JP3279266B2 - Gallium nitride based semiconductor light emitting device - Google Patents

Gallium nitride based semiconductor light emitting device

Info

Publication number
JP3279266B2
JP3279266B2 JP25854698A JP25854698A JP3279266B2 JP 3279266 B2 JP3279266 B2 JP 3279266B2 JP 25854698 A JP25854698 A JP 25854698A JP 25854698 A JP25854698 A JP 25854698A JP 3279266 B2 JP3279266 B2 JP 3279266B2
Authority
JP
Japan
Prior art keywords
layer
type
type layer
gallium nitride
nitride based
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25854698A
Other languages
Japanese (ja)
Other versions
JP2000091705A (en
Inventor
正明 仁道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP25854698A priority Critical patent/JP3279266B2/en
Publication of JP2000091705A publication Critical patent/JP2000091705A/en
Application granted granted Critical
Publication of JP3279266B2 publication Critical patent/JP3279266B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、発光効率が高く、
かつ動作電圧の低い窒化ガリウム系半導体発光素子に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has a high luminous efficiency,
The present invention also relates to a gallium nitride based semiconductor light emitting device having a low operating voltage.

【0002】[0002]

【従来の技術】一般式InxAlyGa1-x-yN(0≦x≦1、0≦y≦
1、0≦x+y≦1)で表される窒化ガリウム系半導体はバン
ドギャップが大きいため、緑から紫外にかけての発光ダ
イオード、半導体レーザへの応用が期待されている。
2. Description of the Related Art The general formula In x Al y Ga 1-xy N (0 ≦ x ≦ 1, 0 ≦ y ≦
The gallium nitride based semiconductor represented by 1, 0 ≦ x + y ≦ 1) has a large band gap, and is expected to be applied to light emitting diodes and semiconductor lasers from green to ultraviolet.

【0003】図10は、従来技術による窒化ガリウム系
発光ダイオードの構造断面図である(例えば、S. Nakamu
raほか、Japanese Journal of Applied Physics 34, L1
332ページからL1335ページ(1995年))。図10におい
て、この窒化ガリウム系発光ダイオードの層構造は、
(0001)面サファイア基板101上のGaNバッファ層1
02、厚さ4μmのn型GaNコンタクト層103、厚さ30
ÅのIn0.45Ga0.55N活性層104、厚さ1000Åのp型Al
0.2Ga0.8N層105、厚さ0.5μmのp型GaNコンタクト層
106とからなる。n型コンタクト層103に接してn
電極107、p型コンタクト層106に接してp電極1
08が形成される。このような層構造を用いた発光ダイ
オードで高輝度青色発光が得られている。
FIG. 10 is a sectional view showing the structure of a conventional gallium nitride-based light emitting diode (eg, S. Nakamu).
ra et al., Japanese Journal of Applied Physics 34, L1
Pages 332 to L1335 (1995)). In FIG. 10, the layer structure of the gallium nitride based light emitting diode is as follows:
GaN buffer layer 1 on (0001) plane sapphire substrate 101
02, 4 μm thick n-type GaN contact layer 103, thickness 30
In In 0.45 Ga 0.55 N active layer 104, 1000 p thick p-type Al
It comprises a 0.2 Ga 0.8 N layer 105 and a p-type GaN contact layer 106 having a thickness of 0.5 μm. n in contact with n-type contact layer 103
The electrode 107 is in contact with the p-type contact layer 106 and the p-electrode 1
08 is formed. High-intensity blue light emission is obtained with a light-emitting diode using such a layer structure.

【0004】図11に、図10に示した発光ダイオード
の活性層104周辺のバンド構造の略図を示す。図11
は簡単のため、ドーピングを考慮しないフラットバンド
でのバンド図になっている。p型Al0.2Ga0.8N層105
は活性層104とのバンドギャップ差が大きく、伝導帯
側のヘテロバリアも大きい。この結果、活性層104か
ら電子がp型層側にオーバーフローするのをブロックす
る機能を持っている。p型AlGaNはAl組成が大きいほど
抵抗が高くなる性質を持っているため、このような電子
ブロック機能を厚さの薄く、かつAl組成の大きいp型Al
GaN層105で行わせ、これ以外のp型層を比較的抵抗
の低いp型GaNとすることにより、電子オーバーフロー
を抑制し、かつ素子抵抗の上昇を抑制している。
FIG. 11 is a schematic view of a band structure around the active layer 104 of the light emitting diode shown in FIG. FIG.
Is a band diagram in a flat band without considering doping for simplicity. p-type Al 0.2 Ga 0.8 N layer 105
Has a large band gap difference from the active layer 104 and a large hetero-barrier on the conduction band side. As a result, it has a function of blocking electrons from overflowing from the active layer 104 to the p-type layer side. Since the p-type AlGaN has a property that the resistance increases as the Al composition increases, such an electron blocking function is provided by a p-type Al having a small thickness and a large Al composition.
This is performed in the GaN layer 105, and the other p-type layers are made of p-type GaN having a relatively low resistance, thereby suppressing the electron overflow and the increase in the element resistance.

【0005】図12は、従来技術による窒化ガリウム系
半導体レーザの層構造断面図である(例えば、S. Nakamu
raほか、Applied Physics Letters 70、868から870ペー
ジ(1997年))。図12においてこの窒化ガリウム系レ
ーザの層構造は、(0001)面サファイア基板111上の
GaNバッファ層112、厚さ3μmのn型GaNコンタクト層
113、厚さ0.1μmのn型In0.05Ga0.95Nクラック防止
層114、厚さ0.5μmのn型Al0.07Ga0.93Nクラッド層1
15、厚さ0.1μmのn型GaN光ガイド層116、厚さ50Å
のIn0.14Ga0.86N量子井戸層と厚さ100ÅのIn0.02Ga0.98
N障壁層からなる3周期の多重量子井戸構造活性層11
7、厚さ200Åのp型Al0.2Ga0.8N層118、厚さ0.1μm
のp型GaN光ガイド層119、厚さ0.5μmのp型Al0.07Ga
0.93Nクラッド層120、厚さ0.2μmのp型GaNコンタク
ト層121とからなる。n型コンタクト層113に接し
てn電極122、p型コンタクト層121に接してp電
極123が形成される。このような層構造を用いた半導
体レーザで、室温連続発振が実現されている。
FIG. 12 is a sectional view of a layer structure of a conventional gallium nitride based semiconductor laser (for example, S. Nakamu
ra et al., Applied Physics Letters 70, 868-870 (1997)). In FIG. 12, the layer structure of this gallium nitride based laser has a (0001) plane sapphire substrate 111.
GaN buffer layer 112, n-type GaN contact layer 113 with a thickness of 3 μm, n-type In 0.05 Ga 0.95 N crack prevention layer 114 with a thickness of 0.1 μm, n-type Al 0.07 Ga 0.93 N cladding layer 1 with a thickness of 0.5 μm
15. n-type GaN optical guide layer 116 having a thickness of 0.1 μm and a thickness of 50 °
In 0.14 Ga 0.86 N quantum well layer and 100 mm thick In 0.02 Ga 0.98
Three-period multiple quantum well structure active layer 11 composed of N barrier layer
7, 200-mm thick p-type Al0.2Ga0.8N layer 118, 0.1 μm thick
P-type GaN optical guide layer 119, p-type Al 0.07 Ga having a thickness of 0.5 μm
It comprises a 0.93 N cladding layer 120 and a 0.2 μm thick p-type GaN contact layer 121. An n-electrode 122 is formed in contact with the n-type contact layer 113, and a p-electrode 123 is formed in contact with the p-type contact layer 121. Room temperature continuous oscillation is realized by a semiconductor laser using such a layer structure.

【0006】図13に、図12の半導体レーザの活性層
117周辺のバンド構造の略図を示す。図13は簡単の
ため、ドーピングを考慮しないフラットバンドでのバン
ド図になっている。図12に示した半導体レーザは、図
10に示した発光ダイオードと同様に、電子オーバーフ
ローのブロック機能を厚さの薄く、かつAl組成の大きい
p型AlGaN層118で行わせ、これ以外のp型層を比較
的抵抗の低い低Al組成のp型AlGaNとp型GaNとすること
により、電子オーバーフローを抑制し、かつ素子抵抗の
上昇を抑制している。半導体レーザの場合は発光ダイオ
ードとは異なり、活性層117への光閉込を大きくする
ためにp型GaN光ガイド層119と低屈折率のp型Al0.07
Ga0.93Nクラッド層120が必要であるが、p型クラッ
ド層120のAl組成は抵抗率がそれほど大きくならない
程度の大きさに抑制されている。
FIG. 13 is a schematic diagram showing a band structure around the active layer 117 of the semiconductor laser shown in FIG. FIG. 13 is a band diagram of a flat band in which doping is not considered for simplicity. The semiconductor laser shown in FIG. 12 has the same function as the light emitting diode shown in FIG. 10 in that the electron overflow blocking function is performed by the p-type AlGaN layer 118 having a small thickness and a large Al composition. The layer is made of p-type AlGaN and p-type GaN having a relatively low resistance and a low Al composition, thereby suppressing electron overflow and suppressing an increase in element resistance. In the case of a semiconductor laser, unlike a light emitting diode, a p-type GaN light guide layer 119 and a p-type Al 0.07 layer having a low refractive index are used to increase light confinement in the active layer 117.
The Ga 0.93 N cladding layer 120 is required, but the Al composition of the p-type cladding layer 120 is suppressed to a size that does not increase the resistivity so much.

【0007】[0007]

【発明が解決しようとする課題】このように図10およ
び図12に示した発光ダイオードおよび半導体レーザに
おいては、Al組成の大きい薄膜p型AlGaNを活性層に接
して設け、それ以外のp型層を低Al組成のAlGaNまたはG
aNとすることにより、電子オーバーフロー抑制と低抵抗
化という2つの要請の両立を図っている。しかしなが
ら、図11および図13に示したように、薄膜p型AlGa
N層に接するp型GaN層では、ホールが活性層に流れると
きに大きい価電子帯ヘテロバリアがある。GaNおよびAlG
aNではホール有効質量が非常に大きいため、ホールを活
性層に流すためには薄膜p型AlGaN層に接したp型GaN層
にホールがパイルアップする必要がある。この結果、薄
膜p型AlGaN層には極めて大きい電界が生じる。
As described above, in the light emitting diode and the semiconductor laser shown in FIGS. 10 and 12, a thin p-type AlGaN having a large Al composition is provided in contact with the active layer, and other p-type layers are formed. With AlGaN or G with low Al composition
By adopting aN, the two requirements of suppressing the electron overflow and reducing the resistance are achieved. However, as shown in FIG. 11 and FIG.
The p-type GaN layer in contact with the N layer has a large valence band heterobarrier when holes flow to the active layer. GaN and AlG
Since the effective mass of holes is very large in aN, holes need to be piled up in the p-type GaN layer in contact with the thin-film p-type AlGaN layer in order to flow holes into the active layer. As a result, an extremely large electric field is generated in the thin p-type AlGaN layer.

【0008】図14に、図12の半導体レーザにおいて
ホール電流が大きいときの活性層周辺のバンド図を示
す。薄膜p型AlGaN層にこのように大きい電界が生じる
結果、活性層からp型層側に向かう電子ドリフト電流お
よび電子トンネル電流が増加し、電子のオーバーフロー
が増加する。従って、電子は有効に活性層に閉じ込めら
れず、発振閾値電流は大きくなる。また、ホールパイル
アップのために生じる電界が余分な素子電圧を生じさせ
る。このような事情は図10に示した発光ダイオードで
も同様である。
FIG. 14 shows a band diagram around the active layer when the hole current is large in the semiconductor laser of FIG. As a result of such a large electric field generated in the thin p-type AlGaN layer, the electron drift current and the electron tunnel current from the active layer toward the p-type layer increase, and the overflow of electrons increases. Therefore, electrons are not effectively confined in the active layer, and the oscillation threshold current increases. Further, an electric field generated due to hole pile-up causes an extra device voltage. Such a situation is the same for the light emitting diode shown in FIG.

【0009】窒化ガリウム系発光ダイオードのさらなる
高発光効率化と低電圧化、或いは半導体レーザの更なる
低閾値化と低電圧化のためにはこのようなホールのパイ
ルアップによって生じる電子ドリフト/トンネル電流、
および余分な電圧の低減が必要になる。特に、半導体レ
ーザでは発光ダイオードに比べて大きい動作電流密度が
必要であるため、これらの低減は重要である。
In order to further increase the luminous efficiency and lower the voltage of a gallium nitride based light emitting diode, or to further lower the threshold and lower the voltage of a semiconductor laser, electron drift / tunnel current caused by such hole pile-up. ,
And extra voltage reduction is required. In particular, since a semiconductor laser requires a higher operating current density than a light emitting diode, reduction of these is important.

【0010】本発明はこのような問題点に鑑みてなされ
たものであり、低動作電流、かつ低動作電圧の窒化ガリ
ウム系半導体発光素子を提供することを目的とする。
The present invention has been made in view of the above problems, and has as its object to provide a gallium nitride based semiconductor light emitting device having a low operating current and a low operating voltage.

【0011】[0011]

【課題を解決するための手段】本発明は、一般式InxAly
Ga1-x-yN(0≦x≦1、0≦y≦1、0≦x+y≦1)で表される窒
化ガリウム系半導体からなるp型層とn型層で活性層を
挟んだ層構造を有する窒化ガリウム系半導体発光素子に
おいて、前記p型層が、前記活性層側から順に第1のp型
層と、これと接した第2のp型層を少なくとも含む多層
構造であり、前記第1のp型層は前記活性層側の界面に
おいてバンドギャップが不連続で、活性層の電子に対し
て伝導帯バリアを持つようなAl組成を有し、かつ前記
第1のp型層のバンドギャップが前記活性層側の界面付近
の領域で活性層側から前記第2のp型層に向かってステ
ップ状または連続的に大きくなっており、さらに前記第
1のp型層のバンドギャップが前記第2のp型層との界面付
近を含む領域内で、前記第2のp型層側に向かってステッ
プ状または連続的に小さくなっており、かつ前記第1のp
型層の前記第2のp型層との界面でのバンドギャップ
が、前記第2のp型層の前記第1のp型層との界面でのバ
ンドギャップと等しいかまたはより大きいことを特徴と
する窒化ガリウム系半導体発光素子に関する。
According to the present invention, there is provided a compound represented by the general formula: In x Al y
Ga 1-xy N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ x + y ≦ 1) A layer in which an active layer is sandwiched between a p-type layer and an n-type layer composed of a gallium nitride-based semiconductor represented by in the gallium nitride based semiconductor light-emitting device having a structure, the p-type layer, a first p-type layer in this order from the active layer side, at least comprising a multilayer structure of the second p-type layer in contact therewith, the The first p-type layer is located at the interface on the active layer side.
Band gap is discontinuous in the
Having an Al composition having a conduction band barrier, and
The band gap of the first p-type layer is near the interface on the active layer side
In the region from the active layer side toward the second p-type layer.
Or continuously increasing in size,
In a region including the vicinity of the interface with the second p-type layer, the band gap of the first p-type layer is stepwise or continuously reduced toward the second p-type layer, and First p
A band gap at an interface of the mold layer with the second p-type layer is equal to or larger than a band gap at an interface of the second p-type layer with the first p-type layer. Gallium nitride based semiconductor light emitting device.

【0012】この場合、前記第1のp型層の中で、バンド
ギャップが前記第2のp型層側に向かってステップ状また
は連続的に小さくなっている領域は、少なくとも第2のp
型層との界面付近を含む領域であればよく、第1のp型層
全体に渡りバンドギャップが第2のp型層側に向かって小
さくなっていても、第1のp型層の途中から第2のp型層側
に向かって小さくなっていてもどちらでもよい。
In this case, in the first p-type layer, a region where the band gap is stepwise or continuously reduced toward the second p-type layer is at least the second p-type layer.
Any region including the vicinity of the interface with the mold layer may be used.Even if the band gap is reduced toward the second p-type layer over the entire first p-type layer, the band gap may be in the middle of the first p-type layer. It may be either smaller from the first to the second p-type layer side.

【0013】[0013]

【0014】この場合、第1のp型層の中で、バンドギ
ャップが活性層側から第2のp型層に向かって大きくな
っている領域は、活性層との界面付近の領域に限られ、
第1のp型層の中の第2のp型層に近い領域では、前述の
ようにバンドギャップが第2のp型層側に向かってステッ
プ状または連続的に小さくなっていなければならない。
本発明では、前記第1のp型層が前記活性層に接して形
成されることができる。
In this case, in the first p-type layer, the region where the band gap increases from the active layer side toward the second p-type layer is limited to the region near the interface with the active layer. ,
In the region near the second p-type layer in the first p-type layer, as described above, the band gap must be reduced stepwise or continuously toward the second p-type layer.
In the present invention, the first p-type layer can be formed in contact with the active layer.

【0015】また本発明では、前記活性層が、InGaNま
たはGaNを量子井戸とする単一または多重量子井戸から
構成され、かつ前記第1、第2のp型層が一般式AlzGa1-z
N(0≦z≦1)で表されることが好ましい。
Further, in the present invention, the active layer is formed of a single or multiple quantum well having InGaN or GaN as a quantum well, and the first and second p-type layers are formed of a general formula Al z Ga 1− z
It is preferable to be represented by N (0 ≦ z ≦ 1).

【0016】また本発明では、前記第2のp型層が前記
第1のp型層の反対側で第3のp型層と接し、かつ前記
第2のp型層の屈折率が、前記第1のp型層の平均屈折率
および前記第3のp型層の屈折率よりも大きくなるよう
に構成することができる。この場合、半導体レーザでは
この第2のp型層は光閉じ込め層として機能する。
Further, in the present invention, the second p-type layer is in contact with a third p-type layer on the opposite side of the first p-type layer, and the second p-type layer has a refractive index of It can be configured to be higher than the average refractive index of the first p-type layer and the refractive index of the third p-type layer. In this case, in the semiconductor laser, the second p-type layer functions as a light confinement layer.

【0017】[0017]

【発明の実施の形態】本発明の実施の形態について、実
施例に基づき図面を参照して詳しく説明する。以下に
は、窒化ガリウム系半導体発光素子のうち、半導体レー
ザを例にとって本発明の実施例を説明する。発明の効果
は発光ダイオードでも同様である。以下に示した実施例
1〜4の中で、実施例1と2は参考例であり、本願の特
許請求の範囲で規定される発明を具体的に示す実施例は
実施例3と4である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described in detail based on embodiments with reference to the drawings. Hereinafter, embodiments of the present invention will be described by taking a semiconductor laser as an example among gallium nitride based semiconductor light emitting devices. The effect of the invention is the same for a light emitting diode. Example shown below
Among Examples 1 to 4, Examples 1 and 2 are reference examples, and
An embodiment that specifically illustrates the invention defined in the claims is
Examples 3 and 4.

【0018】〔実施例1〕図1は、本発明にかかる窒化
ガリウム系半導体レーザの第1の実施例の層構造断面図
である。図1において、本発明の窒化ガリウム系レーザ
の層構造は、(0001)面を表面とするサファイア基板1上
のGaNバッファ層2,厚さ3μmのn型GaNコンタクト層
3、厚さ0.1μmのn型In0.05Ga0.95Nクラック防止層
4、厚さ0.5μmのn型Al0.07Ga0.93Nクラッド層5、厚さ
0.1μmのn型GaN光ガイド層6、厚さ50ÅのIn0.14Ga0.86
N量子井戸層と厚さ100ÅのIn0.02Ga0.98N障壁層からな
る3周期の多重量子井戸構造活性層7、p型AlGaN層
8,厚さ0.1μmのp型GaN光ガイド層9、厚さ0.5μmのp
型Al0.07Ga0.93Nクラッド層10、厚さ0.2μmのp型GaN
コンタクト層11とからなる。n型コンタクト層3上に
n電極12、p型コンタクト層11上にp電極13が形
成される。図2に、活性層7およびp型AlGaN層8付近の
バンド構造の模式図を示す。図2は、簡単のためにドー
ピングを考慮しないフラットバンドの場合でのバンド図
になっている。p型AlGaN層8は、活性層7との界面側
から順に、厚さ50Åのp型Al0.19Ga0.81N層14、厚さ3
0Åのp型Al0.1 6Ga0.84N層15、厚さ30Åのp型Al0.13
Ga0.87N層16、厚さ30Åのp型Al0.1Ga 0.9N層17、厚
さ30Åのp型Al0.07Ga0.93N層18、厚さ30Åのp型Al
0.04Ga0.9 6N層19との6層構造で構成されており、合計
200Åの層厚になっている。p型Al 0.19Ga0.81N層14は
活性層の電子に対して十分に大きい伝導帯バリアを持つ
ように大きいAl組成を持っている。p型AlGaN層14か
ら19は、p型GaN光ガイド層9に向かってステップ的に
Al組成が減少して、各層界面での価電子帯不連続が常に
小さく抑えられている。
Embodiment 1 FIG. 1 is a view showing a nitriding process according to the present invention.
Sectional view of the layer structure of the first embodiment of the gallium-based semiconductor laser
It is. FIG. 1 shows a gallium nitride based laser of the present invention.
Is formed on a sapphire substrate 1 having a (0001) plane as a surface.
GaN buffer layer 2, n-type GaN contact layer with thickness of 3μm
3. n-type In with thickness of 0.1μm0.05Ga0.95N crack prevention layer
4. 0.5μm thick n-type Al0.07Ga0.93N clad layer 5, thickness
0.1 μm n-type GaN optical guide layer 6, 50 mm thick In0.14Ga0.86
N quantum well layer and 100 mm thick In0.02Ga0.98From the N barrier layer
Three-period multiple quantum well structure active layer 7, p-type AlGaN layer
8, p-type GaN optical guide layer 9 with a thickness of 0.1 μm, p-type GaN with a thickness of 0.5 μm
Type Al0.07Ga0.93N cladding layer 10, 0.2 μm thick p-type GaN
And a contact layer 11. On the n-type contact layer 3
The p-electrode 13 is formed on the n-electrode 12 and the p-type contact layer 11.
Is done. FIG. 2 shows the vicinity of the active layer 7 and the p-type AlGaN layer 8.
1 shows a schematic view of a band structure. Figure 2 shows the dough for simplicity.
Band diagram in case of flat band without considering ping
It has become. The p-type AlGaN layer 8 is on the interface side with the active layer 7.
In order from the 50mm thick p-type Al0.19Ga0.81N layer 14, thickness 3
0Å p-type Al0.1 6Ga0.84N layer 15, 30 mm thick p-type Al0.13
Ga0.87N layer 16, 30 mm thick p-type Al0.1Ga 0.9N layer 17, thickness
30 mm p-type Al0.07Ga0.93N-layer 18, p-type Al 30 mm thick
0.04Ga0.9 6It has a six-layer structure with the N layer 19,
The thickness is 200 mm. p-type Al 0.19Ga0.81N layer 14
Has a sufficiently large conduction band barrier for electrons in the active layer
Has a large Al composition. p-type AlGaN layer 14
19 stepwise toward the p-type GaN light guide layer 9
Al composition decreases, and valence band discontinuity at the interface of each layer always occurs
It is kept small.

【0019】図6に、本発明の実施例1にかかる窒化ガ
リウム系レーザの高電流注入時の活性層付近バンド図を
示す。p型AlGaN層8内のp型AlGaN層14から19は、
p型GaN光ガイド層9に向かってステップ的にAl組成が減
少しているため、各層間の界面での価電子帯不連続が常
に小さく抑えられており、ホールのパイルアップがおき
にくい。そのため、特に活性層に接するp型Al0.19Ga
0.81N層14では電界が抑制され、従来技術による半導
体レーザに比べて活性層電子のドリフトおよびトンネル
によるオーバーフローが減少する。また、p型AlGaN層
8にはホールパイルアップによる余分な電圧がかからな
いため、動作電圧が低減できる。以上のように、本発明
の実施により、半導体レーザの動作電流および動作電圧
を低減することができる。
FIG. 6 is a band diagram near the active layer when a high current is injected in the gallium nitride based laser according to the first embodiment of the present invention. The p-type AlGaN layers 14 to 19 in the p-type AlGaN layer 8 are:
Since the Al composition decreases stepwise toward the p-type GaN light guide layer 9, the valence band discontinuity at the interface between the layers is always kept small, and the pile-up of the hole hardly occurs. Therefore, the p-type Al 0.19 Ga
In the 0.81 N layer 14, the electric field is suppressed, and the drift of the active layer electrons and the overflow due to the tunnel are reduced as compared with the semiconductor laser according to the related art. Further, since an extra voltage due to hole pile-up is not applied to the p-type AlGaN layer 8, the operating voltage can be reduced. As described above, the operation current and the operation voltage of the semiconductor laser can be reduced by implementing the present invention.

【0020】〔実施例2〕図3に、本発明にかかる窒化
ガリウム系レーザの第2の実施例における、活性層7お
よびp型AlGaN層8付近のバンド構造の模式図を示す。
図3は、簡単のためにドーピングを考慮しないフラット
バンドの場合でのバンド図になっている。本実施例2
は、図1に示した実施例1のレーザと比較して、p型AlG
aN層8の内部構造が異なるだけである。本実施例2にお
いてp型AlGaN層8は、活性層7との界面側から順に、
厚さ50Åのp型Al0.19Ga0.81N層20、Al0.19Ga0.81Nか
らAl0. 04Ga0.96NまでAl組成を線形に減少させた層厚150
Åのp型AlGaN層21との2層構造で構成されている。p
型Al0.19Ga0.81N層20は活性層の電子に対して十分に
大きい伝導帯バリアを持つように大きいAl組成を持って
いる。p型AlGaN層21では、p型GaN光ガイド層9に向
かって連続的にAl組成が減少しているため、価電子帯不
連続が常に小さくなっている。
[Embodiment 2] FIG. 3 is a schematic diagram showing a band structure near an active layer 7 and a p-type AlGaN layer 8 in a second embodiment of the gallium nitride based laser according to the present invention.
FIG. 3 is a band diagram in the case of a flat band in which doping is not considered for simplicity. Example 2
Is compared with the laser of Example 1 shown in FIG.
Only the internal structure of the aN layer 8 is different. In the second embodiment, the p-type AlGaN layer 8 is formed in order from the interface side with the active layer 7.
P-type Al 0.19 thickness 50 Å Ga 0.81 N layer 20, Al 0.19 Ga 0.81 layer thickness 150 Al composition from N to Al 0. 04 Ga 0.96 N is decreased linearly
Å has a two-layer structure with the p-type AlGaN layer 21. p
The type Al 0.19 Ga 0.81 N layer 20 has a large Al composition so as to have a sufficiently large conduction band barrier for electrons in the active layer. In the p-type AlGaN layer 21, since the Al composition continuously decreases toward the p-type GaN light guide layer 9, the valence band discontinuity is always small.

【0021】図7に、本発明の実施例2にかかる窒化ガ
リウム系レーザの高電流注入時の活性層付近バンド図を
示す。p型AlGaN層8内のp型AlGaN層は、p型GaN光ガイ
ド層9に向かって連続的にAl組成が減少しているため、
各位置での価電子帯不連続が常に小さく抑えられてお
り、ホールのパイルアップがおきにくい。そのため、特
にp型AlGaN層20では電界が抑制され、従来技術によ
る半導体レーザに比べて活性層電子のドリフトおよびト
ンネルによるオーバーフローが減少する。また、p型Al
GaN層8にはホールパイルアップによる余分な電圧がか
からないため、動作電圧が低減できる。以上のように、
本発明の実施により、半導体レーザの動作電流および動
作電圧を低減することができる。
FIG. 7 is a band diagram near the active layer when a high current is injected in the gallium nitride based laser according to the second embodiment of the present invention. Since the p-type AlGaN layer in the p-type AlGaN layer 8 has a continuously decreasing Al composition toward the p-type GaN optical guide layer 9,
The valence band discontinuity at each position is always kept small, and the pile-up of holes is hard to occur. Therefore, the electric field is suppressed particularly in the p-type AlGaN layer 20, and the drift of the active layer electrons and the overflow due to the tunnel are reduced as compared with the semiconductor laser according to the related art. Also, p-type Al
Since an extra voltage due to hole pile-up is not applied to the GaN layer 8, the operating voltage can be reduced. As mentioned above,
By implementing the present invention, the operating current and operating voltage of the semiconductor laser can be reduced.

【0022】〔実施例3〕図4に、本発明にかかる窒化
ガリウム系レーザの第3の実施例における、活性層7お
よびp型AlGaN層8付近のバンド構造の模式図を示す。
図4は、簡単のためにドーピングを考慮しないフラット
バンドの場合でのバンド図になっている。本実施例3
は、図1に示した実施例1のレーザと比較して、p型AlG
aN層8の内部構造が異なるだけである。本実施例3にお
いてp型AlGaN層8は、活性層7との界面側から順に、
厚さ10Åのp型Al0.19Ga0.81N層22、厚さ10Åのp型A
l0.2Ga 0.8N層23、厚さ10Åのp型Al0.21Ga0.79N層2
4、厚さ10Åのp型Al0.22Ga0.7 8N層25、厚さ10Åの
p型Al0.23Ga0.77N層26、厚さ30Åのp型Al0.19Ga
0.81N層27、厚さ30Åのp型Al0.15Ga0.85N層28、厚
さ30Åのp型Al0.11Ga0.89N層29、厚さ30Åのp型Al
0.07Ga0.93N層30、厚さ30Åのp型Al0.03Ga0.97N層3
1との10層構造で構成されている。p型Al0.19Ga0.81
N層22は活性層の電子に対して十分に大きい伝導帯バ
リアを持つように大きいAl組成を持っている。p型AlGa
N層22から26では、p型GaN光ガイド層9に向かって
ステップ的にAl組成が増加している。また、p型AlGaN
層27から31では、p型GaN光ガイド層9に向かってス
テップ的にAl組成が減少しているため、各界面での価電
子帯不連続が常に小さく抑えられている。
[Embodiment 3] FIG. 4 shows the nitriding process according to the present invention.
In the third embodiment of the gallium-based laser, the active layer 7 and the
And a schematic diagram of a band structure near the p-type AlGaN layer 8.
FIG. 4 shows a flat without considering doping for simplicity.
The band diagram is for a band. Example 3
Is compared with the laser of Example 1 shown in FIG.
Only the internal structure of the aN layer 8 is different. Example 3
Further, the p-type AlGaN layer 8 is arranged in order from the interface side with the active layer 7.
10mm thick p-type Al0.19Ga0.81N-layer 22, 10 mm thick p-type A
l0.2Ga 0.8N layer 23, 10 mm thick p-type Al0.21Ga0.79N layer 2
4. 10mm thick p-type Al0.22Ga0.7 8N layer 25, thickness 10mm
p-type Al0.23Ga0.77N layer 26, p-type Al 30 mm thick0.19Ga
0.81N-layer 27, p-type Al 30 mm thick0.15Ga0.85N layer 28, thickness
30 mm p-type Al0.11Ga0.89N-layer 29, p-type Al 30 mm thick
0.07Ga0.93N-layer 30, p-type Al 30 mm thick0.03Ga0.97N layer 3
1 and 10 layers. p-type Al0.19Ga0.81
The N layer 22 has a conduction band barrier large enough for the electrons of the active layer.
It has a large Al composition to have a rear. p-type AlGa
In the N layers 22 to 26, toward the p-type GaN light guide layer 9,
The Al composition increases stepwise. Also, p-type AlGaN
In layers 27 to 31, the layers move toward the p-type GaN light guide layer 9.
Since the Al composition is reduced in steps, the valence at each interface is
Child band discontinuity is always kept small.

【0023】図8に、本発明の実施例3にかかる窒化ガ
リウム系レーザの高電流注入時の活性層付近バンド図を
示す。p型AlGaN層8内のp型AlGaN層22から26は、
p型GaN光ガイド層9に向かってステップ的にAl組成が増
加し、かつp型AlGaN層27から31は、p型GaN光ガイ
ド層9に向かってステップ的にAl組成が減少している。
p型AlGaN層27から31では、実施例1と同様に各層
間の界面での価電子帯不連続が常に小さく抑えられてお
り、ホールのパイルアップがおきにくい構造になってい
る。さらに、p型AlGaN層22から26はステップ的にA
l組成が増加しているため、ホール電流による電界が生
じてもこれを打ち消すことができる。そのため、実施例
1および2に比べてさらに電界を抑制し、活性層電子の
ドリフトおよびトンネルによるオーバーフローを減少
し、動作電圧を低減することができる。以上のように、
本発明の実施により、半導体レーザの動作電流および動
作電圧を低減することができる。
FIG. 8 is a band diagram near the active layer when a high current is injected in the gallium nitride based laser according to the third embodiment of the present invention. The p-type AlGaN layers 22 to 26 in the p-type AlGaN layer 8 are:
The Al composition increases stepwise toward the p-type GaN light guide layer 9, and the Al composition decreases stepwise toward the p-type GaN light guide layer 9 in the p-type AlGaN layers 27 to 31.
In the p-type AlGaN layers 27 to 31, as in the first embodiment, the valence band discontinuity at the interface between the respective layers is always kept small, and the structure is such that the pile-up of holes hardly occurs. Further, the p-type AlGaN layers 22 to 26
Since the l composition is increased, even if an electric field is generated by the hole current, it can be canceled. Therefore, the electric field can be further suppressed as compared with the first and second embodiments, the drift of the active layer electrons and the overflow due to the tunnel can be reduced, and the operating voltage can be reduced. As mentioned above,
By implementing the present invention, the operating current and operating voltage of the semiconductor laser can be reduced.

【0024】〔実施例4〕図5に、本発明にかかる窒化
ガリウム系レーザの第4の実施例における、活性層7お
よびp型AlGaN層8付近のバンド構造の模式図を示す。
図5は、簡単のためにドーピングを考慮しないフラット
バンドの場合でのバンド図になっている。本実施例4
は、図1に示した実施例1のレーザと比較して、p型AlG
aN層8の内部構造が異なるだけである。本実施例4にお
いてp型AlGaN層8は、活性層7との界面から順に、Al
0.19Ga0.81NからAl0.23Ga0.77NまでAl組成が連続的に増
加している厚さ50Åのp型AlGaN層32、Al0.23Ga0.77N
からAl0.03Ga0.97NまでAl組成が連続的に減少している
厚さ150Åのp型AlGaN層33との2層構造で構成されて
いる。p型AlGaN層32は活性層7との界面において、
活性層の電子に対して十分に大きい伝導帯バリアを持つ
ように大きいAl組成を持っている。p型AlGaN層33で
は、p型GaN光ガイド層9に向かって連続的にAl組成が減
少しているため、価電子帯不連続が常に小さく抑えられ
ている。
[Embodiment 4] FIG. 5 is a schematic diagram showing a band structure near an active layer 7 and a p-type AlGaN layer 8 in a gallium nitride based laser according to a fourth embodiment of the present invention.
FIG. 5 is a band diagram in the case of a flat band in which doping is not considered for simplicity. Example 4
Is compared with the laser of Example 1 shown in FIG.
Only the internal structure of the aN layer 8 is different. In the fourth embodiment, the p-type AlGaN layer 8 is
A 50-mm thick p-type AlGaN layer 32 in which the Al composition continuously increases from 0.19 Ga 0.81 N to Al 0.23 Ga 0.77 N, Al 0.23 Ga 0.77 N
And a p-type AlGaN layer 33 with a thickness of 150 ° in which the Al composition is continuously reduced from Al to Al 0.03 Ga 0.97 N. At the interface with the active layer 7, the p-type AlGaN layer 32
It has a large Al composition so as to have a sufficiently large conduction band barrier for electrons in the active layer. In the p-type AlGaN layer 33, since the Al composition decreases continuously toward the p-type GaN light guide layer 9, the valence band discontinuity is always kept small.

