JPH1174153A - Vacuum capacitor - Google Patents

Vacuum capacitor

Info

Publication number
JPH1174153A
JPH1174153A JP9230849A JP23084997A JPH1174153A JP H1174153 A JPH1174153 A JP H1174153A JP 9230849 A JP9230849 A JP 9230849A JP 23084997 A JP23084997 A JP 23084997A JP H1174153 A JPH1174153 A JP H1174153A
Authority
JP
Japan
Prior art keywords
movable
side mounting
water
mounting conductor
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9230849A
Other languages
Japanese (ja)
Inventor
Toshimasa Fukai
利眞 深井
Sachihiro Fukatsu
祥弘 深津
Naoki Hayashi
尚樹 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP9230849A priority Critical patent/JPH1174153A/en
Publication of JPH1174153A publication Critical patent/JPH1174153A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To restrain the surface of a vacuum capacitor and a bellows from rising in temperature and to make the vacuum capacitor large in current value by a method, wherein a hollow water-cooled flange is provided coming into close contact with the outer side of a stationary-side mounting conductor, and cooling water is made to flow through the flange. SOLUTION: A hollow water-cooled flange 17 is mounted, so as to come into close contact with nearly all the outer side of a stationary-side mounting conductor 3. At this point, the water-cooled flange 17 is formed flat so as to be improved in adhesion to the stationary-side mounting conductor 3 and formed into a disc-like or rectangular plate-like hollow structure where a water pool is formed. The water-cooled flange 17 is formed of copper, silver, or aluminum and provided with a cooling-water inlet 17a and an outlet 17b. Cooling water is made to flow into the water-cooled flange 17 from the inlet 17a to the outlet 17b for cooling down the surface of a vacuum capacitor. With this setup, the vacuum capacitor is decreased in surface temperature, so that a connecting conductor and a support insulator can be lessened in heat resistance properties.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、大電力送信機の
発振回路、半導体製造装置用の高周波電源回路、あるい
は誘導加熱装置のタンク回路等に用いられる真空コンデ
ンサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum capacitor used for an oscillation circuit of a high-power transmitter, a high-frequency power supply circuit for a semiconductor manufacturing device, a tank circuit of an induction heating device, and the like.

【0002】[0002]

【従来の技術】真空コンデンサの耐電圧及び静電容量特
性を安定させ、かつ全長の小形化を図ったものとして、
本出願人が特願平6−233912号で提案したものが
あり、これを図11及び図12によって説明する。図に
おいて、1は内部が真空にされた円筒状の真空容器であ
り、円筒部2の両端に固定側取付導体3及び可動側集電
導体4を気密に取り付けて形成している。又、円筒部2
は、セラミック等からなる絶縁円筒2aの両端に銅製の
円筒2b,2cを接合して形成される。固定側取付導体
3の内面側には径が異なる複数の円筒状電極板F1
2,…を同心状に一定間隔をもって取り付けて固定電
極5を形成しており、また固定電極5の各電極板間に非
接触で挿出入される径が異なる複数の円筒状電極板
1,M2,…を可動側取付導体6に同心状に取り付けて
可動電極7を形成している。
2. Description of the Related Art As a device for stabilizing the withstand voltage and capacitance characteristics of a vacuum capacitor and reducing the overall length,
There is one proposed by the present applicant in Japanese Patent Application No. 6-233912, which will be described with reference to FIGS. In the figure, reference numeral 1 denotes a cylindrical vacuum vessel having an interior evacuated, and is formed by tightly attaching a fixed-side mounting conductor 3 and a movable-side current collector 4 to both ends of a cylindrical portion 2. Also, cylindrical part 2
Are formed by joining copper cylinders 2b and 2c to both ends of an insulating cylinder 2a made of ceramic or the like. On the inner surface side of the fixed-side mounting conductor 3, a plurality of cylindrical electrode plates F 1 ,
F 2, ... a coaxially forms a fixed electrode 5 is attached with a predetermined distance, also the diameter to be inserted and out without contact to each electrode plates of the fixed electrode 5 is different cylindrical electrode plate M 1 , M 2 ,... Are concentrically mounted on the movable-side mounting conductor 6 to form the movable electrode 7.

【0003】8は固定側取付導体3の内側中心即ち固定
電極5の軸心部に立設されたガイドピン、9は可動側取
付導体6の中心即ち可動電極7の軸心部に貫通して設け
られたガイド部であり、ガイド部9はガイドピン8と摺
動自在に嵌合する嵌合孔9aを有する。又、可動側集電
導体4の中心には挿通孔4aが設けられ、可動側集電導
体4の内面側には挿通孔4aの周縁部において円筒状の
ねじ受部10の一端が取り付けられ、ねじ受部10の他
端には鍔部10aが設けられている。11はねじ部11
aを有する可動リードボルトであり、その一端はガイド
ピン部9と一体的に形成された可動リード12の嵌合孔
12aに嵌合固定され、ねじ部11aはねじ受部10の
鍔部10aに挿通される。嵌合孔9a,12aは連続し
て同径に形成されている。13はねじ孔13aを有する
調整ナットであり、可動リードボルト11のねじ部11
aは鍔部10aを挿通してねじ孔13aと螺合する。
又、調整ナット13の一端は軸受14を介して鍔部10
aの外面側に回転自在に支持される。
[0003] Reference numeral 8 denotes a guide pin erected at the center of the inside of the fixed-side mounting conductor 3, that is, at the axis of the fixed electrode 5. The guide 9 is provided with a fitting hole 9a that slidably fits with the guide pin 8. An insertion hole 4a is provided at the center of the movable-side current collector 4, and one end of a cylindrical screw receiving portion 10 is attached to the inner surface of the movable-side current collector 4 at a peripheral portion of the insertion hole 4a. The other end of the screw receiving portion 10 is provided with a flange portion 10a. 11 is a screw part 11
a one end of which is fitted and fixed in a fitting hole 12a of a movable lead 12 formed integrally with the guide pin portion 9, and a screw portion 11a is fitted to a flange portion 10a of the screw receiving portion 10. It is inserted. The fitting holes 9a and 12a are continuously formed to have the same diameter. Reference numeral 13 denotes an adjustment nut having a screw hole 13a.
a is inserted into the flange 10a and screwed into the screw hole 13a.
One end of the adjusting nut 13 is connected to the flange 10 via a bearing 14.
a is rotatably supported on the outer surface side.

【0004】又、可動リードボルト11のねじ部11a
の先端にはねじ穴11bが設けられ、ねじ穴11bに調
整ねじ15が螺合される。調整ナット13にはねじ孔1
3aより径が大きい径大孔13bが設けられている。1
6は可動リード12、可動リードボルト11及びねじ受
部10の外周側に位置し、一端が可動側集電導体4に気
密に取り付けられるとともに、他端が可動リード12に
気密に取り付けられた円筒状のベローズであり、伸縮自
在であるとともに、その外周側を気密に保つ。
[0004] Further, a threaded portion 11a of the movable lead bolt 11 is provided.
Is provided with a screw hole 11b at the end thereof, and an adjusting screw 15 is screwed into the screw hole 11b. Screw hole 1 in adjustment nut 13
A large-diameter hole 13b having a diameter larger than 3a is provided. 1
A cylindrical member 6 is located on the outer peripheral side of the movable lead 12, the movable lead bolt 11, and the screw receiving portion 10, and has one end hermetically attached to the movable current collector 4 and the other end hermetically attached to the movable lead 12. It is a bellows that can expand and contract and keep the outer periphery airtight.

【0005】なお、円筒部2を全体としてセラミック等
の絶縁筒で形成してもよい。又、ガイドピン8とガイド
部9の間は絶縁する必要があり、摺動性を保つために例
えばガイドピン8をアルミナなどのセラミックで形成
し、ガイド部9をリン青銅で形成すると良く、またガイ
ドピン8を金属製としてその表面に滑性が優れたナイロ
ン樹脂をコーティングしてもよい。可動リード12には
導体で形成する。従って、ガイド部9を絶縁材料にした
場合には、ガイド部9と可動リード12は当然別体とな
る。
[0005] The cylindrical portion 2 may be formed entirely of an insulating tube of ceramic or the like. In addition, it is necessary to insulate between the guide pin 8 and the guide part 9, and in order to maintain slidability, for example, the guide pin 8 may be formed of ceramic such as alumina, and the guide part 9 may be formed of phosphor bronze. The guide pin 8 may be made of metal and its surface may be coated with a nylon resin having excellent lubricity. The movable lead 12 is formed of a conductor. Therefore, when the guide part 9 is made of an insulating material, the guide part 9 and the movable lead 12 are naturally separate bodies.

【0006】上記構成の真空コンデンサにおいて、最大
静電容量値を調節する場合、調整ねじ15を可動リード
ボルト11のねじ穴11bに螺入する前に調整ナット1
3を若干回転させ(右ねじの場合には右回転)、ガイド
ピン8の先端8aと可動リードボルト11の上端面11
bが突き当たる最大静電容量位置より若干可動リード1
2を下方へ移動させ、定義された最大静電容量値に調整
する。この若干の調整量は真空コンデンサの静電容量の
バラツキの程度で決まる。次に、この状態で調整ねじ1
5をその頭部の当接面が調整ナット13のねじ孔13a
と径大孔13bとの間に形成された段部13cに当接す
るまでねじ穴11bに螺入し、この当接位置で調整ねじ
15を可動リードボルト11に接着剤等で固定し、可動
リードボルト11の上昇位置を規制する。なお、調整ね
じ15と調整ナット13はフリーである。
In the vacuum capacitor having the above configuration, when adjusting the maximum capacitance value, the adjusting nut 1 is screwed before the adjusting screw 15 is screwed into the screw hole 11 b of the movable lead bolt 11.
3 is slightly rotated (in the case of a right-handed screw, clockwise rotation), the tip 8a of the guide pin 8 and the upper end face 11 of the movable lead bolt 11 are rotated.
a slightly movable lead 1 from the maximum capacitance position where b contacts
Move 2 down to adjust to the defined maximum capacitance value. This slight adjustment amount is determined by the degree of variation in the capacitance of the vacuum capacitor. Next, in this state, the adjusting screw 1
5 is the screw hole 13a of the adjusting nut 13
The adjusting screw 15 is screwed into the screw hole 11b until it comes into contact with the stepped portion 13c formed between the movable lead bolt 11 and the large-diameter hole 13b. The rising position of the bolt 11 is regulated. The adjusting screw 15 and the adjusting nut 13 are free.

【0007】このように、可動リードボルト11の上昇
位置を規制することにより、製作された真空コンデンサ
の最大静電容量値にバラツキがあっても各真空コンデン
サごとに最大静電容量値を調整でき、定義された最大静
電容量値に合致した品質の真空コンデンサが得られる。
又、調整ナット13を最大静電容量位置よりも右ねじの
場合左に回そうとしても調整ねじ15が段部13cに当
接し、調整ナット13を左に回すことができないので、
調整ねじ15は調整ナット13が可動リードボルト11
から抜け出るのを防止するストッパの役目をするととも
に、静電容量値が定義された最大静電容量値以上になる
のを防止する。
As described above, by regulating the rising position of the movable lead bolt 11, the maximum capacitance value can be adjusted for each vacuum capacitor even if the maximum capacitance value of the manufactured vacuum capacitors varies. As a result, a vacuum capacitor having a quality that matches the defined maximum capacitance value is obtained.
In addition, even if the adjustment nut 13 is turned rightward from the maximum capacitance position, even if the adjustment nut 15 is turned to the left, the adjustment screw 15 comes into contact with the step 13c and the adjustment nut 13 cannot be turned to the left.
The adjusting nut 15 is a movable lead bolt 11
Functioning as a stopper for preventing the capacitance value from falling out, and preventing the capacitance value from exceeding a defined maximum capacitance value.

【0008】又、真空コンデンサの静電容量の調整にお
いては、調整ナット13を例えば右回転させると可動リ
ードボルト11は下降し、電極板F1,F2,…と電極板
1,M2,…の交差長さが減少して静電容量が減少し、
逆に調整ナット13を左回転させると静電容量が増大す
る。
In adjusting the capacitance of the vacuum capacitor, when the adjusting nut 13 is rotated clockwise, for example, the movable lead bolt 11 is lowered, and the electrode plates F 1 , F 2 ,... And the electrode plates M 1 , M 2 are moved. ,…, The intersection length decreases, the capacitance decreases,
Conversely, when the adjustment nut 13 is rotated counterclockwise, the capacitance increases.

【0009】又、真空コンデンサでは真空との差圧によ
り常に可動リードボルト11を上方へ押し上げる力が働
くので、これと螺合した調整ナット13にも同様の力が
働き、ねじ受部10の鍔部10aの外面に面圧が生じ、
調整ナット13の回転には大きな回転トルクを必要とす
るが、調整ナット13と鍔部10aの外面との間に軸受
14を設けたので、回転が容易となり、小さな回転トル
クでよい。又、ねじ受部10を可動側集電導体4よりも
内部方向に突出させて設けたので、可動リードボルト1
1の移動はねじ受部10の鍔部10aの内面に当接面1
1cが当接するまでとなり、小形にすることができる。
又、ガイドピン8とガイド部9を設けたことにより可動
電極7は固定電極5に対して平行に移動し、耐電圧と静
電容量を安定化させることができる。なお、真空コンデ
ンサの電流は固定側取り付け導体3から固定電極5及び
可動電極7を介して可動側取付導体6、可動リード12
を通り、ベローズ16を介して可動側集電導体4に流れ
る。
In the vacuum capacitor, a force for pushing the movable lead bolt 11 upward always acts due to a pressure difference from the vacuum, and a similar force acts on the adjusting nut 13 screwed with the movable lead bolt 11. Surface pressure is generated on the outer surface of the portion 10a,
The rotation of the adjustment nut 13 requires a large rotation torque. However, since the bearing 14 is provided between the adjustment nut 13 and the outer surface of the flange portion 10a, the rotation becomes easy and a small rotation torque is required. Further, since the screw receiving portion 10 is provided so as to protrude inward from the movable-side current collector 4, the movable lead bolt 1 is provided.
1 moves on the inner surface of the flange 10a of the screw receiving portion 10 with the contact surface 1
1c is brought into contact, and the size can be reduced.
Further, the provision of the guide pins 8 and the guide portions 9 allows the movable electrode 7 to move in parallel with the fixed electrode 5 and stabilize the withstand voltage and the capacitance. The current of the vacuum capacitor is transferred from the fixed-side mounting conductor 3 via the fixed electrode 5 and the movable electrode 7 to the movable-side mounting conductor 6 and the movable lead 12.
Flows through the bellows 16 to the movable-side current collector 4.

【0010】[0010]

【発明が解決しようとする課題】上記したように、真空
コンデンサにおいては、構造上電流がベローズ16に流
れるが、ベローズ16は薄肉の金属(例えば銅系、又は
ステンレス系金属に銅をコーティングしもの)により形
成されているために通電能力があまり大きくなく、従っ
て真空コンデンサの通電能力はベローズ16によって決
定されることになる。ところで、図13は真空コンデン
サの表面温度−通電電流特性ニを示し(電流周波数1
3.6MHz)、通電電流が大きくなると、ベローズ1
6への通電電流が大きくなり、ベローズ16の発熱も大
きくなり、その熱が真空コンデンサの表面に伝導し、表
面温度が上昇する。又、真空コンデンサの等価回路は抵
抗R(主にベローズ16の抵抗である。)、インダクタ
ンスL、キャパシタンスCの直列回路により示される
が、上記のようにベローズ16が発熱すると、ベローズ
16の抵抗が増大して真空コンデンサの誘電損失tan
δ=ωCRも増大し、真空コンデンサとしての良好な機
能が失われることになった。又、真空コンデンサの表面
温度の上昇により、真空コンデンサに接続される導体や
支持絶縁体に耐熱性が要求された。
As described above, in a vacuum capacitor, a current flows through the bellows 16 due to its structure, but the bellows 16 is made of a thin metal (for example, a copper-based or stainless-based metal coated with copper). ), The current-carrying capacity is not so large, so that the current-carrying capacity of the vacuum capacitor is determined by the bellows 16. FIG. 13 shows the surface temperature-conduction current characteristic d of the vacuum capacitor (current frequency 1).
3.6 MHz), the bellows 1
6, the heat generated by the bellows 16 increases, and the heat is conducted to the surface of the vacuum capacitor, thereby increasing the surface temperature. The equivalent circuit of the vacuum capacitor is represented by a series circuit of a resistor R (mainly a resistor of the bellows 16), an inductance L and a capacitance C. When the bellows 16 generates heat as described above, the resistance of the bellows 16 is reduced. Increased dielectric loss tan of vacuum capacitor
δ = ωCR also increased, and a good function as a vacuum capacitor was lost. In addition, due to an increase in the surface temperature of the vacuum capacitor, heat resistance is required for a conductor and a supporting insulator connected to the vacuum capacitor.

【0011】一方、近年、半導体製造装置用の高周波電
源の大容量化が進められており、これに伴って真空コン
デンサの大電流化も要求されている。このため、ベロー
ズ16の通電能力を高める必要があり、ベローズ16の
大径化を図り、通電面積を増大する必要があった。しか
しながら、ベローズ16を大径化すると、真空側と大気
側の差圧から生じるベローズ16の自閉力が増大し、静
電容量を調整する調整ナット13の回転トルクも増大
し、調整ナット13をモータにより回転させる場合には
モータも大形化した。
On the other hand, in recent years, the capacity of a high-frequency power supply for a semiconductor manufacturing apparatus has been increased, and accordingly, the current of a vacuum capacitor has been required to be increased. For this reason, it is necessary to increase the power supply capacity of the bellows 16, and it is necessary to increase the diameter of the bellows 16 and increase the power supply area. However, when the diameter of the bellows 16 is increased, the self-closing force of the bellows 16 generated from the differential pressure between the vacuum side and the atmosphere side increases, the rotational torque of the adjusting nut 13 for adjusting the capacitance also increases, and the adjusting nut 13 When the motor is rotated by a motor, the size of the motor is also increased.

【0012】この発明は上記のような課題を解決するた
めに成されたものであり、表面及びベローズの温度上昇
を抑制することができるとともに、許容電流値を大きく
することができ、性能を向上することができる真空コン
デンサを得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and can suppress the temperature rise of the surface and the bellows, can increase the allowable current value, and improve the performance. It is an object to obtain a vacuum capacitor that can be used.

【0013】[0013]

【課題を解決するための手段】この発明の請求項1に係
る真空コンデンサは、固定側取付導体の外面側と密着し
て中空の水冷フランジを設け、この水冷フランジに冷却
水を通流するようにしたものである。
According to a first aspect of the present invention, there is provided a vacuum capacitor provided with a hollow water-cooled flange in close contact with an outer surface of a fixed-side mounting conductor, through which cooling water flows. It was made.

【0014】請求項2に係る真空コンデンサは、可動側
集電導体の外面側と密着して中空の水冷フランジを設
け、この水冷フランジに冷却水を通流するようにしたも
のである。
According to a second aspect of the present invention, a hollow water-cooled flange is provided in close contact with the outer surface of the movable-side current collector, and cooling water flows through the water-cooled flange.

【0015】請求項3に係る真空コンデンサは、固定側
取付導体及び可動側集電導体の外面側と密着して中空の
水冷フランジを設け、この各水冷フランジに冷却水を通
流するようにしたものである。
According to a third aspect of the present invention, a hollow water cooling flange is provided in close contact with the outer surface of the fixed side mounting conductor and the movable side current collector, and cooling water flows through each of the water cooling flanges. Things.

【0016】請求項4に係る真空コンデンサは、水冷フ
ランジを銅,銀,アルミニウムのいずれかにより形成し
たものである。
According to a fourth aspect of the present invention, the water-cooled flange is formed of any one of copper, silver and aluminum.

【0017】[0017]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施形態1 以下、この発明の実施の形態を図面とともに説明する。
図1(a),(b)は実施形態1による真空コンデンサ
の縦断面図及び平面図を示し、17は固定側取付導体3
の外面側のほぼ全面に密着して取り付けられた中空の水
冷フランジであり、密着性を良くするために平坦状にす
るとともに、水溜りが生じるように円盤状又は角板状の
中空構造とする。又、水冷フランジ17は銅、銀、アル
ミニウムの何れかにより形成され、冷却水の流入口17
a及び流出口を有する。その他の構成は従来と同様であ
る。
Embodiment 1 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
1A and 1B are a vertical sectional view and a plan view, respectively, of a vacuum capacitor according to a first embodiment.
Is a hollow water-cooled flange that is attached in close contact with almost the entire outer surface side of it, and has a disc-shaped or square-plate-shaped hollow structure so that it is flattened to improve the adhesion and a pool is formed. . The water cooling flange 17 is formed of any one of copper, silver, and aluminum, and is provided with a cooling water inlet 17.
a and an outlet. Other configurations are the same as the conventional one.

【0018】図2のイは実施形態1による真空コンデン
サの表面温度−通電電流値特性を示し、実施形態1では
上記のように固定側取付導体3の外面側に水冷フランジ
17を設け、その流入口17aから冷却水を流入させる
とともに、流出口17bから流出させるようにしてお
り、真空コンデンサの表面は冷却される。このため、特
性イに示すように従来の特性ニに比べて、同じ通電電流
値に対しては真空コンデンサの表面温度は低下し、接続
導体や支持絶縁物の耐熱性を低減させることができる。
又、真空コンデンサの表面温度の低下によりベローズ1
6も間接的に冷却され、その抵抗増による誘電損失も減
少し、良好な性能のコンデンサが得られる。
FIG. 2A shows the surface temperature-current value characteristic of the vacuum capacitor according to the first embodiment. In the first embodiment, the water-cooled flange 17 is provided on the outer surface side of the fixed-side mounting conductor 3 as described above. The cooling water flows in from the inlet 17a and flows out from the outlet 17b, so that the surface of the vacuum condenser is cooled. For this reason, as shown in the characteristic a, the surface temperature of the vacuum capacitor is reduced for the same current value as compared with the conventional characteristic d, and the heat resistance of the connecting conductor and the supporting insulator can be reduced.
In addition, the bellows 1
6 is also indirectly cooled, the dielectric loss due to the increased resistance is reduced, and a capacitor with good performance is obtained.

【0019】一方、ある任意の温度を表面温度の許容温
度とした場合、真空コンデンサの通電電流の許容値が増
大し、大容量高周波電源に適用できるとともに、ベロー
ズ16においても許容電流の増加により大径化は必要な
くなり、調整ナット13の回転トルクを小さくすること
ができる。又、水冷フランジ17を熱伝導性がよい銅、
銀、アルミニウムにより形成したので、冷却効率高める
ことができる。
On the other hand, when an arbitrary temperature is set as the allowable temperature of the surface temperature, the allowable value of the current flowing through the vacuum capacitor increases, and the present invention can be applied to a large-capacity high-frequency power supply. It is not necessary to increase the diameter, and the rotational torque of the adjustment nut 13 can be reduced. Further, the water cooling flange 17 is made of copper having good heat conductivity,
Since it is formed of silver and aluminum, the cooling efficiency can be increased.

【0020】実施形態2 図3(a),(b)は実施形態2による真空コンデンサ
の縦断面図及び底面図を示し、18は可動側集電導体4
の外面側のほぼ全面に密着して取り付けられた中空の水
冷フランジであり、密着性を良くするために平坦状にす
るとともに、水溜りが生じるように円板状又は角板状の
中空構造とする。又、水冷フランジ18は銅、銀、アル
ミニウムのいずれかにより形成され、冷却水の流入口1
8a及び流出口18bを有する。その他の構成は従来と
同様である。
Embodiment 2 FIGS. 3 (a) and 3 (b) show a longitudinal sectional view and a bottom view of a vacuum capacitor according to Embodiment 2;
It is a hollow water-cooled flange that is attached in close contact with almost the entire outer surface side, and has a disk-shaped or square-plate-shaped hollow structure so as to form a flat shape to improve adhesion and to create a pool. I do. The water cooling flange 18 is formed of any one of copper, silver and aluminum, and is provided with the cooling water inlet 1.
8a and an outlet 18b. Other configurations are the same as the conventional one.

【0021】実施形態2においても、水冷フランジ18
にその流入口18aから流出口18bへ冷却水を通流さ
せるようにしており、真空コンデンサの表面を冷却する
ことができその表面温度−通電電流値特性は図2のロに
示すようになり、実施形態1の効果をさらに高めること
ができる。これは、真空コンデンサの表面温度の上昇は
主に発熱体であるベローズ16からの輻射熱によるもの
であるが、実施形態1では熱伝導が悪い絶縁円筒2aに
近い方の固定側取付導体3を冷却するため、全体的な冷
却効果が少ないからである。
In the second embodiment, the water-cooled flange 18 is also used.
The cooling water is caused to flow from the inlet 18a to the outlet 18b, so that the surface of the vacuum capacitor can be cooled, and the surface temperature-current value characteristic becomes as shown in FIG. The effect of the first embodiment can be further enhanced. This is because the rise in the surface temperature of the vacuum capacitor is mainly due to radiant heat from the bellows 16 which is a heating element. In the first embodiment, the fixed-side mounting conductor 3 closer to the insulating cylinder 2a having poor heat conduction is cooled. Therefore, the overall cooling effect is small.

【0022】実施形態3 図4は実施形態3による真空コンデンサの縦断面図を示
し、固定側取付導体3及び可動側集電導体4の外面側に
水冷フランジ17,18を取り付けている。従って、こ
の場合には図2のハに示すような特性となり、冷却効果
を一層高めることができ、実施形態1,2よりさらに効
果を高めることができる。
Embodiment 3 FIG. 4 is a longitudinal sectional view of a vacuum capacitor according to Embodiment 3, in which water-cooling flanges 17 and 18 are attached to the outer surfaces of the fixed-side mounting conductor 3 and the movable-side current collector 4. Accordingly, in this case, the characteristics shown in FIG. 2C are obtained, and the cooling effect can be further enhanced, and the effect can be further enhanced compared to the first and second embodiments.

【0023】実施形態4〜6 図5〜図7は実施形態4〜6による真空コンデンサの縦
断面図を示し、実施形態4では固定側取付導体3に水冷
フランジ17を取り付け、実施形態5では可動側集電導
体4に水冷フランジ18を取り付け、実施形態6ではこ
の双方を取り付けている。ただし、実施形態1〜3との
相違は円筒部2における絶縁円筒2aの位置が可動側集
電導体に近いことである。従って、実施形態4〜6の特
性ホ〜トは図8に示すようになり、冷却フランジ17,
18と絶縁円筒2aとの位置関係により特性ホ〜トはそ
れぞれ特性ロ,イ,ハと対応したものとなり冷却効果も
ほぼ同一となる。
Embodiments 4 to 6 FIGS. 5 to 7 show longitudinal sectional views of vacuum capacitors according to Embodiments 4 to 6. In Embodiment 4, a water-cooling flange 17 is mounted on the fixed-side mounting conductor 3, and in Embodiment 5, it is movable. A water-cooled flange 18 is attached to the side current collector 4, and both are attached in the sixth embodiment. However, the difference from the first to third embodiments is that the position of the insulating cylinder 2a in the cylindrical portion 2 is close to the movable-side current collector. Therefore, the characteristic ports of the fourth to sixth embodiments are as shown in FIG.
Due to the positional relationship between 18 and the insulating cylinder 2a, the characteristic ports correspond to the characteristic rows B, A and C, respectively, and the cooling effect is almost the same.

【0024】なお、上記各実施形態においては、ガイド
ピン8を固定側取付導体3に取り付けるとともに、ガイ
ド部9を可動側取付導体6に取り付けたが、逆にしても
よい。又、可動リード12をガイド部9と一体とした
が、別体としてもよい。又、ベローズ16の上端を可動
リード12に取り付けたが、可動側取付導体6に取り付
けてもよい。さらに可動リード12と可動リードボルト
11を一体にしてもよい。
In each of the above embodiments, the guide pin 8 is attached to the fixed-side mounting conductor 3 and the guide portion 9 is attached to the movable-side mounting conductor 6, but may be reversed. Further, although the movable lead 12 is integrated with the guide section 9, it may be formed separately. Further, although the upper end of the bellows 16 is attached to the movable lead 12, it may be attached to the movable attachment conductor 6. Further, the movable lead 12 and the movable lead bolt 11 may be integrated.

【0025】又、図9は参考例に示す真空コンデンサの
平面図を示し、固定側取付導体3の外面側に水冷パイプ
19を気密に取り付けており、水冷パイプ19は流入口
19a及び流出口19bを有する。そして、投入口19
aから冷却水を流入し、流出口19bから流出させるこ
とにより真空コンデンサを冷却するようにしているが、
水冷パイプ19と固定側取付導体3との密着面積が少な
く、かつ水冷パイプ19には水溜りが生じないので、冷
却効果は小さく、その特性は図10のチに示すようにな
り、従来の特性ニとあまり変わらないため、発明として
の効果も得られない。
FIG. 9 is a plan view of the vacuum capacitor shown in the reference example. A water-cooling pipe 19 is hermetically attached to the outer surface of the fixed-side mounting conductor 3. The water-cooling pipe 19 has an inlet 19a and an outlet 19b. Having. And the input port 19
The vacuum condenser is cooled by flowing cooling water from a and flowing out from the outlet 19b.
Since the contact area between the water cooling pipe 19 and the fixed-side mounting conductor 3 is small, and no water pool is formed in the water cooling pipe 19, the cooling effect is small, and the characteristics are as shown in FIG. Since this is not much different from D, the effect as the invention cannot be obtained.

【0026】[0026]

【発明の効果】以上のようにこの発明の請求項1によれ
ば、固定側取付導体の外面側と密着して中空の水冷フラ
ンジを設け、この水冷フランジに冷却水を通流したの
で、真空コンデンサの表面温度は低下し、接続導体や支
持絶縁物の耐熱性を低減させることができる。又、真空
コンデンサの表面温度の低下によりベローズも間接的に
冷却され、その抵抗増による誘電損失が減少し、良好な
性能のコンデンサが得られる。又、真空コンデンサの通
電電流を大きくすることができ、ベローズの大径化は必
要なくなり、調整ナットの回転トルクを小さくすること
ができる。
As described above, according to the first aspect of the present invention, a hollow water-cooled flange is provided in close contact with the outer surface of the fixed-side mounting conductor, and cooling water flows through the water-cooled flange. The surface temperature of the capacitor decreases, and the heat resistance of the connection conductor and the supporting insulator can be reduced. In addition, the bellows is indirectly cooled due to the decrease in the surface temperature of the vacuum capacitor, and the dielectric loss due to the increase in resistance is reduced, so that a capacitor with good performance can be obtained. Further, the current flowing through the vacuum capacitor can be increased, and the diameter of the bellows does not need to be increased, and the rotational torque of the adjusting nut can be reduced.

【0027】又、請求項2によれば、可動側集電導体の
外面側に水冷フランジを取り付けており、請求項1と同
様な効果を有する。
According to the second aspect, a water-cooled flange is attached to the outer surface of the movable-side current collector, and has the same effect as the first aspect.

【0028】請求項3によれば、固定側及び可動側に水
冷フランジを設けたので、冷却効果を高めることがで
き、上記のような効果も増進することができる。
According to the third aspect, since the water cooling flanges are provided on the fixed side and the movable side, the cooling effect can be enhanced, and the above-mentioned effect can be enhanced.

【0029】請求項4によれば、上記水冷フランジを
銅、銀、アルミニウムのいずれかにより形成しており、
これらは熱伝導率が高いので、一層効果を高めることが
できる。
According to claim 4, the water-cooled flange is formed of any one of copper, silver and aluminum.
Since these have high thermal conductivity, the effect can be further enhanced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施形態1による真空コンデンサの
縦断面図である。
FIG. 1 is a longitudinal sectional view of a vacuum capacitor according to Embodiment 1 of the present invention.

【図2】この発明の実施形態1〜3における真空コンデ
ンサの表面温度−通電電流特性図である。
FIG. 2 is a diagram showing surface temperature-current flow characteristics of a vacuum capacitor according to Embodiments 1 to 3 of the present invention.

【図3】実施形態2による真空コンデンサの縦断面図及
び底面図である。
FIG. 3 is a vertical sectional view and a bottom view of a vacuum capacitor according to a second embodiment.

【図4】実施形態3による真空コンデンサの縦断面図で
ある。
FIG. 4 is a longitudinal sectional view of a vacuum capacitor according to a third embodiment.

【図5】実施形態4による真空コンデンサの縦断面図で
ある。
FIG. 5 is a vertical sectional view of a vacuum capacitor according to a fourth embodiment.

【図6】実施形態5による真空コンデンサの縦断面図で
ある。
FIG. 6 is a vertical sectional view of a vacuum capacitor according to a fifth embodiment.

【図7】実施形態6による真空コンデンサの縦断面図で
ある。
FIG. 7 is a vertical sectional view of a vacuum capacitor according to a sixth embodiment.

【図8】実施形態4〜6による真空コンデンサの表面温
度−通電電流特性図である。
FIG. 8 is a graph showing surface temperature-current flow characteristics of vacuum capacitors according to Embodiments 4 to 6.

【図9】参考例による真空コンデンサの平面図であるFIG. 9 is a plan view of a vacuum capacitor according to a reference example.

【図10】参考例による真空コンデンサの表面温度−通
電電流特性図である。
FIG. 10 is a graph showing surface temperature-current flow characteristics of a vacuum capacitor according to a reference example.

【図11】従来の真空コンデンサの縦断面図である。FIG. 11 is a longitudinal sectional view of a conventional vacuum capacitor.

【図12】図11の一部拡大図である。FIG. 12 is a partially enlarged view of FIG. 11;

【図13】従来の真空コンデンサの表面温度−通電電流
特性図である。
FIG. 13 is a graph showing surface temperature-current flow characteristics of a conventional vacuum capacitor.

【符号の説明】[Explanation of symbols]

1…真空容器 2…円筒部 2a…絶縁円筒 3…固定側取付導体 4…可動側集電導体 4a…挿通孔 5…固定電極 6…可動側取付導体 7…可動電極 10…ねじ受部 11…可動リードボルト 12…可動リード 13…調整ナット 16…ベローズ 17,18…水冷フランジ。 DESCRIPTION OF SYMBOLS 1 ... Vacuum container 2 ... Cylindrical part 2a ... Insulating cylinder 3 ... Fixed side mounting conductor 4 ... Movable side current collector 4a ... Insertion hole 5 ... Fixed electrode 6 ... Movable side mounting conductor 7 ... Movable electrode 10 ... Screw receiving part 11 ... Movable lead bolt 12: Movable lead 13: Adjusting nut 16: Bellows 17, 18: Water-cooled flange.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 絶縁部を有する円筒部の一端に固定側取
付導体を設けるとともに、円筒部の他端に可動側集電導
体を設け、内部を真空にされた真空容器と、固定側取付
導体の内側に同心状で径が異なる複数の円筒状電極板を
取り付けて形成した固定電極と、この固定電極の各円筒
状電極板間に非接触で挿出入できるように径の異なる複
数の円筒状電極板を可動側取付導体に同心状に取り付け
て形成した可動電極と、可動側集電導体の中心部に設け
られた挿通孔に設けられたねじ受部と、可動側取付導体
に可動リードを介して一体的に取り付けられるととも
に、ねじ受部に挿通された可動リードボルトと、可動リ
ードボルトと螺合されるとともにねじ受部に係止され、
回転によって可動電極を固定電極に対して移動させる調
整ナットと、可動リードボルトの外周側に位置し、一端
が可動側集電導体に取り付けられるとともに、他端が可
動側取付導体又は可動リードに取り付けられた筒状のベ
ローズを備えた真空コンデンサにおいて、固定側取付導
体の外面側と密着して中空の水冷フランジを設け、この
水冷フランジに冷却水を通流するようにしたことを特徴
とする真空コンデンサ。
1. A vacuum vessel whose inside is evacuated by providing a fixed-side mounting conductor at one end of a cylindrical portion having an insulating portion, a movable-side current collector at the other end of the cylindrical portion, and a fixed-side mounting conductor. A fixed electrode formed by attaching a plurality of concentric cylindrical electrode plates having different diameters inside a plurality of cylindrical electrodes having different diameters so that the fixed electrode can be inserted and removed without contact between the respective cylindrical electrode plates. A movable electrode formed by concentrically attaching the electrode plate to the movable-side mounting conductor, a screw receiving portion provided in an insertion hole provided in the center of the movable-side current collector, and a movable lead on the movable-side mounting conductor. A movable lead bolt inserted into the screw receiving portion and screwed with the movable lead bolt are locked together with the screw receiving portion,
An adjustment nut that moves the movable electrode with respect to the fixed electrode by rotation, and is located on the outer peripheral side of the movable lead bolt. One end is attached to the movable current collector, and the other end is attached to the movable attachment conductor or the movable lead. A vacuum condenser provided with a cylindrical bellows, wherein a hollow water-cooling flange is provided in close contact with the outer surface of the fixed-side mounting conductor, and cooling water flows through the water-cooling flange. Capacitors.
【請求項2】 絶縁部を有する円筒部の一端に固定側取
付導体を設けるとともに、円筒部の他端に可動側集電導
体を設け、内部を真空にされた真空容器と、固定側取付
導体の内側に同心状で径が異なる複数の円筒状電極板を
取り付けて形成した固定電極と、この固定電極の各円筒
状電極板間に非接触で挿出入できるように径が異なる複
数の円筒状電極板を可動側取付導体に同心状に取り付け
て形成した可動電極と、可動側集電導体の中心部に設け
られた挿通孔に設けられたねじ受部と、可動側取付導体
に可動リードを介して一体的に取り付けられるととも
に、ねじ受部に挿通された可動リードボルトと、可動リ
ードボルトと螺合されるとともにねじ受部に係止され、
回転によって可動電極を固定電極に対して移動させる調
整ナットと、可動リードボルトの外周側に位置し、一端
が可動側集電導体に取り付けられるととに、他端が可動
側取付導体又は可動リードに取り付けられた筒状のベロ
ーズを備えた真空コンデンサにおいて、可動側集電導体
の外面側と密着して中空の水冷フランジを設け、この水
冷フランジに冷却水を通流するようにしたことを特徴と
する真空コンデンサ。
2. A vacuum container whose inside is evacuated by providing a fixed-side mounting conductor at one end of a cylindrical portion having an insulating portion, a movable-side current collector at the other end of the cylindrical portion, and a fixed-side mounting conductor. A fixed electrode formed by attaching a plurality of concentric cylindrical electrode plates having different diameters inside a plurality of cylindrical electrodes having different diameters so that the fixed electrode can be inserted into and removed from each cylindrical electrode plate in a non-contact manner. A movable electrode formed by concentrically attaching the electrode plate to the movable-side mounting conductor, a screw receiving portion provided in an insertion hole provided in the center of the movable-side current collector, and a movable lead on the movable-side mounting conductor. A movable lead bolt inserted into the screw receiving portion and screwed with the movable lead bolt are locked together with the screw receiving portion,
An adjusting nut that moves the movable electrode with respect to the fixed electrode by rotation; and an outer circumferential side of the movable lead bolt, one end of which is attached to the movable-side current collector, and the other end of which is the movable-side mounting conductor or the movable lead. In a vacuum capacitor having a cylindrical bellows attached to a movable current collector, a hollow water-cooled flange is provided in close contact with the outer surface side of the movable current collector, and cooling water flows through the water-cooled flange. And a vacuum condenser.
【請求項3】 絶縁部を有する円筒部の一端に固定側取
付導体を設けるとともに、円筒部の他端に可動側集電導
体を設け、内部を真空にされた真空容器と、固定側取付
導体の内側に同心状で径が異なる複数の円筒状電極板を
取り付けて形成した固定電極と、この固定電極の各円筒
状電極板間に非接触で挿出入できるように径が異なる複
数の円筒状電極板を可動側取付導体に同心状に取り付け
て形成した可動電極と、可動側集電導体の中心部に設け
られた挿通孔に設けられたねじ受部と、可動側取付導体
に可動リードを介して一体的に取り付けられるととも
に、ねじ受部に挿通された可動リードボルトと、可動リ
ードボルトと螺合されるとともにねじ受部に係止され、
回転によって可動電極を固定電極に対して移動させる調
整ナットと、可動リードボルトの外周側に位置し、一端
が可動側集電導体に取り付けられるとともに、他端が可
動側取付導体又は可動リードに取り付けられた筒状のベ
ローズを備えた真空コンデンサにおいて、固定側取付導
体の外面側及び可動側集電導体の外面側とそれぞれ密着
して中空の水冷フランジを設け、この水冷フランジに冷
却水を通流するようにしたことを特徴とする真空コンデ
ンサ。
3. A vacuum container whose inside is evacuated by providing a fixed-side mounting conductor at one end of a cylindrical portion having an insulating portion, a movable-side current collector at the other end of the cylindrical portion, and a fixed-side mounting conductor. A fixed electrode formed by attaching a plurality of concentric cylindrical electrode plates having different diameters inside a plurality of cylindrical electrodes having different diameters so that the fixed electrode can be inserted into and removed from each cylindrical electrode plate in a non-contact manner. A movable electrode formed by concentrically attaching the electrode plate to the movable-side mounting conductor, a screw receiving portion provided in an insertion hole provided in the center of the movable-side current collector, and a movable lead on the movable-side mounting conductor. A movable lead bolt inserted into the screw receiving portion and screwed with the movable lead bolt are locked together with the screw receiving portion,
An adjustment nut that moves the movable electrode with respect to the fixed electrode by rotation, and is located on the outer peripheral side of the movable lead bolt. One end is attached to the movable current collector, and the other end is attached to the movable attachment conductor or the movable lead. In the vacuum condenser provided with the cylindrical bellows, a hollow water-cooling flange is provided in close contact with the outer surface of the fixed-side mounting conductor and the outer surface of the movable-side current collector, and cooling water flows through the water-cooling flange. A vacuum capacitor characterized in that:
【請求項4】 上記水冷フランジを銅、銀、アルミニウ
ムのいずれかにより形成したことを特徴とする請求項1
〜3のいずれかに記載した真空コンデンサ。
4. The water cooling flange according to claim 1, wherein said water cooling flange is made of any one of copper, silver and aluminum.
3. The vacuum capacitor according to any one of items 1 to 3,
JP9230849A 1997-08-27 1997-08-27 Vacuum capacitor Pending JPH1174153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9230849A JPH1174153A (en) 1997-08-27 1997-08-27 Vacuum capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9230849A JPH1174153A (en) 1997-08-27 1997-08-27 Vacuum capacitor

Publications (1)

Publication Number Publication Date
JPH1174153A true JPH1174153A (en) 1999-03-16

Family

ID=16914264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9230849A Pending JPH1174153A (en) 1997-08-27 1997-08-27 Vacuum capacitor

Country Status (1)

Country Link
JP (1) JPH1174153A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003526914A (en) * 2000-03-08 2003-09-09 コメット テクニク アクチエンゲゼルシャフト Bellows for vacuum capacitors with uniform conductive film
WO2009033501A1 (en) * 2007-09-10 2009-03-19 Comet Ag Cooling system for a variable vacuum capacitor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003526914A (en) * 2000-03-08 2003-09-09 コメット テクニク アクチエンゲゼルシャフト Bellows for vacuum capacitors with uniform conductive film
WO2009033501A1 (en) * 2007-09-10 2009-03-19 Comet Ag Cooling system for a variable vacuum capacitor
JP2010539677A (en) * 2007-09-10 2010-12-16 コメット アクチェンゲゼルシャフト Cooling system for variable capacity vacuum condenser
US8139359B2 (en) 2007-09-10 2012-03-20 Comet Ag Cooling system for a variable vacuum capacitor

Similar Documents

Publication Publication Date Title
US5478429A (en) Plasma process apparatus
KR101902301B1 (en) Vacuum variable capacitor
US7242570B2 (en) Vacuum capacitor
US20170092472A1 (en) Mounting table and plasma processing apparatus
JP2012507979A (en) Annular capacitors with power conversion components
JP2002208538A (en) Liquid variable capacitor
WO2005109456A1 (en) Variable inductor
JPH1174153A (en) Vacuum capacitor
US6340927B1 (en) High thermal efficiency power resistor
JPH10284347A (en) Vacuum variable capacitor
US6462930B1 (en) Vacuum variable capacitor device
JP4678239B2 (en) Vacuum variable capacitor
JP3365080B2 (en) Vacuum condenser
JP2005340587A (en) Vacuum variable capacitor
JP2005174989A (en) Vacuum capacitor
JP3264004B2 (en) Vacuum condenser
JP3885343B2 (en) Vacuum capacitor
CN215955090U (en) Vacuum capacitor assembly
JP7327555B1 (en) vacuum capacitor
JP3365077B2 (en) Vacuum condenser
JP3365078B2 (en) Vacuum condenser
JP3263721B2 (en) Processing equipment
JP3264005B2 (en) Vacuum condenser
JP3264006B2 (en) Vacuum condenser
JP2005175026A (en) Vacuum variable capacitor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050222