JP3263198B2 - Non-aqueous electrolyte secondary battery and manufacturing method thereof - Google Patents

Non-aqueous electrolyte secondary battery and manufacturing method thereof

Info

Publication number
JP3263198B2
JP3263198B2 JP21886293A JP21886293A JP3263198B2 JP 3263198 B2 JP3263198 B2 JP 3263198B2 JP 21886293 A JP21886293 A JP 21886293A JP 21886293 A JP21886293 A JP 21886293A JP 3263198 B2 JP3263198 B2 JP 3263198B2
Authority
JP
Japan
Prior art keywords
battery
electrode plate
aqueous electrolyte
charge
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21886293A
Other languages
Japanese (ja)
Other versions
JPH0773899A (en
Inventor
祐之 村井
正樹 長谷川
修二 伊藤
靖彦 美藤
▲吉▼徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP21886293A priority Critical patent/JP3263198B2/en
Publication of JPH0773899A publication Critical patent/JPH0773899A/en
Application granted granted Critical
Publication of JP3263198B2 publication Critical patent/JP3263198B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高エネルギー密度を有
する非水電解質二次電池およびその製造法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery having a high energy density and a method for producing the same.

【0002】[0002]

【従来の技術】リチウムまたはリチウム化合物を負極と
する非水電解質二次電池は、高電圧で高エネルギー密度
が期待され、盛んに研究がなされている。これまでに、
非水電解質二次電池の正極活物質としてV25、Cr2
5、MnO2、TiS2などが知られている。近年、よ
り高エネルギー密度を有する4ボルト級の非水電解質二
次電池の正極活物質としてLiMn24、LiCo
2、LiNiO2、LiFeO2などが注目されてい
る。特に、LiMn24、LiNiO2やLiFeO2
低コストであることや、原料供給が安定しており、大容
量の非水電解質二次電池の活物質として活発な研究が行
われている。
2. Description of the Related Art Non-aqueous electrolyte secondary batteries using lithium or a lithium compound as a negative electrode are expected to have a high voltage and a high energy density, and are being actively studied. So far,
V 2 O 5 , Cr 2 as a positive electrode active material of a nonaqueous electrolyte secondary battery
O 5 , MnO 2 , TiS 2 and the like are known. In recent years, LiMn 2 O 4 , LiCo as a positive electrode active material of a 4 volt class non-aqueous electrolyte secondary battery having a higher energy density
O 2 , LiNiO 2 , LiFeO 2 and the like have been attracting attention. In particular, LiMn 2 O 4 , LiNiO 2 and LiFeO 2 are inexpensive, have a stable supply of raw materials, and are being actively studied as active materials for large-capacity non-aqueous electrolyte secondary batteries.

【0003】一方、負極活物質としては、安全性やレー
ト特性などの点から金属リチウムに代わり、炭素材料が
注目を集めている。特に、黒鉛化度の進んだ黒鉛粉末
は、高容量で、放電電位が金属リチウムに比べ約0.1
V貴であり電池電圧の低下が少ないという特徴を有して
おり、盛んに研究がなされている。
On the other hand, as a negative electrode active material, a carbon material has been attracting attention instead of lithium metal in view of safety and rate characteristics. In particular, graphite powder with a high degree of graphitization has a high capacity and a discharge potential of about 0.1 times that of metallic lithium.
It has the feature of being V-noble and has a small decrease in battery voltage, and has been actively studied.

【0004】[0004]

【発明が解決しようとする課題】負極に黒鉛粉末などの
リチウムイオンをインターカーレートする物質を用いた
場合、電池の充放電時にリチウムの吸蔵・放出を伴い、
極板の膨張・収縮を繰り返すことにより、極板が緩み、
負極活物質(炭素材料)間の接触が悪くなる。その結
果、極板の集電能力が低下し、電池の充放電サイクルに
伴う容量低下が生じる。この対応策として、負極に繊維
状の黒鉛などを添加し、極板の集電のネットワークを形
成し、極板の集電能力を向上させることも行われている
が、かさ高い繊維状の黒鉛を添加する場合、極板の強度
を高めるため、結着剤の増量が必要となり、電池の絶対
容量の低下を招くなどの問題が残されている。さらに、
繊維状の黒鉛などを添加しても、負極板の膨張・収縮を
抑えることにはならず、長期の充放電サイクルには、い
まだ問題が残されている。
In the case where a material that intercalates lithium ions such as graphite powder is used for the negative electrode, it involves the occlusion and release of lithium during charging and discharging of the battery.
By repeating expansion and contraction of the electrode plate, the electrode plate becomes loose,
The contact between the negative electrode active materials (carbon materials) becomes poor. As a result, the current collecting ability of the electrode plate is reduced, and the capacity is reduced due to the charge / discharge cycle of the battery. As a countermeasure, fibrous graphite and the like are added to the negative electrode to form a current collecting network of the electrode plate to improve the current collecting ability of the electrode plate. In the case of adding, it is necessary to increase the amount of the binder in order to increase the strength of the electrode plate, and there remains a problem that the absolute capacity of the battery is reduced. further,
Even if fibrous graphite or the like is added, expansion and shrinkage of the negative electrode plate are not suppressed, and a long-term charge / discharge cycle still has a problem.

【0005】もう一つの対応策として、極板群を板バネ
などの加圧部材を用いて加圧することが提案されている
(特開平4−294071号公報)。しかし、この方法
によると、極板群と加圧部材を電槽中に収納する際、圧
迫する必要があり、構造上充分な圧力をかけることは難
しい。加えて、加圧部材に板バネを用いた場合、極板面
に均一に圧力を加えることが困難で、長時間の使用では
板バネの劣化等も生じ、長期の使用には耐えられない。
従って、本発明は、負極に炭素材料を用いる非水電解質
二次電池における極板群加圧手段を改良して、充放電サ
イクル特性を向上することを目的としている。
As another countermeasure, it has been proposed to press the electrode plate group by using a pressing member such as a leaf spring (Japanese Patent Laid-Open No. 4-294707). However, according to this method, when the electrode group and the pressurizing member are stored in the battery case, it is necessary to apply pressure, and it is difficult to apply a sufficient pressure due to the structure. In addition, when a leaf spring is used as the pressing member, it is difficult to uniformly apply pressure to the electrode plate surface, and the leaf spring deteriorates when used for a long time, and cannot be used for a long time.
Therefore, an object of the present invention is to improve the electrode group pressurizing means in a non-aqueous electrolyte secondary battery using a carbon material for the negative electrode, and to improve charge / discharge cycle characteristics.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、正極板と負極板とをセパレータを介して
交互に重ねた極板群と並行に熱膨張性材料および熱硬化
性樹脂電槽に充填するものである。熱膨張性材料は、
電池封口後の加熱により膨張させる。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a heat-expandable material and a thermosetting material in parallel with a group of electrode plates in which a positive electrode plate and a negative electrode plate are alternately stacked via a separator.
The conductive resin is filled in a battery case . The heat-expandable material is
It is expanded by heating after sealing the battery.

【0007】 熱膨張性の材料としては、実施例に示すも
のの他、アクリロニトリル−塩化ビニリデン系共重合樹
脂、アクリロニトリル−メタクリル酸メチル系共重合樹
脂などの各種熱可塑性樹脂を核とし、その内部にこの樹
脂の軟化点以下の温度でガス化する物質、例えばプロパ
ン、ブタン、ペンタン等の低沸点液体を封入したマイク
ロカプセルなどを用いることができる。前者の熱膨張性
樹脂とともに熱硬化性樹脂を極板群と並行になるように
充填し、加熱により前者の膨張と後者の硬化を行わせる
と、膨張樹脂による電極の圧迫状態を周囲の環境変化に
かかわらず維持できるので有利である。
[0007] Examples of the thermally expandable material include those shown in the examples.
Acrylonitrile-vinylidene chloride copolymer tree
Fatty, acrylonitrile-methyl methacrylate copolymer tree
The core is made of various thermoplastic resins such as fats,
Substances that gasify at temperatures below the softening point of fats, e.g.
Microphone containing low-boiling liquid such as butane, butane, pentane, etc.
A capsule or the like can be used. Thermal expansion of the former
Thermosetting resin along with resin so that it is parallel to the electrode group
Filling and heating to expand the former and harden the latter
And the compression of the electrodes by the expanding resin
It is advantageous because it can be maintained regardless.

【0008】[0008]

【作用】本発明によれば、正極板と負極板とをセパレー
タを介して交互に重ねた極板群と平行に膨張性材料を配
し、電槽に収納した後、膨張性材料を膨張させ、極板群
を機械的に加圧することができる。従って、電池の充放
電に伴う膨張・収縮による極板の緩みをおさえることが
でき、充放電サイクルに伴う容量低下を抑制することが
できる。さらに、この極板の圧迫は充填した膨張性材料
を膨張させた時から半永久的に継続するため、長期の充
放電サイクル特性においても効果がある。
According to the present invention, an inflatable material is arranged in parallel with an electrode plate group in which a positive electrode plate and a negative electrode plate are alternately stacked with a separator interposed therebetween. The electrode group can be mechanically pressed. Therefore, it is possible to suppress the slack of the electrode plate due to expansion and contraction accompanying the charge and discharge of the battery, and it is possible to suppress a decrease in capacity due to a charge and discharge cycle. Furthermore, since the pressing of the electrode plate continues semipermanently from the time when the filled expandable material is expanded, it is effective in long-term charge / discharge cycle characteristics.

【0009】[0009]

【実施例】以下、本発明の実施例を説明する。 [実施例1]図1に示す構造の電池を以下の手順により
作製する。正極活物質であるLiMn1.8Co0.2
4は、Li2CO3とMn34とCoCO3とを5:6:2
のモル比で混合し、900℃で加熱することによって合
成する。これを100メッシュ以下に分級し、その10
0gに対して導電剤の炭素粉末を10g、結着剤のポリ
4フッ化エチレンの水性ディスパージョンを固形分で2
0g加え混練してペースト状にし、チタンの芯材に塗
布、乾燥し、圧延して正極板とする。一方、負極板は、
活物質である黒鉛粉末100gに対して結着剤のポリフ
ッ化ビニリデン20gを加え、さらにジメチルホルムア
ミドを加え、混練してペースト状にし、ニッケルの芯材
に塗布、乾燥し圧延して作製する。
Embodiments of the present invention will be described below. [Example 1] A battery having the structure shown in Fig. 1 is manufactured by the following procedure. LiMn 1.8 Co 0.2 O as the positive electrode active material
4 is a mixture of Li 2 CO 3 , Mn 3 O 4 and CoCO 3 in a ratio of 5: 6: 2.
And the mixture is heated at 900 ° C. to synthesize. This is classified into 100 mesh or less, and 10
0 g, 10 g of carbon powder as a conductive agent, and an aqueous dispersion of polytetrafluoroethylene as a binder in a solid content of 2 g.
0 g is added and kneaded to form a paste, applied to a titanium core material, dried and rolled to obtain a positive electrode plate. On the other hand, the negative electrode plate
20 g of polyvinylidene fluoride as a binder is added to 100 g of graphite powder as an active material, dimethylformamide is further added, and the mixture is kneaded to form a paste. The paste is applied to a nickel core material, dried, and rolled.

【0010】上記の正極板1と負極板2とをポリプロピ
レン製のセパレータ3を介して交互に積層し、負極板が
外側に配された極板群を構成し、さらに極板群をはさむ
ように両側に充填材9を配して縦110mm、横70m
m,幅25mmの電槽4に密に挿入する。次に、プロピ
レンカーボネートとエチレンカーボネートとを体積比
1:1の割合で混合した溶媒に1モル/lの過塩素酸リ
チウムを溶解した電解液を注入し、封口板8をケースに
接着する。
The above-mentioned positive electrode plate 1 and negative electrode plate 2 are alternately laminated with a polypropylene separator 3 interposed therebetween to form an electrode plate group in which the negative electrode plate is disposed outside, and further sandwich the electrode plate group. Filling material 9 on both sides, 110mm long, 70m wide
m, 25 mm in width. Next, an electrolyte in which 1 mol / l of lithium perchlorate is dissolved in a solvent in which propylene carbonate and ethylene carbonate are mixed at a volume ratio of 1: 1 is injected, and the sealing plate 8 is adhered to the case.

【0011】なお、封口板8には負極端子5と正極端子
(図示しない)が設けてあり、これらの端子にはそれぞ
れ負極の芯材、正極の芯材に接続されたリード7、6が
スポット溶接されている。また、充填材9は、吸液膨張
性の樹脂であるポリアクリルアミドを前記セパレータと
同材質のポリプロピレン製の袋に詰め、極板群をはさむ
ように挿入する。上記のようにして作製した電池をAと
する。
The sealing plate 8 is provided with a negative electrode terminal 5 and a positive electrode terminal (not shown), and these terminals are provided with spots of leads 7 and 6 connected to the core material of the negative electrode and the core material of the positive electrode, respectively. Welded. As the filler 9, polyacrylamide as a liquid-swelling resin is packed in a polypropylene bag made of the same material as the separator, and inserted so as to sandwich the electrode plate group. The battery prepared as described above is designated as A.

【0012】[比較例1]吸液膨張性材料を充填せず、
その分、幅を20mmと小さくしたケースを用いた他は
実施例1と同様にして電池を作製する。この電池をa1
とする。 [比較例2]黒鉛粉末100gに繊維状黒鉛5gとポリ
フッ化ビニリデン10gを加え、ジメチルホルムアミド
を用いてペースト状にし、これをニッケルの芯材に塗
布、乾燥し、圧延して得た負極を用いた他は比較例1と
同様にして電池を作製する。この電池をa2とする。
[Comparative Example 1] No liquid-absorbing expandable material was filled,
A battery is manufactured in the same manner as in Example 1 except that a case whose width is reduced to 20 mm is used. This battery is a1
And [Comparative Example 2] To a negative electrode obtained by adding 5 g of fibrous graphite and 10 g of polyvinylidene fluoride to 100 g of graphite powder, forming a paste using dimethylformamide, applying the paste to a nickel core material, drying and rolling. A battery was fabricated in the same manner as in Comparative Example 1 except for the above. This battery is referred to as a2.

【0013】これら作製した電池は充放電電流2A、充
放電電圧範囲4.3V〜3.0Vの条件で充放電サイク
ル試験をした。その結果を図に示す。ここで、1サイ
クル目の放電容量をC0、nサイクル目の放電容量をCn
として、容量維持率を次のように定義する。 容量維持率(%)=(C0−Cn)/C0 × 100 比較例の電池a1は、充放電サイクルによる容量低下が
激しく、50サイクルにおける容量維持率は48%であ
る。また、比較例の電池a2は、電池a1ほどの容量低
下はないが、100サイクルにおける容量維持率は75
%である。これに対して、本実施例の電池Aは、電池a
1、a2にくらべてサイクル性は非常に良好で、100
サイクルにおける容量維持率は93%である。
These batteries were subjected to a charge / discharge cycle test under the conditions of a charge / discharge current of 2 A and a charge / discharge voltage range of 4.3 V to 3.0 V. The results are shown in Figure 2. Here, the discharge capacity at the first cycle is C0, and the discharge capacity at the nth cycle is Cn.
And the capacity retention ratio is defined as follows. Capacity maintenance rate (%) = (C0−Cn) / C0 × 100 The battery a1 of the comparative example has a sharp decrease in capacity due to charge / discharge cycles, and the capacity maintenance rate in 50 cycles is 48%. In addition, the battery a2 of the comparative example does not decrease in capacity as much as the battery a1, but has a capacity retention ratio of 75 in 100 cycles.
%. On the other hand, the battery A of the present embodiment is a battery a
Cycleability is very good as compared with 1, a2, 100
The capacity retention in the cycle is 93%.

【0014】[実施例2]この例では、充填材として熱
膨張性樹脂を用いる。熱膨張性材料として、アクリロニ
トリル−酢酸ビニル共重合樹脂を核とし、その内部にプ
ロパンを封入したマイクロカプセルを用いる。このマイ
クロカプセルは、加熱によってその体積が3〜5%程度
増加するものを用いる。体積膨張率が10%を越えるよ
うなマイクロカプセルを用いた場合、マイクロカプセル
の膨張により、電池が破損するおそれがある。電池は実
施例1と同様の方法で作製し、吸液膨張性の樹脂である
ポリアクリルアミドの代わりに、熱膨張性の上記マイク
ロカプセルをポリプロピレン製の袋に詰め、充填する。
電池封口後、この電池を80℃〜90℃の間の温度で約
20分間加熱する。こうして作製した電池をBとする。
ただし、この温度での加熱は、電池自身の性能を低下さ
せる恐れがあるため、できるだけ短い方がよい。
Embodiment 2 In this embodiment, a heat-expandable resin is used as a filler. As the thermally expandable material, microcapsules having an acrylonitrile-vinyl acetate copolymer resin as a core and propane encapsulated therein are used. The microcapsules whose volume increases by about 3 to 5% by heating are used. When a microcapsule having a volume expansion rate exceeding 10% is used, the battery may be damaged due to expansion of the microcapsule. The battery is manufactured in the same manner as in Example 1, and the above-mentioned heat-expandable microcapsules are packed in a polypropylene bag instead of polyacrylamide as a liquid-swelling resin.
After sealing the battery, the battery is heated at a temperature between 80C and 90C for about 20 minutes. The battery fabricated in this manner is designated as B.
However, heating at this temperature may decrease the performance of the battery itself, so that it is better to be as short as possible.

【0015】電池Bの前記と同条件における充放電サイ
クル試験の結果を図に示している。電池Bの100サ
イクルにおける容量維持率は約96%である。本実施例
の電池Bのサイクル性は、実施例1の電池Aよりさらに
良好であることがわかる。すなわち本実施例の充填材
は、実施例1で用いた充填材より硬度が高いため、負極
の膨張・収縮による電極の緩みをより効果的に抑制でき
るものと考えられる。
FIG. 2 shows the result of the charge / discharge cycle test of the battery B under the same conditions as described above. The capacity retention rate of the battery B in 100 cycles is about 96%. It can be seen that the cycle performance of the battery B of this example is even better than that of the battery A of Example 1. That is, since the filler of the present example has higher hardness than the filler used in Example 1, it is considered that the loosening of the electrode due to the expansion and contraction of the negative electrode can be more effectively suppressed.

【0016】[実施例3] 充填材として熱硬化性樹脂と熱膨張性樹脂を混合したも
のを用いた例について説明する。熱硬化性樹脂としては
エポキシ樹脂を用い、熱膨張性樹脂としては実施例2と
同様にアクロニトリル−酢酸ビニル共重合樹脂を核と
し、その内部にプロパンを封入したマイクロカプセルを
用いる。電池は実施例2と同様の方法で作製し、熱膨張
性球体であるマイクロカプセルとエポキシ樹脂の混合比
を体積比で50:50としたものを充填する。電池封口
後、この電池を80℃〜90℃の間の温度で約20分間
加熱する。こうして作製した電池をCとする。電池Cの
充放電サイクル試験結果は図に示している。電池Cの
100サイクルにおける容量維持率は約96%である。
Example 3 An example using a mixture of a thermosetting resin and a heat-expandable resin as a filler will be described. As the thermosetting resin, an epoxy resin is used, and as the thermally expandable resin, microcapsules having an acrylonitrile-vinyl acetate copolymer resin as a core and propane encapsulated therein are used as in Example 2. A battery was prepared in the same manner as in Example 2, and filled with a mixture of microcapsules, which are thermally expandable spheres, and epoxy resin in a volume ratio of 50:50. After sealing the battery, the battery is heated at a temperature between 80C and 90C for about 20 minutes. The battery fabricated in this manner is designated as C. FIG. 2 shows the results of the charge / discharge cycle test of the battery C. The capacity retention of the battery C in 100 cycles is about 96%.

【0017】次に、電池Bと電池Cについて高温サイク
ル試験を行った。試験条件は60℃の温度雰囲気下、充
放電電流2A、充放電電圧範囲4.3V〜3.0Vであ
る。その結果を図に示す。図から明らかなように、
電池Bは電池Cに比べ充放電サイクルに伴う容量低下が
大きいことがわかる。これは、電池Bは60℃の温度で
充填したマイクロカプセルが、若干軟化することによっ
て電極を圧迫できなくなったために生じた結果であると
考えられる。すなわち、電池Cは熱硬化性樹脂も同時に
充填してあるため、高温サイクルにおいても電池Bのよ
うに、電極を圧迫できなくなることがなく、高温サイク
ル特性も良好になったものと思われる。
Next, the batteries B and C were subjected to a high-temperature cycle test. The test conditions are a charge / discharge current of 2 A and a charge / discharge voltage range of 4.3 V to 3.0 V in a 60 ° C. temperature atmosphere. The results are shown in Figure 3. As apparent from FIG. 3,
It can be seen that the capacity of the battery B greatly decreases with the charge / discharge cycle as compared to the battery C. This is considered to be a result of the fact that the microcapsules filled at the temperature of 60 ° C. in the battery B softened slightly, so that the electrodes could not be pressed. That is, since the battery C is also filled with the thermosetting resin at the same time, unlike the battery B, the electrodes cannot be pressed even in the high-temperature cycle, and the high-temperature cycle characteristics are considered to be improved.

【0018】以上の実施例では、特定の非水電解質およ
び正極活物質を用いたが、本発明はこれらに限定されな
いことはいうまでもない。さらに、実施例では、電極群
をはさむように膨張材料を充填したが、両側に膨張材料
を充填する必要はなく、極板板群の垂直方向に圧力が加
わればよく、片側でも充分に効果がある。
In the above embodiments, specific non-aqueous electrolytes and positive electrode active materials were used, but it goes without saying that the present invention is not limited to these. Further, in the embodiment, the inflation material is filled so as to sandwich the electrode group. However, it is not necessary to fill the inflation material on both sides, and it is sufficient that pressure is applied in the vertical direction of the electrode plate group. is there.

【0019】[0019]

【発明の効果】以上のように、本発明によれば、炭素材
料を負極とする非水電解質二次電池の充放電サイクル特
性を著しく向上させることができる。
As described above, according to the present invention, the charge / discharge cycle characteristics of a nonaqueous electrolyte secondary battery using a carbon material as a negative electrode can be remarkably improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の角型非水電解質二次電池の縦
断面図である。
FIG. 1 is a longitudinal sectional view of a prismatic nonaqueous electrolyte secondary battery according to an embodiment of the present invention.

【図2】実施例の電池と比較例の電池のサイクル特性を
示した図である。
FIG. 2 is a diagram showing cycle characteristics of a battery of an example and a battery of a comparative example.

【図3】実施例の電池の高温サイクル特性を示した図で
ある。
FIG. 3 is a diagram showing high-temperature cycle characteristics of a battery of an example.

【符号の説明】[Explanation of symbols]

1 正極板 2 負極板 3 セパレータ 4 電槽 5 負極端子 6 正極リード 7 負極リード 8 封口板 9 膨張材料 DESCRIPTION OF SYMBOLS 1 Positive electrode plate 2 Negative electrode plate 3 Separator 4 Battery case 5 Negative terminal 6 Positive electrode lead 7 Negative electrode lead 8 Sealing plate 9 Expansion material

フロントページの続き (72)発明者 美藤 靖彦 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 豊口 ▲吉▼徳 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平4−294071(JP,A) 特開 平5−121101(JP,A) 特開 昭59−158070(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 Continuing on the front page (72) Inventor Yasuhiko Mito 1006 Kazuma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. In-company (56) References JP-A-4-294701 (JP, A) JP-A-5-121101 (JP, A) JP-A-59-158070 (JP, A) (58) Fields investigated (Int. . 7, DB name) H01M 10/40

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 充放電に対して可逆性を有する正極と炭
素材料を主活物質とする負極とをセパレータを介して交
互に重ねてなる極板群、非水電解質、電槽、および前記
極板群と並行に電槽に充填した熱膨張性材料と熱硬化性
樹脂を具備することを特徴とする非水電解質二次電池。
1. An electrode plate group comprising a positive electrode having reversibility to charge and discharge and a negative electrode containing a carbon material as a main active material alternately stacked via a separator, a non-aqueous electrolyte, a battery case , and the electrode Thermo-expandable material and thermosetting filled in battery case in parallel with plate group
A non-aqueous electrolyte secondary battery comprising a resin .
【請求項2】 充放電に対して可逆性を有する正極と炭
素材料を主活物質とする負極とをセパレータを介して交
互に重ねてなる極板群、および非水電解質を電槽に収納
するとともに、前記極板群と並行に熱膨張性材料およ
び熱硬化性樹脂を電槽に充填し、封口後加熱する工程を
有することを特徴とする非水電解質二次電池の製造法。
2. An electrode group in which a positive electrode having reversibility to charge and discharge and a negative electrode having a carbon material as a main active material are alternately stacked via a separator, and a nonaqueous electrolyte is housed in a battery case.
As well as, in parallel with the electrode plate group, Oyo intumescent material
A method for producing a non-aqueous electrolyte secondary battery, comprising a step of filling a battery case with a thermosetting resin and heating after sealing.
JP21886293A 1993-09-02 1993-09-02 Non-aqueous electrolyte secondary battery and manufacturing method thereof Expired - Fee Related JP3263198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21886293A JP3263198B2 (en) 1993-09-02 1993-09-02 Non-aqueous electrolyte secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21886293A JP3263198B2 (en) 1993-09-02 1993-09-02 Non-aqueous electrolyte secondary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0773899A JPH0773899A (en) 1995-03-17
JP3263198B2 true JP3263198B2 (en) 2002-03-04

Family

ID=16726488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21886293A Expired - Fee Related JP3263198B2 (en) 1993-09-02 1993-09-02 Non-aqueous electrolyte secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3263198B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100573097B1 (en) * 1999-06-30 2006-04-24 삼성에스디아이 주식회사 secondary battery
JP4727021B2 (en) * 2000-05-22 2011-07-20 株式会社クレハ Electrode and non-aqueous battery using the same
JP4541324B2 (en) * 2005-06-14 2010-09-08 パナソニック株式会社 Nonaqueous electrolyte secondary battery
CN201682023U (en) * 2009-06-26 2010-12-22 比亚迪股份有限公司 Lithium ion battery
WO2018142928A1 (en) * 2017-01-31 2018-08-09 パナソニックIpマネジメント株式会社 Secondary battery

Also Published As

Publication number Publication date
JPH0773899A (en) 1995-03-17

Similar Documents

Publication Publication Date Title
EP0700109B1 (en) A battery and a method for the manufacture of such a battery
US6106976A (en) Secondary battery or cell with a non-aqueous electrolyte
US5716421A (en) Multilayered gel electrolyte bonded rechargeable electrochemical cell and method of making same
US20070212611A1 (en) Lithium secondary battery
US5567548A (en) Lithium ion battery with lithium vanadium pentoxide positive electrode
KR20000076975A (en) Secondary battery
JP2006310033A (en) Storage battery
US20130280617A1 (en) Gel electrode secondary cell
JPH10144298A (en) Lithium secondary battery
JP3283805B2 (en) Lithium secondary battery
JPH11307081A (en) Lithium ion secondary battery and its manufacture
US5672445A (en) Organic elecrolyte secondary cell
JP3263198B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2001068160A (en) Flat nonaqueous electrolyte secondary battery
JP3956478B2 (en) Method for manufacturing lithium ion secondary battery
JP2002008655A (en) Negative electrode and non-aqueous electrolyte cell
JPH10270019A (en) Nonaqueous electrolyte secondary battery
JP2830365B2 (en) Non-aqueous electrolyte secondary battery
JP4448963B2 (en) Flat type non-aqueous electrolyte secondary battery and method for manufacturing the same
JP2000315504A (en) Non-aqueous electrolyte secondary battery
JP3263182B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JPH10255766A (en) Nonaqueous electrolyte secondary battery
JPH1064515A (en) Lithium ion secondary battery
JP2001189167A (en) Non-aqueous electrolyte secondary cell
JPH11121040A (en) Lithium secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees