JP3272980B2 - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JP3272980B2
JP3272980B2 JP17006397A JP17006397A JP3272980B2 JP 3272980 B2 JP3272980 B2 JP 3272980B2 JP 17006397 A JP17006397 A JP 17006397A JP 17006397 A JP17006397 A JP 17006397A JP 3272980 B2 JP3272980 B2 JP 3272980B2
Authority
JP
Japan
Prior art keywords
fuel
gas
gas supply
supply groove
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17006397A
Other languages
Japanese (ja)
Other versions
JPH1116590A (en
Inventor
栄一 安本
一仁 羽藤
久朗 行天
孝治 蒲生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP17006397A priority Critical patent/JP3272980B2/en
Publication of JPH1116590A publication Critical patent/JPH1116590A/en
Application granted granted Critical
Publication of JP3272980B2 publication Critical patent/JP3272980B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0265Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant the reactant or coolant channels having varying cross sections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高分子電解質、前
記高分子電解質を挟んで配置された空気極および燃料極
を備えた単電池を、ガス供給溝およびマニホルド部を有
するセパレータを介して複数個積み重ねた燃料電池の改
良に関する。
BACKGROUND OF THE INVENTION The present invention relates to a method for forming a plurality of cells each having a polymer electrolyte, an air electrode and a fuel electrode arranged with the polymer electrolyte interposed therebetween, via a separator having a gas supply groove and a manifold portion. The present invention relates to the improvement of individually stacked fuel cells.

【0002】[0002]

【従来の技術】固体高分子型燃料電池(以下PEFCで
表す。)は、作動温度が低い、出力密度が高く小型軽量
化が図れる、電解質に高分子膜を用いているため電池の
固体化が図れ、耐久性に優れる等の特徴を有している。
通常、この燃料電池は、単電池を複数個積層して出力電
圧を高めて使用される。図3は従来のこの種燃料電池の
単電池の構成を示す。単電池1は、高分子電解質膜2、
これを挟む空気極3と燃料極4、空気極へ酸化剤ガスを
供給するガス供給溝5aおよびガス供給マニホルド7
a、8aを設けたセパレ−タ6a、燃料極4へ燃料ガス
を供給するガス供給溝5bおよびマニホルド7b、8b
を設けたセパレータ6b、ならびにガスシ−ル材10に
より構成されている。なお、セパレータ6bには、ガス
供給溝5bとマニホルド7bおよびマニホルド8bとを
それぞれ連通するガス通路9aおよび9bが設けてあ
る。図示しないが、セパレータ6aにも同様のガス通路
が設けてある。
2. Description of the Related Art A polymer electrolyte fuel cell (hereinafter, referred to as PEFC) has a low operating temperature, a high output density, can be reduced in size and weight, and has a solid electrolyte because of using a polymer membrane as an electrolyte. And features such as excellent durability.
Usually, this fuel cell is used by increasing the output voltage by stacking a plurality of unit cells. FIG. 3 shows a configuration of a unit cell of this type of conventional fuel cell. The cell 1 includes a polymer electrolyte membrane 2,
The air electrode 3 and the fuel electrode 4 sandwiching the air electrode, the gas supply groove 5a for supplying the oxidant gas to the air electrode, and the gas supply manifold 7
a, 8a, a gas supply groove 5b for supplying fuel gas to the fuel electrode 4, and manifolds 7b, 8b.
, And a gas seal material 10. The separator 6b is provided with gas passages 9a and 9b for communicating the gas supply groove 5b with the manifold 7b and the manifold 8b, respectively. Although not shown, a similar gas passage is provided in the separator 6a.

【0003】この単電池を複数個直列に積層して図3の
ようにスタック20を構成する。そして、スタック20
の両端に、スタックとは絶縁板21を介してヘッダー2
2とフッター23を配置し、締め付けボルト24により
締め付けて燃料電池が構成される。スタックの両端部の
セパレータは、片面のみにガス供給溝が形成されてお
り、スタックと絶縁板の間には集電板25が配されてお
り、ここから電流を取り出す構成となっている。
A plurality of such cells are stacked in series to form a stack 20 as shown in FIG. And the stack 20
On both ends of the stack, the header 2 via the insulating plate 21
The fuel cell is constructed by arranging the foot 2 and the footer 23 and tightening them with the tightening bolts 24. The separators at both ends of the stack have gas supply grooves formed only on one side, and a current collecting plate 25 is arranged between the stack and the insulating plate, and a current is taken out therefrom.

【0004】ここで、高分子電解質膜2は、水分を飽和
状態で含水させることにより電解質膜として機能する。
燃料電池稼働中は、高分子電解質膜からの水分の蒸発を
防ぐために、燃料ガスおよび酸化剤ガスを加湿して供給
する。また、電池発電時には、電気化学的反応により空
気極側で生成される水も電解質膜を飽和状態に保つため
に使用される。そして、空気極で生成する水の量が増加
し、あるいはガス消費により反応ガス中の水蒸気量が過
剰になると、フラッディング状態になり、電極反応面積
が減少し電池性能が低下する。また、フラッディング状
態になると、空気極側から燃料極側に水の逆拡散現象が
生じ、燃料極側でも水蒸気分圧が上昇する。燃料極側で
水蒸気分圧が上昇すると、空気極側と同様に、燃料極側
でもフラッディングが生じ、電池性能低下につながる。
特に、このフラッディングは、燃料ガス流速が低下する
燃料ガス出口部分で起こりやすい。
Here, the polymer electrolyte membrane 2 functions as an electrolyte membrane by containing water in a saturated state.
During the operation of the fuel cell, the fuel gas and the oxidizing gas are humidified and supplied to prevent evaporation of water from the polymer electrolyte membrane. At the time of battery power generation, water generated on the air electrode side by an electrochemical reaction is also used to keep the electrolyte membrane in a saturated state. When the amount of water generated at the air electrode increases or the amount of water vapor in the reaction gas becomes excessive due to gas consumption, a flooding state occurs, the electrode reaction area decreases, and the battery performance decreases. In addition, in the flooding state, a reverse diffusion phenomenon of water occurs from the air electrode side to the fuel electrode side, and the partial pressure of water vapor also increases on the fuel electrode side. When the water vapor partial pressure increases on the fuel electrode side, flooding occurs on the fuel electrode side as well as on the air electrode side, leading to a decrease in cell performance.
In particular, this flooding is likely to occur at the fuel gas outlet where the fuel gas flow velocity decreases.

【0005】[0005]

【発明が解決しようとする課題】従来、空気極のフラッ
ディングについては、流路幅を広げる等の対策がとられ
ているが、逆拡散による燃料極側での水のフラッディン
グ対策は、ほとんどとられていなかった。このようなこ
とから、電池性能の安定化、高性能化のためには、燃料
極側流路でフラッディングが生じないセパレータの開発
が望まれている。
Conventionally, measures against flooding of the air electrode have been taken, for example, by increasing the width of the flow channel. However, almost no countermeasures have been taken against water flooding on the fuel electrode side due to reverse diffusion. I didn't. In view of the above, development of a separator that does not cause flooding in the fuel-electrode-side flow path is desired for stabilizing and improving the performance of the battery.

【0006】[0006]

【課題を解決するための手段】本発明の燃料電池は、高
分子電解質、前記高分子電解質を挟んで配置された空気
極および燃料極を備えた単電池を、ガス供給溝とマニ
ホルド部と、前記ガス供給溝およびマニホルド部を連通
するガス通路とを有するセパレータを介して複数個積み
重ねた燃料電池であって、前記セパレータの燃料極に面
する燃料ガス供給溝が、ガス入口部からガス出口部に向
けて、その深さが浅くなるようにおよび/またはその幅
が狭くなるように構成されており、前記燃料ガス供給溝
のガス出口部の溝深さおよび/または幅がガス入口部の
0.2〜0.8倍であり、かつ前記燃料ガス供給溝の
出口部と接続したガス通路の深さが、前記燃料ガス供
給溝のガス入口部と接続したガス通路よりも浅いことを
特徴とする。
The fuel cell of the present invention According to an aspect of the polymer electrolyte, the unit cell having the polymer electrolyte disposed across the air electrode and the fuel electrode, a gas supply groove, and the manifold portion Communicates with the gas supply groove and the manifold
And a fuel gas supply groove facing the fuel electrode of the separator, the depth of which is shallower from the gas inlet to the gas outlet. And / or the width thereof is reduced, and the depth and / or width of the gas outlet of the fuel gas supply groove is 0.2 to 0.8 times the gas inlet. and gas of the fuel gas supply groove
The depth of the gas passage that is connected to the scan outlet portion, and wherein the shallower than the gas passage connected to the gas inlet of the fuel gas supply channel.

【0007】発明によると、燃料極側のセパレータの
加工により、燃料極側での水のフラッディングを防止す
ることができ、電池性能の安定化を図ることができる。
According to the present invention, by processing the separator on the fuel electrode side, flooding of water on the fuel electrode side can be prevented, and the cell performance can be stabilized.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施例を図面を参
照して説明する。 《実施例1》本実施例の燃料電池に用いた単電池1の構
成を図1に示す。高分子電解質膜2,これを挟む空気極
3および燃料極4、空気極3側に配したセパレータ6
a、ならびにシール材10は、図3の従来例と同様の構
成である。燃料極4側に配したセパレータ11は、マニ
ホルド13および14、燃料極4に面するガス供給溝1
2、ならびにガス供給溝12とマニホルド13および1
4とをそれぞれ連通するガス通路15aおよび15bを
有する。そして、ガス供給溝12は、ガス通路15a側
のガス入口部からガス通路15b側のガス出口部に向け
て、その深さが浅くなるように構成されている。
Embodiments of the present invention will be described below with reference to the drawings. << Embodiment 1 >> FIG. 1 shows the configuration of a unit cell 1 used in the fuel cell of this embodiment. Polymer electrolyte membrane 2, air electrode 3 and fuel electrode 4 sandwiching the polymer electrolyte membrane 2, separator 6 disposed on the side of air electrode 3
a and the sealing material 10 have the same configuration as the conventional example of FIG. The separator 11 disposed on the fuel electrode 4 side includes the manifolds 13 and 14 and the gas supply groove 1 facing the fuel electrode 4.
2, and gas supply groove 12 and manifolds 13 and 1
4 with gas passages 15a and 15b, respectively. The gas supply groove 12 is configured such that its depth decreases from the gas inlet on the gas passage 15a side to the gas outlet on the gas passage 15b side.

【0009】本実施例においては、セパレータ6aおよ
び11は、いずれも大きさが160mm角、厚さが5m
mである。セパレータ6aの酸化剤ガス供給溝5aの深
さは2mm、幅は2mmである。一方、セパレータ11
の燃料ガス供給溝12は、燃料ガス入口部の溝深さが4
mm、燃料ガス出口部の溝深さが1mmとなるようにテ
ーパが付されている。溝幅は、空気極側のものと同じく
2mmである。燃料ガスは、燃料ガス供給マニホルド1
3からガス通路15aを通って燃料ガス供給溝12に導
入される。その後、燃料ガス供給溝12からもう一つの
ガス通路15bを通り、燃料ガス排出マニホルド14に
排出される。高分子電解質膜2には、市販のNafio
n膜(デュポン(株))を用い、電極触媒にはPt担持
カーボンを用いて単電池を構成した。
In this embodiment, each of the separators 6a and 11 has a size of 160 mm square and a thickness of 5 m.
m. The depth of the oxidizing gas supply groove 5a of the separator 6a is 2 mm, and the width is 2 mm. On the other hand, the separator 11
The fuel gas supply groove 12 has a groove depth of 4 at the fuel gas inlet.
mm and the depth of the groove at the fuel gas outlet is 1 mm. The groove width is 2 mm as in the air electrode side. The fuel gas is supplied to the fuel gas supply manifold 1
3 is introduced into the fuel gas supply groove 12 through the gas passage 15a. Thereafter, the fuel gas is discharged from the fuel gas supply groove 12 to the fuel gas discharge manifold 14 through another gas passage 15b. The polymer electrolyte membrane 2 includes commercially available Nafio
A unit cell was formed using an n-film (DuPont) and Pt-supported carbon as an electrode catalyst.

【0010】このようにして作製した単電池を30セル
積層した燃料電池スタックの性能を調べた。電池運転温
度は60℃、ガス加湿温度は燃料ガス、酸化剤ガス共に
55℃に設定した。図4は、このときの電流−電圧特性
(各セル平均)を、従来の燃料ガス供給溝が一定深さの
ものと比較して示した。これより従来構造のものより
も、性能が向上することがわかった。特に、生成水が大
量に発生する高電流密度域での電圧の低下が従来例より
も少ない。また、入口部と出口部の溝深さの比を変えた
場合の単電池の電流密度0.7A/cm2におけるの電
圧を比較して表1に示した。これより入口溝深さに対す
る出口溝深さの比を小さくすれば電池電圧が向上するこ
とがわかる。
[0010] The performance of a fuel cell stack in which 30 unit cells thus produced were stacked was examined. The battery operating temperature was set at 60 ° C, and the gas humidification temperature was set at 55 ° C for both the fuel gas and the oxidizing gas. FIG. 4 shows the current-voltage characteristics (average of each cell) at this time in comparison with a conventional fuel gas supply groove having a constant depth. This indicates that the performance is improved as compared with the conventional structure. In particular, the voltage drop in a high current density region where a large amount of generated water is generated is smaller than in the conventional example. Also, Table 1 shows a comparison of the voltage at a current density of 0.7 A / cm 2 of the unit cell when the ratio of the groove depth between the inlet part and the outlet part was changed. From this, it is understood that the battery voltage is improved by reducing the ratio of the depth of the outlet groove to the depth of the inlet groove.

【0011】[0011]

【表1】 [Table 1]

【0012】この結果より、燃料極側のガス供給溝の深
さをガス入口部から出口部に向けて浅くすることによ
り、従来よりも性能の優れた燃料電池を提供することが
できる。ガス出口部の溝深さは、ガス入口部の0.2〜
0.8倍であることが望ましい。入口部から出口部にか
けて浅くなるような構造であれば、本実施例に限るもの
ではない。
As a result, by making the depth of the gas supply groove on the fuel electrode side shallower from the gas inlet to the outlet, it is possible to provide a fuel cell having better performance than before. The groove depth at the gas outlet is 0.2 to
Desirably 0.8 times. The structure is not limited to this embodiment as long as the structure becomes shallow from the entrance to the exit.

【0013】《実施例2》本実施例の燃料電池に用いた
セパレータの構成を図5に示す。燃料ガス供給溝12a
の入口部分の溝幅は3mm、出口部分の溝幅は1mmと
なっている。従って、溝12aの間に形成されるリブ1
2bは、ガス入口側で幅が狭くなっている。溝深さは2
mmである。酸化剤ガス供給溝の溝幅、溝深さは、実施
例1と同じにしてある。また、電解質膜、電極触媒等は
実施例1と同じものを使用した。このセパレータを用い
て作製した単電池を30セル積層した燃料電池スタック
の性能を調べた。電池の運転条件は実施例1と同じにし
てある。図6は、このときの電流ー電圧特性(各セル平
均)を、従来のガス供給溝の幅が一定のものと比較して
示した。これより本実施例によれば、従来構造のものよ
りも、性能が向上することがわかった。特に、生成水が
大量に発生する高電流密度域での電圧の低下が従来例よ
りも少ない。また、入口部と出口部の溝幅の比を変えた
場合の単電池の電流密度0.7A/cm2における電圧
を比較して表2に示した。これより入口溝幅に対する出
口溝幅の比を小さくすれば、電池電圧が向上することが
わかる。
Embodiment 2 FIG. 5 shows the structure of a separator used in the fuel cell of this embodiment. Fuel gas supply groove 12a
The groove width at the entrance is 3 mm, and the groove width at the exit is 1 mm. Therefore, the rib 1 formed between the grooves 12a
2b is narrower on the gas inlet side. Groove depth is 2
mm. The groove width and groove depth of the oxidizing gas supply groove are the same as those in the first embodiment. The same electrolyte membrane, electrode catalyst, and the like as in Example 1 were used. The performance of a fuel cell stack in which 30 unit cells produced using this separator were stacked was examined. The operating conditions of the battery were the same as in Example 1. FIG. 6 shows current-voltage characteristics (average of each cell) at this time in comparison with a conventional gas supply groove having a constant width. Thus, according to the present example, it was found that the performance was improved as compared with the conventional structure. In particular, the voltage drop in a high current density region where a large amount of generated water is generated is smaller than in the conventional example. Further, Table 2 shows a comparison of the voltage at a current density of 0.7 A / cm 2 of the unit cell when the ratio of the groove width between the inlet and the outlet was changed. It can be seen from this that the battery voltage is improved by reducing the ratio of the outlet groove width to the inlet groove width.

【0014】[0014]

【表2】 [Table 2]

【0015】この結果より、燃料極側のガス供給溝の溝
幅をガス入口部から出口部に向けて狭くすることによ
り、従来よりも性能の優れた燃料電池を提供することが
できる。ガス出口部の溝幅は、ガス入口部の0.2〜
0.8倍であることが望ましい。溝幅については、入口
部から出口部にかけて狭くなるような構造であれば、本
実施例に限るものではない。
As a result, by narrowing the width of the gas supply groove on the fuel electrode side from the gas inlet to the outlet, it is possible to provide a fuel cell having better performance than before. The groove width at the gas outlet is 0.2 to
Desirably 0.8 times. The groove width is not limited to this embodiment as long as the groove width decreases from the entrance to the exit.

【0016】《実施例3》本実施例の燃料電池に用いた
セパレータの燃料ガス供給溝は、ガス入口部からガス出
口部に向けて溝幅が狭く、かつ深さが浅くなるように構
成されている。すなわち、燃料ガス供給溝の入口部分の
溝幅は3mm、出口部分の溝幅は2mmで、燃料ガス入
口部の溝深さは4mm、燃料ガス出口部の溝深さは2m
mである。酸化剤ガス供給溝の溝幅、溝深さは、実施例
1と同じにしてある。また、電解質膜、電極触媒等は実
施例1と同じものを使用した。このセパレータを用いて
作製した単電池を30セル積層した燃料電池スタックの
性能を調べた。電池の運転条件は実施例1と同じにして
ある。このときの電流ー電圧特性(各セル平均)は、電
流密度0.7A/cm2で0.68Vと実施例1、2と
ほぼ同じ性能を示すことがわかった。このことより、燃
料極側のガス供給溝の幅を入口部から出口部にかけて狭
くし、溝深さをガス入口部から出口部に向けて浅くする
ことにより、従来よりも性能の優れた燃料電池を提供す
ることができる。溝深さ、溝幅の形状等については本実
施例に限るものではない。
<< Embodiment 3 >> The fuel gas supply groove of the separator used in the fuel cell of this embodiment is configured such that the groove width is narrower and the depth is shallower from the gas inlet to the gas outlet. ing. That is, the groove width at the inlet portion of the fuel gas supply groove is 3 mm, the groove width at the outlet portion is 2 mm, the groove depth at the fuel gas inlet portion is 4 mm, and the groove depth at the fuel gas outlet portion is 2 m.
m. The groove width and groove depth of the oxidizing gas supply groove are the same as those in the first embodiment. The same electrolyte membrane, electrode catalyst, and the like as in Example 1 were used. The performance of a fuel cell stack in which 30 unit cells produced using this separator were stacked was examined. The operating conditions of the battery were the same as in Example 1. At this time, the current-voltage characteristics (average of each cell) were found to be 0.68 V at a current density of 0.7 A / cm 2, which is almost the same as those of Examples 1 and 2. As a result, the width of the gas supply groove on the fuel electrode side is reduced from the inlet to the outlet, and the depth of the groove is reduced from the gas inlet to the outlet. Can be provided. The shape of the groove depth and the groove width is not limited to this embodiment.