【0025】図9に、本発明の実施例4にかかる窒化ガ
リウム系レーザの高電流注入時の活性層付近バンド図を
示す。p型AlGaN層8内のp型AlGaN層32はp型GaN光ガ
イド層9に向かって連続的にAl組成が増加し、かつp型
AlGaN層33は、p型GaN光ガイド層9に向かって連続的
にAl組成が減少している。p型AlGaN層33では、実施
例2と同様に各位置での価電子帯不連続が常に小さく抑
えられており、ホールのパイルアップがおきにくい構造
になっている。さらに、p型AlGaN層32では連続的にA
l組成が増加しているため、ホール電流による電界が生
じてもこれを打ち消すことができる。そのため、実施例
1および2に比べてさらに電界を抑制し、活性層電子の
ドリフトおよびトンネルによるオーバーフローを減少
し、動作電圧を低減することができる。以上のように、
本発明の実施により、半導体レーザの動作電流および動
作電圧を低減することができる。
FIG. 9 is a band diagram near the active layer when a high current is injected in the gallium nitride based laser according to the fourth embodiment of the present invention. In the p-type AlGaN layer 32 in the p-type AlGaN layer 8, the Al composition continuously increases toward the p-type GaN optical guide layer 9, and the p-type AlGaN layer 32
In the AlGaN layer 33, the Al composition continuously decreases toward the p-type GaN light guide layer 9. In the p-type AlGaN layer 33, the valence band discontinuity at each position is always kept small as in the second embodiment, and the structure is such that the pile-up of holes hardly occurs. Further, in the p-type AlGaN layer 32, A
Since the l composition is increased, even if an electric field is generated by the hole current, it can be canceled. Therefore, the electric field can be further suppressed as compared with the first and second embodiments, the drift of the active layer electrons and the overflow due to the tunnel can be reduced, and the operating voltage can be reduced. As mentioned above,
By implementing the present invention, the operating current and operating voltage of the semiconductor laser can be reduced.

【0026】以上の実施例1〜4の説明では、本発明の
実施例は半導体レーザを例にとって示したが、本発明は
発光ダイオードにおいても有効である。
In the above description of the first to fourth embodiments, the embodiment of the present invention has been described by taking a semiconductor laser as an example, but the present invention is also effective for a light emitting diode.

【0027】また、実施例1および3ではp型AlGaN層
8内でAl組成をステップ的に変化させた例を説明した
が、ステップ数や隣接するステップ間で組成変化の量
は、隣接するステップ間のバンドギャップの差が十分小
さければ、実施例に示した以外のAl組成プロファイルで
もよい。例えば隣接するステップ間のバンドギャップの
差が0.3eV以下程度、好ましくは0.03eV以下
となるようにすればよい。
In the first and third embodiments, the example in which the Al composition is changed stepwise in the p-type AlGaN layer 8 has been described. However, the number of steps and the amount of change in the composition between adjacent steps are different from those of the adjacent steps. If the difference in band gap between them is sufficiently small, an Al composition profile other than that shown in the examples may be used. For example, the difference in band gap between adjacent steps may be set to about 0.3 eV or less, preferably 0.03 eV or less.

【0028】また、実施例2および4では、p型AlGaN
層8内でAl組成を線形に連続的に変化させた例を説明し
たが、これ以外のAl組成プロファイルでも、各位置での
Al組成変化が十分小さくなっていれば発明の実施に支障
がない。
In Examples 2 and 4, p-type AlGaN
Although the example in which the Al composition is changed linearly and continuously in the layer 8 has been described, other Al composition profiles may be used at each position.
If the Al composition change is sufficiently small, there is no problem in practicing the invention.

【0029】さらに、本発明においては、バンドギャッ
プの層厚方向の変化が実施例と同様になっていれば、p
型AlGaN層8の代わりにp型InAlGaN層を用いても、p型G
aN光ガイド層9の代わりにp型InAlGaN層を用いてもよ
い。
Further, in the present invention, if the change of the band gap in the layer thickness direction is similar to that of the embodiment, p
Even if a p-type InAlGaN layer is used instead of the p-type AlGaN layer 8, the p-type G
Instead of the aN light guide layer 9, a p-type InAlGaN layer may be used.

【0030】[0030]

【発明の効果】本発明によれば、動作電流が低く、かつ
動作電圧の低い窒化ガリウム系半導体レーザを実現でき
る。
According to the present invention, a gallium nitride based semiconductor laser having a low operating current and a low operating voltage can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1〜4の窒化ガリウム系レーザ
の断面図である。
FIG. 1 is a cross-sectional view of a gallium nitride based laser of Examples 1 to 4 of the present invention.

【図2】実施例1の窒化ガリウム系レーザにおける活性
層付近のフラットバンドでのバンド図である。
FIG. 2 is a band diagram in a flat band near an active layer in the gallium nitride based laser of Example 1.

【図3】実施例2の窒化ガリウム系レーザにおける活性
層付近のフラットバンドでのバンド図である。
FIG. 3 is a band diagram in a flat band near an active layer in the gallium nitride based laser of Example 2.

【図4】実施例3の窒化ガリウム系レーザにおける活性
層付近のフラットバンドでのバンド図である。
FIG. 4 is a band diagram in a flat band near an active layer in the gallium nitride based laser of Example 3.

【図5】実施例4の窒化ガリウム系レーザにおける活性
層付近のフラットバンドでのバンド図である。
FIG. 5 is a band diagram in a flat band near an active layer in the gallium nitride based laser of Example 4.

【図6】実施例1の窒化ガリウム系レーザにおける高電
流注入時の活性層付近のバンド図である。
FIG. 6 is a band diagram near an active layer when a high current is injected in the gallium nitride based laser of Example 1.

【図7】実施例2の窒化ガリウム系レーザにおける高電
流注入時の活性層付近のバンド図である。
FIG. 7 is a band diagram near the active layer when a high current is injected in the gallium nitride based laser of Example 2.

【図8】実施例3の窒化ガリウム系レーザにおける高電
流注入時の活性層付近のバンド図である。
FIG. 8 is a band diagram near the active layer when a high current is injected in the gallium nitride based laser of Example 3.

【図9】実施例4の窒化ガリウム系レーザにおける高電
流注入時の活性層付近のバンド図である。
FIG. 9 is a band diagram near the active layer when a high current is injected in the gallium nitride based laser of Example 4.

【図10】従来の窒化ガリウム系半導体発光ダイオード
の断面図である。
FIG. 10 is a cross-sectional view of a conventional gallium nitride based semiconductor light emitting diode.

【図11】従来の窒化ガリウム系半導体発光ダイオード
における活性層付近のフラットバンドでのバンド図であ
る。
FIG. 11 is a band diagram in a flat band near an active layer in a conventional gallium nitride based semiconductor light emitting diode.

【図12】従来の窒化ガリウム系半導体レーザの断面図
である。
FIG. 12 is a cross-sectional view of a conventional gallium nitride based semiconductor laser.

【図13】従来の窒化ガリウム系半導体レーザにおける
活性層付近のフラットバンドでのバンド図である。
FIG. 13 is a band diagram in a flat band near an active layer in a conventional gallium nitride based semiconductor laser.

【図14】従来の窒化ガリウム系半導体レーザにおける
高電流注入時の活性層付近のバンド図である。
FIG. 14 is a band diagram near an active layer when a high current is injected in a conventional gallium nitride based semiconductor laser.

【符号の説明】[Explanation of symbols]

1,101,111 (0001)面を表面とするサファイア基板 2,102,112 GaNバッファ層 3,103,113 n型GaNコンタクト層 4,114 n型In0.05Ga0.95Nクラック防止層 5,115 n型Al0.07Ga0.93Nクラッド層 6,116 n型GaN光ガイド層 7,117 多重量子井戸構造活性層 8,118 p型AlGaN層 9,119 p型GaN光ガイド層 10,120 p型Al0.07Ga0.93Nクラッド層 11,106,121 p型GaNコンタクト層 12,107,122 n電極 13,108,123 p電極 14,20 p型Al0.19Ga0.81N層 15 p型Al0.16Ga0.84N層 16 p型Al0.13Ga0.87N層 17 p型Al0.1Ga0.9N層 18 p型Al0.07Ga0.93N層 19 p型Al0.04Ga0.96N層 21 Al組成が連続的に変化したp型AlGaN層 22 p型Al0.19Ga0.81N層 23 p型Al0.2Ga0.8N層 24 p型Al0.21Ga0.79N層 25 p型Al0.22Ga0.78N層 26 p型Al0.23Ga0.77N層 27 p型Al0.19Ga0.81N層 28 p型Al0.15Ga0.85N層 29 p型Al0.11Ga0.89N層 30 p型Al0.07Ga0.93N層 31 p型Al0.03Ga0.97N層 32,33 Al組成が連続的に変化したp型AlGaN層 104 In0.45Ga0.55N活性層 105 p型Al0.2Ga0.8N層Sapphire substrate with 1,101,111 (0001) surface as the surface 2, 102, 112 GaN buffer layer 3, 103, 113 n-type GaN contact layer 4, 114 n-type In 0.05 Ga 0.95 N crack prevention layer 5, 115 n-type Al 0.07 Ga 0.93 N cladding layer 6, 116 n-type GaN optical guiding layer 7, 117 active layer with multiple quantum well structure 8, 118 p-type AlGaN layer 9, 119 p-type GaN optical guiding layer 10, 120 p-type Al 0.07 Ga 0.93 N cladding layer 11, 106, 121 p-type GaN contact layer 12, 107, 122 n-electrode 13, 108, 123 p-electrode 14, 20 p-type Al 0.19 Ga 0.81 N layer 15 p-type Al 0.16 Ga 0.84 N layer 16 p-type Al 0.13 Ga 0.87 N layer 17 p-type Al 0.1 Ga 0.9 N layer 18 p-type Al 0.07 Ga 0.93 N layer 19 p-type Al 0.04 Ga 0.96 N layer 21 p-type AlGaN layer with continuously changing Al composition 22 p-type Al 0.19 Ga 0.81 N layer 23 p-type Al 0.2 Ga 0.8 N layer 24 p-type Al 0.21 Ga 0.79 N layer 25 p-type Al 0.22 Ga 0.78 N layer 26 p-type Al 0.23 Ga 0.77 N layer 27 p-type Al 0.19 Ga 0.81 N layer 28 p-type Al 0.15 Ga 0.85 N layer 29 p-type Al 0.11 Ga 0.89 N layer 30 p-type Al 0.07 Ga 0.93 N layer 31 p -Type Al 0.03 Ga 0.97 N layer 32, 33 p-type AlGaN layer with continuously changing Al composition 104 In 0.45 Ga 0.55 N active layer 105 p-type Al 0.2 Ga 0.8 N layer

フロントページの続き (56)参考文献 特開 平11−340580(JP,A) 特開 平4−85981(JP,A) 特開 平8−250810(JP,A) 特開 平10−294529(JP,A) 特開 平10−126006(JP,A) 特開 平5−183228(JP,A) 特開2000−91708(JP,A) J.Appl.Phys,84[3], p.1196−1203 信学技報LQE97−152(1998−02), 97[543],49−55 (58)調査した分野(Int.Cl.7,DB名) H01S 5/00 - 5/50 H01L 33/00 JICSTファイル(JOIS)Continuation of front page (56) References JP-A-11-340580 (JP, A) JP-A-4-85981 (JP, A) JP-A-8-250810 (JP, A) JP-A-10-294529 (JP) JP-A-10-126006 (JP, A) JP-A-5-183228 (JP, A) JP-A-2000-91708 (JP, A) Appl. Phys, 84 [3], p. 1196-1203 IEICE Technical Report LQE 97-152 (1998-02), 97 [543], 49-55 (58) Fields investigated (Int. Cl. 7 , DB name) H01S 5/00-5/50 H01L 33 / 00 JICST file (JOIS)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一般式InxAlyGa1-x-yN(0≦x≦1、0≦y≦
1、0≦x+y≦1)で表される窒化ガリウム系半導体からな
るp型層とn型層で活性層を挟んだ層構造を有する窒化
ガリウム系半導体発光素子において、 (a)前記p型層が、前記活性層に接する第1のp型層
と、この第1のp型層と接した第2のp型層を少なくとも
含む多層構造であり、 (b−1)前記第1のp型層は、前記活性層側の界面に
おいてバンドギャップが不連続で、活性層の電子に対し
て伝導帯バリアを持つように、この界面におけるAl組
成yが0.19以上であり、前記第1のp型層に接する
前記活性層がInGaN層で In組成が0.02であり、 (b−2)前記第1のp型層のバンドギャップが前記活性
層側の界面付近の領域で活性層側から前記第2のp型層
に向かってステップ状または連続的に大きくなってお
り、 (b−3)さらに前記第1のp型層のバンドギャップが前
記第2のp型層との界面付近を含む領域内で、前記第2のp
型層側に向かってステップ状または連続的に小さくなっ
ており、かつ前記第1のp型層の前記第2のp型層との界
面でのバンドギャップが、前記第2のp型層の前記第1の
p型層との界面でのバンドギャップと等しいかまたはよ
り大きいことを特徴とする窒化ガリウム系半導体発光素
子。
1. The general formula InxAlyGa1-xyN (0 ≦ x ≦ 1, 0 ≦ y ≦
1, 0 ≤ x + y ≤ 1)
Having a layer structure in which an active layer is sandwiched between a p-type layer and an n-type layer
In the gallium-based semiconductor light emitting device, (a) the p-type layer is a first p-type layer in contact with the active layer
And at least a second p-type layer in contact with the first p-type layer.
(B-1) wherein the first p-type layer is provided at an interface on the active layer side.
Band gap is discontinuous in the
Al group at this interface to have a conduction band barrier
Is greater than or equal to 0.19,In contact with the first p-type layer
The active layer is an InGaN layer, and the In composition is 0.02;  (B-2) the band gap of the first p-type layer is the active
The second p-type layer from the active layer side in a region near the interface on the layer side;
Stepwise or continuously
(B-3) Further, the band gap of the first p-type layer is
In the region including the vicinity of the interface with the second p-type layer, the second p-type layer
Stepwise or continuously smaller toward the mold layer side
And an interface between the first p-type layer and the second p-type layer.
The bandgap of the second p-type layer
Equal to or better than the band gap at the interface with the p-type layer
Gallium nitride based semiconductor light emitting device
Child.
【請求項2】 前記活性層がInGaNまたはGaNを量子井
戸とする単一または多重量子井戸から構成され、かつ前
記第1、第2のp型層が一般式AlzGa1-zN(0≦z≦1)で表
される窒化ガリウム系半導体で構成されていることを特
徴とする請求項1記載の窒化ガリウム系半導体発光素
子。
2. The method according to claim 1, wherein the active layer comprises a single or multiple quantum well having InGaN or GaN as a quantum well, and the first and second p-type layers have a general formula Al z Ga 1 -z N (0 2. The gallium nitride based semiconductor light emitting device according to claim 1, wherein the gallium nitride based semiconductor light emitting device is constituted by a gallium nitride based semiconductor represented by ≦ z ≦ 1).
【請求項3】 前記第2のp型層が前記第1のp型層の反
対側で第3のp型層と接しており、かつ前記第2のp型
層の屈折率が、前記第1のp型層の平均屈折率および前記
第3のp型層の屈折率よりも大きいことを特徴とする請
求項1または2記載の窒化ガリウム系半導体発光素子。
3. The second p-type layer is in contact with a third p-type layer on a side opposite to the first p-type layer, and the second p-type layer has a refractive index of the second p-type layer. 3. The gallium nitride based semiconductor light emitting device according to claim 1, wherein the average refractive index of the first p-type layer and the refractive index of the third p-type layer are larger than the refractive index of the third p-type layer.
JP25854698A 1998-09-11 1998-09-11 Gallium nitride based semiconductor light emitting device Expired - Lifetime JP3279266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25854698A JP3279266B2 (en) 1998-09-11 1998-09-11 Gallium nitride based semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25854698A JP3279266B2 (en) 1998-09-11 1998-09-11 Gallium nitride based semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2000091705A JP2000091705A (en) 2000-03-31
JP3279266B2 true JP3279266B2 (en) 2002-04-30

Family

ID=17321742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25854698A Expired - Lifetime JP3279266B2 (en) 1998-09-11 1998-09-11 Gallium nitride based semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3279266B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101071755B1 (en) 2010-07-16 2011-10-11 엘지이노텍 주식회사 Light emitting device
US9887317B2 (en) 2014-09-03 2018-02-06 Epistar Corporation Light-emitting device and manufacturing method thereof

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010108733A (en) * 2000-05-31 2001-12-08 쥬세 챠오 Amorphous and polycrystalline growing method for gallium nitride based compound semiconductor
US6586762B2 (en) 2000-07-07 2003-07-01 Nichia Corporation Nitride semiconductor device with improved lifetime and high output power
JP5002976B2 (en) * 2000-11-21 2012-08-15 日亜化学工業株式会社 Nitride semiconductor device
US6800876B2 (en) 2001-01-16 2004-10-05 Cree, Inc. Group III nitride LED with undoped cladding layer (5000.137)
US6906352B2 (en) 2001-01-16 2005-06-14 Cree, Inc. Group III nitride LED with undoped cladding layer and multiple quantum well
US6958497B2 (en) 2001-05-30 2005-10-25 Cree, Inc. Group III nitride based light emitting diode structures with a quantum well and superlattice, group III nitride based quantum well structures and group III nitride based superlattice structures
US7692182B2 (en) * 2001-05-30 2010-04-06 Cree, Inc. Group III nitride based quantum well light emitting device structures with an indium containing capping structure
WO2003041234A1 (en) 2001-11-05 2003-05-15 Nichia Corporation Semiconductor element
US6618413B2 (en) * 2001-12-21 2003-09-09 Xerox Corporation Graded semiconductor layers for reducing threshold voltage for a nitride-based laser diode structure
JP2006135221A (en) 2004-11-09 2006-05-25 Mitsubishi Electric Corp Semiconductor light emitting element
JPWO2006109418A1 (en) 2005-04-11 2008-10-09 三菱電機株式会社 Semiconductor light emitting device
KR100674858B1 (en) 2005-07-07 2007-01-29 삼성전기주식회사 White light emitting device
US20080137701A1 (en) * 2006-12-12 2008-06-12 Joseph Michael Freund Gallium Nitride Based Semiconductor Device with Reduced Stress Electron Blocking Layer
KR101459763B1 (en) 2008-01-15 2014-11-12 엘지이노텍 주식회사 Semiconductor light emitting device and fabrication method thereof
JP2011187591A (en) * 2010-03-08 2011-09-22 Uv Craftory Co Ltd Nitride semiconductor ultraviolet light-emitting element
EP2408028B1 (en) 2010-07-16 2015-04-08 LG Innotek Co., Ltd. Light emitting device
JP2012118168A (en) 2010-11-30 2012-06-21 Mitsubishi Electric Corp Electroabsorption modulator and optical semiconductor device
JP5858659B2 (en) 2011-06-21 2016-02-10 キヤノン株式会社 Photonic crystal surface emitting laser and manufacturing method thereof
KR101843420B1 (en) * 2011-08-12 2018-05-14 엘지이노텍 주식회사 Light emitting device, method for fabricating the same, and light emitting device package
DE102012220911A1 (en) * 2012-09-27 2014-05-15 Osram Opto Semiconductors Gmbh Semiconductor laser with improved current conduction
KR102065381B1 (en) * 2012-12-11 2020-01-13 엘지이노텍 주식회사 Light emitting device and light emitting device package
KR102050053B1 (en) * 2012-12-21 2019-11-28 엘지이노텍 주식회사 Light emitting device
KR102035186B1 (en) * 2013-02-27 2019-10-22 엘지이노텍 주식회사 Light emitting device
US20150179881A1 (en) * 2013-12-24 2015-06-25 Sharp Kabushiki Kaisha Nitride led structure with double graded electron blocking layer
KR102398435B1 (en) * 2015-03-25 2022-05-16 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Red light emitting device and lighting system
US10340415B2 (en) * 2016-09-01 2019-07-02 Lg Innotek Co., Ltd. Semiconductor device and semiconductor device package including the same
JP6838731B2 (en) * 2016-12-15 2021-03-03 学校法人 名城大学 Nitride semiconductor laser device
KR102430086B1 (en) * 2017-07-07 2022-08-05 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Semiconductor device
JP7221593B2 (en) * 2018-03-12 2023-02-14 スタンレー電気株式会社 semiconductor light emitting device
CN112970124A (en) * 2018-11-05 2021-06-15 同和电子科技有限公司 Group III nitride semiconductor light-emitting element and method for manufacturing same
WO2020095826A1 (en) * 2018-11-05 2020-05-14 Dowaエレクトロニクス株式会社 Group iii nitride semiconductor light-emitting element and production method therefor
JP2021082751A (en) * 2019-11-21 2021-05-27 旭化成株式会社 Nitride semiconductor element
WO2024070351A1 (en) * 2022-09-27 2024-04-04 ヌヴォトンテクノロジージャパン株式会社 Nitride-based semiconductor light-emitting device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J.Appl.Phys,84[3],p.1196−1203
信学技報LQE97−152(1998−02),97[543],49−55

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101071755B1 (en) 2010-07-16 2011-10-11 엘지이노텍 주식회사 Light emitting device
US9887317B2 (en) 2014-09-03 2018-02-06 Epistar Corporation Light-emitting device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2000091705A (en) 2000-03-31

Similar Documents

Publication Publication Date Title
JP3279266B2 (en) Gallium nitride based semiconductor light emitting device
EP1453160B1 (en) Semiconductor element
KR100835116B1 (en) Nitride semiconductor light emitting device
US7939833B2 (en) Nitride semiconductor light emitting device
JP4441563B2 (en) Nitride semiconductor laser device
JP3698402B2 (en) Light emitting diode
JP4285949B2 (en) Nitride semiconductor light emitting device
US8411718B2 (en) Semiconductor light-emitting device
JPH10242512A (en) Semiconductor light emitting device
JP2004140370A (en) Semiconductor photoelectronic device
JP2006165519A (en) Semiconductor light-emitting element
JP5314251B2 (en) Ridge waveguide semiconductor laser diode
JP3754226B2 (en) Semiconductor light emitting device
KR100456063B1 (en) Ⅲ-Nitride compound semiconductor light emitting device
JPWO2006109418A1 (en) Semiconductor light emitting device
JP2003204122A (en) Nitride semiconductor element
JPH10173292A (en) Gallium nitride-based semiconductor laser
KR100634273B1 (en) Semiconductor light emitting device
JP2000091708A (en) Semiconductor light emitting element
JPH1051070A (en) Semiconductor laser
JP3519990B2 (en) Light emitting device and manufacturing method thereof
US20080175293A1 (en) Semiconductor laser device
JP3813472B2 (en) Nitride semiconductor light emitting device
JP2003243772A (en) Semiconductor light emitting device and its manufacturing method
WO2021172171A1 (en) Laser element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term