導電性粒子 11 核 12 殻 13 金属メッキ 2 絶縁性樹脂(膜) 3 絶縁性接着剤 4 LCD基板 5 FPC A Conductivity imparting particles B Anisotropic conductive adhesive 1 Conductive particles 11 Nucleus 12 Shell 13 Metal plating 2 Insulating resin (film) 3 Insulating adhesive 4 LCD substrate 5 FPC

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01R 11/01 H01R 11/01 J Fターム(参考) 4J040 CA052 CA152 DA052 DA062 DB012 DB032 DD052 DD072 DE032 DF042 DF052 DM002 DM012 EB032 EB042 EB132 ED002 EF002 EG002 EK032 HA066 HA076 JB10 KA03 KA07 KA32 LA08 LA09 NA20 5G301 DA02 DA42 DA60 DD03 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01R 11/01 H01R 11/01 J F term (Reference) 4J040 CA052 CA152 DA052 DA062 DB012 DB032 DD052 DD072 DE032 DF042 DF052 DM002 DM012 EB032 EB042 EB132 ED002 EF002 EG002 EK032 HA066 HA076 JB10 KA03 KA07 KA32 LA08 LA09 NA20 5G301 DA02 DA42 DA60 DD03

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 柔軟性を有する核と、この核を被覆する
この核よりも硬質な殻とからなる合成樹脂系粒子の表面
に金属メッキが施されてなる導電性粒子の更に表面を絶
縁性樹脂で覆ったことを特徴とする導電性付与粒子。
The surface of a synthetic resin-based particle comprising a core having flexibility and a shell harder than the core which covers the core is coated with metal plating to further insulate the surface of the conductive particle. Conductivity imparting particles characterized by being covered with a resin.
【請求項2】 導電性粒子の10%圧縮強度が0.2〜
5.0kg/mm2であり、かつ、復元率が5〜90%である
請求項1記載の導電性付与粒子。
2. The conductive particles have a 10% compressive strength of 0.2 to 0.2%.
2. The conductivity-imparting particles according to claim 1, wherein the conductivity-imparting particles are 5.0 kg / mm 2 and the restoration rate is 5 to 90%.
【請求項3】 請求項1又は2記載の導電性付与粒子を
絶縁性接着剤中に分散してなることを特徴とする異方導
電性接着剤。
3. An anisotropic conductive adhesive characterized by dispersing the conductive particles according to claim 1 or 2 in an insulating adhesive.
JP20228399A 1999-07-15 1999-07-15 Conductivity imparting particles for anisotropic conductive adhesive and anisotropic conductive adhesive using the same Expired - Lifetime JP4107769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20228399A JP4107769B2 (en) 1999-07-15 1999-07-15 Conductivity imparting particles for anisotropic conductive adhesive and anisotropic conductive adhesive using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20228399A JP4107769B2 (en) 1999-07-15 1999-07-15 Conductivity imparting particles for anisotropic conductive adhesive and anisotropic conductive adhesive using the same

Publications (2)

Publication Number Publication Date
JP2001035248A true JP2001035248A (en) 2001-02-09
JP4107769B2 JP4107769B2 (en) 2008-06-25

Family

ID=16454982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20228399A Expired - Lifetime JP4107769B2 (en) 1999-07-15 1999-07-15 Conductivity imparting particles for anisotropic conductive adhesive and anisotropic conductive adhesive using the same

Country Status (1)

Country Link
JP (1) JP4107769B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237216A (en) * 2001-02-09 2002-08-23 Bridgestone Corp Anisotropic conductive film
KR100742654B1 (en) 2006-07-20 2007-07-25 중앙대학교 산학협력단 Conductive adhesive having multiple layer structure and connection method between terminals, and packaging method of semiconductor device employing it
KR100871760B1 (en) 2007-04-13 2008-12-05 엘에스엠트론 주식회사 Conductive ball for anisotropic conductive adhesive
JP2012156066A (en) * 2011-01-27 2012-08-16 Nippon Shokubai Co Ltd Conductive fine particle
CN102722046A (en) * 2012-06-12 2012-10-10 深圳市华星光电技术有限公司 Liquid crystal panel and manufacturing method thereof
JP2014063673A (en) * 2012-09-21 2014-04-10 Nippon Shokubai Co Ltd Conductive fine particle and anisotropic conductive material using the same
CN113453526A (en) * 2021-06-29 2021-09-28 深圳先进电子材料国际创新研究院 Low-compression-stress electromagnetic shielding material and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237216A (en) * 2001-02-09 2002-08-23 Bridgestone Corp Anisotropic conductive film
KR100742654B1 (en) 2006-07-20 2007-07-25 중앙대학교 산학협력단 Conductive adhesive having multiple layer structure and connection method between terminals, and packaging method of semiconductor device employing it
KR100871760B1 (en) 2007-04-13 2008-12-05 엘에스엠트론 주식회사 Conductive ball for anisotropic conductive adhesive
JP2012156066A (en) * 2011-01-27 2012-08-16 Nippon Shokubai Co Ltd Conductive fine particle
CN102722046A (en) * 2012-06-12 2012-10-10 深圳市华星光电技术有限公司 Liquid crystal panel and manufacturing method thereof
JP2014063673A (en) * 2012-09-21 2014-04-10 Nippon Shokubai Co Ltd Conductive fine particle and anisotropic conductive material using the same
CN113453526A (en) * 2021-06-29 2021-09-28 深圳先进电子材料国际创新研究院 Low-compression-stress electromagnetic shielding material and preparation method thereof

Also Published As

Publication number Publication date
JP4107769B2 (en) 2008-06-25

Similar Documents

Publication Publication Date Title
JP3678547B2 (en) Multilayer anisotropic conductive adhesive and method for producing the same
US6328844B1 (en) Filmy adhesive for connecting circuits and circuit board
TWI394810B (en) An adhesive composition and a circuit connecting material using the same, and a method of connecting the circuit member and a circuit connecting body
TW200422372A (en) Adhesive composition, adhesive composition for circuit connection, connected circuit structure, and semiconductor devices
JP2648712B2 (en) Anisotropic conductive adhesive, method for electrically connecting electrodes using the anisotropic conductive adhesive, and electric circuit board formed by the method
JP4605225B2 (en) Circuit connection material, circuit member connection structure using the same, and manufacturing method thereof
JP2005209491A (en) Conductive particle and anisotropic conductive adhesive using this
JP3741841B2 (en) Anisotropic conductive adhesive
JP5476168B2 (en) Conductive particles, anisotropic conductive materials, and connection structures
JPH11209714A (en) Anisotropically electroconductive adhesive
JP2002201450A (en) Adhesive composition, connecting method of circuit terminal using the same, and connected structure of circuit terminal
JP3420809B2 (en) Conductive particles and anisotropic conductive adhesive using the same
JP4107769B2 (en) Conductivity imparting particles for anisotropic conductive adhesive and anisotropic conductive adhesive using the same
JPH06295617A (en) Anithotropic conductive adhesive compound
EP1657725B1 (en) Insulation-coated electroconductive particles
JPH08148211A (en) Connection member and structure and method for connecting electrode using the same
JP2005194413A (en) Adhesive film for circuit connection and circuit connection structure
JP2007018760A (en) Anisotropic conduction film for glass base plate connection
JPH0773066B2 (en) Circuit connection member
JPH08167328A (en) Anisotropic conductive film
JP2823799B2 (en) Anisotropic conductive adhesive
KR20090073366A (en) Insulated conductive ball for anisotropic electric connection and anisotropic conductive material using the same
JP4056772B2 (en) Manufacturing method of heat seal connector
KR20110059274A (en) Insulated conductive ball for anisotropic electric connection and anisotropic conductive material using the same
JP4703306B2 (en) Conductive particle connection structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080401

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4107769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term