JP4727021B2 - Electrode and non-aqueous battery using the same - Google Patents

Electrode and non-aqueous battery using the same Download PDF

Info

Publication number
JP4727021B2
JP4727021B2 JP2000149469A JP2000149469A JP4727021B2 JP 4727021 B2 JP4727021 B2 JP 4727021B2 JP 2000149469 A JP2000149469 A JP 2000149469A JP 2000149469 A JP2000149469 A JP 2000149469A JP 4727021 B2 JP4727021 B2 JP 4727021B2
Authority
JP
Japan
Prior art keywords
electrode
weight
battery
thermally expandable
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000149469A
Other languages
Japanese (ja)
Other versions
JP2001332245A (en
Inventor
巧 葛尾
愛作 永井
義克 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP2000149469A priority Critical patent/JP4727021B2/en
Publication of JP2001332245A publication Critical patent/JP2001332245A/en
Application granted granted Critical
Publication of JP4727021B2 publication Critical patent/JP4727021B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、非水系電池、特にリチウムイオン二次電池、における過放電や過充電による電池内部の急激な温度上昇などの異常に伴う事故を回避する目的で、安全性を改善した電極及び該電極を含む非水系電池に関する。
【0002】
【従来の技術】
近年電子技術の発展はめざましく、各種の機器が小型軽量化されてきている。この電子機器の小型軽量化と相まって、その電源となる電池の小型軽量化の要望も非常に大きくなってきている。少ない容積及び重量でより大きなエネルギーを得ることが出来る電池として、リチウムを用いた非水系二次電池が、主として携帯電話やパーソナルコンピュータ、ビデオカムコーダなどの家庭で用いられる小型電子機器の電源として用いられてきた。これらのリチウム非水系二次電池においては、安全対策が重要であり、特に、外部電極の短絡による過放電による発火事故、あるいは充電時の充電装置の故障や不適切な急速充電操作によって電池に過大電圧、過大充電電流、逆接続電圧がかかり、電池内部の温度が上昇することによる電池の破裂事故、などを防止する目的から、バイメタル式サーマルプロテクタやPTC素子が装着されている。
【0003】
このうちPTC素子は、ある温度で急激に抵抗値が増大して電流を抑制する抵抗体素子であり、構造が単純で小型化が可能であり、しかも機械的動作を伴わないことから信頼性に優れるという利点を有している。ところが、このようなPTC素子は室温での抵抗率が比較的大きく、出力損失が生じて放電特性の低下を招きやすい。また、素子の大面積化は素子内部の電力集中による発熱を引き起こしやすいため、大型電池への装着が困難であるという問題があった。
【0004】
一方、電池の温度上昇時に電池反応を阻害することが可能な物質を内包した感熱性マイクロカプセルを電池内に含有させ、電池の熱暴走を防止する技術がいくつか提案されている(特開昭63−86355号、特開平6−283206号、特開平10−270084号各公報等)。これら技術においては、電池反応をカプセル内包物質によって化学的に抑制することを意図している。
【0005】
【発明が解決すべき課題】
本発明者らの研究によれば、上述したカプセル内包物質により電池反応を化学的に抑制する電池の熱暴走防止対策には、(イ)電池の温度上昇時に効果的に内包物質が放出されずに温度上昇と内包物質の放出との間に時間的遅れが発生し、(ロ)また内包物質が放出されてもこれが電池活物質に作用して起る電池反応抑制反応を急激に進めることも困難なため、温度の指数関数的に増大する電池反応の熱暴走(一旦起ると、電解液の酸化分解等により更に発熱ならびに暴走が促進され、電池の破裂や発火等の事故につながる)を効果的に防止し得ない、という問題点がある。
【0006】
上述の事情に鑑み、本発明の主要な目的は、過放電や過充電等による電池内部の急激な温度上昇に対し、より速い応答性をもって対応し、電池反応の熱暴走に伴う事故を効果的に回避する電極構造ならびに該電極を含む非水系電池を提供することにある。
【0007】
【課題を解決する手段】
本発明者らは、上述の目的で研究する過程で、熱暴走の原因となり得る電池反応は、電池内の導電状態が維持されている状態で進行することに着目し、この導電状態を阻害すれば電池反応を抑制し得ること、またこの導電状態の阻害を物理的に達成する手段として、熱膨張性マイクロカプセルを電池中に配置することが効果的であることが見出された。
【0008】
本発明の電極は、上述の知見に基づくものであり、より詳しくは、リチウムを吸蔵・放出する正極材料または負極材料からなる電極合剤層と、集電体との積層構造を有し、該電極合剤層中にあるいは該電極合剤層と集電体との間に設けた層中に熱膨張性マイクロカプセルを含ませてなることを特徴とするものである。また、本発明の非水系電池は、互いに離間して積層された正極と負極との間に、電解質を存在させてなる構造の非水系電池において、前記正極と負極の少なくとも一方が、上記電極からなることを特徴とするものである。
【0009】
本発明の電極を含む非水系電池が、過放電や過充電等により急激な内部温度上昇を起して所定温度(好ましくは電池の異常発熱による熱暴走が開始される直前の80℃〜百数十℃の温度)に達すると、熱可塑性樹脂からなる外殻が軟化し、内包される揮発性膨張剤の膨張応力もあって、外殻が急速に膨張して、電極合剤層の膨張あるいは電極合剤層の集電体からの急激な剥離を起し、電極活物質−集電体間抵抗の急激な増大により電流遮断を効果的に達成する。従って電極活物質が集電体と電気的に導通し、良好な電流透過状態において進行する電池反応が、効果的に遮断される。従って、外殻を構成する熱可塑性樹脂を適切に設計して、電解液との接触下において、電池の動作温度においては安定であるが、上記所定温度で確実に軟化膨張し得るように設計しておけば、本発明の電極を含む非水系電池においては、熱暴走による事故発生を効果的に防止することが可能になる。
【0010】
【発明の実施の形態】
図1及び図2は、本発明の電極の代表的な積層構造の二例を示す、厚さ方向模式断面図である。すなわち、本発明の電極は、代表的に、リチウムを吸蔵・放出する正極材料または負極材料(以下、包括的に「電極活物質」と称する)1aからなる電極合剤層1と、集電体2との積層構造を有し、熱膨張性マイクロカプセル3を、該電極合剤層1中に含ませるか(図1)、あるいは該電極合剤層1と集電体2との間の層30に含ませた(図2)構造を有する。
【0011】
熱膨張性マイクロカプセル(しばしば「マイクロスフェアー」とも称される)3は、熱可塑性樹脂からなる外殻中に、揮発性膨張剤を封入し、あるいは内包させてなるものである。従来より、このような熱膨張性マイクロカプセルは、水系分散媒体中で、少なくとも揮発性膨張剤と、外殻を構成する重合体を与える重合性単量体とを含有する重合性混合物を懸濁重合する方法により製造されている。例えば、特公昭42−26524号公報、特開昭62−286534号公報、特開平4−292643号公報、特開平11−209504号公報等に熱膨張性熱可塑性マイクロスフェアーを製造する方法が開示されており、本発明の熱膨張性マイクロカプセルの製造にも適用できる。
【0012】
外殻を構成する熱可塑性樹脂は、後述する電解液に対し、耐久性を示す必要があり、より具体的には電解液との接触下において、電池の動作温度(一般に室温〜80℃程度までが予定される)までは外殻構造を安定に維持し、且つ、後記する揮発性膨張剤を内包する状態で電池の異常発熱による熱暴走が開始される直前の所定温度、すなわち80℃〜180℃、より好ましくは100℃〜160℃、において急激に軟化発泡を起す必要がある。そのため、熱可塑性樹脂自体としては、弾性率の低下開始温度(熱膨張性マイクロカプセルを加熱発泡させ、内発泡剤を抜いた後、熱プレスで1cm×1.5cm×0.25cmの試験片に調整したものを、東洋精機製作所のレオログラフソリッドを用いて、周波数10ヘルツ、3℃/分の昇温速度で測定)が40℃〜160℃、特に60℃〜130℃、であり、更にガスバリヤー性を有することが好ましい。このような特性を有する限りにおいて、任意の熱可塑性樹脂が用いられる訳であるが、このような特性を安定的に発揮させることは、必ずしも容易ではなく、適正な樹脂設計がなされる必要がある。
【0013】
すなわち、マイクロカプセルの外殻を構成する熱可塑性樹脂は、耐電解液に優れ、熱可塑性で且つガスバリヤー性に優れる重合体であることが好ましい。この観点から塩化ビニリデンを含む(共)重合体、及び(メタ)アクリロニトリルを含む(共)重合体により外殻を構成することが好ましい。
【0014】
中でも(メタ)アクリロニトリルを主成分(51重量%以上)とする(共)重合体により外殻を構成することが好ましい。好ましい外殻構成重合体の一具体例としては、(a)アクリロニトリル及びメタクリロニトリルからなる群より選ばれる少なくとも一種の単量体51重量%以上、及び(b)塩化ビニリデン、アクリル酸エステル、メタクリル酸エステル、スチレン、及び酢酸ビニルからなる群より選ばれる少なくとも一種の単量体49重量%以下を含有する単量体混合物から得られる共重合体が挙げられる。より好ましくは、前記単量体混合物が、(a)アクリロニトリル及びメタクリロニトリルからなる群より選ばれる少なくとも一種の単量体51〜98重量%、(b1)塩化ビニリデン1〜48重量%、及び(b2)アクリル酸エステル及びメタクリル酸エステルからなる群より選ばれる少なくとも一種の単量体1〜48重量%を含有するものである。(メタ)アクリロニトリルの共重合割合が51重量%未満では、耐溶剤性や耐熱性が低下しすぎて好ましくない。
【0015】
塩化ビニリデンを含まない共重合体の好ましい例としては、重合性単量体として、(c)アクリロニトリル及びメタクリロニトリルからなる群より選ばれる少なくとも一種の単量体51〜100重量%、より好ましくは70〜100重量、及び(d)アクリル酸エステル及びメタクリル酸エステルからなる群より選ばれる少なくとも一種の単量体0〜49重量%、より好ましくは0〜30重量%を含有する単量体混合物を用いて得られる共重合体が挙げられる。より好ましくは、前記単量体混合物が、(c1)アクリロニトリル20〜80重量%、(c2)メタクリロニトリル20〜80重量%、及び(e)アクリル酸エステル及びメタクリル酸エステルからなる群より選ばれる少なくとも一種の単量体0〜49重量%、より好ましくは0〜30重量%を含有するものである。このような共重合体によって、ガスバリヤー性、耐溶剤性、耐熱性、熱膨張性などに優れた熱膨張性マイクロカプセルの外殻を得ることができる。
【0016】
得られるマイクロカプセルの発泡特性及び耐熱性を改良するため、前記の如き重合性単量体と共に架橋性単量体を併用することができる。架橋性単量体としては、通常、2以上の炭素−炭素二重結合を有する化合物が用いられる。より具体的には、架橋性単量体として、例えば、ジビニルベンゼン、ジ(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸ジエチレングリコール、ジ(メタ)アクリル酸トリエチレングリコール、メタクリル酸アリル、イソシアン酸トリアリル、トリアクリルホルマール、トリ(メタ)アクリル酸トリメチロールプロパン、ジメタクリル酸1,3−ブチルグリコール、ペンタエリスリトールトリ(メタ)アクリレート等が挙げられる。架橋性単量体の使用割合は、重合性単量体中の通常0.1〜5重量%であるが、良好な電解液に対する耐久性ならびに電解液との接触下において所定温度において確実にマイクロカプセルの発泡を起させるために、0.5重量%、特に1.0重量%を超え、5重量%以下、特に4重量%以下、の架橋性単量体を用いることが好ましい。また発泡温度の制御の観点からは、三官能以上の多官能性単量体に比べて、二官能性単量体を用いることが好ましい。
【0017】
外殻中に封入される揮発性膨張剤としては、マイクロカプセルの発泡を起す所定温度、より直接的にはマイクロカプセルの外殻を構成する熱可塑性樹脂の軟化点以下の温度でガス化する揮発性の有機化合物、例えば100℃以下の沸点を有するプロパン、プロピレン、n−ブタン、イソブタン、ブテン、イソブテン、イソペンタン、ネオペンタン、n−ペンタン、n−ヘキサン、イソヘキサン、ヘプタン、石油エーテルなどの低分子量炭化水素が好ましく用いられる。また電池内部での安全性を考慮して、塩化メチル、メチレンクロライド、フロロトリクロロメタン、ジフロロジクロロメタン、クロロトリフロロメタン等のハロゲン化炭化水素やクロロフロロカーボン類等の不燃性または難燃性の化合物が挙げられる。これらは、それぞれ単独で、あるいは2種以上組合せて使用することができる。
【0018】
マイクロカプセル化の懸濁重合においては、これら揮発性膨張剤は、外殻を構成する熱可塑性樹脂を与える重合性単量体(架橋性単量体を含む)100重量部に対し、5〜100重量部、特に7〜70重量部の割合で使用することが好ましい。
【0019】
本発明の熱膨張性マイクロカプセルは、これら揮発性膨張剤と重合性単量体を、必要に応じて、アゾビスイソブチロニトリル、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、ジイソプロピルパーオキシジカーボネート、t−ブチルパーオキサイド、2,2′−アゾビス(2,4−ジメチルバレロニトリル)等の重合開始剤の存在下に、常法により、好ましくは水性分散媒中での、懸濁重合に付すことにより得られる。
【0020】
熱膨張性マイクロカプセルの平均粒径(メディアン径)はこの分野で一般に使用されている方法により制御できる。例えば懸濁重合において、分散安定剤の選択、すなわちその種類(コロイダルシリカ、水酸化マグネシウムなどの無機微粒子等)や量、補助安定剤(例えば、ジエタノールアミンと脂肪族ジカルボン酸の縮合生成物、ポリビニルピロリドン、ポリエチレンオキサイド、各種乳化剤、食塩等)との組合せ、乳化分散手段の選択と乳化条件(撹拌条件等)により制御できる。平均粒子径は通常1〜40μm、好ましくは3〜30μm、特に好ましくは5〜25μmである。特に粒径分布がシャープであれば、発泡開始温度がシャープになり、本発明でより好適に用いることが出来る。なお揮発性膨張剤および重合性単量体の選択、架橋性単量体の種類、量及び揮発性膨張剤/重合性単量体重量比等の制御により、発泡倍率が2〜100倍、好ましくは3〜60倍の範囲内での所望値に調整されたマイクロカプセルが得られる。
【0021】
図1を再度参照して、上記のようにして得られた熱膨張性マイクロカプセル3は、電極活物質1aを含む電極合剤層1中に、所定温度において、その発泡により、瞬時に活物質1aと集電体2との効果的な離間が達成されるのに必要な最少量、例えば層1を構成する電極合剤全体の0.01〜5重量%、好ましくは0.05〜2重量%、の割合で配合することが好ましい。層1を構成する電極合剤は、正極または負極活物質1aに加えて、必要に応じて加えられるカーボンブラック等の導電助剤、その他の助剤を含む粉末電極材料88〜99重量部を、フッ化ビニリデン系重合体、テトラエチレン重合体、ラテックス状スチレン−ブタジエン共重合体1〜12重量部で結着してなるものであり、図1の電極を得るためには、上記した粉末電極材料、バインダーおよび熱膨張性マイクロカプセル3を、水または有機溶媒と混合して電極合剤スラリーを得、これを集電体2上に塗布し乾燥して電極合剤層1を形成すればよい。
【0022】
リチウムイオン電池用電極としての構成を例に取った場合、集電体2は、例えば鉄、ステンレス鋼、銅、アルミニウム、ニッケル、チタン等の金属箔あるいは金属網等からなり、厚さが5〜100μm、小規模の場合には例えば5〜20μmであるような導電性基材が用いられ、電極合剤層1は、例えば10〜1000μm、好ましくは30〜500μm程度の厚さに形成される。
【0023】
図2の電極は、熱膨張性マイクロカプセル3を、電極合剤層1と集電体2との間に層30状に配置したものであり、このマイクロカプセル層30は、上記のようにして得られた熱膨張性マイクロカプセルの100重量部に対して、バインダー5〜100重量部、更には導電性確保のためのカーボンブラック等の導電助剤10〜300重量部、を加え、水あるいは有機溶媒と混合して得られマイクロカプセルスラリーを、集電体2上に塗布し、乾燥して、3〜100μm、特に5〜50μmの厚さに形成することが好ましい。その上に、更に上述したような電極合剤(熱膨張性マイクロカプセル3を除くあるいは追加的に含む)の層2が形成される。
【0024】
リチウムイオン二次電池用の活物質1aとしては、正極の場合は一般式LiMY2(Mは、Co、Ni、Fe、Mn、Cr、V等の遷移金属の少なくとも一種:YはO、S等のカルコゲン元素)で表される複合金属カルコゲン化合物、特にLiNixCO1-x2(0≦x≦1)をはじめとする複合金属酸化物やLiMn24などのスピネル構造をとる複合金属酸化物が好ましい。
【0025】
負極の活物質としては、活性炭、メソフェーズカーボンマイクロビーズ(MCMB)等の黒鉛質材料、あるいはフェノール樹脂やピッチ等を焼成炭化したもの、さらには椰子殻活性炭等の炭素質物質に加えて、金属酸化物系のGeO、GeO2、SnO、SnO2、PbO、PbO2、SiO、SiO2等、或いはこれらの複合金属酸化物等が用いられる。
【0026】
図3および図4は、それぞれ図1および図2の電極を、負極A(1A:負極活物質1aaを含む負極合剤層、2A:負極集電体)として含む本発明の非水系電池の二例の模式断面図である。これらの引例においては、非水系電池は一般的にはシート状に形成された固体電解質またはセパレータからなる中間シート状層4を、上記負極Aと正極B(1B:正極合剤層、2B:正極集電体)間に挾持させた積層構造を有する。このような積層構造体に電解液を含浸させ(特に中間シート状層4がフッ化ビニリデン−ヘキサフルオロプロピレン共重合体等からなる固体電解質の場合)、あるいはこのような積層構造体を電解液中に浸漬する(特に中間シート状層4が多孔質材からなるセパレータの場合)ことにより、非水系電池が形成される。中間シート状層1は、厚さが2〜1000μm、特に5〜200μm程度であることが好ましい。上記においては、負極Aを本発明の電極により構成したが、逆に正極Bを本発明に従い熱膨張性マイクロカプセルを含む電極とすることもでき、また負極Aと正極Bの双方を、熱膨張性マイクロカプセルを含む本発明の電極としてもよい。
【0027】
電解液は、電解質としてLiPF6、LiAsF6、LiClO4、LiBF4、LiCl、LiBr、LiCH3SO3、LiCF3SO3、LiN(CF3SO22、LiC(CF3SO23、等を、プロピレンカーボネート、エチレンカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ−ブチロラクトン、プロピオン酸メチル、プロピオン酸エチル、及びこれらの混合溶媒などに溶解したものが用いられるが、必ずしもこれらに限定されるものではない。
【0028】
このようにして得られた例えば図3または図4に示す構造の積層シート状電池体は、必要に応じて、捲回し、折り返し等により更に積層して、容積当たりの電極面積を増大させ、さらには比較的簡単な容器に収容して取り出し電極を形成する等の処理により、例えば、角形、円筒形、コイン型、ペーパー型等の全体構造を有する非水系電池が形成される。
【0029】
【実施例】
以下、実施例により本発明を更に具体的に説明する。
【0030】
(熱膨張性マイクロカプセルの調製例1)
コロイダルシリカ16.5g、ジエタノールアミン−アジピン酸縮合生成物0.65g、食塩169.8g、亜硝酸ナトリウム0.11g、及び水を合計で557gになるように仕込み、水系分散媒体を調製した。さらに水系分散体のpHが3.2になるように、塩酸を添加して調整した。
【0031】
一方、アクリロニトリル147.4g、メタクリロニトリル70.4g、メタクリル酸メチル2.2g、ジエチレングリコールジメタクリレート5.5g、イソブタン4.2g、イソペンタン37.6g、アゾビスイソブチロニトリル1.32gからなる重合性混合物を調製した(単量体成分の重量比:アクリロニトリル/メタクリロニトリル/メタクリル酸メチル=67/32/1、架橋剤量は単量体中の2.44重量%)。この重合性混合物と前記で調製した水系分散媒体とを、分散機で撹拌混合して、重合性混合物の微小な液滴を造粒した。
【0032】
この重合性混合物の微小な液滴を含有する水系分散媒体を、撹拌機付きの重合缶(1.5リットル)に仕込み、温水バスを用いて60℃で45時間反応させた。得られた反応生成物を濾過と水洗を繰り返し、平均粒径が約30μmである熱膨張性マイクロカプセル(マイクロスフェアー)MS−1を得た。MS−1の170℃での発泡倍率は約25倍であった。
【0033】
(熱膨張性マイクロカプセルの調製例2)
コロイダルシリカを8.8g、食塩を0g、アゾビスイソブチロニトリルの替わりにイソプロピルパーオキシジカーボネートを1.32g使用した以外は、調製例1と同様にして、平均粒径が約10μmである熱膨張性マイクロカプセルMS−2を得た。MS−2の170℃での発泡倍率は約15倍であった。
【0034】
(熱膨張性マイクロスフェアーの調製例3)
単量体成分の仕込み重量比を、アクリロニトリル/メタクリロニトリル/メタクリル酸メチル=65/30/5になるように単量体の仕込み量を変えた以外は、調製例2と同様にして、平均粒径が約10μmである熱膨張性マイクロカプセルMS−3を得た。MS−3の150℃での発泡倍率は約15倍であった。
【0035】
(正極の作製)
フッ化ビニリデン−ヘキサフルオロプロピレン共重合体3重量部をLiCoO292重量部、導電性カーボンブラック5重量部及びN−メチル−2−ピロリドン35重量部と混合した。得られたスラリーを厚さ10μmのアルミ箔上に塗布し、130℃で乾燥させ、厚さ170μmの合剤層を有する正極を得た。
【0036】
(負極の作製1)
上記のとおり調製した熱膨張性マイクロカプセルMS−1 0.5重量部、スチレン−ブタジエン共重合体ラテックス1.5重量部、カルボキシメチルセルロース0.3重量部、水110重量部、及び平均粒径が20μmのメソフェーズカーボンマイクロビーズ(MCMB、負極活物質)98重量部を混合した。得られたスラリーを厚さ10μmの銅箔上に塗布し、80℃で乾燥させ、厚さ170μmの合剤層を有する負極A1を得た。
【0037】
(負極の作製2)
上記のとおり調製した熱膨張性マイクロカプセルMS−2 5重量部を導電性カーボンブラック10重量部、スチレン−ブタジエン共重合体ラテックス2重量部、カルボキシメチルセルロース0.3重量部及び水100重量部と混合した。得られたスラリーを厚さ10μmの銅箔上に塗布し、80℃で乾燥させ、厚さ30μmの下地層を有する極板を得た。次にMCMB98重量部を、スチレンブタジエンラテックス2重量部、カルボキシメチルセルロース0.3重量部及び水110重量部と混合した。得られたスラリーを上記の極板の下地層の上に塗布し、80℃で乾燥させ、厚さ140μmの合剤層と厚さ30μmの下地層を有する負極A2を得た。
【0038】
(負極の作製3)
熱膨張性マイクロスフェアーMS−1 0.5部の代わりにMS−3 0.8部を用いた以外は(負極の作製1)と同様にして、厚さ170μmの合剤層を有する負極A3を得た。
【0039】
上記、実施例における熱膨張性マイクロカプセルの作用特性及び電極構造は、下表1のように要約される。
【0040】
【表1】

Figure 0004727021
【0041】
(電極の評価)
得られた図1または図2に示す積層構造を有する負極A1〜A3を密閉容器中でプロピレンカーボネートに浸漬したまま、室温から150℃まで約2℃/minで昇温していった。A1及びA2は内温が145℃に到達した瞬間にマイクロスフェアーが一度に発泡し、A1ではMCMBがばらばらに剥がれ落ちた状態、A2ではMCMBの大部分が銅箔から剥がれて浮き上がった状態、となった。A3は内温が125℃に到達した瞬間にマイクロスフェアーが一度に発泡し、MCMBがばらばらに剥がれ落ちた状態となった。室温まで冷却後、発泡が起きた電極A2を取り出し、合剤層上に10gの分銅を置き、該分銅と銅箔の非被覆部との間での抵抗を測定したところ、発泡前の状態の約150倍の値を示した。
【0042】
【発明の効果】
上記評価例は、本発明の熱膨張性マイクロカプセルを含む電極が、電解液との接触状態で所定温度に達すると、電極活物質と集電体との間で瞬間的に非導通状態が形成され、導通状態で進行する電池反応の熱暴走防止に極めて効果的であることを示すものと理解される。
【図面の簡単な説明】
【図1】本発明の一実施例にかかる電極の積層構造の模式図。
【図2】本発明の別の実施例にかかる電極の積層構造の模式図。
【図3】本発明の一実施例にかかる非水系電池の積層構造の模式図。
【図4】本発明の別の実施例にかかる非水系電池の積層構造の模式図。
【符号の説明】
1:電極合剤層(1A:負極合剤層、1B:正極合剤層)
1a:電極活物質(1aa:負極活物質)
2:集電体(2A:負極中、2B:正極中)
3:熱膨張性マイクロカプセル
4:中間シート状層(固体電解質またはセパレータ)
30:マイクロカプセル層
A:負極
B:正極[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrode with improved safety for the purpose of avoiding accidents associated with abnormalities such as a sudden temperature rise inside the battery due to overdischarge or overcharge in a non-aqueous battery, particularly a lithium ion secondary battery, and the electrode The present invention relates to a non-aqueous battery including
[0002]
[Prior art]
In recent years, the development of electronic technology has been remarkable, and various devices have been reduced in size and weight. Coupled with the reduction in size and weight of electronic devices, there is an increasing demand for reduction in size and weight of batteries that serve as power sources. Non-aqueous secondary batteries using lithium are mainly used as power sources for small electronic devices used in homes such as mobile phones, personal computers, and video camcorders as batteries that can obtain greater energy with a smaller volume and weight. I came. In these lithium non-aqueous secondary batteries, safety measures are important, especially overcharged batteries due to ignition accidents caused by over-discharge due to short-circuiting of external electrodes, or failure of the charging device during charging or improper rapid charging operation. A bimetallic thermal protector and a PTC element are mounted for the purpose of preventing a battery rupture accident caused by a voltage, an overcharge current, a reverse connection voltage, and a rise in temperature inside the battery.
[0003]
Among them, the PTC element is a resistive element that suppresses current by suddenly increasing its resistance value at a certain temperature, has a simple structure, can be reduced in size, and does not involve mechanical operation, so it is reliable. It has the advantage of being excellent. However, such a PTC element has a relatively high resistivity at room temperature, and an output loss is likely to occur, which tends to cause deterioration in discharge characteristics. Further, since the increase in area of the element tends to cause heat generation due to power concentration inside the element, there is a problem that it is difficult to mount the element on a large battery.
[0004]
On the other hand, several technologies for preventing thermal runaway of a battery by including in the battery a heat-sensitive microcapsule containing a substance capable of inhibiting the battery reaction when the temperature of the battery rises have been proposed (Japanese Patent Laid-Open Publication No. Sho). 63-86355, JP-A-6-283206, JP-A-10-270084, etc.). In these techniques, the battery reaction is intended to be chemically suppressed by the encapsulated substance.
[0005]
[Problems to be Solved by the Invention]
According to the researches of the present inventors, the above-described measures for preventing the thermal runaway of the battery that chemically suppresses the battery reaction by the encapsulated substance are as follows: (a) The encapsulated substance is not effectively released when the battery temperature rises. In addition, there is a time lag between the temperature rise and the release of the encapsulated substance, and (b) even if the encapsulated substance is released, this may act on the battery active material to rapidly advance the battery reaction suppression reaction. Thermal runaway of battery reaction that increases exponentially in temperature due to difficulty (Once it occurs, heat generation and runaway are further promoted by oxidative decomposition of electrolyte, etc., leading to accidents such as battery rupture and ignition) There is a problem that it cannot be effectively prevented.
[0006]
In view of the above circumstances, the main object of the present invention is to respond to a rapid temperature rise inside the battery due to overdischarge, overcharge, etc. with a quicker response, effectively preventing accidents caused by thermal runaway of the battery reaction. It is an object of the present invention to provide an electrode structure to be avoided and a non-aqueous battery including the electrode.
[0007]
[Means for solving the problems]
In the process of studying for the above-mentioned purpose, the present inventors pay attention to the fact that a battery reaction that can cause thermal runaway proceeds in a state where the conductive state in the battery is maintained. It has been found that the battery reaction can be suppressed, and that it is effective to dispose the thermally expandable microcapsules in the battery as a means of physically achieving the inhibition of the conductive state.
[0008]
The electrode of the present invention is based on the above-described knowledge. More specifically, the electrode has a laminated structure of an electrode mixture layer made of a positive electrode material or a negative electrode material that occludes / releases lithium, and a current collector, A heat-expandable microcapsule is included in the electrode mixture layer or in a layer provided between the electrode mixture layer and the current collector. Further, the non-aqueous battery of the present invention is a non-aqueous battery having a structure in which an electrolyte is present between a positive electrode and a negative electrode which are stacked apart from each other, and at least one of the positive electrode and the negative electrode is separated from the electrode. It is characterized by.
[0009]
The non-aqueous battery including the electrode of the present invention causes a rapid internal temperature increase due to overdischarge, overcharge, etc., and a predetermined temperature (preferably 80 ° C. to hundreds immediately before thermal runaway due to abnormal heat generation of the battery is started. When the temperature reaches 10 ° C., the outer shell made of the thermoplastic resin softens, and there is an expansion stress of the encapsulated volatile expansion agent, so that the outer shell expands rapidly and the electrode mixture layer expands or Abrupt peeling of the electrode mixture layer from the current collector occurs, and current interruption is effectively achieved by a rapid increase in resistance between the electrode active material and the current collector. Accordingly, the electrode active material is electrically connected to the current collector, and the battery reaction that proceeds in a good current transmission state is effectively blocked. Accordingly, the thermoplastic resin constituting the outer shell is appropriately designed to be stable at the battery operating temperature in contact with the electrolyte, but to be surely softened and expanded at the predetermined temperature. Then, in the non-aqueous battery including the electrode of the present invention, it is possible to effectively prevent the occurrence of an accident due to thermal runaway.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
1 and 2 are schematic cross-sectional views in the thickness direction showing two examples of typical laminated structures of the electrode of the present invention. That is, the electrode of the present invention typically includes a positive electrode material or negative electrode material (hereinafter collectively referred to as “electrode active material”) 1 a that occludes and releases lithium, and a current collector. 2 and the thermally expandable microcapsule 3 is included in the electrode mixture layer 1 (FIG. 1) or a layer between the electrode mixture layer 1 and the current collector 2 30 (FIG. 2).
[0011]
Thermally expandable microcapsules (often referred to as “microspheres”) 3 are obtained by encapsulating or encapsulating a volatile expansion agent in an outer shell made of a thermoplastic resin. Conventionally, such heat-expandable microcapsules suspend a polymerizable mixture containing at least a volatile expansion agent and a polymerizable monomer that gives a polymer constituting the outer shell in an aqueous dispersion medium. Manufactured by a polymerization method. For example, Japanese Patent Publication No. 42-26524, Japanese Patent Laid-Open No. 62-286534, Japanese Patent Laid-Open No. 4-292634, Japanese Patent Laid-Open No. 11-209504, etc. disclose a method for producing a thermally expandable thermoplastic microsphere. It can be applied to the production of the thermally expandable microcapsule of the present invention.
[0012]
The thermoplastic resin constituting the outer shell needs to show durability against the electrolyte solution described later, and more specifically, the battery operating temperature (generally from room temperature to about 80 ° C.) in contact with the electrolyte solution. A predetermined temperature immediately before the thermal runaway due to abnormal heat generation of the battery is started in a state in which the outer shell structure is stably maintained and a volatile expansion agent described later is included, that is, 80 ° C. to 180 ° C. It is necessary to suddenly soften and foam at 100C, more preferably from 100C to 160C. Therefore, as the thermoplastic resin itself, the elastic modulus lowering start temperature (thermally expandable microcapsules are heated and foamed, the inner foaming agent is removed, and then heated to 1 cm × 1.5 cm × 0.25 cm test piece. What was adjusted was measured at a frequency of 10 Hertz and a temperature rising rate of 3 ° C./min using a Rheograph solid of Toyo Seiki Seisakusho, 40 ° C. to 160 ° C., particularly 60 ° C. to 130 ° C. It preferably has gas barrier properties. An arbitrary thermoplastic resin is used as long as it has such characteristics, but it is not always easy to stably exhibit such characteristics, and an appropriate resin design needs to be made. .
[0013]
That is, the thermoplastic resin that forms the outer shell of the microcapsule is preferably a polymer that is excellent in anti-electrolytic solution, thermoplastic, and excellent in gas barrier properties. From this viewpoint, the outer shell is preferably constituted by a (co) polymer containing vinylidene chloride and a (co) polymer containing (meth) acrylonitrile.
[0014]
In particular, the outer shell is preferably composed of a (co) polymer containing (meth) acrylonitrile as a main component (51% by weight or more). Specific examples of preferable outer shell constituting polymers include (a) 51% by weight or more of at least one monomer selected from the group consisting of acrylonitrile and methacrylonitrile, and (b) vinylidene chloride, acrylic acid ester, methacrylic acid, Examples thereof include a copolymer obtained from a monomer mixture containing 49% by weight or less of at least one monomer selected from the group consisting of acid esters, styrene, and vinyl acetate. More preferably, the monomer mixture is (a) 51 to 98% by weight of at least one monomer selected from the group consisting of acrylonitrile and methacrylonitrile, (b1) 1 to 48% by weight of vinylidene chloride, and ( b2) It contains 1 to 48% by weight of at least one monomer selected from the group consisting of acrylic acid esters and methacrylic acid esters. If the copolymerization ratio of (meth) acrylonitrile is less than 51% by weight, the solvent resistance and heat resistance are excessively lowered, which is not preferable.
[0015]
As a preferable example of the copolymer not containing vinylidene chloride, as the polymerizable monomer, (c) at least one monomer selected from the group consisting of acrylonitrile and methacrylonitrile, 51 to 100% by weight, more preferably A monomer mixture containing 70 to 100% by weight and (d) at least one monomer selected from the group consisting of acrylic acid ester and methacrylic acid ester, 0 to 49% by weight, more preferably 0 to 30% by weight. The copolymer obtained by using is mentioned. More preferably, the monomer mixture is selected from the group consisting of (c1) acrylonitrile 20 to 80% by weight, (c2) methacrylonitrile 20 to 80% by weight, and (e) an acrylic ester and a methacrylic ester. It contains 0 to 49% by weight of at least one monomer, more preferably 0 to 30% by weight. With such a copolymer, it is possible to obtain an outer shell of a thermally expandable microcapsule having excellent gas barrier properties, solvent resistance, heat resistance, thermal expandability, and the like.
[0016]
In order to improve the foaming characteristics and heat resistance of the resulting microcapsules, a crosslinkable monomer can be used in combination with the polymerizable monomer as described above. As the crosslinkable monomer, a compound having two or more carbon-carbon double bonds is usually used. More specifically, examples of the crosslinkable monomer include divinylbenzene, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, allyl methacrylate, isocyanate. Examples include triallyl acid, triacryl formal, trimethylolpropane tri (meth) acrylate, 1,3-butyl glycol dimethacrylate, pentaerythritol tri (meth) acrylate, and the like. The use ratio of the crosslinkable monomer is usually 0.1 to 5% by weight in the polymerizable monomer. However, the durability to a good electrolytic solution and the microscopically reliably at a predetermined temperature under contact with the electrolytic solution. In order to cause foaming of the capsule, it is preferable to use 0.5% by weight, particularly 1.0% by weight, and 5% by weight or less, particularly 4% by weight or less of a crosslinkable monomer. From the viewpoint of controlling the foaming temperature, it is preferable to use a bifunctional monomer as compared with a trifunctional or higher polyfunctional monomer.
[0017]
As the volatile swelling agent enclosed in the outer shell, volatilization that gasifies at a predetermined temperature causing foaming of the microcapsule, more directly at a temperature below the softening point of the thermoplastic resin constituting the outer shell of the microcapsule. Organic compounds such as propane, propylene, n-butane, isobutane, butene, isobutene, isopentane, neopentane, n-pentane, n-hexane, isohexane, heptane, petroleum ether having a boiling point of 100 ° C. or less Hydrogen is preferably used. In consideration of safety inside the battery, non-flammable or flame retardant compounds such as halogenated hydrocarbons such as methyl chloride, methylene chloride, fluorotrichloromethane, difluorodichloromethane, chlorotrifluoromethane, and chlorofluorocarbons Is mentioned. These can be used alone or in combination of two or more.
[0018]
In the microencapsulation suspension polymerization, these volatile swelling agents are used in an amount of 5 to 100 with respect to 100 parts by weight of a polymerizable monomer (including a crosslinkable monomer) that gives a thermoplastic resin constituting the outer shell. It is preferable to use it in a ratio of parts by weight, particularly 7 to 70 parts by weight.
[0019]
The heat-expandable microcapsule of the present invention contains these volatile expansion agent and polymerizable monomer, if necessary, azobisisobutyronitrile, benzoyl peroxide, lauroyl peroxide, diisopropyl peroxydicarbonate, t -By subjecting it to suspension polymerization in the presence of a polymerization initiator such as butyl peroxide or 2,2'-azobis (2,4-dimethylvaleronitrile) in the usual manner, preferably in an aqueous dispersion medium. can get.
[0020]
The average particle diameter (median diameter) of the thermally expandable microcapsule can be controlled by a method generally used in this field. For example, in suspension polymerization, the selection of a dispersion stabilizer, that is, its type (inorganic fine particles such as colloidal silica and magnesium hydroxide) and amount, auxiliary stabilizer (for example, condensation product of diethanolamine and aliphatic dicarboxylic acid, polyvinylpyrrolidone, etc. , Polyethylene oxide, various emulsifiers, salt, etc.), selection of emulsifying and dispersing means and emulsifying conditions (such as stirring conditions). The average particle size is usually 1 to 40 μm, preferably 3 to 30 μm, particularly preferably 5 to 25 μm. In particular, if the particle size distribution is sharp, the foaming start temperature becomes sharp and can be used more suitably in the present invention. The foaming ratio is 2 to 100 times, preferably by controlling the selection of the volatile swelling agent and the polymerizable monomer, the kind and amount of the crosslinkable monomer, and the weight ratio of the volatile swelling agent / polymerizable monomer. A microcapsule adjusted to a desired value within a range of 3 to 60 times is obtained.
[0021]
Referring again to FIG. 1, the thermally expandable microcapsule 3 obtained as described above is instantly active in the electrode mixture layer 1 containing the electrode active material 1 a by foaming at a predetermined temperature. The minimum amount necessary to achieve effective separation between 1a and current collector 2, for example, 0.01 to 5% by weight, preferably 0.05 to 2% by weight of the total electrode mixture constituting layer 1 It is preferable to mix | blend in the ratio of%. In addition to the positive electrode or negative electrode active material 1a, the electrode mixture constituting the layer 1 comprises 88 to 99 parts by weight of a powder electrode material containing a conductive auxiliary agent such as carbon black and other auxiliary agents added as necessary. 1 to 12 parts by weight of a vinylidene fluoride polymer, a tetraethylene polymer, and a latex styrene-butadiene copolymer. The electrode mixture layer 1 may be formed by mixing the binder and the thermally expandable microcapsule 3 with water or an organic solvent to obtain an electrode mixture slurry, which is applied onto the current collector 2 and dried.
[0022]
When the configuration as an electrode for a lithium ion battery is taken as an example, the current collector 2 is made of, for example, a metal foil such as iron, stainless steel, copper, aluminum, nickel, titanium, or a metal net, and has a thickness of 5 to 5. In the case of a small scale, a conductive base material such as 5 to 20 μm is used, and the electrode mixture layer 1 is formed to a thickness of about 10 to 1000 μm, preferably about 30 to 500 μm.
[0023]
In the electrode of FIG. 2, the thermally expandable microcapsule 3 is arranged in a layer 30 between the electrode mixture layer 1 and the current collector 2, and the microcapsule layer 30 is formed as described above. To 100 parts by weight of the obtained thermally expandable microcapsules, 5 to 100 parts by weight of a binder and further 10 to 300 parts by weight of a conductive aid such as carbon black for ensuring conductivity are added, and water or organic The microcapsule slurry obtained by mixing with a solvent is preferably applied on the current collector 2 and dried to form a thickness of 3 to 100 μm, particularly 5 to 50 μm. A layer 2 of the electrode mixture (excluding or additionally including the thermally expandable microcapsule 3) as described above is further formed thereon.
[0024]
As the active material 1a for the lithium ion secondary battery, in the case of the positive electrode, the general formula LiMY 2 (M is at least one kind of transition metal such as Co, Ni, Fe, Mn, Cr, V, etc .; Y is O, S, etc.) composite metal complex metal chalcogen compound represented by chalcogen elements), in particular taking a spinel structure such as LiNi x CO 1-x O 2 (0 ≦ x ≦ 1) and including a composite metal oxide, LiMn 2 O 4 Oxides are preferred.
[0025]
Active materials for the negative electrode include activated carbon, graphite materials such as mesophase carbon microbeads (MCMB), or those obtained by firing and carbonizing phenol resin or pitch, and carbonaceous materials such as coconut shell activated carbon. Physical GeO, GeO 2 , SnO, SnO 2 , PbO, PbO 2 , SiO, SiO 2 or the like, or a composite metal oxide thereof is used.
[0026]
FIGS. 3 and 4 show two examples of the non-aqueous battery of the present invention including the electrodes of FIGS. 1 and 2 as the negative electrode A (1A: negative electrode mixture layer including negative electrode active material 1aa, 2A: negative electrode current collector), respectively. It is a schematic cross section of an example. In these references, the non-aqueous battery generally has an intermediate sheet-like layer 4 made of a solid electrolyte or a separator formed in a sheet shape, the negative electrode A and the positive electrode B (1B: positive electrode mixture layer, 2B: positive electrode). A laminated structure sandwiched between the current collectors). Such a laminated structure is impregnated with an electrolytic solution (in particular, when the intermediate sheet-like layer 4 is a solid electrolyte made of a vinylidene fluoride-hexafluoropropylene copolymer or the like), or such a laminated structure is placed in the electrolytic solution. A non-aqueous battery is formed by immersing in (especially when the intermediate sheet-like layer 4 is a separator made of a porous material). The intermediate sheet-like layer 1 preferably has a thickness of about 2 to 1000 μm, particularly about 5 to 200 μm. In the above, the negative electrode A is composed of the electrode of the present invention, but conversely, the positive electrode B can be an electrode containing a thermally expandable microcapsule according to the present invention, and both the negative electrode A and the positive electrode B are thermally expanded. The electrode of the present invention including a conductive microcapsule may be used.
[0027]
The electrolyte includes LiPF 6 , LiAsF 6 , LiClO 4 , LiBF 4 , LiCl, LiBr, LiCH 3 SO 3 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , Etc., propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, methyl propionate, ethyl propionate, and mixtures thereof Although what was melt | dissolved in the solvent etc. is used, it is not necessarily limited to these.
[0028]
For example, the laminated sheet-like battery body having the structure shown in FIG. 3 or FIG. 4 obtained as described above is further laminated by winding, folding, or the like as necessary to increase the electrode area per volume. Is a non-aqueous battery having an overall structure such as a square shape, a cylindrical shape, a coin shape, or a paper shape, for example, by a process such as accommodating in a relatively simple container and forming an extraction electrode.
[0029]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
[0030]
(Preparation Example 1 of Thermally Expandable Microcapsule)
An aqueous dispersion medium was prepared by charging 16.5 g of colloidal silica, 0.65 g of diethanolamine-adipic acid condensation product, 169.8 g of sodium chloride, 0.11 g of sodium nitrite, and water to a total of 557 g. Furthermore, hydrochloric acid was added and adjusted so that the pH of the aqueous dispersion was 3.2.
[0031]
On the other hand, polymerization consisting of 147.4 g of acrylonitrile, 70.4 g of methacrylonitrile, 2.2 g of methyl methacrylate, 5.5 g of diethylene glycol dimethacrylate, 4.2 g of isobutane, 37.6 g of isopentane, and 1.32 g of azobisisobutyronitrile. (Weight ratio of monomer components: acrylonitrile / methacrylonitrile / methyl methacrylate = 67/32/1, the amount of the crosslinking agent is 2.44% by weight in the monomer). This polymerizable mixture and the aqueous dispersion medium prepared above were stirred and mixed with a disperser to granulate fine droplets of the polymerizable mixture.
[0032]
An aqueous dispersion medium containing fine droplets of this polymerizable mixture was charged into a polymerization can equipped with a stirrer (1.5 liters), and reacted at 60 ° C. for 45 hours using a hot water bath. The obtained reaction product was repeatedly filtered and washed with water to obtain thermally expandable microcapsules (microspheres) MS-1 having an average particle size of about 30 μm. The expansion ratio of MS-1 at 170 ° C. was about 25 times.
[0033]
(Preparation example 2 of thermally expandable microcapsule)
The average particle size is about 10 μm as in Preparation Example 1, except that 8.8 g of colloidal silica, 0 g of sodium chloride, and 1.32 g of isopropyl peroxydicarbonate instead of azobisisobutyronitrile are used. A thermally expandable microcapsule MS-2 was obtained. The expansion ratio of MS-2 at 170 ° C. was about 15 times.
[0034]
(Preparation Example 3 of Thermally Expandable Microsphere)
In the same manner as in Preparation Example 2, except that the monomer charge was changed so that the monomer component charge ratio was acrylonitrile / methacrylonitrile / methyl methacrylate = 65/30/5. A thermally expandable microcapsule MS-3 having a particle size of about 10 μm was obtained. The expansion ratio of MS-3 at 150 ° C. was about 15 times.
[0035]
(Preparation of positive electrode)
3 parts by weight of vinylidene fluoride-hexafluoropropylene copolymer was mixed with 92 parts by weight of LiCoO 2 , 5 parts by weight of conductive carbon black and 35 parts by weight of N-methyl-2-pyrrolidone. The obtained slurry was applied onto an aluminum foil having a thickness of 10 μm and dried at 130 ° C. to obtain a positive electrode having a mixture layer having a thickness of 170 μm.
[0036]
(Preparation of negative electrode 1)
0.5 parts by weight of thermally expandable microcapsule MS-1 prepared as described above, 1.5 parts by weight of styrene-butadiene copolymer latex, 0.3 parts by weight of carboxymethyl cellulose, 110 parts by weight of water, and an average particle size 98 parts by weight of 20 μm mesophase carbon microbeads (MCMB, negative electrode active material) were mixed. The obtained slurry was applied on a copper foil having a thickness of 10 μm and dried at 80 ° C. to obtain a negative electrode A1 having a mixture layer having a thickness of 170 μm.
[0037]
(Production of negative electrode 2)
5 parts by weight of thermally expandable microcapsule MS-2 prepared as described above was mixed with 10 parts by weight of conductive carbon black, 2 parts by weight of styrene-butadiene copolymer latex, 0.3 parts by weight of carboxymethylcellulose and 100 parts by weight of water. did. The obtained slurry was applied onto a copper foil having a thickness of 10 μm and dried at 80 ° C. to obtain an electrode plate having a base layer having a thickness of 30 μm. Next, 98 parts by weight of MCMB was mixed with 2 parts by weight of styrene butadiene latex, 0.3 parts by weight of carboxymethyl cellulose and 110 parts by weight of water. The obtained slurry was applied on the base layer of the electrode plate and dried at 80 ° C. to obtain a negative electrode A2 having a mixture layer having a thickness of 140 μm and a base layer having a thickness of 30 μm.
[0038]
(Preparation of negative electrode 3)
Thermally expandable microsphere MS-1 Negative electrode A3 having a mixture layer having a thickness of 170 μm in the same manner as in (Preparation of negative electrode 1) except that 0.8 part of MS-3 was used instead of 0.5 part. Got.
[0039]
The operational characteristics and electrode structure of the thermally expandable microcapsules in the above examples are summarized as shown in Table 1 below.
[0040]
[Table 1]
Figure 0004727021
[0041]
(Evaluation of electrode)
The obtained negative electrodes A1 to A3 having the laminated structure shown in FIG. 1 or FIG. 2 were heated from room temperature to 150 ° C. at about 2 ° C./min while being immersed in propylene carbonate in a sealed container. In A1 and A2, the microspheres foamed at the same time when the internal temperature reached 145 ° C., and in A1, MCMB was peeled off in bulk, and in A2, most of MCMB was peeled off from the copper foil and floated, It became. In A3, when the internal temperature reached 125 ° C., the microspheres foamed at once, and MCMB was peeled off in pieces. After cooling to room temperature, the electrode A2 in which foaming occurred was taken out, a weight of 10 g was placed on the mixture layer, and the resistance between the weight and the uncoated portion of the copper foil was measured. The value was about 150 times.
[0042]
【The invention's effect】
In the above evaluation example, when the electrode including the thermally expandable microcapsule of the present invention reaches a predetermined temperature in contact with the electrolytic solution, a non-conductive state is instantaneously formed between the electrode active material and the current collector. It is understood that it is extremely effective in preventing thermal runaway of a battery reaction that proceeds in a conductive state.
[Brief description of the drawings]
FIG. 1 is a schematic view of a laminated structure of electrodes according to an embodiment of the present invention.
FIG. 2 is a schematic diagram of a laminated structure of electrodes according to another embodiment of the present invention.
FIG. 3 is a schematic diagram of a laminated structure of a non-aqueous battery according to an embodiment of the present invention.
FIG. 4 is a schematic view of a laminated structure of a nonaqueous battery according to another embodiment of the present invention.
[Explanation of symbols]
1: Electrode mixture layer (1A: negative electrode mixture layer, 1B: positive electrode mixture layer)
1a: electrode active material (1aa: negative electrode active material)
2: Current collector (2A: in the negative electrode, 2B: in the positive electrode)
3: Thermally expandable microcapsule 4: Intermediate sheet layer (solid electrolyte or separator)
30: Microcapsule layer A: Negative electrode B: Positive electrode

Claims (6)

リチウムを吸蔵・放出する正極材料または負極材料からなる電極合剤層と、集電体との積層構造を有し、該電極合剤層中にあるいは該電極合剤層と集電体との間に設けた層中に熱膨張性マイクロカプセルを含ませてなる電極。It has a laminated structure of an electrode mixture layer made of a positive electrode material or a negative electrode material that occludes / releases lithium and a current collector, and is in the electrode mixture layer or between the electrode mixture layer and the current collector. An electrode comprising thermally expandable microcapsules contained in a layer provided on the substrate. 熱膨張性マイクロカプセルが、熱可塑性樹脂からなる外殻中に、揮発性膨張剤を封入してなり、該熱可塑性樹脂がアクリロニトリルおよびメタクリロニトリルからなる群より選ばれた少なくとも一種の単量体を主成分とする重合体からなる請求項1記載の電極。 At least one monomer selected from the group consisting of acrylonitrile and methacrylonitrile, wherein the heat-expandable microcapsule encloses a volatile expansion agent in an outer shell made of a thermoplastic resin. The electrode according to claim 1, comprising a polymer mainly composed of 熱膨張性マイクロカプセルが、熱可塑性樹脂からなる外殻中に、揮発性膨張剤を封入してなり、該熱可塑性樹脂が0.5重量%を超え5重量%以下の架橋性単量体を含む単量体混合物の重合体からなる請求項1または2記載の電極。 A thermally expandable microcapsule is formed by encapsulating a volatile swelling agent in an outer shell made of a thermoplastic resin, and the thermoplastic resin contains a crosslinkable monomer of more than 0.5 wt% and not more than 5 wt%. The electrode according to claim 1, comprising a polymer of a monomer mixture containing the electrode. 熱膨張性マイクロカプセルの平均粒径が40μm以下である請求項1〜3のいずれかに記載の電極。 The electrode according to any one of claims 1 to 3, wherein the average particle size of the thermally expandable microcapsule is 40 µm or less. 電極合剤層中に正極または負極活物質を含む合剤重量の0.01〜5重量%の熱膨張性マイクロカプセルを含む請求項1〜4のいずれかに記載の電極。 The electrode according to any one of claims 1 to 4, further comprising 0.01 to 5% by weight of thermally expandable microcapsules based on the weight of the mixture containing the positive electrode or the negative electrode active material in the electrode mixture layer. 互いに離間して積層された正極と負極との間に、電解質を存在させてなる構造の非水系電池において、前記正極と負極の少なくとも一方が請求項1〜5のいずれかに記載の電極からなる非水系電池。A nonaqueous battery having a structure in which an electrolyte is present between a positive electrode and a negative electrode that are stacked apart from each other, and at least one of the positive electrode and the negative electrode includes the electrode according to any one of claims 1 to 5. Non-aqueous battery.
JP2000149469A 2000-05-22 2000-05-22 Electrode and non-aqueous battery using the same Expired - Fee Related JP4727021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000149469A JP4727021B2 (en) 2000-05-22 2000-05-22 Electrode and non-aqueous battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000149469A JP4727021B2 (en) 2000-05-22 2000-05-22 Electrode and non-aqueous battery using the same

Publications (2)

Publication Number Publication Date
JP2001332245A JP2001332245A (en) 2001-11-30
JP4727021B2 true JP4727021B2 (en) 2011-07-20

Family

ID=18655328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000149469A Expired - Fee Related JP4727021B2 (en) 2000-05-22 2000-05-22 Electrode and non-aqueous battery using the same

Country Status (1)

Country Link
JP (1) JP4727021B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150109077A (en) * 2014-03-19 2015-10-01 삼성에스디아이 주식회사 Secondary battery
KR20160065106A (en) 2013-09-30 2016-06-08 도판 인사츠 가부시키가이샤 Electrode for lithium ion secondary batteries, and lithium ion secondary battery
WO2019189865A1 (en) 2018-03-30 2019-10-03 三井化学株式会社 Negative electrode containing microcapsules, and lithium-ion secondary battery equipped with same
WO2019189866A1 (en) 2018-03-30 2019-10-03 三井化学株式会社 Positive electrode equipped with undercoat layer containing microcapsules, and lithium-ion secondary battery
FR3098354A1 (en) * 2019-07-04 2021-01-08 Commissariat A L'energie Atomique Et Aux Energies Alternatives NEGATIVE LITHIUM BATTERY ELECTRODE INCLUDING MEANS TO ENSURE THE SAFETY OF THE SAME IN THE EVENT OF THERMAL RUNNING
US11641017B2 (en) 2018-12-13 2023-05-02 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery having an intermediate layer comprising metal-covered microcapsules

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0229079D0 (en) * 2002-12-12 2003-01-15 Univ Southampton Electrochemical cell for use in portable electronic devices
KR20070008084A (en) * 2005-07-13 2007-01-17 주식회사 엘지화학 Lithium secondary battery employing thermally degradable capsule containing reactive compounds
KR100854239B1 (en) * 2006-03-03 2008-08-25 주식회사 엘지화학 Electrochemical device with high safety at high temperature
JP4955326B2 (en) * 2006-07-11 2012-06-20 Necエナジーデバイス株式会社 Non-aqueous electrolyte secondary battery electrode plate and method for producing the same
JP2008262785A (en) * 2007-04-11 2008-10-30 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2008269883A (en) * 2007-04-18 2008-11-06 Alps Electric Co Ltd Fuse function element, its manufacturing method, circuit board using fuse function element, and its manufacturing method
JP5310174B2 (en) * 2009-03-25 2013-10-09 Tdk株式会社 Lithium ion secondary battery
EP2424009B1 (en) * 2009-04-21 2019-01-23 LG Chem, Ltd. Additive to be added to an electrochemical device to improve safety
CN102687317B (en) * 2009-11-20 2015-03-04 日产自动车株式会社 Bipolar secondary battery current collector
KR101420031B1 (en) * 2010-02-15 2014-07-16 데쿠세리아루즈 가부시키가이샤 Manufacturing method for thin-film solar cell module
TWI482344B (en) 2010-12-23 2015-04-21 Ind Tech Res Inst Lithium battery and anode plate structure
DE102012022969A1 (en) * 2012-11-23 2014-05-28 Li-Tec Battery Gmbh Electrochemical cell
JP6167723B2 (en) * 2013-07-24 2017-07-26 東洋インキScホールディングス株式会社 Compound ink for secondary battery electrode formation
CN105900271B (en) * 2014-03-03 2018-07-17 日本瑞翁株式会社 Secondary cell adhesive composition
WO2015133424A1 (en) * 2014-03-03 2015-09-11 日本ゼオン株式会社 Secondary cell binder composition
JP6167943B2 (en) * 2014-03-07 2017-07-26 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
WO2016152164A1 (en) * 2015-03-24 2016-09-29 日本ゼオン株式会社 Method for producing slurry composition for secondary battery positive electrode, positive electrode for secondary battery, and secondary battery
KR101882920B1 (en) * 2015-12-11 2018-07-30 에스케이이노베이션 주식회사 Capsule type foaming agents, coating composition for separator comprising the same, the separator, and secondary cell comprising the same
KR101743919B1 (en) * 2015-12-14 2017-06-07 에스케이이노베이션 주식회사 Electrode composition for rechargeable battery, the eletrode, and secomdary cell comprising the same
KR102518866B1 (en) * 2016-03-03 2023-04-06 에스케이온 주식회사 Secondary battery having vent portion
KR102601487B1 (en) * 2016-04-12 2023-11-13 에스케이온 주식회사 Electrolyte for lithium secondary battery and lithium secondary battery containing the same
WO2018179898A1 (en) * 2017-03-29 2018-10-04 パナソニックIpマネジメント株式会社 Secondary cell
JP6816696B2 (en) * 2017-10-13 2021-01-20 トヨタ自動車株式会社 Negative electrode and non-aqueous electrolyte secondary battery equipped with it
JP7149520B2 (en) * 2017-10-31 2022-10-07 パナソニックIpマネジメント株式会社 Batteries and battery stacks
KR20190050719A (en) 2017-11-03 2019-05-13 주식회사 엘지화학 Current collector with improved safety and Lithium secondary battery including the same
CN108091825A (en) * 2017-11-16 2018-05-29 东莞市迈科新能源有限公司 A kind of electrodes of lithium-ion batteries and its battery
KR20200111678A (en) * 2018-01-30 2020-09-29 니폰 제온 가부시키가이샤 Additives for electrochemical devices, binder compositions for electrochemical devices, slurry compositions for electrochemical devices, electrodes for electrochemical devices, and electrochemical devices
CN109817867A (en) * 2018-12-20 2019-05-28 广州鹏辉能源科技股份有限公司 A kind of heat sensitive coatings material, thermal sensitivity diaphragm and the preparation method and application thereof
CN109818056A (en) * 2018-12-29 2019-05-28 余姚天开能源技术有限公司 A kind of electrolyte and the lithium ion battery containing the electrolyte
JP7333300B2 (en) * 2020-10-26 2023-08-24 プライムプラネットエナジー&ソリューションズ株式会社 Electrode manufacturing method, battery manufacturing method, electrode and battery
CN112701244A (en) * 2020-12-25 2021-04-23 东莞塔菲尔新能源科技有限公司 Safety liquid, preparation method thereof, material with safety coating and application
CN112768841A (en) * 2021-01-15 2021-05-07 惠州锂威电子科技有限公司 Diaphragm for lithium ion battery and lithium ion battery
CN113690404A (en) * 2021-08-02 2021-11-23 惠州锂威电子科技有限公司 Foaming coating, pole piece and lithium ion battery

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL302030A (en) * 1962-12-21 1900-01-01
JPS62286534A (en) * 1986-06-04 1987-12-12 Matsumoto Yushi Seiyaku Kk Manufacture of thermal expansion microcapsule
SE9003600L (en) * 1990-11-12 1992-05-13 Casco Nobel Ab EXPANDABLE THERMOPLASTIC MICROSPHERES AND PROCEDURES FOR PRODUCING THEREOF
JP2898480B2 (en) * 1992-09-14 1999-06-02 日東電工株式会社 Heat-peelable adhesive and adhesive member
JP3409190B2 (en) * 1993-06-17 2003-05-26 ソニーケミカル株式会社 Fuse resistor
JP3263198B2 (en) * 1993-09-02 2002-03-04 松下電器産業株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP3536534B2 (en) * 1995-05-23 2004-06-14 株式会社デンソー Non-aqueous electrolyte secondary battery
JPH10340739A (en) * 1997-06-04 1998-12-22 Toyota Motor Corp Secondary lithium ion battery
JP4620812B2 (en) * 1998-01-26 2011-01-26 株式会社クレハ Method for producing foamable microspheres

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160065106A (en) 2013-09-30 2016-06-08 도판 인사츠 가부시키가이샤 Electrode for lithium ion secondary batteries, and lithium ion secondary battery
KR20150109077A (en) * 2014-03-19 2015-10-01 삼성에스디아이 주식회사 Secondary battery
KR102197997B1 (en) * 2014-03-19 2021-01-04 삼성에스디아이 주식회사 Secondary battery
WO2019189865A1 (en) 2018-03-30 2019-10-03 三井化学株式会社 Negative electrode containing microcapsules, and lithium-ion secondary battery equipped with same
WO2019189866A1 (en) 2018-03-30 2019-10-03 三井化学株式会社 Positive electrode equipped with undercoat layer containing microcapsules, and lithium-ion secondary battery
US11784355B2 (en) 2018-03-30 2023-10-10 Mitsui Chemicals, Inc. Negative electrode including microcapsule and lithium ion secondary battery including the negative electrode
US11942627B2 (en) 2018-03-30 2024-03-26 Mitsui Chemicals, Inc. Positive electrode and lithium ion secondary battery that include undercoat layer containing microcapsule
US11641017B2 (en) 2018-12-13 2023-05-02 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery having an intermediate layer comprising metal-covered microcapsules
FR3098354A1 (en) * 2019-07-04 2021-01-08 Commissariat A L'energie Atomique Et Aux Energies Alternatives NEGATIVE LITHIUM BATTERY ELECTRODE INCLUDING MEANS TO ENSURE THE SAFETY OF THE SAME IN THE EVENT OF THERMAL RUNNING

Also Published As

Publication number Publication date
JP2001332245A (en) 2001-11-30

Similar Documents

Publication Publication Date Title
JP4727021B2 (en) Electrode and non-aqueous battery using the same
CN109148789B (en) Diaphragm, preparation method thereof and lithium ion battery using diaphragm
JP4929540B2 (en) Non-aqueous electrolyte secondary battery
KR100873563B1 (en) Electrochemical device with high safety at over-voltage and high temperature
JP6884269B2 (en) Negative electrode including microcapsules and lithium ion secondary battery equipped with this
JP6960526B2 (en) Positive electrode and lithium ion secondary battery with undercoat layer containing microcapsules
US7201994B2 (en) Non-aqueous electrolyte secondary battery
JP4915390B2 (en) Non-aqueous electrolyte battery
US20050214637A1 (en) Battery separator and non-aqueous electrolyte secondary battery using the separator
JP2013219047A (en) Lithium secondary battery, and short circuit resistance control method thereof
WO2002031904A1 (en) Electrolyte for non-aqueous cell and non-aqueous secondary cell
WO2001003226A1 (en) Non-aqueous electrolyte secondary cell and device using the same
WO2006062153A1 (en) Separator for electrochemical device and electrochemical device
JP3480190B2 (en) Non-aqueous electrolyte secondary battery
JP2008066094A (en) Separator for battery, and lithium secondary battery
CN112029343A (en) Coating, positive plate, negative plate, diaphragm and lithium ion battery for inhibiting thermal runaway of lithium ion battery
CN112018444B (en) Lithium ion battery thermal runaway inhibitor, electrolyte containing same and lithium ion battery
KR20040084981A (en) Nonaqueous electrolyte battery
JP2007273127A (en) Nonaqueous secondary battery
CN109671909B (en) Negative electrode and nonaqueous electrolyte secondary battery provided with same
KR100449758B1 (en) Lithium battery with improved safety
JP2007194069A (en) Current shut off mechanism and battery
JP2010231950A (en) Nonaqueous electrolyte secondary battery
JP2008004441A (en) Lithium secondary battery, separator for lithium secondary battery, electrode for lithium secondary battery, nonaqueous electrolyte for lithium secondary battery, and armor for lithium secondary battery
JP2008117685A (en) Electrode plate for nonaqueous secondary battery, and nonaqueous secondary battery using this

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110413

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees