JP3271782B2 - Nitrogen oxide removal agent and removal method - Google Patents

Nitrogen oxide removal agent and removal method

Info

Publication number
JP3271782B2
JP3271782B2 JP05011792A JP5011792A JP3271782B2 JP 3271782 B2 JP3271782 B2 JP 3271782B2 JP 05011792 A JP05011792 A JP 05011792A JP 5011792 A JP5011792 A JP 5011792A JP 3271782 B2 JP3271782 B2 JP 3271782B2
Authority
JP
Japan
Prior art keywords
nox
removal
nitrogen oxide
remover
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05011792A
Other languages
Japanese (ja)
Other versions
JPH05245371A (en
Inventor
祥司 土肥
浩二 守家
勝利 中山
茂 森川
小林  孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP05011792A priority Critical patent/JP3271782B2/en
Publication of JPH05245371A publication Critical patent/JPH05245371A/en
Application granted granted Critical
Publication of JP3271782B2 publication Critical patent/JP3271782B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、燃焼排ガス等の中に含
まれる窒素酸化物(以下NOxと称する)を除去する除
去剤およびその除去剤を使用するNOxの除去方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a remover for removing nitrogen oxides (hereinafter referred to as NOx) contained in flue gas and the like and a method for removing NOx using the remover.

【0002】[0002]

【従来の技術】各種燃焼器からの排ガスには、多量の酸
素とともにNOxが含まれており、NOxは光化学スモ
ッグの原因となるだけでなく人体にとって呼吸器系に障
害を起こすといわれている。NOxを無害なN2にまで
還元するプロセスについては、自動車等を対象として、
COあるいは各種炭化水素(HC)等の還元剤を用いて
NOをN2にする、いわゆる三元触媒方式が確立される
とともに、プラント等で採用される方法として、アンモ
ニアを還元剤として用いるプロセスが確立されている。
2. Description of the Related Art Exhaust gas from various combustors contains NOx together with a large amount of oxygen, and it is said that NOx not only causes photochemical smog but also causes damage to the respiratory system for the human body. Regarding the process of reducing NOx to harmless N 2 ,
A so-called three-way catalyst system for converting NO into N 2 using a reducing agent such as CO or various hydrocarbons (HC) has been established, and a process using ammonia as a reducing agent has been adopted as a method adopted in plants and the like. Established

【0003】[0003]

【発明が解決しようとする課題】しかしながら、三元触
媒方式では、COあるいは炭化水素を別途に準備する必
要があり、装置が煩雑となり、コスト高となる。一方、
アンモニアを使用する場合は、汚染の可能性があり、室
内空間で使用することができないなどの問題がある。そ
して、従来から各種還元剤を用いずにNOxを直接分解
する方法の開発が望まれているものの実用レベルで確立
されたものはない。従って本発明の目的は、NOxを直
接分解により処理し、NOxを除去することが可能な除
去剤を得るとともに、これを使用するNOxの除去方法
を得ることである。
However, in the three-way catalyst system, it is necessary to prepare CO or hydrocarbon separately, which makes the apparatus complicated and increases the cost. on the other hand,
When ammonia is used, there is a problem that it may be contaminated and cannot be used in an indoor space. Although it has been desired to develop a method for directly decomposing NOx without using various reducing agents, there is no method established at a practical level. Therefore, an object of the present invention is to obtain a remover capable of removing NOx by directly treating NOx by decomposition, and to obtain a NOx removal method using the same.

【0004】[0004]

【課題を解決するための手段】この目的を達成するため
の本発明による窒素酸化物の除去剤の特徴構成は、これ
が、一般式 MCeOx (式中のxは1〜3であり、Mはバリウム、ストロンチ
ウム、マグネシウムからなる群から選ばれた少なくとも
1種の金属を示す)を主剤とすることである。さらに、
本発明による窒素酸化物の除去方法の特徴手段は、前述
の窒素酸化物の除去剤を700℃以上に設定しながら、
除去剤に窒素酸化物含有ガスを接触させて窒素酸化物を
除去することにあり、その作用・効果は次の通りであ
る。
The feature of the nitrogen oxide remover according to the present invention for achieving this object is that it has a general formula of MCeO x (where x is 1 to 3, and M is At least one metal selected from the group consisting of barium, strontium, and magnesium). further,
The characteristic means of the method for removing nitrogen oxides according to the present invention is characterized in that the nitrogen oxide remover is set at 700 ° C. or higher,
The purpose of the present invention is to remove nitrogen oxides by bringing a nitrogen oxide-containing gas into contact with the remover, and its operation and effects are as follows.

【0005】[0005]

【作用】つまり、除去剤としてMCeOx(x=1〜
3、M:Ba,Sr,Mg)等が使用されるのである
が、こういった化合物は、ペロブスカイト型化合物であ
り、高温域(700℃以上の温度域)でペロブスカイト
構造中に含まれる酸素が脱離して形成した酸素欠陥がN
Oxの直接分解に寄与するものと考えられる。実験デー
タについては、以下に示す。従って、こういった化合物
を、NOxが移送されてくる部位に配設しておき、この
部位を700℃以上に設定しておくと、NOxが窒素と
酸素に直接分解されて、無害物として送り出されてく
る。
In other words, MCeO x (x = 1 to 1)
3, M: Ba, Sr, Mg) and the like are used, and these compounds are perovskite-type compounds, and oxygen contained in the perovskite structure in a high temperature region (a temperature region of 700 ° C. or more) is reduced. Oxygen vacancies formed by elimination are N
It is thought to contribute to the direct decomposition of Ox. Experimental data is shown below. Therefore, if such a compound is disposed at a site where NOx is transferred and this site is set at 700 ° C. or higher, NOx is directly decomposed into nitrogen and oxygen and is sent out as a harmless substance. Come.

【0006】[0006]

【発明の効果】従って、CO、炭化水素等の還元剤を必
要とすることなく、更には環境に有害なアンモニア等を
必要としないで、NOxを直接分解により処理すること
が可能な、NOxの除去剤及び除去方法を得ることがで
きた。
Thus, NOx can be treated by direct decomposition without the need for reducing agents such as CO and hydrocarbons and without the need for environmentally harmful ammonia or the like. The removal agent and the removal method could be obtained.

【0007】[0007]

【実施例】NOxの除去に際しては、NOxガスを含有
するガス流路内に、常温以上で酸素欠陥を形成するペロ
ブスカイト型化合物である一般式MCeOx(x=1〜
3、M:Ba,Sr,Mg、Ceはセリウムを示す。)
で示される化合物(除去剤と呼ぶ)を粒子状のまま配設
する。そして、この配設部を700℃以上に保温してお
く。このようにすると、ガス流路の配設部下流側ではN
Oxが除去されて清浄なガスが送り出されてくる。以下
にBaCeOx(x=1〜3)についてさらに具体的に
示す。 化合物 BaCeOx(x=1〜3)を1〜2
mmの顆粒状に成形したもの、 反応温度 900℃ NOx濃度 3000ppm−(N2中) SV値 5000h-1 結果 NOx低減率 25%
In removing NOx, a general formula MCeO x (x = 1 to 1), which is a perovskite-type compound that forms oxygen vacancies at normal temperature or higher, in a gas flow path containing NOx gas.
3. M: Ba, Sr, Mg, Ce represents cerium. )
(Referred to as a removing agent) is disposed in the form of particles. And this arrangement | positioning part is kept warm above 700 degreeC. In this way, N
Ox is removed and a clean gas is sent out. Hereinafter, BaCeO x (x = 1 to 3) will be described more specifically. Compound BaCeO x (x = 1 to 3)
mm, granules, reaction temperature 900 ° C NOx concentration 3000ppm- (in N 2 ) SV value 5000h -1 Result NOx reduction rate 25%

【0008】〔実験例〕以下に本願に関係する実験例を
示す。ここで、対象とするものは、一般式MCeO
x(x=1〜3、M:Ba,Sr,Mg,Ca)のもの
である。これらはペロブスカイト型化合物であるが、そ
の昇温操作により構造中に含まれる酸素が脱離して酸素
欠陥の数が増加する。そして、この酸素欠陥がNOxの
直接分解に対して有効に働く。
[Experimental Examples] Experimental examples related to the present invention will be described below. Here, the target is the general formula MCeO
x (x = 1 to 3, M: Ba, Sr, Mg, Ca). These are perovskite-type compounds, and the number of oxygen defects increases due to the elimination of oxygen contained in the structure due to the temperature raising operation. This oxygen vacancy works effectively for the direct decomposition of NOx.

【0009】図1にはこれらの化合物に関するNOx除
去率と反応温度との関係が示されている。図には、Ba
CeOx(x=1〜3)の結果が○で、SrCeOx(x
=1〜3)の結果が●で、MgCeOx(x=1〜3)
の結果が△で、CaCeOx(x=1〜3)の結果が□
で示されている(図3においても同じ)。さらに、NO
x濃度は3000ppmであり、SV値は5000h-1
に設定した。またグラフは、測定開始後2時間経過後の
値を示す。結果、夫々の化合物において、700℃以上
の温度域において、NOxの直接分解による除去が観察
され、温度域が高い程除去率は上昇した。BaCeOx
(x=1〜3)の除去率が最も高く、SrCeOx(x
=1〜3)、MgCeOx(x=1〜3)、CaCeOx
(x=1〜3)の順で、除去性能が低下している。例え
ば、BaCeOx(x=1〜3)を900℃で使用した
場合は、25%程度の除去が可能である。
FIG. 1 shows the relationship between the NOx removal rate and the reaction temperature for these compounds. In the figure, Ba
The result of CeO x (x = 1 to 3) is ○, and SrCeO x (x
= 1 to 3) is the result of ●, and MgCeO x (x = 1 to 3)
Is △ and CaCeO x (x = 1 to 3) is □
(The same applies to FIG. 3). Furthermore, NO
The x concentration was 3000 ppm, and the SV value was 5000 h -1.
Set to. Further, the graph shows the value 2 hours after the start of the measurement. As a result, in each of the compounds, removal by direct decomposition of NOx was observed in a temperature range of 700 ° C. or higher, and the removal rate increased as the temperature range became higher. BaCeO x
(X = 1 to 3) has the highest removal rate, and SrCeO x (x
= 1 to 3), MgCeO x (x = 1 to 3), CaCeO x
The removal performance decreases in the order of (x = 1 to 3). For example, when BaCeO x (x = 1 to 3) is used at 900 ° C., removal of about 25% is possible.

【0010】図2には、上記の結果において最高の除去
率を示したBaCeOx(x=1〜3)に関するNOx
除去率とSV値との関係が示されている。NOx濃度は
3000ppmであり、グラフは、反応温度900℃
で、測定開始後2時間経過後の値を示している。結果、
SV値の増加とともに、NOx除去率は低下するが、5
000h-1で25%程度の値を示しており、充分に実用
化可能なデータを示している。
FIG. 2 shows NOx for BaCeO x (x = 1 to 3) showing the highest removal rate in the above results.
The relationship between the removal rate and the SV value is shown. The NOx concentration was 3000 ppm, and the graph shows a reaction temperature of 900 ° C.
Indicates a value two hours after the start of measurement. result,
As the SV value increases, the NOx removal rate decreases.
It shows a value of about 25% at 000h −1 , indicating data that can be sufficiently put into practical use.

【0011】図3には夫々の化合物におけるNOx除去
率と経過時間との関係が、示されている。NOx濃度は
3000ppm、反応温度は900℃、SV値は500
0h -1に設定されている。結果、実験開始後、2時間程
度までは除去性能の低下が認められるが、それ以後10
時間に到るまで除去性能は一定値(BaCeOxで25
%,SrCeOxで15%,MgCeOxで9.5%,C
aCeOxで1%程度である。)を維持し、連続して安
定した性能を維持した。
FIG. 3 shows the removal of NOx from each compound.
The relationship between rate and elapsed time is shown. NOx concentration
3000 ppm, reaction temperature 900 ° C, SV value 500
0h -1Is set to Results, about 2 hours after the start of the experiment
Degree of removal performance is observed up to the degree,
The removal performance is a constant value (BaCeOxAt 25
%, SrCeOx15%, MgCeOxAt 9.5%, C
aCeOxAbout 1%. ) Maintain and continuously cheap
The specified performance was maintained.

【0012】〔別実施例〕上記の実施例及び実験例にお
いては、金属として1種のみを含有したものを示した
が、酸素欠陥が備えられる意味からすれば、これらが複
数混在していても同様の作用・効果を得ることが可能と
考えられる。ここで、これら、酸素欠陥を有することと
なりうる化合物の一般式はMCeO x(式中のxは1〜
3であり、Mはバリウム、ストロンチウム、マグネシウ
ムからなる群から選ばれた少なくとも1種の金属を示
す)と表せる。さらに、このような化合物としては、使
用状態で前述の条件を満たしていればよく、その合成過
程における、出発原料物質は特に限定されるものではな
く、合成方法についても固相反応法、液相反応法等ある
がとくに限定するものではない。さらに化合物を粒子状
のままNOxを含むガス中に配設しても、ハニカム状等
いかなる形状に成形して配設して、使用してもよい。
[Another embodiment] In the above embodiment and experimental example,
And those containing only one type of metal
However, in the sense that oxygen vacancies are provided,
It is possible to obtain the same function and effect even if the numbers are mixed.
Conceivable. Here, those having oxygen defects
The general formula of the possible compound is MCeO x(X in the formula is 1 to
3, M is barium, strontium, magnesium
At least one metal selected from the group consisting of
). In addition, such compounds include
It is sufficient if the above conditions are satisfied in the use condition.
Starting material is not particularly limited.
There are also solid phase reaction methods, liquid phase reaction methods, etc.
However, there is no particular limitation. Further compound the particles
Even if it is disposed in a gas containing NOx as it is, it becomes
It may be formed into any shape, disposed, and used.

【0013】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
In the claims, reference numerals are provided for convenience of comparison with the drawings, but the present invention is not limited to the configuration shown in the attached drawings.

【図面の簡単な説明】[Brief description of the drawings]

【図1】各化合物におけるNOx除去率と反応温度との
関係
FIG. 1 shows the relationship between the NOx removal rate of each compound and the reaction temperature.

【図2】BaCeOxにおけるNOx除去率とSV値と
の関係
FIG. 2 shows the relationship between the NOx removal rate and the SV value in BaCeO x .

【図3】各化合物におけるNOx除去率と経過時間との
関係
FIG. 3 shows the relationship between NOx removal rate and elapsed time for each compound.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森川 茂 京都府京都市下京区中道寺南町17 株式 会社関西新技術研究所内 (72)発明者 小林 孝 京都府京都市下京区中道寺南町17 株式 会社関西新技術研究所内 (56)参考文献 特開 昭63−305940(JP,A) 国際公開92/4965(WO,A1) (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 37/36 B01D 53/86 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Shigeru Morikawa 17 Nakamichi-ji Minamicho, Shimogyo-ku, Kyoto, Kyoto Prefecture Inside the Kansai Research Institute of Technology (72) Inventor Takashi Kobayashi 17 Minami-ji, Minamimichi-cho, Kyoto, Kyoto (56) References JP-A-63-305940 (JP, A) WO 92/4965 (WO, A1) (58) Fields investigated (Int. Cl. 7 , DB name) B01J 21 / 00-37/36 B01D 53/86

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一般式 MCeOx (式中のxは1〜3であり、Mはバリウム、ストロンチ
ウム、マグネシウムからなる群から選ばれた少なくとも
1種の金属を示す)を主剤とする窒素酸化物の除去剤。
1. A nitrogen oxide containing a general formula MCeO x (where x is 1 to 3, and M represents at least one metal selected from the group consisting of barium, strontium, and magnesium). Remover.
【請求項2】 請求項1記載の前記除去剤を700℃以
上に設定しながら、前記除去剤に窒素酸化物含有ガスを
接触させて窒素酸化物を除去する窒素酸化物の除去方
法。
2. A method for removing nitrogen oxides, comprising: bringing a nitrogen oxide-containing gas into contact with said remover while setting said remover at 700 ° C. or higher.
JP05011792A 1992-03-09 1992-03-09 Nitrogen oxide removal agent and removal method Expired - Fee Related JP3271782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05011792A JP3271782B2 (en) 1992-03-09 1992-03-09 Nitrogen oxide removal agent and removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05011792A JP3271782B2 (en) 1992-03-09 1992-03-09 Nitrogen oxide removal agent and removal method

Publications (2)

Publication Number Publication Date
JPH05245371A JPH05245371A (en) 1993-09-24
JP3271782B2 true JP3271782B2 (en) 2002-04-08

Family

ID=12850173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05011792A Expired - Fee Related JP3271782B2 (en) 1992-03-09 1992-03-09 Nitrogen oxide removal agent and removal method

Country Status (1)

Country Link
JP (1) JP3271782B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5168193B2 (en) * 2008-03-24 2013-03-21 国立大学法人 熊本大学 Particulate combustion catalyst, method for producing the same, and exhaust gas purifying filter
CN104981289A (en) * 2013-02-08 2015-10-14 优美科触媒日本有限公司 Catalyst for purifying NOX occlusion reduction-type exhaust gas and exhaust gas purification method using said catalyst

Also Published As

Publication number Publication date
JPH05245371A (en) 1993-09-24

Similar Documents

Publication Publication Date Title
WO1992019366A1 (en) Method of oxidative decomposition of organic halogen compound
JPH0775720A (en) Treatment of waste gas and catalyst for removing nitrogen oxide and dioxin
JPS6274440A (en) Method for systematic treatment of exhaust gas
EP0643991A1 (en) Nitrogen oxide decomposing catalyst and denitration method using the same
JP3271782B2 (en) Nitrogen oxide removal agent and removal method
JP3271783B2 (en) Nitrogen oxide removal agent and removal method
JPH05103953A (en) Method for removing nitrogen oxide in exhaust gas and removal catalyst
JP2004188388A (en) Filter for cleaning diesel exhaust gas and its production method
JPH0947661A (en) Process and catalyst for purifying exhaust gas
JP2000015106A (en) Catalyst for treatment of waste gas, treatment of waste gas and treating apparatus
KR20030003265A (en) Decomposition catalyst for nitrous oxide, process for producing the same and process for decomposing nitrous oxide
JP3324777B2 (en) Method for treating nitrogen oxide-containing gas
JPH0691138A (en) Method for processing exhaust gas and device therefor
JP3324776B2 (en) Method for treating nitrogen oxide-containing gas
JP3325041B2 (en) Decomposition and removal method of nitrous oxide
JPH06106028A (en) Treatment of nitrous oxide containing gas
JPH05245343A (en) Treatment of exhaust gas
JP2001252562A (en) Low temperature denitration catalyst and low temperature denitration method
JP3302384B2 (en) Nitrogen oxide treatment method and treatment apparatus
KR100460665B1 (en) A method for simultaneous removal of nitrogen oxides and dioxins from waste gases
JP3270082B2 (en) Decomposition and removal method of nitrous oxide
JP3270080B2 (en) Method for decomposing and removing nitrous oxide
JPH0824579A (en) Treatment of low concentration nox containing gas
JP2928983B2 (en) Nitrous oxide containing gas decomposition method
JP3357255B2 (en) CFC decomposition catalyst

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees