JP3264006B2 - Vacuum condenser - Google Patents

Vacuum condenser

Info

Publication number
JP3264006B2
JP3264006B2 JP34850692A JP34850692A JP3264006B2 JP 3264006 B2 JP3264006 B2 JP 3264006B2 JP 34850692 A JP34850692 A JP 34850692A JP 34850692 A JP34850692 A JP 34850692A JP 3264006 B2 JP3264006 B2 JP 3264006B2
Authority
JP
Japan
Prior art keywords
copper
bellows
vacuum capacitor
vacuum
beryllium copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34850692A
Other languages
Japanese (ja)
Other versions
JPH06204084A (en
Inventor
利真 深井
伸尚 鈴木
潤一 蕨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP34850692A priority Critical patent/JP3264006B2/en
Publication of JPH06204084A publication Critical patent/JPH06204084A/en
Application granted granted Critical
Publication of JP3264006B2 publication Critical patent/JP3264006B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体製造装置の高周
波電源や大電力発振回路におけるインピーダンス調整等
に用いられる可変形の真空コンデンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a variable-type vacuum capacitor used for impedance adjustment in a high-frequency power supply or a high-power oscillation circuit of a semiconductor manufacturing apparatus.

【0002】[0002]

【従来の技術】図1はこの種の一般的な可変形真空コン
デンサの断面構造図であり、例えばその両端に銅製のフ
ランジ11a,11bが付いたセラミック12で側面部
を形成し、この側面部を固定導体13と金属製蓋体14
とで閉塞して、高耐力真空誘電体を充填するための真空
容器10を形成している。
2. Description of the Related Art FIG. 1 is a cross-sectional view of a general variable vacuum capacitor of this type. For example, a side face is formed by ceramics 12 having copper flanges 11a and 11b at both ends thereof. Are fixed conductor 13 and metal lid 14
To form a vacuum container 10 for filling a high-yield vacuum dielectric.

【0003】固定導体13内側には、内径の異なる複数
の略円筒状電極板を同心円状に一定間隔をもって設けて
固定電極15を形成しており、また、この固定電極15
の各電極間隙内に非接触状態で挿出入する内径の異なる
複数の円筒状電極板で可動電極16を形成している。こ
の可動電極16は、可動導体18に設けられる。
A plurality of substantially cylindrical electrode plates having different inner diameters are provided concentrically at regular intervals inside the fixed conductor 13 to form a fixed electrode 15.
The movable electrode 16 is formed by a plurality of cylindrical electrode plates having different inner diameters which are inserted into and removed from each electrode gap in a non-contact state. This movable electrode 16 is provided on a movable conductor 18.

【0004】可動導体18は、可動電極16の背面側に
中空リード部18aを有しており、その中空リード部側
面が、図1に示すように、軸受17で摺動自在に支持さ
れている。中空リード部18aの端部内壁には、めねじ
18bが形成されている。
The movable conductor 18 has a hollow lead 18a on the back side of the movable electrode 16, and the side surface of the hollow lead is slidably supported by a bearing 17 as shown in FIG. . An internal thread 18b is formed on the inner wall of the end of the hollow lead 18a.

【0005】19は静電容量調整ねじであり、頭部19
aと、前記めねじ18bに挿入されるおねじ19bとか
ら成る。この静電容量調整ねじ19は、図示するよう
に、蓋体14略中央部に形成された支持体、即ち、ねじ
受け部20と回転トルクを低減するためのスラストベア
リング21とで支持されており、その頭部19aを手動
又はモータ等を用いて回転させることで、可動導体18
を上下動させる。これにより、固定電極15と可動電極
16との交叉面積が変わるので、両電極15,16に夫
々異なる極性の電圧が印加されたときに電極間に生じる
静電容量の値を連続的に変化させることができる。
Reference numeral 19 denotes a capacitance adjusting screw,
a and a male screw 19b inserted into the female screw 18b. As shown in the figure, the capacitance adjusting screw 19 is supported by a support formed at a substantially central portion of the lid 14, that is, a screw receiving portion 20 and a thrust bearing 21 for reducing rotational torque. By rotating the head 19a manually or using a motor or the like, the movable conductor 18 is rotated.
Up and down. As a result, the crossing area between the fixed electrode 15 and the movable electrode 16 changes, so that when a voltage having a different polarity is applied to both the electrodes 15, 16, the value of the capacitance generated between the electrodes is continuously changed. be able to.

【0006】22は軟質金属製のベローズであり、真空
容器10内を気密に保持しながら可動導体18(可動電
極16)が上下動できるように、蓋体14内壁及び軸受
17に一端縁を接合するとともに、他端縁を可動導体1
8に接合している。この他端縁を中空リード部18a側
表面に接合する構造のものもある。中空リード部18a
とそれをガイドする軸受17との間は潤滑油で絶縁され
るため、真空容器10内部ではこのベローズ22を通電
する構造となっている。即ち、蓋体14に設けられた外
部電源端子(図示省略)と可動電極16との通電路をこ
のベローズ22が兼ねている。
Reference numeral 22 denotes a bellows made of a soft metal, one end of which is joined to the inner wall of the lid 14 and the bearing 17 so that the movable conductor 18 (movable electrode 16) can move up and down while keeping the inside of the vacuum vessel 10 airtight. And move the other end to the movable conductor 1
8. There is also a structure in which the other end is joined to the surface of the hollow lead portion 18a. Hollow lead 18a
Since the lubricating oil is insulated between the bellows 22 and the bearing 17 for guiding the bellows, the bellows 22 is configured to be energized inside the vacuum vessel 10. That is, the bellows 22 also serves as a current path between an external power supply terminal (not shown) provided on the lid 14 and the movable electrode 16.

【0007】[0007]

【発明が解決しようとする課題】ところで、この種の真
空コンデンサに要求される特性の一つに、損失が低く、
通電時の発熱が少ないことがある。上記構造をとる真空
コンデンサでは、ベローズ22の材質が上記特性に大き
な影響を与える。従来、ベローズ22の材質にはリン青
銅が主に用いられているが、このリン青銅ベローズの導
電率は、10%IACS(Internationnal Amealed Cop
per Standard:国際標準軟銅に対する固有導電率比)程
度であり、高周波用途では、通電時に電気抵抗が増加し
て真空コンデンサの表面温度が上昇する問題があった。
そのため、許容最大電流値を上げることができなかっ
た。
One of the characteristics required for this type of vacuum capacitor is that the loss is low.
Heat generation at the time of energization may be small. In the vacuum capacitor having the above structure, the material of the bellows 22 has a great influence on the above characteristics. Conventionally, phosphor bronze is mainly used as the material of the bellows 22, but the conductivity of the phosphor bronze bellows is 10% IACS (International Amealed Cop).
per Standard: an intrinsic conductivity ratio with respect to international standard annealed copper), and in high frequency applications, there was a problem that the electric resistance increased during energization and the surface temperature of the vacuum capacitor rose.
Therefore, the allowable maximum current value could not be increased.

【0008】本発明は、かかる問題点に鑑みてなされた
もので、その目的とするところは、高周波電流の通電能
力を高める構造の真空コンデンサを提供することにあ
る。
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a vacuum capacitor having a structure capable of increasing a high-frequency current carrying capability.

【0009】[0009]

【課題を解決するための手段】上記目的を達成する本発
明の構成は、可動電極の変位に追随して真空容器内を気
密に保持すると共に外部電源端子との通電路を兼ねるベ
ローズを有する真空コンデンサにおいて、前記ベローズ
の材質にベリリウム銅を用い、且つ、該ベリリウム銅の
ロー付け部位に銅メッキ処理又はニッケルメッキ処理を
施したことを特徴とする。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a vacuum pump having a bellows which keeps the inside of a vacuum container airtight following a displacement of a movable electrode and also serves as a current path to an external power supply terminal. The capacitor is characterized in that beryllium copper is used as a material of the bellows, and a copper plating process or a nickel plating process is applied to a brazing portion of the beryllium copper.

【0010】本発明の他の構成は、上記真空コンデンサ
において、前記ベリリウム銅の全表面に、該ベリリウム
銅よりも導電率の高いメッキ材質、例えば銅系材質又は
銀系材質でメッキ処理を施したことを特徴とする。
In another aspect of the present invention, in the vacuum capacitor, the entire surface of the beryllium copper is plated with a plating material having a higher conductivity than the beryllium copper, for example, a copper-based material or a silver-based material. It is characterized by the following.

【0011】本発明の他の構成は、更に、上記真空コン
デンサにおいて、前記ロー付け部位が、銅と銀とを含む
合金のロー材によりロー接合されたことを特徴とする。
In another aspect of the present invention, the above-mentioned vacuum capacitor is characterized in that the brazing portion is brazed by a brazing material of an alloy containing copper and silver.

【0012】[0012]

【作用】真空コンデンサに通電する電流の周波数が数M
Zのオーダーになると、高周波電流は表皮効果によっ
てベローズの表面に集中し、通電断面積が小さくなる。
[Function] The frequency of the current flowing through the vacuum capacitor is several M
If on the order of H Z, the high-frequency current is concentrated on the surface of the bellows by the skin effect, current cross-sectional area is reduced.

【0013】本発明では、このベローズをリン青銅より
も導電率の高いベリリウム銅で構成することで、高周波
電流を流れ易くするものである。しかし、ベリリウム銅
は、ロー付けの際に、その表面に強固な酸化ベリリウム
が形成されるので、そのロー付け部に、銅メッキ処理又
はニッケルメッキ処理を施すことにより銅と銀とを含む
ロー材の使用が可能となる。
In the present invention, the bellows is made of beryllium copper having higher conductivity than phosphor bronze, so that a high-frequency current can easily flow. However, since beryllium copper has a strong beryllium oxide formed on its surface during brazing, a brazing material containing copper and silver is subjected to copper plating or nickel plating on the brazed portion. Can be used.

【0014】また、ベリリウム銅の全表面に、リン青銅
よりも導電率の高い銅系材質又は銀系材質でメッキ処理
を施すことで、ベローズ表面の電気抵抗がより低減し、
高周波電流が流れ易くなる。また、上記ロー材の使用も
可能となる。
[0014] Further, by plating the entire surface of the beryllium copper with a copper-based material or a silver-based material having higher conductivity than phosphor bronze, the electrical resistance of the bellows surface is further reduced,
High-frequency current flows easily. Further, the use of the brazing material is also possible.

【0015】これにより、通電時の発熱が抑制され、真
空コンデンサの許容最大電流値が上がる。
As a result, heat generation during energization is suppressed, and the allowable maximum current value of the vacuum capacitor increases.

【0016】[0016]

【実施例】以下、本発明の実施例を図面を参照して説明
する。なお、本発明は従来の真空コンデンサを改良した
ものなので、図1に示した構成部品と同一のものについ
てはその説明を省略し、異なる部分についてのみ説明す
る。
Embodiments of the present invention will be described below with reference to the drawings. Since the present invention is an improvement of the conventional vacuum capacitor, the description of the same components as those shown in FIG. 1 will be omitted, and only different portions will be described.

【0017】(第一実施例)本発明の第一実施例では、
図1に示した構造の真空コンデンサにおいて、ベローズ
22の材質に、ベリリウム銅(Cu−Be)を用いる。
(First Embodiment) In the first embodiment of the present invention,
In the vacuum capacitor having the structure shown in FIG. 1, beryllium copper (Cu-Be) is used as the material of the bellows 22.

【0018】但し、真空コンデンサの組立の際に、ベロ
ーズ22を真空中でロー付けする必要があるが、ベリリ
ウム銅の場合は、その表面に強固な酸化ベリリウム(B
eO)が形成され、ロー付けが困難となる。そこで、ベ
リリウム銅のロー付け部に銅(Cu)メッキ又はニッケ
ル(Ni)メッキを施し、銅と銀とを含むロー材、例え
ば、Cu−Ag−Snロー材、又は、Cu−Ag−In
ロー材の使用を可能とした。これらロー材を用いること
で、ベローズ22の変形等を生じない約750[℃]の
真空雰囲気でのロー付けが容易となり、従来の問題点を
解消し得る真空コンデンサの製造が可能となる。
However, when assembling a vacuum capacitor, it is necessary to braze the bellows 22 in a vacuum. In the case of beryllium copper, a strong beryllium oxide (B
eO) is formed, making brazing difficult. Therefore, copper (Cu) plating or nickel (Ni) plating is applied to the brazed portion of beryllium copper, and a brazing material containing copper and silver, for example, a Cu-Ag-Sn brazing material or Cu-Ag-In.
The use of brazing material was made possible. By using these brazing materials, brazing in a vacuum atmosphere of about 750 ° C. that does not cause deformation or the like of the bellows 22 becomes easy, and a vacuum capacitor capable of solving the conventional problems can be manufactured.

【0019】図2はこの実施例による真空コンデンサの
通電電流−表面温度特性図であり、実線は、導電率が2
2%IACSのベリリウム銅を用いた場合(ベリリウム
銅ベローズ22%IACS)の特性例、一点鎖線は、導
電率が48%IACSのベリリウム銅を用いた場合(ベ
リリウム銅ベローズ48%IACS)の特性例を示して
いる。また、比較例として、リン青銅ベローズ10%I
ACSを用いた従来の真空コンデンサによる特性例も破
線で示している。これらの値は、夫々、静電容量を50
0[pF]、使用周波数を13.56[MHZ]、通電電
流I(=ωCV:ωは角周波数、Cは静電容量、Vは印
加電圧)を印加電圧Vにより可変した場合の例である。
FIG. 2 is a graph showing the relationship between the current flow and the surface temperature of the vacuum capacitor according to this embodiment.
A characteristic example when beryllium copper of 2% IACS is used (beryllium copper bellows 22% IACS), and a dashed line is a characteristic example when beryllium copper having a conductivity of 48% IACS is used (beryllium copper bellows 48% IACS). Is shown. As a comparative example, phosphor bronze bellows 10% I
A characteristic example of a conventional vacuum capacitor using ACS is also indicated by a broken line. Each of these values gives a capacitance of 50
0 [pF], the use frequency 13.56 [MH Z], applied current I (= ωCV: ω is the angular frequency, C is the capacitance, V is the applied voltage) in the example in the case of variable by an applied voltage V to is there.

【0020】図2を参照すると、ベリリウム銅ベローズ
を用いた真空コンデンサは、リン青銅ベローズよりも通
電電流値に対する表面温度上昇が抑制されていることが
わかる。これは、リン青銅よりもベリリウム銅の方が導
電率が高く、ベローズ表面の電流が流れ易くなっている
ことによる。これにより真空コンデンサの通電時の表面
温度上昇が抑制され、許容最大電流値が高くなる。
Referring to FIG. 2, it can be seen that the vacuum capacitor using the beryllium copper bellows suppresses the surface temperature rise with respect to the current value more than the phosphor bronze bellows. This is because the electrical conductivity of beryllium copper is higher than that of phosphor bronze, and the current on the bellows surface easily flows. This suppresses a rise in surface temperature during energization of the vacuum capacitor, and increases the allowable maximum current value.

【0021】(第二実施例)本発明の第二実施例では、
図1に示した構造の真空コンデンサにおいて、ベローズ
22のベースにベリリウム銅(Cu−Be)を用いると
共に、その全表面に、ベリリウム銅よりも導電率が高い
銅系材質でメッキ処理を施したものである。ベリリウム
銅には、導電率が少なくとも22%IACSのものを用
いる。
(Second Embodiment) In a second embodiment of the present invention,
1. A vacuum capacitor having the structure shown in FIG. 1, in which beryllium copper (Cu-Be) is used as the base of the bellows 22, and the entire surface thereof is plated with a copper-based material having higher conductivity than beryllium copper. It is. Beryllium copper having a conductivity of at least 22% IACS is used.

【0022】上記材質によるベローズ22によれば、第
一実施例と同様、Cu−Ag−Snロー材又はCu−A
g−Inロー材による約750℃の真空雰囲気でのロー
付けが可能となり、真空コンデンサの組立が容易とな
る。
According to the bellows 22 made of the above material, similarly to the first embodiment, the Cu-Ag-Sn brazing material or the Cu-A
The g-In brazing material can be brazed in a vacuum atmosphere at about 750 ° C., which facilitates assembly of a vacuum capacitor.

【0023】図3はこの第二実施例による真空コンデン
サの通電電流−表面温度特性図であり、実線は、22%
IACSのベリリウム銅に銅(Cu)メッキ処理を施し
た場合(銅メッキベリリウム銅ベローズ22%IAC
S)の特性例、一点鎖線は、48%IACSのベリリウ
ム銅に銅メッキ処理を施した場合(銅メッキベリリウム
銅ベローズ48%IACS)の特性例を示している。ま
た、比較例として、リン青銅ベローズ10%IACSを
用いた従来の真空コンデンサによる特性例も破線で示し
ている。これらの値は、第一実施例で示した図2の特性
図と同様の測定条件下による。
FIG. 3 is a graph showing the relationship between the current flow and the surface temperature of the vacuum capacitor according to the second embodiment.
Copper (Cu) plating on beryllium copper of IACS (copper plated beryllium copper bellows 22% IAC
The characteristic example of S), and the dashed line indicates a characteristic example when beryllium copper of 48% IACS is subjected to copper plating (copper-plated beryllium copper bellows 48% IACS). Further, as a comparative example, an example of characteristics of a conventional vacuum capacitor using phosphor bronze bellows 10% IACS is also indicated by a broken line. These values are based on the same measurement conditions as the characteristic diagram of FIG. 2 shown in the first embodiment.

【0024】図3を参照すると、第二実施例による真空
コンデンサは、リン青銅ベローズを用いた従来の真空コ
ンデンサ及び図2に示した第一実施例の真空コンデンサ
よりも通電電流値に対する表面温度上昇が抑制されてい
ることがわかる。これは、リン青銅よりもベリリウム銅
の方が導電率が高く、しかも、高周波になるほど、ベロ
ーズ表面の銅メッキ膜が有効となり、ベローズ表面の電
流が流れ易くなることによる。これにより真空コンデン
サの通電時の表面温度上昇が抑制され、許容最大電流値
が高くなる。
Referring to FIG. 3, the vacuum capacitor according to the second embodiment has a higher surface temperature with respect to the flowing current value than the conventional vacuum capacitor using phosphor bronze bellows and the vacuum capacitor according to the first embodiment shown in FIG. Is suppressed. This is because beryllium copper has higher conductivity than phosphor bronze, and the higher the frequency becomes, the more effective the copper plating film on the bellows surface is, and the more easily the current flows on the bellows surface. This suppresses a rise in surface temperature during energization of the vacuum capacitor, and increases the allowable maximum current value.

【0025】なお、図3の特性図は、ベリリウム銅に銅
(Cu)メッキ処理を施した場合の例であるが、メッキ
材質として、導電率が銅とほぼ同じの他の銅系材質を用
いても良い。また、導電率のより優れる純銀(Ag)等
の銀系材質でメッキ膜を施せばより通電能力に優れたベ
ローズ22が得られ、真空コンデンサの特性向上に寄与
し得る。
FIG. 3 shows an example in which beryllium copper is plated with copper (Cu). However, another copper-based material having substantially the same conductivity as copper is used as a plating material. May be. Further, if a plating film is formed of a silver-based material such as pure silver (Ag) having higher conductivity, a bellows 22 having more excellent current-carrying ability can be obtained, which can contribute to improvement of the characteristics of the vacuum capacitor.

【0026】[0026]

【発明の効果】以上説明したように、本発明の真空コン
デンサは、可動電極の変位に追随して真空容器内を気密
に保持すると共に外部電源端子との通電路を兼ねるベロ
ーズを、そのロー付け部に銅メッキ処理又はニッケルメ
ッキ処理を施したベリリウム銅にて構成したので、リン
青銅ベローズを用いた従来の真空コンデンサに比べて通
電能力が向上し、通電時の発熱が抑制される効果があ
る。また、低温真空雰囲気でのロー接合が可能となり、
真空コンデンサの組立が容易となる。
As described above, in the vacuum capacitor of the present invention, the bellows, which keeps the inside of the vacuum vessel airtight and follows the displacement of the movable electrode and serves as a current path for the external power supply terminal, is brazed. The part is made of beryllium copper plated or nickel-plated, so that the current carrying capacity is improved compared to conventional vacuum capacitors using phosphor bronze bellows, and the heat generated during powering is suppressed. . Also, low joining in a low-temperature vacuum atmosphere becomes possible,
The assembly of the vacuum capacitor becomes easy.

【0027】本発明の真空コンデンサは、また、上記ベ
リリウム銅ベローズの全表面に、ベリリウム銅よりも導
電率の高い銅系材質又は銀系材質でメッキ処理を施した
ので、表皮効果によりベローズ表面に集中する高周波電
流がより流れ易くなり、通電時の発熱がより抑制される
効果がある。
In the vacuum capacitor of the present invention, since the entire surface of the beryllium copper bellows is plated with a copper-based material or a silver-based material having higher conductivity than beryllium copper, the bellows surface is formed by a skin effect. The concentrated high-frequency current flows more easily, and has the effect of further suppressing heat generation during energization.

【0028】これにより、真空コンデンサの許容最大電
流値が高くなり、使用回路あるいは装置に収納された場
合にその冷却の必要が無くなると共に、該回路等の信頼
性向上が図れる。
As a result, the allowable maximum current value of the vacuum capacitor is increased, so that it is not necessary to cool the vacuum capacitor when it is housed in a circuit or a device to be used, and the reliability of the circuit and the like can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明が適用される可変形真空コンデンサの断
面構造図。
FIG. 1 is a sectional structural view of a variable vacuum capacitor to which the present invention is applied.

【図2】本発明の第一実施例による真空コンデンサの通
電電流−表面温度特性図。
FIG. 2 is an electric current-surface temperature characteristic diagram of the vacuum capacitor according to the first embodiment of the present invention.

【図3】本発明の第二実施例による真空コンデンサの通
電電流−表面温度特性図。
FIG. 3 is a diagram showing a relation between a current flowing through a vacuum capacitor and a surface temperature according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10…真空容器 16…可動電極 22…ベローズ 10: vacuum vessel 16: movable electrode 22: bellows

フロントページの続き (56)参考文献 実開 平4−74416(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01G 5/14 H01G 5/01 Continuation of the front page (56) References Hira 4-74416 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) H01G 5/14 H01G 5/01

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 可動電極の変位に追随して真空容器内を
気密に保持すると共に外部電源端子との通電路を兼ねる
ベローズを有する真空コンデンサにおいて、前記ベロー
ズの材質にベリリウム銅を用い、且つ、該ベリリウム銅
のロー付け部位に銅メッキ処理を施したたことを特徴と
する真空コンデンサ。
1. A vacuum capacitor having a bellows that keeps the inside of a vacuum vessel airtight following a displacement of a movable electrode and also serves as a current path to an external power supply terminal, wherein a material of the bellows is beryllium copper; A vacuum capacitor, wherein a copper plating process is applied to a brazing portion of the beryllium copper.
【請求項2】 請求項1記載の真空コンデンサにおい
て、前記銅メッキ処理に代え、ニッケルメッキ処理を施
したことを特徴とする真空コンデンサ。
2. The vacuum capacitor according to claim 1, wherein nickel plating is performed instead of said copper plating.
【請求項3】 請求項1記載の真空コンデンサにおい
て、前記ベリリウム銅の全表面に、該ベリリウム銅より
も導電率の高いメッキ材質にてメッキ処理を施したこと
を特徴とする真空コンデンサ。
3. The vacuum capacitor according to claim 1, wherein the entire surface of the beryllium copper is plated with a plating material having a higher conductivity than the beryllium copper.
【請求項4】 前記メッキ材質は、銅系材質であること
を特徴とする請求項3記載の真空コンデンサ。
4. The vacuum capacitor according to claim 3, wherein the plating material is a copper-based material.
【請求項5】 前記メッキ材質は、銀系材質であること
を特徴とする請求項3記載の真空コンデンサ。
5. The vacuum capacitor according to claim 3, wherein the plating material is a silver-based material.
【請求項6】 請求項1乃至5のいずれかの項記載の真
空コンデンサにおいて、前記ロー付け部位が、銅と銀と
を含む合金のロー材でロー接合されていることを特徴と
する真空コンデンサ。
6. The vacuum capacitor according to claim 1, wherein said brazing portion is brazed with a brazing material of an alloy containing copper and silver. .
JP34850692A 1992-12-28 1992-12-28 Vacuum condenser Expired - Lifetime JP3264006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34850692A JP3264006B2 (en) 1992-12-28 1992-12-28 Vacuum condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34850692A JP3264006B2 (en) 1992-12-28 1992-12-28 Vacuum condenser

Publications (2)

Publication Number Publication Date
JPH06204084A JPH06204084A (en) 1994-07-22
JP3264006B2 true JP3264006B2 (en) 2002-03-11

Family

ID=18397479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34850692A Expired - Lifetime JP3264006B2 (en) 1992-12-28 1992-12-28 Vacuum condenser

Country Status (1)

Country Link
JP (1) JP3264006B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157397A1 (en) 2011-05-18 2012-11-22 株式会社明電舎 Bellows and method for manufacturing same
RU211493U1 (en) * 2021-10-18 2022-06-08 Общество С Ограниченной Ответственностью "Айтеко Технолоджи" Photo mirror device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005174988A (en) 2003-12-08 2005-06-30 Meidensha Corp Vacuum capacitor
KR100657552B1 (en) * 2005-10-04 2006-12-14 서울옵토디바이스주식회사 Gan-based compound semiconductor and method of fabricating the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157397A1 (en) 2011-05-18 2012-11-22 株式会社明電舎 Bellows and method for manufacturing same
US9422933B2 (en) 2011-05-18 2016-08-23 Meidensha Corporation Bellows and method for manufacturing same
RU211493U1 (en) * 2021-10-18 2022-06-08 Общество С Ограниченной Ответственностью "Айтеко Технолоджи" Photo mirror device

Also Published As

Publication number Publication date
JPH06204084A (en) 1994-07-22

Similar Documents

Publication Publication Date Title
CN113823508A (en) Electrode unit for vacuum capacitor and vacuum capacitor
US4739439A (en) Overvoltage arrester
JP3264006B2 (en) Vacuum condenser
JP3264004B2 (en) Vacuum condenser
US3255386A (en) Solid feed-through electrolytic capacitor
JP3264005B2 (en) Vacuum condenser
JP2005174988A (en) Vacuum capacitor
KR20020050247A (en) Hook commutator
CN110767609A (en) Sapphire insulator metal shell and production process thereof
US4002957A (en) Trimmable fixed hermetically sealed capacitor
JPH0778729A (en) Vacuum capacitor
US2667606A (en) Capacitor and terminal lead therefor
US5576673A (en) Small, low-pass filter for high power applications
JP2897542B2 (en) Superconducting switch
JPH10289838A (en) Solid state electrolytic capacitor
JP3245969B2 (en) Manufacturing method of vacuum capacitor
JP3163462B2 (en) Terminal for superconducting current lead
JPH01291521A (en) Semiconductor switching circuit
US3287789A (en) Method of making a capacitor
JPH1050447A (en) Method for connecting oxide superconducting current lead to electrode, and structure of connection part
JP3082463B2 (en) Solid electrolytic capacitors
JPH0423409B2 (en)
JP3245923B2 (en) Vacuum condenser
JP3065426B2 (en) Noise prevention commutator
JPS6331354Y2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081228

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091228

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 11

EXPY Cancellation because of completion of term