【0017】[0017]

【発明の効果】以上のように本発明によれば、燃料極側
の水のフラッディングによる性能の低下を抑制し、性能
の安定した燃料電池を提供することができる。
As described above, according to the present invention, a decrease in performance due to flooding of water on the fuel electrode side can be suppressed, and a fuel cell with stable performance can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例における高分子電解質型燃料
電池の単電池の縦断面図である。
FIG. 1 is a longitudinal sectional view of a unit cell of a polymer electrolyte fuel cell according to an embodiment of the present invention.

【図2】同単電池を用いた燃料電池スタックの外観を示
す正面図である。
FIG. 2 is a front view showing the appearance of a fuel cell stack using the same cell.

【図3】従来の高分子電解質型燃料電池の単電池の縦断
面図である。
FIG. 3 is a longitudinal sectional view of a unit cell of a conventional polymer electrolyte fuel cell.

【図4】実施例および従来例の燃料電池スッタクの電流
ー電圧特性を示す図である。
FIG. 4 is a diagram showing current-voltage characteristics of a fuel cell stack of an example and a conventional example.

【図5】本発明の他の実施例における高分子電解質型燃
料電池のセパレータの平面図である。
FIG. 5 is a plan view of a separator of a polymer electrolyte fuel cell according to another embodiment of the present invention.

【図6】同燃料電池スッタクの電流ー電圧特性を示す図
である。
FIG. 6 is a diagram showing current-voltage characteristics of the fuel cell stack.

【符号の説明】[Explanation of symbols]

1 単電池 2 高分子電解質膜 3 空気極 4 燃料極 5a、5b、12 ガス供給溝 6a、6b、11 セパレータ 7a、7b、13 ガス供給マニホルド 8a、8b、14 ガス排出マニホルド 9a、9b、15a、15b ガス通路 10 ガスシール材 20 スタック 21 絶縁板 22 ヘッダー 23 フッター 24 締め付けボルト 25 集電板 1 unit cell 2 polymer electrolyte membrane 3 air electrode 4 fuel electrode 5a, 5b, 12 gas supply groove 6a, 6b, 11 separator 7a, 7b, 13 gas supply manifold 8a, 8b, 14 gas exhaust manifold 9a, 9b, 15a, 15b Gas passage 10 Gas seal material 20 Stack 21 Insulating plate 22 Header 23 Footer 24 Tightening bolt 25 Current collector plate

フロントページの続き (72)発明者 蒲生 孝治 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平6−267564(JP,A) 特開 平9−161819(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 8/02 H01M 8/10 Continuation of front page (72) Inventor Koji Gamo 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-6-267564 (JP, A) JP-A-9-161819 (JP) , A) (58) Field surveyed (Int.Cl. 7 , DB name) H01M 8/02 H01M 8/10

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高分子電解質、前記高分子電解質を挟ん
で配置された空気極および燃料極を備えた単電池を、ガ
ス供給溝とマニホルド部と、前記ガス供給溝およびマ
ニホルド部を連通するガス通路とを有するセパレータを
介して複数個積み重ねた燃料電池であって、前記セパレ
ータの燃料極に面する燃料ガス供給溝が、ガス入口部か
らガス出口部に向けて、その深さが浅くなるようにおよ
び/またはその幅が狭くなるように構成されており、前
記燃料ガス供給溝のガス出口部の溝深さおよび/または
幅がガス入口部の0.2〜0.8倍であり、かつ前記燃
料ガス供給溝のガス出口部と接続したガス通路の深さ
が、前記燃料ガス供給溝のガス入口部と接続したガス通
路よりも浅いことを特徴とする燃料電池。
1. A cell comprising a polymer electrolyte, an air electrode and a fuel electrode disposed with the polymer electrolyte interposed therebetween, is provided with a gas supply groove, a manifold portion, the gas supply groove and the manifold .
A plurality of fuel cells stacked via a separator having a gas passage communicating with a manifold portion , wherein a fuel gas supply groove facing a fuel electrode of the separator extends from a gas inlet to a gas outlet. The fuel gas supply groove is configured such that the depth and / or width of the fuel gas supply groove is 0.2 to 0. A fuel cell, wherein the depth of a gas passage connected to a gas outlet of the fuel gas supply groove is shallower than that of a gas passage connected to a gas inlet of the fuel gas supply groove.
JP17006397A 1997-06-26 1997-06-26 Fuel cell Expired - Lifetime JP3272980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17006397A JP3272980B2 (en) 1997-06-26 1997-06-26 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17006397A JP3272980B2 (en) 1997-06-26 1997-06-26 Fuel cell

Publications (2)

Publication Number Publication Date
JPH1116590A JPH1116590A (en) 1999-01-22
JP3272980B2 true JP3272980B2 (en) 2002-04-08

Family

ID=15897950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17006397A Expired - Lifetime JP3272980B2 (en) 1997-06-26 1997-06-26 Fuel cell

Country Status (1)

Country Link
JP (1) JP3272980B2 (en)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4523089B2 (en) * 1999-04-09 2010-08-11 本田技研工業株式会社 Fuel cell stack
AT407589B (en) * 1999-11-03 2001-04-25 Vaillant Gmbh Fuel cell
DE19963594C2 (en) * 1999-12-23 2002-06-27 Mannesmann Ag Device in microstructure technology for passing media and use as a fuel cell system
JP4572441B2 (en) * 2000-04-10 2010-11-04 トヨタ車体株式会社 Fuel cell
JP4923319B2 (en) * 2000-07-25 2012-04-25 トヨタ自動車株式会社 Fuel cell
JP4291575B2 (en) * 2001-02-12 2009-07-08 ザ・モーガン・クルーシブル・カンパニー・ピーエルシー Flow field plate geometry
JP4516229B2 (en) * 2001-03-06 2010-08-04 本田技研工業株式会社 Solid polymer cell assembly
JP4598287B2 (en) 2001-03-06 2010-12-15 本田技研工業株式会社 FUEL CELL STACK AND METHOD OF OPERATING FUEL CELL STACK
US6780536B2 (en) * 2001-09-17 2004-08-24 3M Innovative Properties Company Flow field
DE10201149A1 (en) * 2002-01-15 2003-07-31 H2 Interpower Brennstoffzellen Elongated fuel cell with transverse channels for gas supply has several of the transverse channels with cross-section decreasing from one longitudinal edge of fuel cell to the other
GB2387263B (en) * 2002-03-20 2004-02-04 Morgan Crucible Co Flow field plate
CA2380637C (en) * 2002-05-03 2003-12-23 Powerdisc Development Corporation Ltd. Fuel cell plates and assemblies
GB2387476B (en) 2002-06-24 2004-03-17 Morgan Crucible Co Flow field plate geometries
JP3956864B2 (en) * 2003-02-13 2007-08-08 トヨタ自動車株式会社 Fuel cell separator having flow channel structure
US20040219418A1 (en) * 2003-04-30 2004-11-04 Peter Mardilovich Fuel cell assembly and method for controlling reaction equilibrium
US20060246341A1 (en) * 2003-08-29 2006-11-02 Joerissen Ludwig Gas distribution panel for a fuel cell and gas distribution panel containing a fuel cell
US7306874B2 (en) * 2003-11-20 2007-12-11 General Motors Corporation PEM fuel cell stack with coated flow distribution network
JP2006019116A (en) * 2004-07-01 2006-01-19 Nissan Motor Co Ltd Fuel cell
JP4673110B2 (en) * 2005-03-30 2011-04-20 本田技研工業株式会社 Fuel cell
CN1851965A (en) * 2005-04-22 2006-10-25 比亚迪股份有限公司 Flow-field board of fuel cell
KR100651216B1 (en) * 2005-11-23 2006-11-30 한국타이어 주식회사 Bipolar plate used in proton exchange membrane fuel cells having cooling channels
JP5137308B2 (en) * 2006-02-06 2013-02-06 三洋電機株式会社 Fuel cell separator
JP2007234398A (en) * 2006-03-01 2007-09-13 Equos Research Co Ltd Fuel cell device
JP2007265939A (en) * 2006-03-30 2007-10-11 Ngk Insulators Ltd Electrochemical device
JP5125016B2 (en) * 2006-07-28 2013-01-23 トヨタ自動車株式会社 Fuel cell
WO2008019503A1 (en) * 2006-08-18 2008-02-21 Hyteon Inc. Method for operating a fuel cell and a fuel cell stack
JP5182476B2 (en) * 2007-09-12 2013-04-17 ソニー株式会社 Fuel cells and electronics
WO2009017150A1 (en) 2007-08-02 2009-02-05 Sony Corporation Fuel cell stack system, channel structure, fuel cell, electrode, and electronic device
JP5274908B2 (en) * 2008-06-20 2013-08-28 本田技研工業株式会社 Fuel cell stack
US8691471B2 (en) 2008-09-12 2014-04-08 Panasonic Corporation Polymer electrolyte fuel cell and fuel cell stack comprising the same
JP4572252B2 (en) * 2008-10-30 2010-11-04 本田技研工業株式会社 Fuel cell stack
JP5123824B2 (en) * 2008-11-06 2013-01-23 本田技研工業株式会社 FUEL CELL STACK AND METHOD OF OPERATING FUEL CELL STACK
JP4903770B2 (en) * 2008-11-26 2012-03-28 本田技研工業株式会社 Fuel cell
JP4516630B2 (en) * 2010-03-25 2010-08-04 本田技研工業株式会社 Solid polymer cell assembly
JP5470138B2 (en) * 2010-03-31 2014-04-16 Jx日鉱日石エネルギー株式会社 Fuel cell and fuel cell system
JP5584710B2 (en) * 2012-01-05 2014-09-03 本田技研工業株式会社 Fuel cell
GB2519494B (en) 2012-08-14 2021-02-24 Loop Energy Inc Fuel cell flow channels and flow fields
US9644277B2 (en) 2012-08-14 2017-05-09 Loop Energy Inc. Reactant flow channels for electrolyzer applications
GB2519493A (en) 2012-08-14 2015-04-22 Powerdisc Dev Corp Ltd Fuel cells components, stacks and modular fuel cell systems
DE102013205871A1 (en) * 2013-04-03 2014-10-09 Deutsches Zentrum für Luft- und Raumfahrt e.V. Flow guide and high temperature fuel cell device
CA3016102A1 (en) 2016-03-22 2017-09-28 Loop Energy Inc. Fuel cell flow field design for thermal management

Also Published As

Publication number Publication date
JPH1116590A (en) 1999-01-22

Similar Documents

Publication Publication Date Title
JP3272980B2 (en) Fuel cell
JP3939150B2 (en) Polymer electrolyte fuel cell
US6858338B2 (en) Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of supplying reaction gas in fuel cell
US7745063B2 (en) Fuel cell stack
US7678490B2 (en) Polymer electrolyte fuel cell
KR101388755B1 (en) Fuel cell unit and fuel cell stack
JP4907894B2 (en) Fuel cell stack
KR20030081502A (en) Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of supplying reaction gas in fuel cell
JP4405097B2 (en) Fuel cell stack and operation method thereof
JP4585737B2 (en) Fuel cell
JP5098128B2 (en) Fuel cell
JP3249282B2 (en) Solid polymer electrolyte fuel cell
JP3141619B2 (en) Solid polymer electrolyte fuel cell power generator
JPWO2002047190A1 (en) Polymer electrolyte fuel cell and method of operating the same
JP5124900B2 (en) Fuel cell having a stack structure
US20040115486A1 (en) Fuel cell
JPH05251097A (en) Solid high polymer electrolyte type fuel cell
JP3509180B2 (en) Fuel cell
US7879503B2 (en) Fuel cell stack including bypass
JPH08138696A (en) Fuel cell
JP3258378B2 (en) Fuel cell
JP2002170581A (en) Polymer electrolyte type fuel battery
CN115668561A (en) Solid polymer fuel cell stack
JP2002141090A (en) Operation method of solid polymer fuel cell system
JP3423241B2 (en) Cell unit for fuel cell and fuel cell

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080125

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 11

EXPY Cancellation because of completion of term