JPH0778729A - Vacuum capacitor - Google Patents

Vacuum capacitor

Info

Publication number
JPH0778729A
JPH0778729A JP22294993A JP22294993A JPH0778729A JP H0778729 A JPH0778729 A JP H0778729A JP 22294993 A JP22294993 A JP 22294993A JP 22294993 A JP22294993 A JP 22294993A JP H0778729 A JPH0778729 A JP H0778729A
Authority
JP
Japan
Prior art keywords
bellows
vacuum
movable conductor
conductor
metal material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22294993A
Other languages
Japanese (ja)
Inventor
Toshimasa Fukai
利真 深井
Taiji Noda
泰司 野田
Nobuyuki Yoshioka
信行 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP22294993A priority Critical patent/JPH0778729A/en
Publication of JPH0778729A publication Critical patent/JPH0778729A/en
Pending legal-status Critical Current

Links

Landscapes

  • Diaphragms And Bellows (AREA)

Abstract

PURPOSE:To obtain a vacuum capacitor, which can prevent its temperature rise at the time of current condition and at the same time, can prolong its life. CONSTITUTION:Fixed electrodes 5 are provided on the inside of a fixed conductor 3 provided at one end of a vacuum container 13 and with movable electrodes 6, which cross these electrodes 5, mounted on a movable conductor 8, an electrostatic capacity adjusting screw 9, which is rotatably supported by a cover body 4, is made to screw into this conductor 8 and a stainless steel bellows 14 and a copper bellows 15, which is used as a current conduction path, are provided between the conductor 8 and the cover body 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、真空コンデンサに関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum capacitor.

【0002】[0002]

【従来の技術】図5はこの種の一般的な可変形真空コン
デンサの断面構造図であり、例えば、両端に銅製のフラ
ンジ1a,1bが付いた筒状のセラミック2で筒状部を
形成し、この筒状部を固定導体3と金属製蓋体4により
閉塞して、高耐力真空誘電体を充填するための真空容器
13を形成している。固定導体3の内側には、内径が異
なる複数の略円筒状の電極板を同心円状に一定間隔をも
って設けて固定電極5を形成しており、また固定電極5
の各電極間隔内に非接触状態で挿出入する内径が異なる
複数の円筒状電極板により可動電極6を形成している。
可動電極6は可動導体8に設けられている。
2. Description of the Related Art FIG. 5 is a cross-sectional structural view of a general variable type vacuum capacitor of this type. For example, a tubular portion is formed by a tubular ceramic 2 having copper flanges 1a and 1b on both ends. The cylindrical portion is closed by the fixed conductor 3 and the metal lid body 4 to form a vacuum container 13 for filling the high-proof vacuum dielectric. Inside the fixed conductor 3, a plurality of substantially cylindrical electrode plates having different inner diameters are concentrically provided at regular intervals to form a fixed electrode 5.
The movable electrode 6 is formed by a plurality of cylindrical electrode plates having different inner diameters which are inserted / removed in the respective electrode intervals in a non-contact state.
The movable electrode 6 is provided on the movable conductor 8.

【0003】可動導体8は可動電極6の背面側に中空リ
ード部8aを有しており、中空リード部8aの側面は軸
受7により摺動自在に支持されている。又、中空リード
部8aの端部内壁には雌ねじ部8bが形成されている。
9は静電容量調整ねじであり、頭部9aと、雌ねじ部8
bと螺合する雄ねじ部9bとからなる。静電容量調整ね
じ9は蓋体4の略中央部に形成された支持体、即ちねじ
受け部10と回転トルクを低減するためのスラストベア
リング11とで支持されており、その頭部9aを手動又
はモータ等を用いて回転させることにより可動導体8を
上下動させる。これにより、固定電極5と可動電極6と
の交叉面積が変わるので、両電極5,6にそれぞれ異な
る極性の電圧が印加されたときに、電極5,6間に生じ
る静電容量の値を連続的に変化させることができる。
The movable conductor 8 has a hollow lead portion 8a on the back side of the movable electrode 6, and the side surface of the hollow lead portion 8a is slidably supported by a bearing 7. A female screw portion 8b is formed on the inner wall of the end of the hollow lead portion 8a.
Reference numeral 9 denotes a capacitance adjusting screw, which includes a head portion 9a and a female screw portion 8
It is composed of a male screw portion 9b screwed with b. The capacitance adjusting screw 9 is supported by a support body formed in a substantially central portion of the lid body 4, that is, a screw receiving portion 10 and a thrust bearing 11 for reducing a rotation torque, and its head portion 9a is manually operated. Alternatively, the movable conductor 8 is moved up and down by rotating it using a motor or the like. As a result, the crossing area between the fixed electrode 5 and the movable electrode 6 changes, so that when the voltages of different polarities are applied to both electrodes 5 and 6, the value of the electrostatic capacitance generated between the electrodes 5 and 6 is continuous. Can be changed.

【0004】12は軟質金属製のベローズであり、真空
容器13内を気密に保持しながら可動導体8及び可動電
極6が上下動できるように、一端縁を蓋体4の内壁及び
軸受7に接合するとともに、他端縁を可動導体8に接合
している。なお、この他端縁を中空リード部8aの表面
に接合する構造のものもある。中空リード部8aとそれ
をガイドする軸受7との間は潤滑油で絶縁されるため、
真空容器13の内部ではベローズ12に通電する構造と
なっている。即ち、蓋体4に設けられた外部電源端子
(図示省略)と可動電極6との通電路をベローズ12が
兼ねている。
Reference numeral 12 is a bellows made of a soft metal, and one end of the bellows is joined to the inner wall of the lid 4 and the bearing 7 so that the movable conductor 8 and the movable electrode 6 can move up and down while keeping the vacuum container 13 airtight. In addition, the other end is joined to the movable conductor 8. There is also a structure in which the other end edge is joined to the surface of the hollow lead portion 8a. Since the hollow lead portion 8a and the bearing 7 that guides the hollow lead portion 8a are insulated by the lubricating oil,
Inside the vacuum vessel 13, the bellows 12 is energized. That is, the bellows 12 also serves as an energization path between the external power supply terminal (not shown) provided on the lid 4 and the movable electrode 6.

【0005】[0005]

【発明が解決しようとする課題】ところで、真空コンデ
ンサに要求される特性として、損失が低く通電時の発熱
が少ないこと、及び長寿命であることが含まれる。上記
した従来の真空コンデンサにおいては、ベローズ12の
材質が上記特性に大きな影響を与え、その材質としては
リン青銅やベリリウム銅のような銅系材質とSUS30
4Lのようなステンレス系材質とがあるが、両者は一長
一短があり、上記要求特性を同時に満足させることはで
きなかった。例えば、ステンレス系のベローズは銅系の
ベローズに比べて長寿命であるが、通電能力が劣り、通
電時の発熱が避けられなかった。このため、従来では寿
命の問題は残るが、通電能力に優れるリン青銅ベローズ
が主に用いられていた。
By the way, the characteristics required for the vacuum capacitor include that the loss is low, the heat generation is small when energized, and the life is long. In the above-mentioned conventional vacuum capacitor, the material of the bellows 12 has a great influence on the above characteristics, and the material thereof is a copper-based material such as phosphor bronze or beryllium copper and SUS30.
There is a stainless steel type material such as 4L, but both have advantages and disadvantages, and it was not possible to satisfy the above required characteristics at the same time. For example, a stainless steel bellows has a longer life than a copper bellows, but its current-carrying ability is inferior, and heat generation during powering cannot be avoided. For this reason, in the past, although the problem of service life remains, phosphor bronze bellows, which has excellent current carrying capacity, has been mainly used.

【0006】この発明は上記のような課題を解決するた
めに成されたものであり、通電時の発熱を低減すること
ができるとともに、長寿命な真空コンデンサを得ること
を目的とする。
The present invention has been made to solve the above problems, and an object thereof is to obtain a vacuum capacitor which can reduce heat generation during energization and has a long life.

【0007】[0007]

【課題を解決するための手段】この発明の請求項1に係
る真空コンデンサは、可動導体と他方の金属材との間に
通電路となるとともに真空容器内を気密に保持するため
に設けられたベローズを、ステンレスベローズと銅ベロ
ーズにより構成したものである。
The vacuum capacitor according to the first aspect of the present invention is provided for forming a current-carrying path between the movable conductor and the other metal material and for keeping the inside of the vacuum container airtight. The bellows is composed of a stainless bellows and a copper bellows.

【0008】又、請求項2に係る真空コンデンサは、可
動導体と他方の金属材との間に通電路となるとともに真
空容器内を気密に保持するために設けられたベローズを
ステンレスベローズにより構成するとともに、該ベロー
ズと並列に銅条又は銀条を設けたものである。
Further, in the vacuum capacitor according to the second aspect, the bellows which is provided between the movable conductor and the other metal material as a current-carrying path and which keeps the inside of the vacuum container airtight is composed of a stainless bellows. In addition, a copper strip or a silver strip is provided in parallel with the bellows.

【0009】[0009]

【作用】この発明の請求項1においては、可動導体と他
方の金属材との通電が銅ベローズにより行われ、銅の導
電率はリン青銅の導電率より大きいので、通電時の発熱
は低減される。又、寿命はステンレスベローズ単独のと
きと同等となり、長寿命となる。
According to the first aspect of the present invention, the electric conduction between the movable conductor and the other metal material is performed by the copper bellows, and the electric conductivity of copper is higher than that of phosphor bronze. It Also, the life is the same as that of the stainless bellows alone, and the life is long.

【0010】又、請求項2においては、可動導体と他方
の金属材との間の通電が実質的には銅条又は銀条により
行われ、これらの導電率はリン青銅より大きいので、通
電時の発熱は低減される。又、寿命はステンレスベロー
ズ単独のときと同等に行われ、長寿命となる。
In the second aspect, the electric current between the movable conductor and the other metal material is substantially performed by the copper strip or the silver strip, and the conductivity of these is larger than that of phosphor bronze. Heat generation is reduced. In addition, the life is the same as when using the stainless bellows alone, and the life is long.

【0011】[0011]

【実施例】【Example】

実施例1 以下、この発明の実施例を図面とともに説明する。図1
は実施例1による真空コンデンサの縦断面図を示し、1
4は可動導体8と軸受7及び蓋体4との間に設けられた
筒状のステンレス(例えばSUS304L)製のベロー
ズであり、15はステンレスベローズ14の外側で可動
導体8と軸受7及び蓋体4との間に設けられた筒状の銅
製のベローズである。他の構成は従来と同様である。
Embodiment 1 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. Figure 1
1 is a vertical sectional view of the vacuum capacitor according to the first embodiment.
Reference numeral 4 denotes a cylindrical bellows made of stainless steel (for example, SUS304L) provided between the movable conductor 8, the bearing 7 and the lid body 4, and 15 denotes an outside of the stainless bellows 14 and the movable conductor 8, the bearing 7 and the lid body. 4 is a cylindrical bellows made of copper provided between the bellows. Other configurations are the same as the conventional one.

【0012】上記構成において、ベローズ14,15は
真空容器13内を気密に保持するとともに可動導体8と
蓋体4との通電路となるが、電源周波数13.56MH
Z、静電容量500PFの真空コンデンサの場合、通電
電流と表面温度の関係は図2に示すようになり、従来の
ようにリン青銅ベローズを用いた場合により温度上昇は
低くなる。これは、通電が主に銅ベローズ15により行
われ、リン青銅の導電率が銅の導電率の10%程度であ
るため、発熱が低減されたものである。又、寿命特性は
図3に示すようになり、リン青銅ベローズを用いた場合
を1として8程度となる。これはステンレス(SUS3
04L)ベローズを単独で用いた場合と同様であり、真
空保持が主にステンレスベローズ14により行われるた
めである。
In the above structure, the bellows 14 and 15 keep the inside of the vacuum container 13 airtight and serve as a current-carrying path between the movable conductor 8 and the lid 4, but the power supply frequency is 13.56 MH.
In the case of a vacuum capacitor having a capacitance of 500 PF and a capacitance of 500 PF, the relationship between the energizing current and the surface temperature is as shown in FIG. This is because the energization is mainly performed by the copper bellows 15 and the conductivity of phosphor bronze is about 10% of the conductivity of copper, so that heat generation is reduced. The life characteristics are as shown in FIG. 3, which is about 8 when the phosphor bronze bellows is used as 1. This is stainless steel (SUS3
(04L) This is similar to the case where the bellows is used alone, and the vacuum holding is mainly performed by the stainless bellows 14.

【0013】なお、真空コンデンサとしての動作は従来
と同様であり、固定電極5への通電は固定導体3を介し
て行われ、可動電極6への通電は蓋体4,銅ベローズ1
5及び可動導体8を介して行われ、静電容量調整ねじ9
の回転により可動導体8を上下動し、これにより両電極
5,6の交叉面積を変えることにより静電容量を連続的
に変えることができる。
The operation as a vacuum capacitor is the same as the conventional one, the fixed electrode 5 is energized through the fixed conductor 3, and the movable electrode 6 is energized by the lid 4 and the copper bellows 1.
5 through the movable conductor 8 and the capacitance adjusting screw 9
The movable conductor 8 is moved up and down by the rotation of, and the electrostatic capacitance can be continuously changed by changing the crossing area of both electrodes 5, 6.

【0014】以上のように実施例1では銅ベローズ15
に通電させることにより温度上昇を低減させることがで
き、これに伴って真空コンデンサの許容電流最大値を大
きくすることができ、真空コンデンサを装置に組み込ん
だ場合その冷却を低減または不要とすることができる。
又、真空容器13の真空保持をステンレスベローズ14
によって行うことにより長寿命化が可能となる。
As described above, in the first embodiment, the copper bellows 15 is used.
The temperature rise can be reduced by energizing the vacuum capacitor, and the maximum allowable current of the vacuum capacitor can be increased accordingly, and when the vacuum capacitor is incorporated in the device, its cooling can be reduced or unnecessary. it can.
In addition, the vacuum of the vacuum container 13 is maintained by the stainless bellows 14.
By doing so, the life can be extended.

【0015】実施例2 図4は実施例2による真空コンデンサの縦断面図を示
し、16はステンレスベローズ14の外側で可動導体8
と蓋体4との間に接続された帯状の銅条であり、他の構
成は前述と同様である。
Embodiment 2 FIG. 4 is a vertical sectional view of a vacuum capacitor according to Embodiment 2, 16 is a movable conductor 8 outside the stainless bellows 14.
Is a strip-shaped copper strip connected between the lid 4 and the lid 4, and the other configurations are the same as those described above.

【0016】上記構成において、真空コンデンサの通電
電流と表面温度の関係はやはり図2に示すようになり、
従来より温度上昇は低くなる。これは、通電が主に銅条
16により行われ、リン青銅の導電率が銅の導電率の1
0%程度であるため、発熱が低減されたものである。
又、寿命特性はやはり図3に示すようになり、ステンレ
スベローズを単独で用いた場合と同等である。これは、
真空保持が主にステンレスベローズ14により行われる
ためである。
In the above structure, the relationship between the current flowing through the vacuum capacitor and the surface temperature is as shown in FIG.
The temperature rise will be lower than before. This is because energization is mainly performed by the copper strip 16, and the conductivity of phosphor bronze is less than that of copper.
Since it is about 0%, heat generation is reduced.
The life characteristics are also as shown in FIG. 3, which is equivalent to the case where the stainless bellows is used alone. this is,
This is because vacuum holding is mainly performed by the stainless bellows 14.

【0017】実施例2では銅条16に通電させることに
より温度上昇を低減させることができ、実施例1と同様
な効果を得ることができる。又、長寿命化においても実
施例1と同様な効果を得ることができる。なお、銅条1
6の代わりに銀条を用いても同様の効果を得ることがで
きる。
In the second embodiment, the temperature rise can be reduced by energizing the copper strip 16, and the same effect as in the first embodiment can be obtained. In addition, the same effect as that of the first embodiment can be obtained in extending the life. In addition, copper strip 1
The same effect can be obtained by using a silver strip instead of 6.

【0018】[0018]

【発明の効果】以上のようにこの発明によれば、可動導
体と他方の金属材との間にステンレスベローズを設ける
とともに、ステンレスベローズと並列に銅ベローズある
いは銅条または銀条を設けており、通電を導電率が高い
銅ベローズあるいは銅条または銀条により行うことによ
り、通電時の温度上昇を防止することができ、これに伴
って許容電流最大値を大きくすることができるととも
に、冷却を低減または不要とすることができる。又、真
空保持をステンレスベローズによって行うことにより、
長寿命化が可能となる。
As described above, according to the present invention, the stainless bellows is provided between the movable conductor and the other metal material, and the copper bellows or the copper strip or the silver strip is provided in parallel with the stainless bellows. By energizing with a copper bellows or copper strip or silver strip with high conductivity, it is possible to prevent temperature rise during energization, and accordingly increase the maximum allowable current and reduce cooling. Or it may be unnecessary. Also, by holding the vacuum with stainless bellows,
The life can be extended.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1による真空コンデンサの縦
断面図。
FIG. 1 is a vertical sectional view of a vacuum capacitor according to a first embodiment of the present invention.

【図2】この発明の実施例1,2による真空コンデンサ
の通電電流−表面温度特性図。
FIG. 2 is a diagram showing a current-surface temperature characteristic of a vacuum capacitor according to Examples 1 and 2 of the present invention.

【図3】この発明の実施例1,2による真空コンデンサ
の寿命特性図。
FIG. 3 is a life characteristic diagram of vacuum capacitors according to Examples 1 and 2 of the present invention.

【図4】この発明の実施例2による真空コンデンサの縦
断面図。
FIG. 4 is a vertical sectional view of a vacuum capacitor according to a second embodiment of the present invention.

【図5】従来の真空コンデンサの縦断面図。FIG. 5 is a vertical sectional view of a conventional vacuum capacitor.

【符号の説明】[Explanation of symbols]

1a,1b…フランジ 2…セラミック 3…固定導体 4…蓋体 5…固定電極 6…可動電極 8…可動導体 9…静電容量調整ねじ 13…真空容器 14…ステンレスベローズ 15…銅ベローズ 16…銅条 1a, 1b ... Flange 2 ... Ceramic 3 ... Fixed conductor 4 ... Lid 5 ... Fixed electrode 6 ... Movable electrode 8 ... Movable conductor 9 ... Capacitance adjusting screw 13 ... Vacuum container 14 ... Stainless steel bellows 15 ... Copper bellows 16 ... Copper Article

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも一部が絶縁筒からなる筒状部
の両端を金属材により閉塞して真空容器を形成し、一方
の金属材の内側に複数の筒状電極板を同心状に設けて固
定電極を形成するとともに、この筒状電極板間に非接触
で挿出入する複数の筒状電極板からなる可動電極を可動
導体に取り付け、この可動導体を他方の金属材に回転自
在に支持された静電容量調整ねじと螺合させ、かつ可動
導体と他方の金属材との間に真空容器内を気密に保持す
るとともに導電路となる筒状のベローズを設けた真空コ
ンデンサにおいて、上記ベローズをステンレスベローズ
と銅ベローズにより構成したことを特徴とする真空コン
デンサ。
1. A vacuum container is formed by closing both ends of a tubular part, at least a part of which is an insulating tube, with a metal material, and a plurality of tubular electrode plates are concentrically provided inside one metal material. A fixed electrode is formed, and a movable electrode composed of a plurality of tubular electrode plates that are inserted and inserted in a non-contact manner between the tubular electrode plates is attached to a movable conductor, and the movable conductor is rotatably supported by the other metal member. In the vacuum capacitor, which is screwed with the capacitance adjusting screw, and in which a cylindrical bellows is provided between the movable conductor and the other metal material to keep the inside of the vacuum container airtight and to serve as a conductive path, Vacuum capacitor characterized by being composed of stainless bellows and copper bellows.
【請求項2】 少なくとも一部が絶縁筒からなる筒状部
の両端を金属材により閉塞して真空容器を形成し、一方
の金属材の内側に複数の筒状電極板を同心状に設けて固
定電極を形成するとともに、この筒状電極板間に非接触
で挿出入する複数の筒状電極板からなる可動電極を可動
導体に取り付け、この可動導体を他方の金属材に回転自
在に支持された静電容量調整ねじと螺合させ、かつ可動
導体と他方の金属材との間に真空容器内を気密に保持す
るとともに通電路となる筒状のベローズを設けた真空コ
ンデンサにおいて、上記ベローズをステンレスベローズ
により構成するとともに、可動導体と他方の金属材との
間を銅条又は銀条により接続したことを特徴とする真空
コンデンサ。
2. A vacuum container is formed by closing both ends of a tubular part, at least a part of which is an insulating tube, with a metal material, and a plurality of tubular electrode plates are concentrically provided inside one metal material. A fixed electrode is formed, and a movable electrode composed of a plurality of tubular electrode plates that are inserted and inserted in a non-contact manner between the tubular electrode plates is attached to a movable conductor, and the movable conductor is rotatably supported by the other metal member. In a vacuum capacitor screwed with a capacitance adjusting screw, and in which a cylindrical bellows is provided between the movable conductor and the other metal material to keep the inside of the vacuum container airtight and to serve as a current path, A vacuum capacitor comprising a stainless bellows and a movable conductor and the other metal material connected by a copper strip or a silver strip.
JP22294993A 1993-09-08 1993-09-08 Vacuum capacitor Pending JPH0778729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22294993A JPH0778729A (en) 1993-09-08 1993-09-08 Vacuum capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22294993A JPH0778729A (en) 1993-09-08 1993-09-08 Vacuum capacitor

Publications (1)

Publication Number Publication Date
JPH0778729A true JPH0778729A (en) 1995-03-20

Family

ID=16790405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22294993A Pending JPH0778729A (en) 1993-09-08 1993-09-08 Vacuum capacitor

Country Status (1)

Country Link
JP (1) JPH0778729A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6587328B2 (en) * 2000-03-08 2003-07-01 Comet Technik Ag Bellows with a uniform electric conductive layer for a vacuum capacitor
US6975499B2 (en) 2003-12-22 2005-12-13 Kabushiki Kaisha Meidensha Vacuum variable capacitor with energization and heat shielding bellows
US7042699B2 (en) 2004-05-28 2006-05-09 Kabushiki Kaisha Meidensha Vacuum variable capacitor
US7041930B2 (en) 2003-12-08 2006-05-09 Kabushiki Kaisha Meidensha Bellows for use in vacuum capacitor
WO2012157397A1 (en) 2011-05-18 2012-11-22 株式会社明電舎 Bellows and method for manufacturing same
US20160336151A1 (en) * 2013-12-18 2016-11-17 Applied Materals, Inc. Ac power connector, sputtering apparatus and method therefor
CN108242933A (en) * 2018-03-09 2018-07-03 北京国广星波科技开发有限公司 A kind of DX transmitters

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6587328B2 (en) * 2000-03-08 2003-07-01 Comet Technik Ag Bellows with a uniform electric conductive layer for a vacuum capacitor
US7041930B2 (en) 2003-12-08 2006-05-09 Kabushiki Kaisha Meidensha Bellows for use in vacuum capacitor
US6975499B2 (en) 2003-12-22 2005-12-13 Kabushiki Kaisha Meidensha Vacuum variable capacitor with energization and heat shielding bellows
US7042699B2 (en) 2004-05-28 2006-05-09 Kabushiki Kaisha Meidensha Vacuum variable capacitor
WO2012157397A1 (en) 2011-05-18 2012-11-22 株式会社明電舎 Bellows and method for manufacturing same
JP2012241766A (en) * 2011-05-18 2012-12-10 Meidensha Corp Bellows and method for manufacturing the same
KR101535551B1 (en) * 2011-05-18 2015-07-09 메이덴샤 코포레이션 bellows and method for manufacturing same
US9422933B2 (en) 2011-05-18 2016-08-23 Meidensha Corporation Bellows and method for manufacturing same
US20160336151A1 (en) * 2013-12-18 2016-11-17 Applied Materals, Inc. Ac power connector, sputtering apparatus and method therefor
US10818475B2 (en) * 2013-12-18 2020-10-27 Applied Materials, Inc. AC power connector, sputtering apparatus and method therefor
CN108242933A (en) * 2018-03-09 2018-07-03 北京国广星波科技开发有限公司 A kind of DX transmitters

Similar Documents

Publication Publication Date Title
CN104081484B (en) Variable vacuum capacitor
JPH0778729A (en) Vacuum capacitor
KR0138031B1 (en) X-ray tube apparatus of a rotating anode type
JP2002208538A (en) Liquid variable capacitor
JP2009016652A (en) Power electric equipment
JP2005174988A (en) Vacuum capacitor
US5777840A (en) Non polar tantalum capacitor
CA2123462A1 (en) High Thermal Stability Capacitor
JPH06204082A (en) Vacuum capacitor
JP2009004607A (en) Insulation vacuum equipment
US4002957A (en) Trimmable fixed hermetically sealed capacitor
JP3264005B2 (en) Vacuum condenser
JP3160949B2 (en) Vacuum condenser
JPH10284347A (en) Vacuum variable capacitor
JP3160950B2 (en) Vacuum condenser
JP3264006B2 (en) Vacuum condenser
JPH05251269A (en) Vacuum capacitor
JP2005340587A (en) Vacuum variable capacitor
JP3885343B2 (en) Vacuum capacitor
JP3882407B2 (en) Vacuum capacitor
JPS59141125A (en) Contactor structure for vacuum switch
WO2018235391A1 (en) Capacitor
CN113922697B (en) Electrostatic induction generator
JPH04206409A (en) Sealed contact device
JPH11273998A (en) Vacuum capacitor