JPH0773899A - Non-aqueous secondary battery and manufacture thereof - Google Patents

Non-aqueous secondary battery and manufacture thereof

Info

Publication number
JPH0773899A
JPH0773899A JP5218862A JP21886293A JPH0773899A JP H0773899 A JPH0773899 A JP H0773899A JP 5218862 A JP5218862 A JP 5218862A JP 21886293 A JP21886293 A JP 21886293A JP H0773899 A JPH0773899 A JP H0773899A
Authority
JP
Japan
Prior art keywords
battery
aqueous electrolyte
electrode plate
secondary battery
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5218862A
Other languages
Japanese (ja)
Other versions
JP3263198B2 (en
Inventor
Sukeyuki Murai
祐之 村井
Masaki Hasegawa
正樹 長谷川
Shuji Ito
修二 伊藤
Yasuhiko Mifuji
靖彦 美藤
Yoshinori Toyoguchi
▲吉▼徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21886293A priority Critical patent/JP3263198B2/en
Publication of JPH0773899A publication Critical patent/JPH0773899A/en
Application granted granted Critical
Publication of JP3263198B2 publication Critical patent/JP3263198B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To provide a non-aqueous electrolyte secondary battery having an improved electric charging/discharging cycle characteristic by filling an electrode group consisting of positive and negative electrode plates alternately laminated via separators and expansible materials interposing the electrodes. CONSTITUTION:Positive electrode plates 1 having reversibility with respect to electric charging/discharging and negative electrode plates 2 made of a carbon material as a main active material are alternately laminated via separators 3 made of polypropylene. A filter 9 expansible toward both sides is disposed in such a manner as to interpose the electrodes, and they are tightly inserted into a battery jar 4. An electrolyte, in which lithium perchlorate is dissolved into a solvent obtained by mixing propylene carbonate with ethylene carbonate is injected, and then, a port sealing plate 8 is bonded to the battery jar 4. A core material of the negative plate 2 and a core material of the positive plate 1 are connected to a negative electrode terminal 5 of the port sealing plate 8 via leads 7, 6, followed by spot welding. Consequently, it is possible to provide a non-aqueous electrolyte secondary battery which can restrain loosening of the electrode plates due to expansion or contraction caused by electric charging/ discharging of the battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高エネルギー密度を有
する非水電解質二次電池およびその製造法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery having a high energy density and a method for manufacturing the same.

【0002】[0002]

【従来の技術】リチウムまたはリチウム化合物を負極と
する非水電解質二次電池は、高電圧で高エネルギー密度
が期待され、盛んに研究がなされている。これまでに、
非水電解質二次電池の正極活物質としてV25、Cr2
5、MnO2、TiS2などが知られている。近年、よ
り高エネルギー密度を有する4ボルト級の非水電解質二
次電池の正極活物質としてLiMn24、LiCo
2、LiNiO2、LiFeO2などが注目されてい
る。特に、LiMn24、LiNiO2やLiFeO2
低コストであることや、原料供給が安定しており、大容
量の非水電解質二次電池の活物質として活発な研究が行
われている。
2. Description of the Related Art Non-aqueous electrolyte secondary batteries having lithium or a lithium compound as a negative electrode are expected to have a high voltage and a high energy density, and have been actively studied. So far,
V 2 O 5 , Cr 2 as a positive electrode active material of a non-aqueous electrolyte secondary battery
O 5 , MnO 2 , TiS 2 and the like are known. In recent years, LiMn 2 O 4 and LiCo have been used as positive electrode active materials for 4-volt class non-aqueous electrolyte secondary batteries having higher energy density.
O 2, such as LiNiO 2, LiFeO 2 has been attracting attention. In particular, LiMn 2 O 4 , LiNiO 2 and LiFeO 2 are low in cost and the supply of raw materials is stable, and active research is being carried out as an active material for a large capacity non-aqueous electrolyte secondary battery.

【0003】一方、負極活物質としては、安全性やレー
ト特性などの点から金属リチウムに代わり、炭素材料が
注目を集めている。特に、黒鉛化度の進んだ黒鉛粉末
は、高容量で、放電電位が金属リチウムに比べ約0.1
V貴であり電池電圧の低下が少ないという特徴を有して
おり、盛んに研究がなされている。
On the other hand, as a negative electrode active material, a carbon material has attracted attention in place of metallic lithium in terms of safety and rate characteristics. In particular, graphite powder with a high degree of graphitization has a high capacity and a discharge potential of about 0.1 compared to metallic lithium.
It is V-noble and has a characteristic that the decrease in battery voltage is small, and it is actively researched.

【0004】[0004]

【発明が解決しようとする課題】負極に黒鉛粉末などの
リチウムイオンをインターカーレートする物質を用いた
場合、電池の充放電時にリチウムの吸蔵・放出を伴い、
極板の膨張・収縮を繰り返すことにより、極板が緩み、
負極活物質(炭素材料)間の接触が悪くなる。その結
果、極板の集電能力が低下し、電池の充放電サイクルに
伴う容量低下が生じる。この対応策として、負極に繊維
状の黒鉛などを添加し、極板の集電のネットワークを形
成し、極板の集電能力を向上させることも行われている
が、かさ高い繊維状の黒鉛を添加する場合、極板の強度
を高めるため、結着剤の増量が必要となり、電池の絶対
容量の低下を招くなどの問題が残されている。さらに、
繊維状の黒鉛などを添加しても、負極板の膨張・収縮を
抑えることにはならず、長期の充放電サイクルには、い
まだ問題が残されている。
When a material for intercalating lithium ions such as graphite powder is used for the negative electrode, lithium is inserted and discharged during charge and discharge of the battery,
By repeating expansion and contraction of the electrode plate, the electrode plate loosens,
The contact between the negative electrode active materials (carbon materials) deteriorates. As a result, the current collecting ability of the electrode plate is lowered, and the capacity is lowered with the charge / discharge cycle of the battery. As a countermeasure for this, it has been attempted to add a fibrous graphite or the like to the negative electrode to form a current collecting network of the electrode plate to improve the current collecting ability of the electrode plate. In the case of adding, the amount of the binder needs to be increased in order to increase the strength of the electrode plate, and there remains a problem that the absolute capacity of the battery is lowered. further,
The addition of fibrous graphite does not suppress the expansion and contraction of the negative electrode plate, and a problem still remains in a long-term charge / discharge cycle.

【0005】もう一つの対応策として、極板群を板バネ
などの加圧部材を用いて加圧することが提案されている
(特開平4−294071号公報)。しかし、この方法
によると、極板群と加圧部材を電槽中に収納する際、圧
迫する必要があり、構造上充分な圧力をかけることは難
しい。加えて、加圧部材に板バネを用いた場合、極板面
に均一に圧力を加えることが困難で、長時間の使用では
板バネの劣化等も生じ、長期の使用には耐えられない。
従って、本発明は、負極に炭素材料を用いる非水電解質
二次電池における極板群加圧手段を改良して、充放電サ
イクル特性を向上することを目的としている。
As another countermeasure, it has been proposed to press the electrode plate group using a pressing member such as a leaf spring (Japanese Patent Laid-Open No. 294071/1992). However, according to this method, it is necessary to apply pressure when the electrode plate group and the pressure member are housed in the battery case, and it is difficult to apply sufficient pressure structurally. In addition, when a leaf spring is used as the pressing member, it is difficult to apply pressure evenly to the surface of the electrode plate, and the leaf spring deteriorates after long-term use and cannot be used for a long time.
Therefore, an object of the present invention is to improve the electrode plate group pressurizing means in a non-aqueous electrolyte secondary battery using a carbon material for the negative electrode to improve the charge / discharge cycle characteristics.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、正極板と負極板とをセパレータを介して
交互に重ねた極板群と平行に膨張する材料を充填するも
のである。この材料としては、電解液を吸収して膨張す
るものや加熱により膨張するものを用いる。前記吸液膨
張性の材料を用いる場合は、封口前の極板群への注液工
程において膨張性材料へ吸液させ、膨張させることがで
きる。また、後者の熱膨張性材料を用いる場合は、電池
封口後の加熱により膨張させる。
In order to solve the above-mentioned problems, the present invention is to fill a material that expands in parallel with an electrode plate group in which positive electrode plates and negative electrode plates are alternately stacked with a separator interposed therebetween. is there. As this material, a material that expands by absorbing an electrolytic solution or a material that expands by heating is used. When the liquid absorbing expansive material is used, the expansive material can absorb and expand in the step of injecting the electrode plate group before sealing. When the latter heat-expandable material is used, it is expanded by heating after sealing the battery.

【0007】吸液性の材料としては、後述の実施例で用
いるポリアクリルアミドの他、例えばポリアクリル酸塩
やポリエチレンオキサイド、アクリル酸−アクリロニト
リル共重合体など、吸液膨張性の樹脂がある。また、後
者の熱膨張性の材料としては、実施例に示すものの他、
アクリロニトリル−塩化ビニリデン系共重合樹脂、アク
リロニトリル−メタクリル酸メチル系共重合樹脂などの
各種熱可塑性樹脂を核とし、その内部にこの樹脂の軟化
点以下の温度でガス化する物質、例えばプロパン、ブタ
ン、ペンタン等の低沸点液体を封入したマイクロカプセ
ルなどを用いることができる。前記の熱膨張性樹脂とと
もに熱硬化性樹脂を極板群と平行になるように充填し、
加熱により前者の膨張と後者の硬化を行わせると、膨張
樹脂による電極の圧迫状態を周囲の環境変化にかかわら
ず維持できるので有利である。
Examples of the liquid-absorbent material include liquid-swellable resins such as polyacrylic acid salt, polyethylene oxide, and acrylic acid-acrylonitrile copolymer, in addition to polyacrylamide used in Examples described later. Further, as the latter thermally expandable material, other than those shown in the examples,
Acrylonitrile-vinylidene chloride copolymer resin, acrylonitrile-a variety of thermoplastic resins such as methyl methacrylate copolymer resin as a core, inside which is gasified at a temperature below the softening point of the resin, such as propane, butane, For example, microcapsules enclosing a low boiling point liquid such as pentane can be used. Filling the thermosetting resin with the above-mentioned heat-expandable resin so as to be parallel to the electrode plate group,
When the former is expanded and the latter is cured by heating, it is advantageous because the pressed state of the electrode by the expanded resin can be maintained regardless of changes in the surrounding environment.

【0008】[0008]

【作用】本発明によれば、正極板と負極板とをセパレー
タを介して交互に重ねた極板群と平行に膨張性材料を配
し、電槽に収納した後、膨張性材料を膨張させ、極板群
を機械的に加圧することができる。従って、電池の充放
電に伴う膨張・収縮による極板の緩みをおさえることが
でき、充放電サイクルに伴う容量低下を抑制することが
できる。さらに、この極板の圧迫は充填した膨張性材料
を膨張させた時から半永久的に継続するため、長期の充
放電サイクル特性においても効果がある。
According to the present invention, the expansive material is arranged in parallel to the electrode plates in which the positive electrode plates and the negative electrode plates are alternately stacked with the separators interposed therebetween, and the expansive material is expanded after being housed in the battery case. , The electrode plate group can be mechanically pressed. Therefore, it is possible to suppress loosening of the electrode plate due to expansion and contraction due to charge and discharge of the battery, and it is possible to suppress a decrease in capacity due to charge and discharge cycles. Further, since the compression of the electrode plate continues semipermanently after the filled expansive material is expanded, it is effective in long-term charge / discharge cycle characteristics.

【0009】[0009]

【実施例】以下、本発明の実施例を説明する。 [実施例1]図1に示す構造の電池を以下の手順により
作製する。正極活物質であるLiMn1.8Co0.2
4は、Li2CO3とMn34とCoCO3とを5:6:2
のモル比で混合し、900℃で加熱することによって合
成する。これを100メッシュ以下に分級し、その10
0gに対して導電剤の炭素粉末を10g、結着剤のポリ
4フッ化エチレンの水性ディスパージョンを固形分で2
0g加え混練してペースト状にし、チタンの芯材に塗
布、乾燥し、圧延して正極板とする。一方、負極板は、
活物質である黒鉛粉末100gに対して結着剤のポリフ
ッ化ビニリデン20gを加え、さらにジメチルホルムア
ミドを加え、混練してペースト状にし、ニッケルの芯材
に塗布、乾燥し圧延して作製する。
EXAMPLES Examples of the present invention will be described below. Example 1 A battery having the structure shown in FIG. 1 is manufactured by the following procedure. LiMn 1.8 Co 0.2 O which is a positive electrode active material
4 is 5: 6: 2 of Li 2 CO 3 , Mn 3 O 4, and CoCO 3.
Are mixed at a molar ratio of 100 ° C. and heated at 900 ° C. to synthesize. This is classified to 100 mesh or less, 10
To 0 g, 10 g of carbon powder as a conductive agent and an aqueous dispersion of polytetrafluoroethylene as a binder in solid content of 2
0 g is added and kneaded to form a paste, which is applied to a titanium core material, dried, and rolled to form a positive electrode plate. On the other hand, the negative electrode plate is
20 g of polyvinylidene fluoride as a binder is added to 100 g of graphite powder as an active material, dimethylformamide is further added, and the mixture is kneaded to form a paste, which is applied to a nickel core material, dried and rolled.

【0010】上記の正極板1と負極板2とをポリプロピ
レン製のセパレータ3を介して交互に積層し、負極板が
外側に配された極板群を構成し、さらに極板群をはさむ
ように両側に充填材9を配して縦110mm、横70m
m,幅25mmの電槽4に密に挿入する。次に、プロピ
レンカーボネートとエチレンカーボネートとを体積比
1:1の割合で混合した溶媒に1モル/lの過塩素酸リ
チウムを溶解した電解液を注入し、封口板8をケースに
接着する。
The positive electrode plate 1 and the negative electrode plate 2 are alternately laminated with a separator 3 made of polypropylene interposed therebetween to form an electrode plate group in which the negative electrode plates are arranged outside, and the electrode plate group is sandwiched. Filler 9 is placed on both sides, 110 mm long and 70 m wide
It is densely inserted in the battery case 4 having a width of 25 mm and a width of 25 mm. Next, an electrolyte solution in which 1 mol / l of lithium perchlorate is dissolved is poured into a solvent in which propylene carbonate and ethylene carbonate are mixed at a volume ratio of 1: 1 and the sealing plate 8 is bonded to the case.

【0011】なお、封口板8には負極端子5と正極端子
(図示しない)が設けてあり、これらの端子にはそれぞ
れ負極の芯材、正極の芯材に接続されたリード7、6が
スポット溶接されている。また、充填材9は、吸液膨張
性の樹脂であるポリアクリルアミドを前記セパレータと
同材質のポリプロピレン製の袋に詰め、極板群をはさむ
ように挿入する。上記のようにして作製した電池をAと
する。
The sealing plate 8 is provided with a negative electrode terminal 5 and a positive electrode terminal (not shown), and leads 7 and 6 connected to the negative electrode core material and the positive electrode core material are spotted on these terminals, respectively. It is welded. As the filler 9, polyacrylamide, which is a liquid-swellable resin, is packed in a polypropylene bag made of the same material as the separator, and inserted so as to sandwich the electrode plate group. The battery produced as described above is designated as A.

【0012】[比較例1]吸液膨張性材料を充填せず、
その分、幅を20mmと小さくしたケースを用いた他は
実施例1と同様にして電池を作製する。この電池をa1
とする。 [比較例2]黒鉛粉末100gに繊維状黒鉛5gとポリ
フッ化ビニリデン10gを加え、ジメチルホルムアミド
を用いてペースト状にし、これをニッケルの芯材に塗
布、乾燥し、圧延して得た負極を用いた他は比較例1と
同様にして電池を作製する。この電池をa2とする。
[Comparative Example 1] A liquid absorbing expansive material was not filled,
A battery is manufactured in the same manner as in Example 1 except that a case whose width is reduced to 20 mm is used. This battery is a1
And [Comparative Example 2] 5 g of fibrous graphite and 10 g of polyvinylidene fluoride were added to 100 g of graphite powder to form a paste using dimethylformamide, which was applied to a nickel core material, dried, and rolled to obtain a negative electrode. A battery is manufactured in the same manner as in Comparative Example 1 except that This battery is designated as a2.

【0013】これら作製した電池は充放電電流2A、充
放電電圧範囲4.3V〜3.0Vの条件で充放電サイク
ル試験をした。その結果を図3に示す。ここで、1サイ
クル目の放電容量をC0、nサイクル目の放電容量をCn
として、容量維持率を次のように定義する。 容量維持率(%)=(C0−Cn)/C0×100 比較例の電池a1は、充放電サイクルによる容量低下が
激しく、50サイクルにおける容量維持率は48%であ
る。また、比較例の電池a2は、電池a1ほどの容量低
下はないが、100サイクルにおける容量維持率は75
%である。これに対して、本実施例の電池Aは、電池a
1、a2にくらべてサイクル性は非常に良好で、100
サイクルにおける容量維持率は93%である。
The batteries thus produced were subjected to a charge / discharge cycle test under the conditions of a charge / discharge current of 2 A and a charge / discharge voltage range of 4.3 V to 3.0 V. The result is shown in FIG. Here, the discharge capacity at the first cycle is C0, and the discharge capacity at the nth cycle is Cn.
Then, the capacity retention rate is defined as follows. Capacity retention rate (%) = (C0−Cn) / C0 × 100 The capacity of the battery a1 of the comparative example is drastically decreased due to charge / discharge cycles, and the capacity retention rate at 50 cycles is 48%. In addition, the battery a2 of the comparative example does not have a capacity decrease as much as the battery a1, but the capacity retention ratio at 100 cycles is 75.
%. On the other hand, the battery A of the present embodiment is the battery a
Compared with 1 and a2, the cycle performance is very good and 100
The capacity retention rate in the cycle is 93%.

【0014】[実施例2]この例では、充填材として熱
膨張性樹脂を用いる。熱膨張性材料として、アクリロニ
トリル−酢酸ビニル共重合樹脂を核とし、その内部にプ
ロパンを封入したマイクロカプセルを用いる。このマイ
クロカプセルは、加熱によってその体積が3〜5%程度
増加するものを用いる。体積膨張率が10%を越えるよ
うなマイクロカプセルを用いた場合、マイクロカプセル
の膨張により、電池が破損するおそれがある。電池は実
施例1と同様の方法で作製し、吸液膨張性の樹脂である
ポリアクリルアミドの代わりに、熱膨張性の上記マイク
ロカプセルをポリプロピレン製の袋に詰め、充填する。
電池封口後、この電池を80℃〜90℃の間の温度で約
20分間加熱する。こうして作製した電池をBとする。
ただし、この温度での加熱は、電池自身の性能を低下さ
せる恐れがあるため、できるだけ短い方がよい。
Example 2 In this example, a thermally expansive resin is used as the filler. As the heat-expandable material, microcapsules having an acrylonitrile-vinyl acetate copolymer resin as a core and propane enclosed therein are used. As the microcapsules, those whose volume increases by about 3 to 5% by heating are used. When a microcapsule having a volume expansion coefficient of more than 10% is used, the expansion of the microcapsule may damage the battery. A battery is manufactured in the same manner as in Example 1, and instead of polyacrylamide, which is a liquid-swellable resin, the thermally expandable microcapsules are packed and filled in a polypropylene bag.
After sealing the battery, the battery is heated at a temperature between 80 ° C and 90 ° C for about 20 minutes. The battery thus manufactured is designated as B.
However, since heating at this temperature may deteriorate the performance of the battery itself, it is preferable that the heating be as short as possible.

【0015】電池Bの前記と同条件における充放電サイ
クル試験の結果を図3に示している。電池Bの100サ
イクルにおける容量維持率は約96%である。本実施例
の電池Bのサイクル性は、実施例1の電池Aよりさらに
良好であることがわかる。すなわち本実施例の充填材
は、実施例1で用いた充填材より硬度が高いため、負極
の膨張・収縮による電極の緩みをより効果的に抑制でき
るものと考えられる。
The result of the charge / discharge cycle test of the battery B under the same conditions as above is shown in FIG. The capacity retention rate of Battery B in 100 cycles is about 96%. It can be seen that the cycleability of the battery B of this example is better than that of the battery A of Example 1. That is, since the filler of this example has a higher hardness than the filler used in Example 1, it is considered that the loosening of the electrode due to the expansion and contraction of the negative electrode can be more effectively suppressed.

【0016】[実施例3]充填材として熱硬化性樹脂と
熱膨張性樹脂を混合したものを用いた例について説明す
る。熱硬化性樹脂としてはエポキシ樹脂を用い、熱膨張
性樹脂としては実施例2と同様にアクロニトリル−酢酸
ビニル共重合樹脂を核とし、その内部にプロパンを封入
したマイクロカプセルを用いる。電池は実施例2と同様
の方法で作製し、熱膨張性球体であるマイクロカプセル
とエポキシ樹脂の混合比を体積比で50:50としたも
のを充填する。電池封口後、この電池を80℃〜90℃
の間の温度で約20分間加熱する。こうして作製した電
池をCとする。電池Cの充放電サイクル試験結果は図3
に示している。電池Cの100サイクルにおける容量維
持率は約96%である。
[Embodiment 3] An example in which a mixture of a thermosetting resin and a thermally expansive resin is used as a filler will be described. An epoxy resin is used as the thermosetting resin, and a microcapsule having an acronitrile-vinyl acetate copolymer resin as a core and propane enclosed therein is used as the heat-expandable resin, as in Example 2. A battery is prepared in the same manner as in Example 2, and is filled with microcapsules, which are heat-expandable spheres, and epoxy resin at a mixing ratio of 50:50 by volume. After sealing the battery, keep the battery at 80 ° C to 90 ° C.
Heat at a temperature between about 20 minutes. The battery thus manufactured is designated as C. The charge / discharge cycle test result of the battery C is shown in FIG.
Is shown in. The capacity retention rate of Battery C in 100 cycles is about 96%.

【0017】次に、電池Bと電池Cについて高温サイク
ル試験を行った。試験条件は60℃の温度雰囲気下、充
放電電流2A、充放電電圧範囲4.3V〜3.0Vであ
る。その結果を図4に示す。図4から明らかなように、
電池Bは電池Cに比べ充放電サイクルに伴う容量低下が
大きいことがわかる。これは、電池Bは60℃の温度で
充填したマイクロカプセルが、若干軟化することによっ
て電極を圧迫できなくなったために生じた結果であると
考えられる。すなわち、電池Cは熱硬化性樹脂も同時に
充填してあるため、高温サイクルにおいても電池Bのよ
うに、電極を圧迫できなくなることがなく、高温サイク
ル特性も良好になったものと思われる。
Next, a high temperature cycle test was conducted on the batteries B and C. The test conditions are a temperature atmosphere of 60 ° C., a charge / discharge current of 2 A, and a charge / discharge voltage range of 4.3 V to 3.0 V. The result is shown in FIG. As is clear from FIG.
It can be seen that the battery B has a larger capacity decrease with charge / discharge cycles than the battery C. This is considered to be a result of the fact that the microcapsules filled in the battery B at a temperature of 60 ° C. were unable to press the electrodes due to a slight softening. That is, since the battery C is also filled with the thermosetting resin at the same time, it is considered that the electrodes cannot be pressed under the high temperature cycle unlike the battery B and the high temperature cycle characteristics are improved.

【0018】以上の実施例では、特定の非水電解質およ
び正極活物質を用いたが、本発明はこれらに限定されな
いことはいうまでもない。さらに、実施例では、電極群
をはさむように膨張材料を充填したが、両側に膨張材料
を充填する必要はなく、極板板群の垂直方向に圧力が加
わればよく、片側でも充分に効果がある。
Although the specific non-aqueous electrolyte and the positive electrode active material are used in the above examples, it goes without saying that the present invention is not limited to these. Furthermore, in the example, the expansion material was filled so as to sandwich the electrode group, but it is not necessary to fill the expansion material on both sides, and it is sufficient if pressure is applied in the vertical direction of the electrode plate group, and one side is also sufficiently effective. is there.

【0019】[0019]

【発明の効果】以上のように、本発明によれば、炭素材
料を負極とする非水電解質二次電池の充放電サイクル特
性を著しく向上させることができる。
As described above, according to the present invention, the charge / discharge cycle characteristics of a non-aqueous electrolyte secondary battery having a carbon material as a negative electrode can be remarkably improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の角型非水電解質二次電池の縦
断面図である。
FIG. 1 is a vertical cross-sectional view of a prismatic non-aqueous electrolyte secondary battery according to an example of the present invention.

【図2】実施例の電池と比較例の電池のサイクル特性を
示した図である。
FIG. 2 is a diagram showing cycle characteristics of a battery of an example and a battery of a comparative example.

【図3】実施例の電池の高温サイクル特性を示した図で
ある。
FIG. 3 is a diagram showing high-temperature cycle characteristics of batteries of Examples.

【符号の説明】[Explanation of symbols]

1 正極板 2 負極板 3 セパレータ 4 電槽 5 負極端子 6 正極リード 7 負極リード 8 封口板 9 膨張材料 DESCRIPTION OF SYMBOLS 1 Positive electrode plate 2 Negative electrode plate 3 Separator 4 Battery case 5 Negative electrode terminal 6 Positive electrode lead 7 Negative electrode lead 8 Sealing plate 9 Expansion material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 美藤 靖彦 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 豊口 ▲吉▼徳 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuhiko Mito 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. Within the corporation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 充放電に対して可逆性を有する正極と炭
素材料を主活物質とする負極とをセパレータを介して交
互に重ねてなる極板群、非水電解質、および前記極板群
と平行に充填した膨張する材料を具備することを特徴と
する非水電解質二次電池。
1. An electrode plate group, a non-aqueous electrolyte, and the electrode plate group, wherein positive electrodes having reversibility to charge and discharge and negative electrodes containing a carbon material as a main active material are alternately stacked with a separator interposed therebetween. A non-aqueous electrolyte secondary battery comprising a material that expands in parallel.
【請求項2】 前記膨張する材料が吸液膨張性樹脂であ
る請求項1記載の非水電解質二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the material that expands is a liquid-swellable resin.
【請求項3】 充放電に対して可逆性を有する正極と炭
素材料を主活物質とする負極とをセパレータを介して交
互に重ねてなる極板群、非水電解質、および前記極板群
と平行に充填した熱膨張性材料を電槽に収納し、封口後
加熱する工程を有することを特徴とする非水電解質二次
電池の製造法。
3. An electrode plate group, a non-aqueous electrolyte, and the electrode plate group, wherein positive electrodes having reversibility to charge and discharge and negative electrodes containing a carbon material as a main active material are alternately stacked with a separator interposed therebetween. A method for manufacturing a non-aqueous electrolyte secondary battery, which comprises a step of housing thermally expandable materials filled in parallel in a battery case, heating after sealing, and heating.
【請求項4】 前記極板群と平行に前記熱膨張性材料と
ともに熱硬化性樹脂が充填されている請求項3記載の非
水電解質二次電池の製造法。
4. The method for manufacturing a non-aqueous electrolyte secondary battery according to claim 3, wherein a thermosetting resin is filled together with the thermally expandable material in parallel with the electrode plate group.
JP21886293A 1993-09-02 1993-09-02 Non-aqueous electrolyte secondary battery and manufacturing method thereof Expired - Fee Related JP3263198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21886293A JP3263198B2 (en) 1993-09-02 1993-09-02 Non-aqueous electrolyte secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21886293A JP3263198B2 (en) 1993-09-02 1993-09-02 Non-aqueous electrolyte secondary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0773899A true JPH0773899A (en) 1995-03-17
JP3263198B2 JP3263198B2 (en) 2002-03-04

Family

ID=16726488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21886293A Expired - Fee Related JP3263198B2 (en) 1993-09-02 1993-09-02 Non-aqueous electrolyte secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3263198B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001332245A (en) * 2000-05-22 2001-11-30 Kureha Chem Ind Co Ltd Electrode and nonaqueous-based battery using the same
KR100573097B1 (en) * 1999-06-30 2006-04-24 삼성에스디아이 주식회사 secondary battery
JP2007027100A (en) * 2005-06-14 2007-02-01 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2012531020A (en) * 2009-06-26 2012-12-06 ビーワイディー カンパニー リミテッド Lithium ion battery
WO2018142928A1 (en) * 2017-01-31 2018-08-09 パナソニックIpマネジメント株式会社 Secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100573097B1 (en) * 1999-06-30 2006-04-24 삼성에스디아이 주식회사 secondary battery
JP2001332245A (en) * 2000-05-22 2001-11-30 Kureha Chem Ind Co Ltd Electrode and nonaqueous-based battery using the same
JP2007027100A (en) * 2005-06-14 2007-02-01 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP4541324B2 (en) * 2005-06-14 2010-09-08 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP2012531020A (en) * 2009-06-26 2012-12-06 ビーワイディー カンパニー リミテッド Lithium ion battery
WO2018142928A1 (en) * 2017-01-31 2018-08-09 パナソニックIpマネジメント株式会社 Secondary battery
JPWO2018142928A1 (en) * 2017-01-31 2019-11-14 パナソニックIpマネジメント株式会社 Secondary battery

Also Published As

Publication number Publication date
JP3263198B2 (en) 2002-03-04

Similar Documents

Publication Publication Date Title
US5834135A (en) Multilayered gel electrolyte bonded rechargeable electrochemical cell
EP0700109B1 (en) A battery and a method for the manufacture of such a battery
US20070212611A1 (en) Lithium secondary battery
EP0777288A1 (en) Non-aqueous electrolyte type secondary battery
JP2006310033A (en) Storage battery
JP3283805B2 (en) Lithium secondary battery
US3530496A (en) Rechargeable alkaline manganese cell
JPH11307081A (en) Lithium ion secondary battery and its manufacture
JPH09190814A (en) Nonaqueous electrolyte secondary battery
JPH06318454A (en) Nonaqueous electrolyte secondary battery
WO2006113924A2 (en) Safer high energy battery
JP3368918B2 (en) Lithium secondary battery
EP0810681B1 (en) Nonaqueous electrolyte secondary battery
JP2001068160A (en) Flat nonaqueous electrolyte secondary battery
JPH0773899A (en) Non-aqueous secondary battery and manufacture thereof
US20060040184A1 (en) Non-aqueous electrolyte battery
JPH03152881A (en) Rectangular type lithium secondary battery
JP2830365B2 (en) Non-aqueous electrolyte secondary battery
JPH10270019A (en) Nonaqueous electrolyte secondary battery
JP3508411B2 (en) Lithium ion secondary battery
JP2004087325A (en) Nonaqueous electrolytic solution battery
JP2002042865A (en) Thin-type nonaqueous electrolyte secondary battery
JP2002008655A (en) Negative electrode and non-aqueous electrolyte cell
JPH10255766A (en) Nonaqueous electrolyte secondary battery
JP3236170B2 (en) Negative electrode for non-aqueous electrolyte secondary batteries

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees