JP4678239B2 - Vacuum variable capacitor - Google Patents

Vacuum variable capacitor Download PDF

Info

Publication number
JP4678239B2
JP4678239B2 JP2005154803A JP2005154803A JP4678239B2 JP 4678239 B2 JP4678239 B2 JP 4678239B2 JP 2005154803 A JP2005154803 A JP 2005154803A JP 2005154803 A JP2005154803 A JP 2005154803A JP 4678239 B2 JP4678239 B2 JP 4678239B2
Authority
JP
Japan
Prior art keywords
movable
screw
end plate
bellows
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005154803A
Other languages
Japanese (ja)
Other versions
JP2006332388A (en
Inventor
栄一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2005154803A priority Critical patent/JP4678239B2/en
Publication of JP2006332388A publication Critical patent/JP2006332388A/en
Application granted granted Critical
Publication of JP4678239B2 publication Critical patent/JP4678239B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

この発明は、大電力発信機の発信回路、半導体製造装置用の高周波電源回路、あるいは誘導加熱装置のタンク回路等に用いられる真空可変コンデンサに関するものである。   The present invention relates to a vacuum variable capacitor used in a transmission circuit of a high power transmitter, a high frequency power supply circuit for a semiconductor manufacturing apparatus, a tank circuit of an induction heating apparatus, or the like.

真空可変コンデンサの耐電圧・静電容量特性を安定させ、かつ全長の小形化を図ったものとして、特許文献1で提案された真空可変コンデンサがある。このコンデンサと同種のコンデンサについて、図6により説明する。図において、1はセラミックス製の絶縁筒であり、絶縁筒1の一端には固定側端板2を接合するとともに、絶縁筒1の他端には接続筒3を介して可動側端板4を接合し、真空容器5を形成する。固定側端板2の内面側には複数の径が異なる円筒状電極板F1,F2,…,Fnを同心状に取り付けて固定電極6を形成する。7は固定側端板2の内面側の中心に固定ガイド8を介して立設されたセンターピンであり、真空容器5内に固定側端板2と対向して配置された可動電極支持板9には固定電極6の円筒状電極板間に非接触で挿出入できるように径が異なる複数の円筒状電極板M1,M2,…,Mnを同心状に取り付けて可動電極10を構成する。   A vacuum variable capacitor proposed in Japanese Patent Application Laid-Open No. H10-228707 is one that stabilizes the withstand voltage / capacitance characteristics of the vacuum variable capacitor and reduces the overall length. A capacitor of the same type as this capacitor will be described with reference to FIG. In the figure, reference numeral 1 denotes an insulating cylinder made of ceramics. A fixed side end plate 2 is joined to one end of the insulating cylinder 1, and a movable side end plate 4 is connected to the other end of the insulating cylinder 1 via a connecting cylinder 3. Bonding to form the vacuum vessel 5. A plurality of cylindrical electrode plates F1, F2,..., Fn having different diameters are attached concentrically on the inner surface side of the fixed side end plate 2 to form the fixed electrode 6. A center pin 7 is erected at the center on the inner surface side of the fixed side end plate 2 via a fixed guide 8. The movable electrode support plate 9 is disposed in the vacuum vessel 5 so as to face the fixed side end plate 2. The movable electrode 10 is configured by concentrically attaching a plurality of cylindrical electrode plates M1, M2,..., Mn having different diameters so that they can be inserted / removed between the cylindrical electrode plates of the fixed electrode 6 without contact.

11は可動電極支持板9の中心に貫通して一体的に設けられた筒状の可動リードであり、可動リード11はセンターピン7と摺動自在に嵌合する。可動リード11とセンターピン7とは電気的に絶縁される。又、可動側端板4の中心には孔4aを設け、この孔4aの周辺部において可動側端板4の内面側に筒状のヒートパイプ12を立設し、ヒートパイプ12の内面には内方に突出した鍔部12aを設ける。13は外周に雄ねじ部13aが形成された調整ねじであり、その一端は可動リード11に嵌合固定され、他端はヒートパイプ12の鍔部12aに挿通される。14は調整ナットであり、その一端側の内周には調整ねじ13の雄ねじ部13aと螺合する雌ねじ部14aを有するとともに、この一端側は鍔部12aの下側に軸受15を介して回転自在に支持される。   Reference numeral 11 denotes a cylindrical movable lead that is provided integrally through the center of the movable electrode support plate 9, and the movable lead 11 is slidably fitted to the center pin 7. The movable lead 11 and the center pin 7 are electrically insulated. A hole 4a is provided in the center of the movable side end plate 4, and a cylindrical heat pipe 12 is erected on the inner surface side of the movable side end plate 4 at the periphery of the hole 4a. A flange 12a protruding inward is provided. Reference numeral 13 denotes an adjusting screw having a male screw portion 13 a formed on the outer periphery, one end of which is fitted and fixed to the movable lead 11, and the other end is inserted into the flange portion 12 a of the heat pipe 12. Reference numeral 14 denotes an adjustment nut having an internal thread portion 14a threadedly engaged with the external thread portion 13a of the adjustment screw 13 on the inner circumference on one end side, and this one end side is rotated via a bearing 15 below the flange portion 12a. It is supported freely.

調整ねじ13の他端には雌ねじ部13bが設けられ、雌ねじ部13bにはストップねじ16が螺合される。又、調整ナット14には雌ねじ部14aと連続してより大径の孔14bが形成され、雌ねじ部14aと孔14bとの間には段部14cが形成される。可動リード11及びヒートパイプ12の外周側には真空側と大気側とを区分する筒状のベローズ17が設けられ、その一端は可動電極支持板9に取り付けられ、他端は可動側端板4に取り付けられ、真空容器5内の真空状態が保たれる。   A female screw portion 13b is provided at the other end of the adjustment screw 13, and a stop screw 16 is screwed into the female screw portion 13b. Further, the adjustment nut 14 is formed with a larger-diameter hole 14b continuous with the female screw portion 14a, and a stepped portion 14c is formed between the female screw portion 14a and the hole 14b. A cylindrical bellows 17 for separating the vacuum side and the atmosphere side is provided on the outer peripheral side of the movable lead 11 and the heat pipe 12, one end of which is attached to the movable electrode support plate 9, and the other end is the movable side end plate 4. The vacuum state in the vacuum vessel 5 is maintained.

上記構成の真空可変コンデンサにおいて、その最大静電容量値を調整する場合は、まずストップねじ16を螺入する前に調整ナット14を若干右に回し(右ねじの場合)、センターピン7の先端と調整ねじ13の内端が突き当たる最大静電容量の位置より可動リード11を若干下方に移動させ、定義した最大静電容量値に調整する。この若干の調整量は、真空可変コンデンサの静電容量のバラツキに対応して決まる。   When adjusting the maximum capacitance value of the vacuum variable capacitor having the above-described configuration, first, before inserting the stop screw 16, the adjustment nut 14 is slightly turned to the right (in the case of a right screw), and the tip of the center pin 7 is turned on. Then, the movable lead 11 is moved slightly downward from the position of the maximum capacitance where the inner end of the adjustment screw 13 abuts, and adjusted to the defined maximum capacitance value. This slight adjustment amount is determined in accordance with the variation in the capacitance of the vacuum variable capacitor.

次に、この状態でストップねじ16をその頭部16aが調整ナット14の段部14cに当接するまで雌ねじ部13bに螺入し、接着剤等で調整ねじ13に固定する。ストップねじ16と調整ナット14とは接着しない。これにより、調整ねじ13の上昇位置は規制され、この最大静電容量値の位置より調整ナット14を左に回そうとしてもストップねじ16の頭部16aが段部14cと当接して回らず、調整ねじ13は上昇しない。   Next, in this state, the stop screw 16 is screwed into the female screw portion 13b until the head portion 16a contacts the stepped portion 14c of the adjusting nut 14, and is fixed to the adjusting screw 13 with an adhesive or the like. The stop screw 16 and the adjusting nut 14 are not bonded. As a result, the rising position of the adjusting screw 13 is restricted, and even if the adjusting nut 14 is turned counterclockwise from the position of the maximum capacitance value, the head portion 16a of the stop screw 16 does not come into contact with the step portion 14c, The adjusting screw 13 does not rise.

静電容量の調整は、例えば調整ナット14を右に回すと、調整ねじ13が下方に移動し、左回転では上方へ移動し、これにより可動電極10を上下動させ、固定電極6との対向総面積を可変することにより行われる。   For adjusting the capacitance, for example, when the adjustment nut 14 is turned to the right, the adjustment screw 13 is moved downward. When the adjustment nut 13 is rotated counterclockwise, the adjustment screw 13 is moved upward, thereby moving the movable electrode 10 up and down and facing the fixed electrode 6. This is done by changing the total area.

真空可変コンデンサは、真空容器5内が真空であるので、調整ねじ13を常に上方へ押し上げる力が作用し、この力は調整ナット14にも作用し、鍔部12aには面圧が生じ、調整ナット14の回転に大きな回転トルクを必要とするが、軸受15を設けたので、この回転トルクを小さくすることができる。なお、従来の真空可変コンデンサは、特許文献2及び特許文献3にも示されている。
特開平8−97088号公報 特許第3264004号公報 特開2001−217147号公報
Since the inside of the vacuum vessel 5 is vacuum, the vacuum variable capacitor always exerts a force that pushes the adjustment screw 13 upward, and this force also acts on the adjustment nut 14, generating a surface pressure on the flange 12 a, and adjusting it. Although a large rotational torque is required for the rotation of the nut 14, since the bearing 15 is provided, this rotational torque can be reduced. Conventional vacuum variable capacitors are also shown in Patent Document 2 and Patent Document 3.
JP-A-8-97088 Japanese Patent No. 3264004 JP 2001-217147 A

近年、半導体製造装置用の高周波電源の大容量化に伴い、真空可変コンデンサも大電流化が要求されており、そのためには、真空可変コンデンサの内部損失を低減させる必要がある。ここで、真空可変コンデンサの等価回路を簡略化して描くと、図7に示すようになる。Coは絶縁筒1の静電容量、Rbはベローズ17の抵抗、Ccはセンターピン7の静電容量、Ceは電極部6,10の静電容量である。絶縁筒1に流れる電流Ioは2πfCoV、絶縁筒1の発熱量WoはV×Io×tanδであるから、
Wo=2πfCo×V2×tanδ (1)
となる。ただし、Vは真空可変コンデンサに印加される電圧、fはその周波数、tanδは絶縁筒1の誘電体損失である。又、真空可変コンデンサの全体電流Iは全体の静電容量をCとして2πfCVとなり、センターピン7に流れる電流IcはI×Cc/(C−Co)となる。センターピン7の発熱量Wcは、センターピン7の誘電体損失をtanδとしてVc×Ic×tanδであるから、センターピン7への印加電圧Vc≒Vとして、
Wc=2πfC×Cc/(C−Co)×V2×tanδ (2)
となる。従って、高耐圧、低静電容量で使用されるほど、絶縁筒1とセンターピン7の発熱量Wo,Wcが大きくなり、tanδを1/10にすれば、発熱量も1/10になる。
In recent years, with the increase in capacity of a high-frequency power supply for semiconductor manufacturing equipment, the vacuum variable capacitor is also required to have a large current. For this purpose, it is necessary to reduce the internal loss of the vacuum variable capacitor. Here, when the equivalent circuit of the vacuum variable capacitor is drawn in a simplified manner, it is as shown in FIG. Co is the capacitance of the insulating cylinder 1, Rb is the resistance of the bellows 17, Cc is the capacitance of the center pin 7, and Ce is the capacitance of the electrode portions 6 and 10. Since the current Io flowing through the insulating cylinder 1 is 2πfCoV and the heat generation amount Wo of the insulating cylinder 1 is V × Io × tan δ,
Wo = 2πfCo × V 2 × tan δ (1)
It becomes. Where V is a voltage applied to the vacuum variable capacitor, f is its frequency, and tan δ is a dielectric loss of the insulating cylinder 1. The total current I of the vacuum variable capacitor is 2πfCV, where C is the total capacitance, and the current Ic flowing through the center pin 7 is I × Cc / (C−Co). Since the heat generation amount Wc of the center pin 7 is Vc × Ic × tan δ, where the dielectric loss of the center pin 7 is tan δ, the applied voltage Vc≈V to the center pin 7 is
Wc = 2πfC × Cc / (C -Co) × V 2 × tanδ (2)
It becomes. Accordingly, the heat generation amounts Wo and Wc of the insulating cylinder 1 and the center pin 7 increase as the voltage is increased and the capacitance is decreased. If tan δ is set to 1/10, the heat generation amount is also reduced to 1/10.

又、真空可変コンデンサは構造上ベローズに電流が流れるが、真空可変コンデンサの大電流化のためにはベローズの通電能力を上げる必要があり、ベローズの大径化を図り、通電面積を増す必要がある。   In addition, current flows through the bellows due to the structure of the vacuum variable capacitor. However, in order to increase the current of the vacuum variable capacitor, it is necessary to increase the current carrying capacity of the bellows, and it is necessary to increase the diameter of the bellows and increase the current carrying area. is there.

しかしながら、図6に示した従来の真空可変コンデンサにおいては、摺動部であるセンターピン7の熱損失(摺動摩擦によるものも含む。)による影響、また絶縁筒1の発熱による影響が問題となる可能性があった。又、ベローズ17は薄肉であり、材質は銅系又はステンレス系にCuコーティングしたものであるために、真空可変コンデンサの通電能力はベローズ17により決定され、ベローズ17を大径化することにより通電能力は向上するが、真空可変コンデンサの小形化ができなかった。また、真空側と大気側との差圧による自閉力が増加し、調整ナット14の回転トルクが増加し、調整ナット14を駆動するモータや制御回路が大形化する問題が生じた。さらに、静電容量の調整は調整ナット14を回転することにより可能であるが、調整ナット14に対して径方向の応力が加わると、摺
動部である可動リード11、固定ガイド8及びセンターピン7の摩擦抵抗が大きくなり、摺動に支障をきたす可能性があった。
However, in the conventional vacuum variable capacitor shown in FIG. 6, the influence due to heat loss (including sliding friction) of the center pin 7 which is a sliding portion and the influence due to heat generation of the insulating cylinder 1 become problems. There was a possibility. Further, since the bellows 17 is thin and the material is copper or stainless steel coated with Cu, the current carrying capacity of the vacuum variable capacitor is determined by the bellows 17, and the current carrying capacity can be increased by increasing the diameter of the bellows 17. However, the size of the vacuum variable capacitor could not be reduced. Further, the self-closing force due to the pressure difference between the vacuum side and the atmosphere side increases, the rotational torque of the adjusting nut 14 increases, and the motor and the control circuit for driving the adjusting nut 14 become large. Furthermore, the capacitance can be adjusted by rotating the adjustment nut 14. However, when a radial stress is applied to the adjustment nut 14, the movable lead 11, the fixed guide 8, and the center pin that are sliding portions are applied. The frictional resistance of No. 7 increased, and there was a possibility that the sliding would be hindered.

この発明は上記のような課題を解決するために成されたものであり、内部損失を低減することができ、大電流通電が可能であるとともに、小形化が可能であり、調整ナットに径方向の応力が働いても摺動に支障がなく、調整ナットの回転トルクを低減することができる真空可変コンデンサを得ることを目的とする。   The present invention has been made to solve the above-described problems, and can reduce internal loss, can carry a large current, and can be miniaturized. It is an object of the present invention to obtain a vacuum variable capacitor that can reduce the rotational torque of the adjusting nut without causing any trouble in sliding even if the stress of the above acts.

この発明の請求項1に係る真空可変コンデンサは、絶縁筒の両端を固定側端板及び可動側端板により閉塞した真空容器と、固定側端板の内面に立設した固定電極と、真空容器内に固定側端板と対向して配置された可動電極支持板と、可動電極支持板の固定側端板側に固定電極と対向して立設された可動電極と、一端が可動電極支持板に取り付けられるとともに、他端が可動側端板に取り付けられ、真空側と大気側とを区分する筒状のベローズと、ベローズの内周側において可動側端板の孔に内方に突出して設けられたヒートパイプと、一端が可動電極支持板に取り付けられるとともに、ヒートパイプに挿通され、かつ他端側外周に雄ねじ部が設けられるとともに、他端に雌ねじ部が形成された調整ねじと、調整ねじの雌ねじ部と螺合するストップねじと、ヒートパイプの内周側に軸受を介して回転自
在に支持されるとともに、調整ねじの雄ねじ部と螺合する雌ねじ部とストップねじの頭部と係合可能な段部とを有する調整ナットと、ベローズの内周側において可動電極支持板に取り付けられ、ヒートパイプの外周を覆う放熱ガイドと、ベローズの内周側と外気側とを連通する空気孔とを備えたものである。
According to a first aspect of the present invention, there is provided a vacuum variable capacitor comprising: a vacuum vessel in which both ends of an insulating cylinder are closed with a fixed side end plate and a movable side end plate; a fixed electrode erected on the inner surface of the fixed side end plate; A movable electrode support plate disposed opposite to the fixed side end plate, a movable electrode standing on the fixed side end plate side of the movable electrode support plate and facing the fixed electrode, and one end of the movable electrode support plate The other end is attached to the movable side end plate, and is provided with a cylindrical bellows that separates the vacuum side and the atmosphere side, and projecting inwardly into the hole of the movable side end plate on the inner peripheral side of the bellows And an adjustment screw having one end attached to the movable electrode support plate, inserted into the heat pipe, provided with a male screw portion on the outer periphery of the other end, and formed with a female screw portion on the other end. Stroke that is screwed into the female thread of the screw And a stepped portion that can be engaged with the male screw portion of the adjusting screw and the head portion of the stop screw. An adjustment nut, a heat radiation guide that is attached to the movable electrode support plate on the inner peripheral side of the bellows and covers the outer periphery of the heat pipe, and an air hole that communicates the inner peripheral side and the outside air side of the bellows.

請求項2に係る真空可変コンデンサは、ヒートパイプの調整ねじとの摺動部にリニアベアリングを設けたものである。   The vacuum variable capacitor according to claim 2 is provided with a linear bearing at a sliding portion with an adjustment screw of the heat pipe.

請求項に係る真空可変コンデンサは、絶縁筒の両端を固定側端板及び可動側端板により閉塞した真空容器と、固定側端板の内面に立設した固定電極と、固定側端板の内面の中心に立設されたセンターピンと、真空容器内に固定側端板と対向して配置された可動電極支持板と、可動電極支持板の固定側端板側に固定電極と対向して立設された可動電極と、一端が可動電極支持板に取り付けられるとともに、他端が可動側端板に取り付けられ、真空側と大気側とを区分する筒状のベローズと、ベローズの内周側において可動電極支持板に取り付けられ、センターピンと摺動自在に嵌合するとともにセンターピンと絶縁される可動リードと、ベローズの内周側において可動側端板の孔に設けられたねじ受け部と、一端が可動リードに取り付けられるとともに、ねじ受け部に挿通され、かつ外周に雄ねじ部
が設けられるとともに、他端に雌ねじ部が形成された調整ねじと、調整ねじの雌ねじ部と螺合するストップねじと、ねじ受け部に軸受を介して回転自在に支持されるとともに、調整ねじの雄ねじ部と螺合する雌ねじ部とストップねじの頭部と係合可能な段部とを有する調整ナットと、ベローズの内周側でねじ受け部の外周側において可動側端板に取り付けられたヒートパイプと、ベローズの内周側と外気側とを連通する空気孔とを備えたものである。
According to a third aspect of the present invention, there is provided a vacuum variable capacitor in which both ends of an insulating cylinder are closed by a fixed side end plate and a movable side end plate, a fixed electrode standing on the inner surface of the fixed side end plate, and a fixed side end plate A center pin erected at the center of the inner surface, a movable electrode support plate disposed in the vacuum container facing the fixed side end plate, and a fixed electrode on the fixed side end plate side of the movable electrode support plate. The movable electrode provided, one end is attached to the movable electrode support plate, the other end is attached to the movable side end plate, and a cylindrical bellows that separates the vacuum side and the atmosphere side, and on the inner peripheral side of the bellows A movable lead attached to the movable electrode support plate, slidably fitted to the center pin and insulated from the center pin, a screw receiving portion provided in a hole of the movable side end plate on the inner peripheral side of the bellows, and one end thereof Attached to the movable lead In addition, an adjustment screw that is inserted into the screw receiving portion and provided with a male screw portion on the outer periphery and has a female screw portion formed at the other end, a stop screw that engages with the female screw portion of the adjustment screw, and a bearing in the screw receiving portion And an adjustment nut having a female screw portion that is screwed with a male screw portion of the adjustment screw and a step portion engageable with a head portion of the stop screw, and a screw receiver on the inner peripheral side of the bellows A heat pipe attached to the movable side end plate on the outer peripheral side of the part, and an air hole communicating the inner peripheral side and the outside air side of the bellows.

請求項に係る真空可変コンデンサは、絶縁筒の両端を固定側端板及び可動側端板により閉塞した真空容器と、固定側端板の内面に立設した固定電極と、真空容器内に固定側端板と対向して配置された可動電極支持板と、可動電極支持板の固定側端板側に固定電極と対向して立設された可動電極と、一端が可動電極支持板に取り付けられるとともに、他端が可動側端板に取り付けられ、真空側と大気側とを区分する筒状のベローズと、ベローズの内周側において可動側端板の孔に内方に突出して設けられ、摺動ガイドを兼用する導電材からなるヒートパイプと、一端が可動電極支持板に取り付けられるとともに、ヒートパイプに摺動自在に挿通され、かつ他端側外周に雄ねじ部が設けられるとともに、他端に雌ねじ部が形成された調整ねじと、ベローズの内周側において可動電極支持板に取り付けられ、ヒートパイプと摺動する導電材からなる摺動部材と、摺動部材とヒートパイプとの摺動部に設けられた導電材からなる摺動コンタクトと、調整ねじの雌ねじ部と螺合するストップねじと、ヒートパイプの内周側に軸受を介して回転自在に支持されるとともに、調整ねじの雄ねじ部と螺合する雌ねじ部とストップねじの頭部と係合可能な段部とを有する調整ナットと、ベローズの内周側と外気側とを連通する空気孔とを備えたものである。 The vacuum variable capacitor according to claim 4 is a vacuum vessel in which both ends of the insulating cylinder are closed by a fixed side end plate and a movable side end plate, a fixed electrode erected on the inner surface of the fixed side end plate, and fixed in the vacuum vessel A movable electrode support plate disposed facing the side end plate, a movable electrode erected on the fixed side end plate side of the movable electrode support plate so as to face the fixed electrode, and one end attached to the movable electrode support plate In addition, the other end is attached to the movable side end plate, and is provided with a cylindrical bellows that separates the vacuum side and the atmosphere side, and projects inwardly into the hole of the movable side end plate on the inner peripheral side of the bellows. A heat pipe made of a conductive material that also serves as a moving guide, one end is attached to the movable electrode support plate, is slidably inserted into the heat pipe, and has a male screw portion on the outer periphery of the other end, and at the other end An adjustment screw with a female thread A sliding member that is attached to the movable electrode support plate on the inner peripheral side of the bellows and that is made of a conductive material that slides with the heat pipe, and a sliding that is made of a conductive material provided at a sliding portion between the sliding member and the heat pipe A contact, a stop screw that engages with the female thread of the adjustment screw, and a support screw that is rotatably supported via a bearing on the inner peripheral side of the heat pipe, and a female screw that engages with the male screw of the adjustment screw and the stop screw. An adjustment nut having a step portion engageable with the head and an air hole communicating the inner peripheral side and the outside air side of the bellows are provided.

請求項に係る真空可変コンデンサは、絶縁筒を高純度アルミナにより形成したものである。 The vacuum variable capacitor according to claim 5 is an insulating cylinder formed of high-purity alumina.

以上のようにこの発明の請求項1によれば、センターピンを無くすことにより、センターピンの通電による発熱及び摺動による発熱を無くすことができ、内部損失を低減して通電能力を高めることができる。又、ベローズの内周側と調整ねじの摺動部との間にヒートパイプ及び放熱ガイドを設けるとともに、ベローズの内周側に空気を流入させて冷却するようにしており、ベローズの熱が調整ねじの摺動部へ悪影響を与えないようにすることができ、調整ねじの摺動や調整ナットの回転を円滑に行うことができるとともに、通電能力を高めることができる。さらに、ヒートパイプと調整ナットとの間に軸受を設けており、調整ナットの径方向荷重に対する耐量を向上することができる。   As described above, according to the first aspect of the present invention, by eliminating the center pin, it is possible to eliminate the heat generated by energizing the center pin and the heat generated by sliding, thereby reducing the internal loss and increasing the energizing capability. it can. In addition, a heat pipe and a heat radiation guide are provided between the inner peripheral side of the bellows and the sliding part of the adjusting screw, and air is allowed to flow into the inner peripheral side of the bellows for cooling so that the heat of the bellows is adjusted. The sliding portion of the screw can be prevented from being adversely affected, the adjustment screw can be slid and the adjustment nut can be smoothly rotated, and the current-carrying capacity can be increased. Furthermore, the bearing is provided between the heat pipe and the adjustment nut, and the resistance to the radial load of the adjustment nut can be improved.

請求項2によれば、ヒートパイプの調整ねじとの摺動部にリニアベアリングを設けており、調整ねじの摺動トルクを低減することができるとともに、調整ナットの回転トルクも低減することができる。又、ベローズとリニアベアリングとの間にベローズの熱を遮蔽するためのヒートパイプや放熱ガイドが設けられるとともに、ベローズの冷却のための空気孔が設けられており、リニアベアリングがベローズの放熱の影響を受け難くなり、調整ねじの摺動や調整ナットの回転を円滑に行うことができる。   According to the second aspect, the linear bearing is provided in the sliding portion with the adjustment screw of the heat pipe, so that the sliding torque of the adjustment screw can be reduced and the rotational torque of the adjustment nut can also be reduced. . In addition, a heat pipe and a heat radiation guide are provided between the bellows and the linear bearing to shield the heat of the bellows, and an air hole for cooling the bellows is provided. The adjustment screw can be smoothly slid and the adjustment nut can be smoothly rotated.

請求項によれば、ベローズの内周側と外気側とを連通する空気孔を設けるとともに、ベローズの内周側とねじ受け部との間にヒートパイプを設けており、ベローズを冷却して通電能力を高めるとともに、ヒートパイプの内周側の摺動部や回転部へのベローズの熱の影響を低減することができ、摺動や回転を円滑に行うことができる。 According to claim 3 , while providing the air hole which connects the inner peripheral side of the bellows and the outside air side, the heat pipe is provided between the inner peripheral side of the bellows and the screw receiving portion, and the bellows is cooled. While increasing the current-carrying capacity, the influence of the heat of the bellows on the sliding part and the rotating part on the inner peripheral side of the heat pipe can be reduced, and sliding and rotation can be performed smoothly.

請求項によれば、センターピンを無くしたので、その発熱が生じない。このため、内部損失が低減され、通電能力を向上することができる。又、通電が摺動部材、摺動コンタクト及びヒートパイプを介して行われるので、通電をベローズにより行う場合より大電流化が可能であり、小形化も可能である。また、ヒートパイプが摺動ガイドの機能を有し、ヒートパイプと調整ナットとの間に軸受を設けたので、調整ナットに横方向の荷重が加わっても調整ナットの回転や調整ねじの摺動に支障を生じない。さらに、ベローズの内周側に外気を導入するとともに、摺動部や回転部の外周側にヒートパイプを設けたので、ベローズを冷却して通電能力を高めるとともに、摺動部や回転部へのベローズの熱の影響を低減し、摺動や回転を円滑に行うことができる。 According to claim 4 , since the center pin is eliminated, the heat generation does not occur. For this reason, internal loss is reduced and the current carrying capacity can be improved. In addition, since energization is performed through the sliding member, the sliding contact, and the heat pipe, the current can be increased and the size can be reduced as compared with the case where the energization is performed by the bellows. In addition, the heat pipe has a sliding guide function, and a bearing is provided between the heat pipe and the adjustment nut. Therefore, even if a lateral load is applied to the adjustment nut, the adjustment nut rotates and the adjustment screw slides. Will not be disturbed. In addition, outside air is introduced to the inner peripheral side of the bellows, and a heat pipe is provided on the outer peripheral side of the sliding part and the rotating part. The influence of the heat of the bellows can be reduced, and sliding and rotation can be performed smoothly.

請求項によれば、絶縁筒を高純度アルミナにより形成したので、誘電体損失が小さくなり、絶縁筒の発熱が低減され、内部損失の低減により通電能力を向上することができる。 According to the fifth aspect , since the insulating cylinder is made of high-purity alumina, the dielectric loss is reduced, the heat generation of the insulating cylinder is reduced, and the current carrying capacity can be improved by reducing the internal loss.

実施最良形態1
以下、この発明の実施の形態を図面とともに説明する。図1はこの発明の実施最良形態1による真空可変コンデンサの断面図を示し、センターピン等は設けられていない。可動側端板4の中心には孔4aが設けられ、孔4aには筒状のヒートパイプ18が挿入され、ヒートパイプ18のフランジ部18aは端板4の外面に取り付けられる。19は上端が可動電極支持板9に取り付けられた調整ねじであり、調整ねじ19はヒートパイプ18に挿通され、かつ他端側外周に雄ねじ部19aが設けられる。ヒートパイプ18の内周には調整ねじ19を軸方向に摺動するリニアベアリング20を設ける。又、可動電極支持板9の可動電極10の反対側には、ベローズ17の内周側とヒートパイプ18との間を遮蔽する放熱ガイド21の上端を取り付ける。また、可動側端板4及びヒートパイプ18のフラン
ジ部18aにはベローズ17の内周側と外気側とを連通する空気孔4b,18bを設ける。
Best Embodiment 1
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view of a vacuum variable capacitor according to Embodiment 1 of the present invention, and no center pin or the like is provided. A hole 4 a is provided in the center of the movable side end plate 4, a cylindrical heat pipe 18 is inserted into the hole 4 a, and a flange portion 18 a of the heat pipe 18 is attached to the outer surface of the end plate 4. Reference numeral 19 denotes an adjustment screw having an upper end attached to the movable electrode support plate 9. The adjustment screw 19 is inserted into the heat pipe 18, and a male screw portion 19a is provided on the outer periphery of the other end side. A linear bearing 20 that slides the adjusting screw 19 in the axial direction is provided on the inner periphery of the heat pipe 18. Further, the upper end of a heat radiation guide 21 that shields between the inner peripheral side of the bellows 17 and the heat pipe 18 is attached to the opposite side of the movable electrode support plate 9 to the movable electrode 10. In addition, air holes 4b and 18b are provided in the movable end plate 4 and the flange portion 18a of the heat pipe 18 so as to communicate the inner peripheral side of the bellows 17 and the outside air side.

調整ナット14には調整ねじ19の雄ねじ部19aと螺合する雌ねじ部14aが設けられるとともに、雌ねじ部14aより大径の孔14bが設けられ、雌ねじ部14aと孔14bとの間にはストップねじ16の頭部16aが係合可能な段部14cが形成される。また、ヒートパイプ18と調整ナット14との間には軸受22,23が設けられ、調整ねじ19の下端には雌ねじ部19bが設けられ、雌ねじ部19bにはストップねじ16が螺合される。その他の構成は従来と同様である。   The adjustment nut 14 is provided with a female screw portion 14a that is screwed into the male screw portion 19a of the adjustment screw 19, and a hole 14b having a larger diameter than the female screw portion 14a. A stop screw is provided between the female screw portion 14a and the hole 14b. A step portion 14c to which the 16 head portions 16a can be engaged is formed. Further, bearings 22 and 23 are provided between the heat pipe 18 and the adjusting nut 14, a female screw portion 19b is provided at the lower end of the adjusting screw 19, and a stop screw 16 is screwed into the female screw portion 19b. Other configurations are the same as those of the prior art.

上記構成において、最大静電容量値の調整は従来と同様である。静電容量の調整は、調整ナット14を回転し、調整ねじ19及び可動電極支持板9を上下動させ、可動電極10を上下動させることにより行う。   In the above configuration, the adjustment of the maximum capacitance value is the same as the conventional one. The capacitance is adjusted by rotating the adjustment nut 14, moving the adjustment screw 19 and the movable electrode support plate 9 up and down, and moving the movable electrode 10 up and down.

実施最良形態1においては、センターピンを無くすことにより、センターピンの通電による発熱及び摺動による発熱を無くし、内部損失を低減して通電能力を向上することができる。又、固定側のヒートパイプ18と可動側の調整ねじ19との間に摺動部としてのリニアベアリング20を設けるとともに、ヒートパイプ18と調整ナット14との間に軸受22,23を設けており、調整ナット14の径方向荷重に対する耐量を向上することができるとともに、摺動トルクを低減することができ、調整ナット14の回転トルクも低減することができる。さらに、ベローズ17の内周側とリニアベアリング20との間にヒートパイプ18及び放熱ガイド21を設け、かつ可動側端板4及びヒートパイプ18にベローズ17の放熱のための空気孔4b,18bを設けており、ベローズ17の発熱によりリニ
アベアリング(摺動部)20等に悪影響を与えず、調整ねじ19の摺動や調整ナット14の回転に悪影響を与えず、又、ベローズ17の冷却効率を高めることにより、通電能力を高めることも可能である。
In the first embodiment, by eliminating the center pin, heat generated by energization of the center pin and heat generated by sliding can be eliminated, the internal loss can be reduced, and the energization capability can be improved. Further, a linear bearing 20 as a sliding portion is provided between the fixed side heat pipe 18 and the movable side adjustment screw 19, and bearings 22 and 23 are provided between the heat pipe 18 and the adjustment nut 14. In addition, the resistance to the radial load of the adjusting nut 14 can be improved, the sliding torque can be reduced, and the rotational torque of the adjusting nut 14 can also be reduced. Further, a heat pipe 18 and a heat radiation guide 21 are provided between the inner peripheral side of the bellows 17 and the linear bearing 20, and air holes 4 b and 18 b for heat radiation of the bellows 17 are provided in the movable side end plate 4 and the heat pipe 18. The heat generated by the bellows 17 does not adversely affect the linear bearing (sliding portion) 20 and the like, does not adversely affect the sliding of the adjusting screw 19 and the rotation of the adjusting nut 14, and can improve the cooling efficiency of the bellows 17. By increasing it, it is also possible to increase the current carrying capacity.

なお、実施最良形態1では、固定側端板4及びヒートパイプ18に空気孔4b,18bを設けたが、ベローズ17の内周側と外気とを連通可能であれば、空気孔は可動側端板4のみ、またはヒートパイプ18のみに設けてもよい。   In the first embodiment, the air holes 4b and 18b are provided in the fixed side end plate 4 and the heat pipe 18. However, if the inner peripheral side of the bellows 17 and the outside air can be communicated, the air hole is movable side end. You may provide only in the board 4 or only in the heat pipe 18. FIG.

実施最良形態2
図2は実施最良形態2による真空可変コンデンサの断面図を示し、24はベローズ17の内周側において可動側端板4の孔4aの内面側周辺部に立設されたねじ受け部であり、上端が可動リード11に取り付けられた調整ねじ13はねじ受け部24に挿通される。又、ねじ受け部24には軸受15を介して調整ナット14の上端が回転自在に支持される。また、真空容器5内のベローズ17の外周側において、可動電極支持板9と可動側端板4との間にこの両者の間を通電するバイパス通電部25が設けられる。バイパス通電部25は、可動電極支持板9に取り付けられた筒状導体部25aと、可動側端板4に取り付けられた筒状導体部25bと、この両者を連結する可撓性のある可撓性導体部25cとからなり、バイパス通電部25は電気導電率が良い銅により形成される。又、可動側端板4の外
面側には補強板26が取り付けられ、補強板26の中心には挿通孔26aが設けられ、挿通孔26aには調整ナット14等が挿通される。その他の構成は従来と同様である。
Embodiment 2
FIG. 2 is a cross-sectional view of the vacuum variable capacitor according to the second embodiment, and 24 is a screw receiving portion erected on the inner peripheral side of the hole 4a of the movable side end plate 4 on the inner peripheral side of the bellows 17, The adjusting screw 13 having the upper end attached to the movable lead 11 is inserted into the screw receiving portion 24. Further, the upper end of the adjustment nut 14 is rotatably supported by the screw receiving portion 24 via the bearing 15. Further, on the outer peripheral side of the bellows 17 in the vacuum vessel 5, a bypass energization unit 25 that energizes between the movable electrode support plate 9 and the movable side end plate 4 is provided. The bypass energization unit 25 includes a cylindrical conductor portion 25a attached to the movable electrode support plate 9, a cylindrical conductor portion 25b attached to the movable side end plate 4, and a flexible flexible member that connects the two. The bypass energizing portion 25 is made of copper having good electrical conductivity. Further, a reinforcing plate 26 is attached to the outer surface side of the movable side end plate 4, an insertion hole 26a is provided at the center of the reinforcing plate 26, and the adjustment nut 14 and the like are inserted into the insertion hole 26a. Other configurations are the same as those of the prior art.

実施最良形態2においても、調整ナット14の回転によって調整ねじ13及び可動リード11を介して可動電極10を上下動し、静電容量を調整する。   Also in the second embodiment, the movable electrode 10 is moved up and down through the adjustment screw 13 and the movable lead 11 by the rotation of the adjustment nut 14 to adjust the capacitance.

実施最良形態2においては、ベローズ17の外周にバイパス通電部25を設けており、固定側と可動側の通電はこのバイパス通電部25により行われるので、大電流通電が可能である。又、ベローズ17は真空側と大気側とを区分するためだけに設けられ、小径化することができる。このため、真空可変コンデンサの大形化は生じず、また真空側と大気側との差圧から生じる自閉力も小さくなり、調整ナット14の回転トルクを小さくすることができる。   In the second embodiment, the bypass energization unit 25 is provided on the outer periphery of the bellows 17, and the energization on the fixed side and the movable side is performed by the bypass energization unit 25, so that a large current energization is possible. Further, the bellows 17 is provided only for distinguishing between the vacuum side and the atmosphere side, and the diameter can be reduced. For this reason, the vacuum variable capacitor does not increase in size, and the self-closing force resulting from the pressure difference between the vacuum side and the atmosphere side is reduced, and the rotational torque of the adjusting nut 14 can be reduced.

なお、バイパス通電部25を銅により形成したが、電気導電率の良い銀により形成してもよく、またステンレスに銅をコーティングしたもの、あるいはステンレスに銀をコーティングしたものにより形成してもよい。   Although the bypass energizing portion 25 is formed of copper, it may be formed of silver having good electrical conductivity, or may be formed of a stainless steel coated with copper or a stainless steel coated with silver.

実施最良形態3
図3は実施最良形態3による真空可変コンデンサの断面図を示し、24はベローズ17の内周側において可動側端板4の孔4aに嵌合されたねじ受け部であり、ねじ受け部24は軸受15を介して調整ナット14の上端を回転自在に支持する。27はベローズ17の内周側でねじ受け部24の外周側において可動側端板4の内面に立設されたヒートパイプである。また、可動側端板4及び補強板26にはベローズ17の内周側と外気側とを連通する空気孔4b,26bを設ける。その他の構成は従来及び上記各実施最良形態と同様である。
Embodiment 3
FIG. 3 is a cross-sectional view of the vacuum variable capacitor according to the third preferred embodiment. Reference numeral 24 denotes a screw receiving portion fitted in the hole 4a of the movable side end plate 4 on the inner peripheral side of the bellows 17, and the screw receiving portion 24 is The upper end of the adjusting nut 14 is rotatably supported via the bearing 15. A heat pipe 27 is erected on the inner surface of the bellows 17 on the inner surface of the movable end plate 4 on the outer periphery of the screw receiving portion 24. The movable side end plate 4 and the reinforcing plate 26 are provided with air holes 4b and 26b that communicate the inner peripheral side of the bellows 17 with the outside air side. Other configurations are the same as those in the conventional and the above-described best embodiments.

実施最良形態3においては、ベローズ17の内周側と外気側とを連通する空気孔4b,26bを設けたので、通電により発熱するベローズ17の冷却効果が上昇し、大電流化が可能となる。又、ヒートパイプ27を設けたので、その内周側の部材をベローズ17の熱から保護することができ、これによっても大電流化が可能である。   In the third embodiment, since the air holes 4b and 26b that communicate the inner peripheral side and the outside air side of the bellows 17 are provided, the cooling effect of the bellows 17 that generates heat by energization is increased, and a large current can be achieved. . Further, since the heat pipe 27 is provided, the member on the inner peripheral side can be protected from the heat of the bellows 17, and this can also increase the current.

実施最良形態4
図4は実施最良形態4による真空可変コンデンサの断面図、図5(a),(b)は同じく摺動コンタクトの部分平面図及び部分展開斜視図を示し、センターピン7は設けられていない。絶縁筒30はセラミックスにより形成されるが、特に誘電体損失(tanδ)が少ない高純度アルミナにより形成する。具体的には、通常、純度92%のアルミナを用いるのに対して、高純度アルミナは純度99.5%以上である。28はベローズ17の内周側において可動側端板4の孔4aの周辺部の外面側にフランジ部28aが取り付けられ、真空容器5の内方に突出して形成されたヒートパイプであり、ヒートパイプ28は導電材からなり、また摺動ガイドとしても機能する。29は上端が可動電極支持板9に取り付けられるとともに、ヒートパイプ28に摺動自在に挿通された調整ねじであり、下端側外周には雄ねじ部29aが設けられるとともに、下端に雌ねじ部29bが設けられる。
Embodiment 4
FIG. 4 is a cross-sectional view of a vacuum variable capacitor according to the fourth embodiment, and FIGS. 5A and 5B are a partial plan view and a partially developed perspective view of the sliding contact, respectively, and the center pin 7 is not provided. The insulating cylinder 30 is made of ceramics, but is made of high-purity alumina with particularly low dielectric loss (tan δ). Specifically, alumina having a purity of 92% is usually used, whereas high purity alumina has a purity of 99.5% or more. 28 is a heat pipe formed on the inner peripheral side of the bellows 17 with a flange portion 28a attached to the outer surface side of the peripheral portion of the hole 4a of the movable side end plate 4 and protruding inward of the vacuum vessel 5. 28 is made of a conductive material and also functions as a sliding guide. Reference numeral 29 denotes an adjustment screw having an upper end attached to the movable electrode support plate 9 and slidably inserted into the heat pipe 28. A male screw portion 29a is provided on the outer periphery of the lower end side, and a female screw portion 29b is provided on the lower end. It is done.

31はベローズ17の内周側において上端が可動電極支持板9に取り付けられた筒状の摺動部材であり、摺動部材31は銅等の導電材からなり、ヒートパイプ28と摺動する。ヒートパイプ28の摺動部材31との摺動部には銅等からなる摺動コンタクト32が設けられている。調整ねじ29の雌ねじ部29bにはストップねじ16が螺合され、調整ナット14はヒートパイプ28の内周側に軸受22,23を介して回転自在に支持される。調整ナット14は調整ねじ29の雄ねじ部29aと螺合する雌ねじ部14aを有するとともに、ストップねじ16の頭部16aと係合可能な段部14cを有する。また、可動側端板4及びヒートパイプ28のフランジ部28aには、ベローズ17の内周側と外気側とを連通する空気孔4b,28bが設けられる。   Reference numeral 31 denotes a cylindrical sliding member whose upper end is attached to the movable electrode support plate 9 on the inner peripheral side of the bellows 17. The sliding member 31 is made of a conductive material such as copper and slides with the heat pipe 28. A sliding contact 32 made of copper or the like is provided at a sliding portion of the heat pipe 28 with the sliding member 31. The stop screw 16 is screwed into the female screw portion 29b of the adjustment screw 29, and the adjustment nut 14 is rotatably supported on the inner peripheral side of the heat pipe 28 via bearings 22 and 23. The adjustment nut 14 has a female screw portion 14 a that is screwed with the male screw portion 29 a of the adjustment screw 29, and has a step portion 14 c that can be engaged with the head portion 16 a of the stop screw 16. The movable end plate 4 and the flange portion 28 a of the heat pipe 28 are provided with air holes 4 b and 28 b communicating the inner peripheral side of the bellows 17 and the outside air side.

実施最良形態4においては、センターピンが設けられないので、その通電による発熱及びその摺動摩擦による発熱が生じず、また絶縁筒30は高純度アルミナにより形成され、誘電体損失が小さいので、発熱が低減される。従って、内部損失が低減され、通電能力を向上することができる。又、固定側と可動側の通電が摺動部材31、摺動コンタクト32及びヒートパイプ28を介して行われるので、通電をベローズ17によって行っていた場合より大電流化が可能であり、ベローズ17の小径化も可能となり、小形化も可能となる。又、ヒートパイプ28が摺動ガイドとしての機能を有するとともに、ヒートパイプ28と調整ナット14との間に軸受22,23を設けたので、調整ナット14に横方向の荷重が加わっても、調整ナット14の回転や調整ねじ29の摺動に支障を生じない。さらに、
空気孔4b、28bを設けたことによりベローズ17の冷却効果を高めるとともに、ヒートパイプ28を設けたことによりベローズ17の熱による摺動部への悪影響を防止することができる。
In the fourth embodiment, since the center pin is not provided, no heat is generated due to the energization and no heat is generated due to the sliding friction, and the insulating cylinder 30 is made of high-purity alumina, and the dielectric loss is small. Reduced. Therefore, the internal loss is reduced and the current carrying capacity can be improved. In addition, since the energization of the fixed side and the movable side is performed through the sliding member 31, the sliding contact 32, and the heat pipe 28, the current can be increased as compared with the case where the energization is performed by the bellows 17. The diameter can be reduced and the size can be reduced. In addition, since the heat pipe 28 has a function as a sliding guide and the bearings 22 and 23 are provided between the heat pipe 28 and the adjustment nut 14, the adjustment can be performed even if a lateral load is applied to the adjustment nut 14. There is no hindrance to the rotation of the nut 14 and the sliding of the adjusting screw 29. further,
By providing the air holes 4b and 28b, the cooling effect of the bellows 17 can be enhanced, and by providing the heat pipe 28, adverse effects on the sliding portion due to the heat of the bellows 17 can be prevented.

この発明の実施最良形態1による真空可変コンデンサの断面図である。It is sectional drawing of the vacuum variable capacitor by Embodiment 1 of this invention. この発明の実施最良形態2による真空可変コンデンサの断面図である。It is sectional drawing of the vacuum variable capacitor by Embodiment 2 of this invention. 実施最良形態3による真空可変コンデンサの断面図である。6 is a cross-sectional view of a vacuum variable capacitor according to Embodiment 3. FIG. 実施最良形態4による真空可変コンデンサの断面図である。It is sectional drawing of the vacuum variable capacitor by Embodiment 4. 実施最良形態4による摺動コンタクトの部分平面図及び部分展開斜視図である。It is the partial top view and partial expansion | deployment perspective view of the sliding contact by Embodiment 4. 従来の真空可変コンデンサの断面図である。It is sectional drawing of the conventional vacuum variable capacitor. 従来の真空可変コンデンサの等価回路である。It is the equivalent circuit of the conventional vacuum variable capacitor.

符号の説明Explanation of symbols

1,30…絶縁筒
2…固定側端板
4…可動側端板
4a…孔
4b,18b,26b,28b…空気孔
5…真空容器
6…固定電極
7…センターピン
9…可動電極支持板
10…可動電極
11…可動リード
13,19,29…調整ねじ
13a,19a,29a…雄ねじ部
13b,14a,19b、29b…雌ねじ部
14…調整ナット
14c…段部
15,22,23…軸受
16…ストップねじ
16a…頭部
17…ベローズ
18,27,28…ヒートパイプ
20…リニアベアリング
21…放熱ガイド
24…ねじ受け部
25…バイパス通電部
26…補強板
31…摺動部材
32…摺動コンタクト
DESCRIPTION OF SYMBOLS 1,30 ... Insulating cylinder 2 ... Fixed side end plate 4 ... Movable side end plate 4a ... Hole 4b, 18b, 26b, 28b ... Air hole 5 ... Vacuum container 6 ... Fixed electrode 7 ... Center pin 9 ... Movable electrode support plate 10 ... Moving electrode 11 ... Moving lead 13,19,29 ... Adjusting screw 13a, 19a, 29a ... Male screw part 13b, 14a, 19b, 29b ... Female screw part 14 ... Adjusting nut 14c ... Step part 15,22,23 ... Bearing 16 ... Stop screw 16a ... Head 17 ... Bellows 18, 27, 28 ... Heat pipe 20 ... Linear bearing 21 ... Radiation guide 24 ... Screw receiving part 25 ... Bypass energizing part 26 ... Reinforcing plate 31 ... Sliding member 32 ... Sliding contact

Claims (5)

絶縁筒の両端を固定側端板及び可動側端板により閉塞した真空容器と、固定側端板の内面に立設した固定電極と、真空容器内に固定側端板と対向して配置された可動電極支持板と、可動電極支持板の固定側端板側に固定電極と対向して立設された可動電極と、一端が可動電極支持板に取り付けられるとともに、他端が可動側端板に取り付けられ、真空側と大気側とを区分する筒状のベローズと、ベローズの内周側において可動側端板の孔に内方に突出して設けられたヒートパイプと、一端が可動電極支持板に取り付けられるとともに、ヒートパイプに挿通され、かつ他端側外周に雄ねじ部が設けられるとともに、他端に雌ねじ部が形成された調整ねじと、調整ねじの雌ねじ部と螺合するストップねじと、ヒートパイプの内周側に軸受を介して回転自在に支持されるとともに、調整ねじの雄ねじ部と螺合する雌ねじ部とストップねじの頭部と係合可能な段部とを有する調整ナットと、ベローズの内周側において可動電極支持板に取り付けられ、ヒートパイプの外周を覆う放熱ガイドと、ベローズの内周側と外気側とを連通する空気孔とを備えたことを特徴とする真空可変コンデンサ。   A vacuum vessel in which both ends of the insulating cylinder are closed by a fixed side end plate and a movable side end plate, a fixed electrode standing on the inner surface of the fixed side end plate, and a fixed side end plate disposed in the vacuum vessel. A movable electrode support plate, a movable electrode erected on the fixed side end plate side of the movable electrode support plate so as to face the fixed electrode, one end is attached to the movable electrode support plate, and the other end is connected to the movable side end plate A cylindrical bellows that is attached and separates the vacuum side and the atmosphere side, a heat pipe that protrudes inwardly from the hole of the movable side end plate on the inner peripheral side of the bellows, and one end that is on the movable electrode support plate An adjustment screw that is attached and inserted into the heat pipe and has a male screw portion provided on the outer periphery on the other end side, and a female screw portion formed on the other end, a stop screw that engages with the female screw portion of the adjustment screw, and a heat Via a bearing on the inner periphery of the pipe An adjustment nut that is supported rotatably and has an internal thread portion that engages with the external thread portion of the adjustment screw and a step portion that can engage with the head portion of the stop screw, and a movable electrode support plate on the inner peripheral side of the bellows A vacuum variable capacitor, comprising: a heat radiation guide that is attached and covers an outer periphery of the heat pipe; and an air hole that communicates the inner periphery side and the outside air side of the bellows. ヒートパイプの調整ねじとの摺動部にリニアベアリングを設けたことを特徴とする請求項1記載の真空可変コンデンサ。   2. The vacuum variable capacitor according to claim 1, wherein a linear bearing is provided at a sliding portion with the adjustment screw of the heat pipe. 絶縁筒の両端を固定側端板及び可動側端板により閉塞した真空容器と、固定側端板の内面に立設した固定電極と、固定側端板の内面の中心に立設されたセンターピンと、真空容器内に固定側端板と対向して配置された可動電極支持板と、可動電極支持板の固定側端板側に固定電極と対向して立設された可動電極と、一端が可動電極支持板に取り付けられるとともに、他端が可動側端板に取り付けられ、真空側と大気側とを区分する筒状のベローズと、ベローズの内周側において可動電極支持板に取り付けられ、センターピンと摺動自在に嵌合するとともにセンターピンと絶縁される可動リードと、ベローズの内周側において可動側端板の孔に設けられたねじ受け部と、一端が可動リードに取り付けられるとともに、ねじ受け部に挿通され、かつ外周に雄ねじ部が設けられるとともに、他端に雌ねじ部が形成された調整ねじと、調整ねじの雌ねじ部と螺合するストップねじと、ねじ受け部に軸受を介して回転自在に支持されるとともに、調整ねじの雄ねじ部と螺合する雌ねじ部とストップねじの頭部と係合可能な段部とを有する調整ナットと、ベローズの内周側でねじ受け部の外周側において可動側端板に取り付けられたヒートパイプと、ベローズの内周側と外気側とを連通する空気孔とを備えたことを特徴とする真空可変コンデンサ。 A vacuum vessel in which both ends of the insulating cylinder are closed by a fixed-side end plate and a movable-side end plate, a fixed electrode erected on the inner surface of the fixed-side end plate, and a center pin erected at the center of the inner surface of the fixed-side end plate; A movable electrode support plate disposed in the vacuum container facing the fixed side end plate, a movable electrode standing on the fixed side end plate side of the movable electrode support plate facing the fixed electrode, and one end movable Attached to the electrode support plate, the other end is attached to the movable side end plate, a cylindrical bellows that separates the vacuum side and the atmosphere side, and attached to the movable electrode support plate on the inner peripheral side of the bellows, A movable lead that is slidably fitted and insulated from the center pin, a screw receiving portion provided in a hole of the movable side end plate on the inner peripheral side of the bellows, and one end attached to the movable lead, and a screw receiving portion Inserted into An adjustment screw having a male screw portion on the outer periphery and a female screw portion formed on the other end, a stop screw that engages with the female screw portion of the adjustment screw, and a screw receiving portion that is rotatably supported via a bearing An adjustment nut having a female threaded portion that engages with the male threaded portion of the adjusting screw, and a stepped portion that can be engaged with the head of the stop screw, and a movable side end plate on the outer peripheral side of the screw receiving portion on the inner peripheral side of the bellows. A vacuum variable capacitor comprising an attached heat pipe and an air hole that communicates an inner peripheral side and an outside air side of the bellows . 絶縁筒の両端を固定側端板及び可動側端板により閉塞した真空容器と、固定側端板の内面に立設した固定電極と、真空容器内に固定側端板と対向して配置された可動電極支持板と、可動電極支持板の固定側端板側に固定電極と対向して立設された可動電極と、一端が可動電極支持板に取り付けられるとともに、他端が可動側端板に取り付けられ、真空側と大気側とを区分する筒状のベローズと、ベローズの内周側において可動側端板の孔に内方に突出して設けられ、摺動ガイドを兼用する導電材からなるヒートパイプと、一端が可動電極支持板に取り付けられるとともに、ヒートパイプに摺動自在に挿通され、かつ他端側外周に雄ねじ部が設けられるとともに、他端に雌ねじ部が形成された調整ねじと、ベローズの内周側において可動電極支持板に取り付けられ、ヒートパイプと摺動する導電材から
なる摺動部材と、摺動部材とヒートパイプとの摺動部に設けられた導電材からなる摺動コンタクトと、調整ねじの雌ねじ部と螺合するストップねじと、ヒートパイプの内周側に軸受を介して回転自在に支持されるとともに、調整ねじの雄ねじ部と螺合する雌ねじ部とストップねじの頭部と係合可能な段部とを有する調整ナットと、ベローズの内周側と外気側とを連通する空気孔とを備えたことを特徴とする真空可変コンデンサ。
A vacuum vessel where the both ends of the insulating tube is closed by a fixed side end plate and the movable side end plate, a fixed electrode provided upright on the inner surface of the fixed end plate, is disposed opposite to the fixed end plate to the vacuum vessel The movable electrode support plate, the movable electrode standing on the fixed side end plate side of the movable electrode support plate, facing the fixed electrode, one end is attached to the movable electrode support plate, and the other end is the movable side end plate A cylindrical bellows that separates the vacuum side and the atmosphere side, and a conductive material that is provided inwardly projecting into the hole of the movable side end plate on the inner peripheral side of the bellows and also serves as a sliding guide A heat pipe, an adjustment screw having one end attached to the movable electrode support plate, slidably inserted into the heat pipe, and provided with a male screw portion on the outer periphery of the other end and a female screw portion formed on the other end , the movable electrode supporting the inner circumferential side of the bellows Attached to the plate, a conductive material for the heat pipe and the sliding
A sliding member made of a conductive material provided in a sliding portion between the sliding member and the heat pipe, a stop screw screwed into the female screw portion of the adjusting screw, and an inner peripheral side of the heat pipe An adjustment nut that is rotatably supported through a bearing and has a female screw portion that engages with a male screw portion of the adjustment screw, and a step portion that can engage with a head portion of a stop screw, an inner peripheral side of the bellows, and an outside air A vacuum variable capacitor comprising an air hole communicating with the side.
絶縁筒を高純度アルミナにより形成したことを特徴とする請求項1〜4の何れかに記載の真空可変コンデンサ。 The vacuum variable capacitor according to claim 1, wherein the insulating cylinder is made of high-purity alumina .
JP2005154803A 2005-05-27 2005-05-27 Vacuum variable capacitor Active JP4678239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005154803A JP4678239B2 (en) 2005-05-27 2005-05-27 Vacuum variable capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005154803A JP4678239B2 (en) 2005-05-27 2005-05-27 Vacuum variable capacitor

Publications (2)

Publication Number Publication Date
JP2006332388A JP2006332388A (en) 2006-12-07
JP4678239B2 true JP4678239B2 (en) 2011-04-27

Family

ID=37553753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005154803A Active JP4678239B2 (en) 2005-05-27 2005-05-27 Vacuum variable capacitor

Country Status (1)

Country Link
JP (1) JP4678239B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130102471A (en) * 2010-06-28 2013-09-17 코멧 아게 Vacuum variable capacitor
JP6136598B2 (en) * 2013-06-06 2017-05-31 株式会社明電舎 Sealed relay
JP6136597B2 (en) * 2013-06-06 2017-05-31 株式会社明電舎 Sealed relay

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284347A (en) * 1997-04-07 1998-10-23 Meidensha Corp Vacuum variable capacitor
JP2005175026A (en) * 2003-12-09 2005-06-30 Meidensha Corp Vacuum variable capacitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284347A (en) * 1997-04-07 1998-10-23 Meidensha Corp Vacuum variable capacitor
JP2005175026A (en) * 2003-12-09 2005-06-30 Meidensha Corp Vacuum variable capacitor

Also Published As

Publication number Publication date
JP2006332388A (en) 2006-12-07

Similar Documents

Publication Publication Date Title
KR101902301B1 (en) Vacuum variable capacitor
US7242570B2 (en) Vacuum capacitor
US9472347B2 (en) Variable vacuum capacitor
CN102844827B (en) Vacuum capacitor
JP4678239B2 (en) Vacuum variable capacitor
JP2007287996A (en) Variable capacitor
CN110350277A (en) A kind of microminiature SMP radio frequency coaxial matching load
JP4285231B2 (en) Vacuum variable capacitor
US7041930B2 (en) Bellows for use in vacuum capacitor
JP5568441B2 (en) Power connection terminal
JP2005175026A (en) Vacuum variable capacitor
JPH10284347A (en) Vacuum variable capacitor
JP3365080B2 (en) Vacuum condenser
JP3885343B2 (en) Vacuum capacitor
EP3005386B1 (en) Vacuum variable capacitor
US4860160A (en) Adjustable vacuum condenser
WO2018235391A1 (en) Capacitor
JP2000294426A (en) Capacitor bushing
WO2023248940A1 (en) Brazing structure and vacuum capacitor
JP3264005B2 (en) Vacuum condenser
JP3365078B2 (en) Vacuum condenser
JPH1174153A (en) Vacuum capacitor
JP3245971B2 (en) Vacuum condenser
JPH0897087A (en) Vacuum capacitor
JP3365079B2 (en) Vacuum condenser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110118

R150 Certificate of patent or registration of utility model

Ref document number: 4678239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3