JP3264005B2 - Vacuum condenser - Google Patents

Vacuum condenser

Info

Publication number
JP3264005B2
JP3264005B2 JP34850592A JP34850592A JP3264005B2 JP 3264005 B2 JP3264005 B2 JP 3264005B2 JP 34850592 A JP34850592 A JP 34850592A JP 34850592 A JP34850592 A JP 34850592A JP 3264005 B2 JP3264005 B2 JP 3264005B2
Authority
JP
Japan
Prior art keywords
bellows
vacuum capacitor
vacuum
phosphor bronze
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34850592A
Other languages
Japanese (ja)
Other versions
JPH06204083A (en
Inventor
利真 深井
信行 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP34850592A priority Critical patent/JP3264005B2/en
Publication of JPH06204083A publication Critical patent/JPH06204083A/en
Application granted granted Critical
Publication of JP3264005B2 publication Critical patent/JP3264005B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体製造装置の高周
波電源や大電力発振回路におけるインピーダンス調整等
に用いられる可変形の真空コンデンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a variable-type vacuum capacitor used for impedance adjustment in a high-frequency power supply or a high-power oscillation circuit of a semiconductor manufacturing apparatus.

【0002】[0002]

【従来の技術】図1はこの種の一般的な可変形真空コン
デンサの断面構造図であり、例えばその両端に銅製のフ
ランジ11a,11bが付いたセラミック12で側面部
を形成し、この側面部を固定導体13と金属製蓋体14
とで閉塞して、高耐力真空誘電体を充填するための真空
容器10を形成している。
2. Description of the Related Art FIG. 1 is a cross-sectional view of a general variable vacuum capacitor of this type. For example, a side face is formed by ceramics 12 having copper flanges 11a and 11b at both ends thereof. Are fixed conductor 13 and metal lid 14
To form a vacuum container 10 for filling a high-yield vacuum dielectric.

【0003】固定導体13内側には、内径の異なる複数
の略円筒状電極板を同心円状に一定間隔をもって設けて
固定電極15を形成しており、また、この固定電極15
の各電極間隙内に非接触状態で挿出入する内径の異なる
複数の円筒状電極板で可動電極16を形成している。こ
の可動電極16は、可動導体18に設けられる。
A plurality of substantially cylindrical electrode plates having different inner diameters are provided concentrically at regular intervals inside the fixed conductor 13 to form a fixed electrode 15.
The movable electrode 16 is formed by a plurality of cylindrical electrode plates having different inner diameters which are inserted into and removed from each electrode gap in a non-contact state. This movable electrode 16 is provided on a movable conductor 18.

【0004】可動導体18は、可動電極16の背面側に
中空リード部18aを有しており、その中空リード部側
面が、図1に示すように、軸受17で摺動自在に支持さ
れている。中空リード部18aの端部内壁には、めねじ
18bが形成されている。
The movable conductor 18 has a hollow lead 18a on the back side of the movable electrode 16, and the side surface of the hollow lead is slidably supported by a bearing 17 as shown in FIG. . An internal thread 18b is formed on the inner wall of the end of the hollow lead 18a.

【0005】19は静電容量調整ねじであり、頭部19
aと、前記めねじ18bに挿入されるおねじ19bとか
ら成る。この静電容量調整ねじ19は、図示するよう
に、蓋体14略中央部に形成された支持体、即ち、ねじ
受け部20と回転トルクを低減するためのスラストベア
リング21とで支持されており、その頭部19aを手動
又はモータ等を用いて回転させることで、可動導体18
を上下動させる。これにより、固定電極15と可動電極
16との交叉面積が変わるので、両電極15,16に夫
々異なる極性の電圧が印加されたときに電極間に生じる
静電容量の値を連続的に変化させることができる。
Reference numeral 19 denotes a capacitance adjusting screw,
a and a male screw 19b inserted into the female screw 18b. As shown in the figure, the capacitance adjusting screw 19 is supported by a support formed at a substantially central portion of the lid 14, that is, a screw receiving portion 20 and a thrust bearing 21 for reducing rotational torque. By rotating the head 19a manually or using a motor or the like, the movable conductor 18 is rotated.
Up and down. As a result, the crossing area between the fixed electrode 15 and the movable electrode 16 changes, so that when a voltage having a different polarity is applied to both the electrodes 15, 16, the value of the capacitance generated between the electrodes is continuously changed. be able to.

【0006】22は軟質金属製のベローズであり、真空
容器10内を気密に保持しながら可動導体18(可動電
極16)が上下動できるように、蓋体14内壁及び軸受
17に一端縁を接合するとともに、他端縁を可動導体1
8に接合している。この他端縁を中空リード部18a側
表面に接合する構造のものもある。中空リード部18a
とそれをガイドする軸受17との間は潤滑油で絶縁され
るため、真空容器10内部ではこのベローズ22を通電
する構造となっている。即ち、蓋体14に設けられた外
部電源端子(図示省略)と可動電極16との通電路をこ
のベローズ22が兼ねている。
Reference numeral 22 denotes a bellows made of a soft metal, one end of which is joined to the inner wall of the lid 14 and the bearing 17 so that the movable conductor 18 (movable electrode 16) can move up and down while keeping the inside of the vacuum vessel 10 airtight. And move the other end to the movable conductor 1
8. There is also a structure in which the other end is joined to the surface of the hollow lead portion 18a. Hollow lead 18a
Since the lubricating oil is insulated between the bellows 22 and the bearing 17 for guiding the bellows, the bellows 22 is configured to be energized inside the vacuum vessel 10. That is, the bellows 22 also serves as a current path between an external power supply terminal (not shown) provided on the lid 14 and the movable electrode 16.

【0007】[0007]

【発明が解決しようとする課題】ところで、真空コンデ
ンサに要求される特性の一つに、損失が低く、通電時の
発熱が少ないことがある。上記構造をとる真空コンデン
サでは、ベローズ22の材質が上記特性に大きな影響を
与える。従来、ベローズ22の材質にはリン青銅が主に
用いられているが、このリン青銅ベローズの導電率は、
10%IACS(Internationnal Amealed Copper Stan
dard:国際標準軟銅に対する固有導電率比)程度であ
り、高周波用途では、通電時に真空コンデンサの表面温
度が上昇する問題があった。そのため、許容最大電流値
を上げることができなかった。
One of the characteristics required of a vacuum capacitor is that the loss is low and the heat generation during energization is small. In the vacuum capacitor having the above structure, the material of the bellows 22 has a great influence on the above characteristics. Conventionally, phosphor bronze is mainly used as the material of the bellows 22, but the conductivity of the phosphor bronze bellows is as follows.
10% IACS (International Amealed Copper Stan
dard: an intrinsic conductivity ratio with respect to international standard annealed copper), and there was a problem that the surface temperature of the vacuum capacitor rises during energization in high frequency applications. Therefore, the allowable maximum current value could not be increased.

【0008】本発明は、かかる問題点に鑑みてなされた
もので、その目的とするところは、高周波電流の通電能
力を高める構造の真空コンデンサを提供することにあ
る。
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a vacuum capacitor having a structure capable of increasing a high-frequency current carrying capability.

【0009】[0009]

【課題を解決するための手段】上記目的を達成する本発
明の構成は、可動電極の変位に追随して真空容器内を気
密に保持すると共に外部電源端子との通電路を兼ねるリ
ン青銅ベローズを有する真空コンデンサにおいて、前記
リン青銅ベローズの表面に、リン青銅よりも導電率の高
いメッキ材質、例えば、銅系材質、銀系材質でメッキ処
理を施したことを特徴とする。
In order to achieve the above-mentioned object, the present invention provides a phosphor bronze bellows which keeps the inside of a vacuum vessel airtight following a displacement of a movable electrode and also serves as a current path to an external power supply terminal. The phosphor bronze bellows is characterized in that a surface of the phosphor bronze bellows is plated with a plating material having a higher conductivity than phosphor bronze, for example, a copper material or a silver material.

【0010】[0010]

【作用】真空コンデンサに通電する電流の周波数が数M
Zのオーダーになると、高周波電流は表皮効果により
ベローズのごく表面に集中するので、この表面部分に、
リン青銅よりも導電率の高いメッキ材質でメッキ処理を
施すことで、電気抵抗が低減し、電流が流れ易くなる。
従って、通電時の発熱が抑制され、真空コンデンサの許
容最大電流値が上がる。
[Function] The frequency of the current flowing through the vacuum capacitor is several M
If on the order of H Z, since the high-frequency current is concentrated at the extreme surface of the bellows due to the skin effect, this surface portion,
By performing plating with a plating material having a higher conductivity than phosphor bronze, electric resistance is reduced and current easily flows.
Therefore, heat generation during energization is suppressed, and the allowable maximum current value of the vacuum capacitor increases.

【0011】[0011]

【実施例】以下、本発明の実施例を図面を参照して説明
する。なお、本発明は従来の真空コンデンサを改良した
ものなので、図1に示した構成部品と同一のものについ
てはその説明を省略し、異なる部分についてのみ説明す
る。
Embodiments of the present invention will be described below with reference to the drawings. Since the present invention is an improvement of the conventional vacuum capacitor, the description of the same components as those shown in FIG. 1 will be omitted, and only different portions will be described.

【0012】本実施例では、図1に示した構造の真空コ
ンデンサにおいて、ベローズ22を高導電率のメッキ材
質を用いてメッキ処理したリン青銅で構成したものであ
る。リン青銅は、強靭性、弾性、耐摩耗性に優れ、且つ
前述のように、導電率も10%IACS程度が確保され
るので、ベローズ22のベースに適している。
In this embodiment, in the vacuum capacitor having the structure shown in FIG. 1, the bellows 22 is made of phosphor bronze plated by using a highly conductive plating material. Phosphor bronze is suitable for the base of the bellows 22 because it has excellent toughness, elasticity, and abrasion resistance, and also has a conductivity of about 10% IACS as described above.

【0013】図2は本発明の一実施例による真空コンデ
ンサの通電電流−表面温度特性図であり、メッキ材質と
して銅(Cu)を用いた場合(銅メッキリン青銅ベロー
ズ)の例を実線で示している。また、比較例として、メ
ッキを行わないリン青銅ベローズを用いた従来の真空コ
ンデンサによる値も破線で示している。これらの値は、
夫々、静電容量を500[pF]、使用周波数を13.
56[MHZ]、通電電流I(=ωCV:ωは角周波
数、Cは静電容量、Vは印加電圧)を印加電圧Vにより
可変した場合の例である。
FIG. 2 is a current-surface temperature characteristic diagram of a vacuum capacitor according to one embodiment of the present invention. An example of a case where copper (Cu) is used as a plating material (copper-plated phosphor bronze bellows) is shown by a solid line. I have. Further, as a comparative example, a value obtained by a conventional vacuum capacitor using a phosphor bronze bellows that is not plated is also indicated by a broken line. These values are
The capacitance is 500 [pF] and the operating frequency is 13.
This is an example in which the applied current V is 56 [MH Z ], and the current I (= ωCV: ω is the angular frequency, C is the capacitance, and V is the applied voltage) is varied by the applied voltage V.

【0014】図2を参照すると、銅メッキリン青銅ベロ
ーズを用いた真空コンデンサの方が、従来のものよりも
通電電流値に対する表面温度上昇が抑制されていること
がわかる。これは、通電電流が、表皮効果によりベロー
ズ22のごく表面に集中し、高導電性のメッキ膜が有効
となることによる。これにより通電時の温度上昇が抑制
され、許容最大電流値が高くなる。
Referring to FIG. 2, it can be seen that a vacuum capacitor using a copper-plated phosphor bronze bellows suppresses a rise in surface temperature with respect to an energized current value more than a conventional capacitor. This is because the energizing current is concentrated on the very surface of the bellows 22 due to the skin effect, and a highly conductive plating film becomes effective. This suppresses a rise in temperature during energization, and increases the allowable maximum current value.

【0015】なお、以上は、銅(Cu)メッキ処理を施
した場合の例であるが、メッキ材質として導電率がほぼ
同じの他の銅系材質を用いても良い。また、導電率のよ
り優れる純銀(Ag)等の銀系材質でメッキ膜を施せば
より通電能力に優れたベローズ22が得られ、真空コン
デンサの特性向上に寄与し得る。
Although the above is an example in which copper (Cu) plating is performed, another copper-based material having substantially the same conductivity as the plating material may be used. Further, if a plating film is formed of a silver-based material such as pure silver (Ag) having higher conductivity, a bellows 22 having more excellent current-carrying ability can be obtained, which can contribute to improvement of the characteristics of the vacuum capacitor.

【0016】[0016]

【発明の効果】以上説明したように、本発明では、可動
電極の変位に追随して真空容器内を気密に保持すると共
に外部電源端子との通電路を兼ねるリン青銅ベローズの
表面に、より導電率の高い銅系材質又は銀系材質でメッ
キ処理を施したので、通電能力が向上し、高周波電流通
電時の発熱が防止される効果がある。これにより、真空
コンデンサの許容最大電流値が高くなり、使用回路ある
いは装置に収納された場合に、その冷却の必要が無くな
ると共に、該回路等の信頼性向上が図れる。
As described above, according to the present invention, the surface of the phosphor bronze bellows, which keeps the inside of the vacuum chamber airtight and follows the displacement of the movable electrode and also serves as a current path to an external power supply terminal, is formed on the surface of the phosphor bronze bellows. Since the plating process is performed with a copper-based material or a silver-based material having a high rate, the current-carrying ability is improved, and there is an effect that heat generation when high-frequency current is applied is prevented. As a result, the allowable maximum current value of the vacuum capacitor is increased, and when housed in a used circuit or device, cooling of the vacuum capacitor is not required, and the reliability of the circuit and the like can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明が適用される可変形真空コンデンサの断
面構造図。
FIG. 1 is a sectional structural view of a variable vacuum capacitor to which the present invention is applied.

【図2】本発明の一実施例による真空コンデンサの通電
電流−表面温度特性図。
FIG. 2 is a diagram showing a relation between a flowing current and a surface temperature of a vacuum capacitor according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10…真空容器 16…可動電極 22…ベローズ 10: vacuum vessel 16: movable electrode 22: bellows

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01G 5/14 H01G 5/01 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01G 5/14 H01G 5/01

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 可動電極の変位に追随して真空容器内を
気密に保持すると共に外部電源端子との通電路を兼ねる
リン青銅ベローズを有する真空コンデンサにおいて、前
記リン青銅ベローズの表面に、リン青銅よりも導電率の
高いメッキ材質でメッキ処理を施したことを特徴とする
真空コンデンサ。
1. A vacuum capacitor having a phosphor bronze bellows which keeps the inside of a vacuum vessel airtight following a displacement of a movable electrode and also serves as a current path to an external power supply terminal. A vacuum capacitor characterized by being plated with a plating material having a higher conductivity than that of a vacuum capacitor.
【請求項2】 前記メッキ材質は、銅系材質であること
を特徴とする請求項1記載の真空コンデンサ。
2. The vacuum capacitor according to claim 1, wherein the plating material is a copper-based material.
【請求項3】 前記メッキ材質は、銀系材質であること
を特徴とする請求項1記載の真空コンデンサ。
3. The vacuum capacitor according to claim 1, wherein the plating material is a silver-based material.
JP34850592A 1992-12-28 1992-12-28 Vacuum condenser Expired - Lifetime JP3264005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34850592A JP3264005B2 (en) 1992-12-28 1992-12-28 Vacuum condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34850592A JP3264005B2 (en) 1992-12-28 1992-12-28 Vacuum condenser

Publications (2)

Publication Number Publication Date
JPH06204083A JPH06204083A (en) 1994-07-22
JP3264005B2 true JP3264005B2 (en) 2002-03-11

Family

ID=18397471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34850592A Expired - Lifetime JP3264005B2 (en) 1992-12-28 1992-12-28 Vacuum condenser

Country Status (1)

Country Link
JP (1) JP3264005B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8335071B2 (en) 2007-11-20 2012-12-18 Meidensha Corporation Vacuum capacitor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005174988A (en) 2003-12-08 2005-06-30 Meidensha Corp Vacuum capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8335071B2 (en) 2007-11-20 2012-12-18 Meidensha Corporation Vacuum capacitor

Also Published As

Publication number Publication date
JPH06204083A (en) 1994-07-22

Similar Documents

Publication Publication Date Title
US3054029A (en) Electrical condenser
KR0138031B1 (en) X-ray tube apparatus of a rotating anode type
CN113823508A (en) Electrode unit for vacuum capacitor and vacuum capacitor
JP3264005B2 (en) Vacuum condenser
JP3264004B2 (en) Vacuum condenser
JP3264006B2 (en) Vacuum condenser
US3492545A (en) Electrically and thermally conductive malleable layer embodying lead foil
JP2005174988A (en) Vacuum capacitor
JPH0778729A (en) Vacuum capacitor
US4002957A (en) Trimmable fixed hermetically sealed capacitor
KR20020050247A (en) Hook commutator
JPH10284347A (en) Vacuum variable capacitor
JP4678239B2 (en) Vacuum variable capacitor
JP2897542B2 (en) Superconducting switch
JP3885343B2 (en) Vacuum capacitor
JPH01291521A (en) Semiconductor switching circuit
JP3160950B2 (en) Vacuum condenser
JPH10289838A (en) Solid state electrolytic capacitor
JPH05251763A (en) Manufacture of oxide superconductive current limiting conductor
US3162823A (en) Miniature triode oscillator for high frequency operation
JP3245971B2 (en) Vacuum condenser
JP3316896B2 (en) Capacitor
JP3245923B2 (en) Vacuum condenser
JP2024000027A (en) vacuum capacitor
JPH0614391Y2 (en) Magnetic field free type hot cathode structure

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081228

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091228

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 11

EXPY Cancellation because of completion of term