JP3409190B2 - Fuse resistor - Google Patents
Fuse resistorInfo
- Publication number
- JP3409190B2 JP3409190B2 JP14649393A JP14649393A JP3409190B2 JP 3409190 B2 JP3409190 B2 JP 3409190B2 JP 14649393 A JP14649393 A JP 14649393A JP 14649393 A JP14649393 A JP 14649393A JP 3409190 B2 JP3409190 B2 JP 3409190B2
- Authority
- JP
- Japan
- Prior art keywords
- expandable microcapsules
- fuse resistor
- weight
- heat
- thermally expandable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は電池の内部等の限られた
スペースに実装できる薄形のヒューズ抵抗器及びこのヒ
ューズ抵抗器を得るためのヒューズ抵抗組成物に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin fuse resistor which can be mounted in a limited space such as inside a battery, and a fuse resistor composition for obtaining the fuse resistor.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】近年、
電池の技術的進歩はめざましく、一般家庭用に普及して
いる電池においても、1次電池から充放電が可能な2次
電池が使用されるようになっている。この2次電池とし
てはニッケル・カドミウム電池、ニッケル・水素電池、
リチウムイオン電池等が市販されている。2. Description of the Related Art In recent years,
The technological progress of batteries has been remarkable, and secondary batteries, which can be charged and discharged from primary batteries, have come to be used even in batteries widely used in general households. As the secondary battery, nickel / cadmium battery, nickel / hydrogen battery,
Lithium ion batteries and the like are commercially available.
【0003】之等2次電池は充電時に、比較的大きな電
流を流すため、充電器の故障等により過電流が流れる場
合が考えられ、このようなときに、この2次電池の内部
抵抗等によりジュール熱が発生し、やがて爆発する等の
危険性がある。Since a relatively large current flows through the secondary battery during charging, an overcurrent may flow due to a failure of the charger, and at such a time, due to the internal resistance of the secondary battery, etc. There is a risk that Joule heat will be generated and eventually cause an explosion.
【0004】そこで、この2次電池の内部に過電流防止
用の保護素子であるヒューズ抵抗器を実装することが考
えられる。従来、このヒューズ抵抗器として金属線を用
いたもの等があるが、この2次電池の内部の限られたス
ペースに実装し得るヒューズ抵抗器は未だ提案されてい
ない。Therefore, it is conceivable to mount a fuse resistor, which is a protection element for preventing overcurrent, inside the secondary battery. Conventionally, there is a fuse resistor using a metal wire and the like, but a fuse resistor that can be mounted in a limited space inside the secondary battery has not been proposed yet.
【0005】本発明は斯る点に鑑み電池の内部のような
限られたスペースに実装できる薄形のヒューズ抵抗器を
得ることを目的とする。In view of the above problems, an object of the present invention is to obtain a thin fuse resistor which can be mounted in a limited space such as the inside of a battery.
【0006】[0006]
【0007】[0007]
【0008】[0008]
【0009】また、本発明ヒューズ抵抗器は例えば図4
に示す如く、多孔質金属板5の両面に金属箔電極6a及
び6bを熱膨張性マイクロカプセルを含有する接着剤7
で積層被着したヒューズ抵抗器であって、接着剤は、熱
膨張性マイクロカプセルの熱膨張温度以上になると、熱
膨張性マイクロカプセルが膨張して多孔質金属板と金属
箔電極間の導電を切断するものである。Further, the present invention fuse resistor 4 for example
As shown in FIG. 3, the metal foil electrodes 6a and 6b are provided on both surfaces of the porous metal plate 5 with an adhesive 7 containing thermally expandable microcapsules.
The fuse resistor is laminated on the
When the temperature exceeds the thermal expansion temperature of the expandable microcapsules, the heat
The expandable microcapsule expands and the porous metal plate and metal
This is for cutting the conduction between the foil electrodes .
【0010】また本発明ヒューズ抵抗器は例えば図3に
示す如く、基板8上に形成した複数の電極パターン9
a,9b間に熱膨張性マイクロカプセルを含有してなる
物質層10を設けると共にこの物質層10を跨ぎ、この
電極パターン9a及び9bを接続する如く導電塗料層1
1を形成したヒューズ抵抗器であって、物質層の厚さd
0 と導電塗料層の厚さd 1 の関係はd 0 /d 1 ≧0.2
であり、電極パターン間の温度が熱膨張性マイクロカプ
セルの熱膨張温度以上になると、熱膨張性マイクロカプ
セルが膨張して導電塗料層を突き破るものである。ま
た、本発明ヒューズ抵抗器は、多孔質金属板の両面に金
属箔電極を熱膨張性マイクロカプセルを含有する接着剤
で積層被着し、前記金属箔電極の一部は前記多孔質金属
板と接触するものである。 また、本発明ヒューズ抵抗器
は、基板上に形成した複数の電極パターン間に熱膨張性
マイクロカプセルを含有してなる物質層を設けると共に
該物質層を跨ぎ前記複数の電極パターンを接続する如く
導電塗料層を形成したものである。 [0010] The present invention fuse resistors as shown in FIG. 3, for example, a plurality of electrode patterns 9 formed on the substrate 8
A conductive paint layer 1 is provided so as to provide a material layer 10 containing thermally expandable microcapsules between a and 9b and to straddle the material layer 10 to connect the electrode patterns 9a and 9b.
1 is a fuse resistor having a thickness of a material layer d.
The relationship between 0 and the thickness d 1 of the conductive coating layer is d 0 / d 1 ≧ 0.2
And the temperature between the electrode patterns is
Above the thermal expansion temperature of the cell, the thermal expansion microcapsule
The cell expands and breaks through the conductive paint layer . Well
In addition, the fuse resistor of the present invention has a metal plate on both sides of the porous metal plate.
Adhesive containing metal foil electrodes containing thermally expandable microcapsules
The metal foil electrode is partly laminated with the porous metal.
It comes into contact with a plate. Further, the fuse resistor of the present invention
Has a thermal expansion property between multiple electrode patterns formed on the substrate.
While providing a material layer containing microcapsules
As if connecting the plurality of electrode patterns across the material layer
A conductive paint layer is formed.
【0011】[0011]
【作用】本発明によれば過電流が流れ発熱したときに熱
膨張性マイクロカプセルが膨張し、導電路を断つのでヒ
ューズ抵抗器として動作すると共に電池の内部のような
限られたスペースに実装できる薄形のヒューズ抵抗器を
得ることができる。According to the present invention, when an overcurrent flows and heat is generated, the heat-expandable microcapsule expands, disconnects the conductive path, and operates as a fuse resistor and can be mounted in a limited space such as inside a battery. A thin fuse resistor can be obtained.
【0012】[0012]
【実施例】以下図面を参照して本発明ヒューズ抵抗組成
物及びヒューズ抵抗器の実施例につき説明しよう。図1
において、1は本例によるヒューズ抵抗組成物の層を示
し、本例によるヒューズ抵抗器は図1に示す如く、この
ヒューズ抵抗組成物層1を例えばニッケル、アルミ等の
金属電極2a及び2b間に設けたものである。EXAMPLES Examples of the fuse resistance composition and the fuse resistor of the present invention will be described below with reference to the drawings. Figure 1
1 indicates a layer of the fuse resistance composition according to the present example, and the fuse resistor according to the present example has the fuse resistance composition layer 1 between the metal electrodes 2a and 2b of nickel, aluminum or the like as shown in FIG. It is provided.
【0013】このヒューズ抵抗組成物層1を構成するヒ
ューズ抵抗組成物は熱可塑性の樹脂12中に金属粒子、
カーボン粒子等の導電粒子13及び熱膨張性マイクロカ
プセル14を分散したものである。The fuse resistance composition constituting the fuse resistance composition layer 1 is composed of thermoplastic resin 12 with metal particles,
Conductive particles 13 such as carbon particles and thermally expandable microcapsules 14 are dispersed.
【0014】この熱膨張性マイクロカプセル14は中空
の樹脂粒子中に低沸点の炭化水素を内包した粒径が10
μm〜30μmの微小球である。この場合、この熱膨張
性マイクロカプセル14の膨張温度は中空の樹脂粒子の
軟化温度を調整することによりコントロールすることが
できる。また、熱可塑性の樹脂12はこの熱膨張性マイ
クロカプセル14の膨張温度で軟化もしくはゴム状であ
ることが望ましく、アクリル、ポリエステル、ウレタン
等が使用できる。The thermally expandable microcapsules 14 have a hollow resin particle containing a low boiling point hydrocarbon and a particle size of 10
It is a microsphere of μm to 30 μm. In this case, the expansion temperature of the thermally expandable microcapsules 14 can be controlled by adjusting the softening temperature of the hollow resin particles. Further, the thermoplastic resin 12 is preferably softened or rubber-like at the expansion temperature of the heat-expandable microcapsules 14, and acrylic, polyester, urethane or the like can be used.
【0015】次にこの図1に示す如きヒューズ抵抗器の
実施例1〜10及び比較例1につき説明する。この実施
例1〜10及び比較例1の夫々の金属電極2a及び2b
は福田金属箔粉社製の電解Ni箔(65μm)を用いる
と共にヒューズ抵抗組成物の樹脂12としてユニチカ社
製のポリエステルUE3220を用いた。Next, Examples 1 to 10 and Comparative Example 1 of the fuse resistor as shown in FIG. 1 will be described. The metal electrodes 2a and 2b of Examples 1 to 10 and Comparative Example 1, respectively.
Is an electrolytic Ni foil (65 μm) manufactured by Fukuda Metal Foil & Powder Co., Ltd., and polyester UE3220 manufactured by Unitika Ltd. is used as the resin 12 of the fuse resistance composition.
【0016】この実施例1〜10及び比較例1は、この
樹脂12の溶液中に表1に示した各導電粒子13及び熱
膨張性マイクロカプセル14を分散し、金属電極2a,
2bであるNi箔にコーティング後乾燥し、この熱膨張
性マイクロカプセル14の膨張温度以内の温度をかけ
て、表1の素子総厚とした。In Examples 1 to 10 and Comparative Example 1, the conductive particles 13 and the thermally expandable microcapsules 14 shown in Table 1 were dispersed in the solution of the resin 12, and the metal electrodes 2a,
The Ni foil of 2b was coated and then dried, and the temperature within the expansion temperature of the thermally expandable microcapsules 14 was applied to obtain the total element thickness shown in Table 1.
【0017】この実施例1は、導電粒子13としてキャ
ブラック社製の粒径が0.03μmのカーボン粒子XC
−72を用いると共に熱膨張性マイクロカプセル14と
して松本油脂社製の膨張温度が100℃〜105℃のF
50Dを用い、この樹脂12の100重量部に対し、こ
の導電粒子13を150重量部及びこの熱膨張性マイク
ロカプセル14を20重量部を分散し、その素子総厚を
250μmとした。In this Example 1, carbon particles XC having a particle size of 0.03 μm manufactured by Cablack Co., Ltd. were used as the conductive particles 13.
-72 and a thermally expandable microcapsule 14 manufactured by Matsumoto Yushi Co., Ltd. having an expansion temperature of 100 ° C. to 105 ° C.
Using 50D, 150 parts by weight of the conductive particles 13 and 20 parts by weight of the heat-expandable microcapsules 14 were dispersed in 100 parts by weight of the resin 12, and the total element thickness was set to 250 μm.
【0018】この実施例2は、導電粒子13として日本
カーボン社製の粒径が30μmのカーボン粒子PC−3
020を用いると共に熱膨張性マイクロカプセル14と
して松本油脂社製の膨張温度が100℃〜105℃のF
50Dを用い、この樹脂12の100重量部に対し、こ
の導電粒子13を200重量部及びこの熱膨張性マイク
ロカプセル14を20重量部を分散し、その素子総厚を
200μmとした。In Example 2, as the conductive particles 13, carbon particles PC-3 having a particle size of 30 μm manufactured by Nippon Carbon Co., Ltd.
020 is used as the heat-expandable microcapsule 14, and the expansion temperature manufactured by Matsumoto Yushi Co., Ltd. is 100 ° C. to 105 ° C. F.
Using 50D, 200 parts by weight of the conductive particles 13 and 20 parts by weight of the heat-expandable microcapsules 14 were dispersed in 100 parts by weight of the resin 12 so that the total thickness of the device was 200 μm.
【0019】この実施例3には、導電粒子13として同
和鉱業社製の粒径が0.57μmの銀粒子G−15を用
いると共に熱膨張性マイクロカプセル14として松本油
脂社製の膨張温度が100℃〜105℃のF50Dを用
い、この樹脂12の100重量部に対し、この導電粒子
13を400重量部及びこの熱膨張性マイクロカプセル
14を20重量部を分散し、その素子総厚を200μm
とした。In Example 3, silver particles G-15 manufactured by Dowa Mining Co., Ltd. having a particle diameter of 0.57 μm were used as the conductive particles 13, and the expansion temperature of Matsumoto Yushi Co., Ltd. was 100 as the thermally expandable microcapsules 14. C.-105.degree. C. F50D was used, 400 parts by weight of the conductive particles 13 and 20 parts by weight of the heat-expandable microcapsules 14 were dispersed in 100 parts by weight of the resin 12, and the total element thickness was 200 .mu.m.
And
【0020】この実施例4は、導電粒子13として同和
鉱業社製の粒径が0.57μmの銀粒子G−15を用い
ると共に熱膨張性マイクロカプセル14として松本油脂
社製の膨張温度が100℃〜105℃のF50Dを用
い、この樹脂12の100重量部に対し、この導電粒子
13を400重量部及びこの熱膨張性マイクロカプセル
14を20重量部を分散し、その素子総厚を300μm
とした。In Example 4, silver particles G-15 manufactured by Dowa Mining Co., Ltd. having a particle size of 0.57 μm were used as the conductive particles 13, and the expansion temperature of Matsumoto Yushi Co., Ltd. was used as the thermally expandable microcapsules 14. Using F50D at ˜105 ° C., 400 parts by weight of the conductive particles 13 and 20 parts by weight of the heat-expandable microcapsules 14 are dispersed in 100 parts by weight of the resin 12, and the total thickness of the device is 300 μm.
And
【0021】この実施例5は、導電粒子13として同和
鉱業社製の粒径が0.57μmの銀粒子G−15を用い
ると共に熱膨張性マイクロカプセル14として松本油脂
社製の膨張温度が100℃〜105℃のF50Dを用
い、この樹脂12の100重量部に対し、この導電粒子
13を400重量部及びこの熱膨張性マイクロカプセル
14を20重量部を分散し、その素子総厚を500μm
とした。In Example 5, silver particles G-15 made by Dowa Mining Co., Ltd. having a particle size of 0.57 μm are used as the conductive particles 13, and the expansion temperature of Matsumoto Yushi Co., Ltd. as the thermally expandable microcapsules 14 is 100 ° C. Using F50D at ˜105 ° C., 400 parts by weight of the conductive particles 13 and 20 parts by weight of the heat-expandable microcapsules 14 are dispersed in 100 parts by weight of the resin 12, and the total thickness of the device is 500 μm.
And
【0022】この実施例6は、導電粒子13として同和
鉱業社製の粒径が0.57μmの銀粒子G−15を用い
ると共に熱膨張性マイクロカプセル14として松本油脂
社製の膨張温度が80℃〜85℃のF30Dを用い、こ
の樹脂12の100重量部に対し、この導電粒子13を
400重量部及びこの熱膨張性マイクロカプセル14を
20重量部を分散し、その素子総厚を300μmとし
た。In Example 6, silver particles G-15 manufactured by Dowa Mining Co., Ltd. having a particle size of 0.57 μm are used as the conductive particles 13, and the expansion temperature of Matsumoto Yushi Co., Ltd. is 80 ° C. as the thermally expandable microcapsules 14. Using F30D at ˜85 ° C., 400 parts by weight of the conductive particles 13 and 20 parts by weight of the heat-expandable microcapsules 14 were dispersed in 100 parts by weight of the resin 12, and the total thickness of the device was 300 μm. .
【0023】この実施例7は、導電粒子13として同和
鉱業社製の粒径が0.57μmの銀粒子G−15を用い
ると共に熱膨張性マイクロカプセル14として松本油脂
社製の膨張温度が140℃〜145℃のF85Dを用
い、この樹脂12の100重量部に対し、この導電粒子
13を400重量部及びこの熱膨張性マイクロカプセル
14を20重量部を分散し、その素子総厚を300μm
とした。In Example 7, silver particles G-15 manufactured by Dowa Mining Co., Ltd. having a particle size of 0.57 μm were used as the conductive particles 13, and the expansion temperature of Matsumoto Yushi Co., Ltd. was 140 ° C. as the thermally expandable microcapsules 14. Using F85D of ˜145 ° C., 400 parts by weight of the conductive particles 13 and 20 parts by weight of the thermally expandable microcapsules 14 are dispersed in 100 parts by weight of the resin 12, and the total element thickness is 300 μm.
And
【0024】この実施例8は、導電粒子13として同和
鉱業社製の粒径が40μmの銀粒子Ag350を用いる
と共に熱膨張性マイクロカプセル14として松本油脂社
製の膨張温度が100℃〜105℃のF50Dを用い、
この樹脂12の100重量部に対し、この導電粒子13
を400重量部及びこの熱膨張性マイクロカプセル14
を20重量部を分散し、その素子総厚を300μmとし
た。In Example 8, silver particles Ag350 having a particle diameter of 40 μm manufactured by Dowa Mining Co., Ltd. were used as the conductive particles 13, and the expansion temperature of Matsumoto Yushi Co., Ltd. as the thermally expandable microcapsules 14 was 100 ° C. to 105 ° C. With F50D,
To 100 parts by weight of the resin 12, the conductive particles 13
400 parts by weight and this heat-expandable microcapsule 14
20 parts by weight were dispersed, and the total thickness of the device was set to 300 μm.
【0025】この実施例9は、導電粒子13として福田
金属社製の粒径が40μmの銀粒子Ag350を用いる
と共に熱膨張性マイクロカプセル14として松本油脂社
製の膨張温度が100℃〜105℃のF50Dを用い、
この樹脂12の100重量部に対し、この導電粒子13
を400重量部及びこの熱膨張性マイクロカプセル14
を100重量部を分散し、その素子総厚を300μmと
した。In Example 9, silver particles Ag350 having a particle diameter of 40 μm manufactured by Fukuda Metal Co., Ltd. were used as the conductive particles 13, and the expansion temperature of Matsumoto Yushi Co., Ltd., which was a thermal expansion microcapsule 14, was 100 ° C. to 105 ° C. With F50D,
To 100 parts by weight of the resin 12, the conductive particles 13
400 parts by weight and this heat-expandable microcapsule 14
Was dispersed in 100 parts by weight, and the total thickness of the device was set to 300 μm.
【0026】この実施例10は、導電粒子13として同
和鉱業社製の粒径が0.57μmの銀粒子G−15を用
いると共に熱膨張性マイクロカプセル14として松本油
脂社製の膨張温度が100℃〜105℃のF50Dを用
い、この樹脂12の100重量部に対し、この導電粒子
13を400重量部及びこの熱膨張性マイクロカプセル
14を10重量部を分散し、その素子総厚を200μm
とした。In Example 10, silver particles G-15 having a particle size of 0.57 μm manufactured by Dowa Mining Co., Ltd. were used as the conductive particles 13, and the expansion temperature of Matsumoto Yushi Co., Ltd. was used as the thermally expandable microcapsules 14. Using F50D at ˜105 ° C., 400 parts by weight of the conductive particles 13 and 10 parts by weight of the thermally expandable microcapsules 14 are dispersed in 100 parts by weight of the resin 12, and the total element thickness is 200 μm.
And
【0027】この比較例1は、導電粒子13として同和
鉱業社製の粒径が0.57μmの銀粒子G−15を用い
ると共に熱膨張性マイクロカプセル14として松本油脂
社製の膨張温度が100℃〜105℃のF50Dを用
い、この樹脂12の100重量部に対し、この導電粒子
13を400重量部及びこの熱膨張性マイクロカプセル
14を5重量部を分散し、その素子総厚を200μmと
した。In Comparative Example 1, silver particles G-15 having a particle diameter of 0.57 μm manufactured by Dowa Mining Co., Ltd. were used as the conductive particles 13, and the expansion temperature of Matsumoto Yushi Co., Ltd. was 100 ° C. as the thermally expandable microcapsules 14. Using F50D at ˜105 ° C., 400 parts by weight of the conductive particles 13 and 5 parts by weight of the heat-expandable microcapsules 14 were dispersed in 100 parts by weight of the resin 12, and the total thickness of the device was 200 μm. .
【0028】[0028]
【表1】
ここで、メーカAはキャブラック社製XC−72、メー
カBは日本カーボン社製PC−3020、メーカCは同
和鉱業社製G−15、メーカDは福田金属箔粉社製Ag
350、メーカEは松本油脂社製である。[Table 1] Here, Maker A is XC-72 manufactured by Cablack Co., Maker B is PC-3020 manufactured by Nippon Carbon Co., Maker C is G-15 manufactured by Dowa Mining Co., and Maker D is Ag manufactured by Fukuda Metal Foil & Powder Co.
350, Maker E is manufactured by Matsumoto Yushi Co., Ltd.
【0029】この実施例1〜10、比較例1の評価は夫
々1cm角に切った素子を表1に示す各温度下に2分間
放置し、その抵抗値を測定した。実施例1〜10におい
ては熱膨張性マイクロカプセル14の膨張温度に達した
ときに、この熱膨張性マイクロカプセル14の体積が急
激に大きくなり完全な絶縁状態(108 Ω以上)となっ
た。またこの実施例1〜10の全ての素子は10Aの過
電流によって発熱膨張し絶縁状態となった。In the evaluation of Examples 1 to 10 and Comparative Example 1, each element cut into 1 cm square was left at each temperature shown in Table 1 for 2 minutes, and its resistance value was measured. In Examples 1 to 10, when the expansion temperature of the heat-expandable microcapsule 14 was reached, the volume of the heat-expandable microcapsule 14 suddenly increased and became a completely insulated state (10 8 Ω or more). Further, all of the elements of Examples 1 to 10 were expanded by heat due to an overcurrent of 10 A and were in an insulating state.
【0030】比較例1においては熱膨張性マイクロカプ
セル14の膨張温度に達しても絶縁状態とならず、1
2.0Ω程度の抵抗値であった。また過電流を流したと
きも同様であった。これはこの比較例1においては、導
電粒子13の400重量部に対し熱膨張性マイクロカプ
セル14が5重量部と、この熱膨張性マイクロカプセル
14の量が比較的少ないためである。In Comparative Example 1, even when the expansion temperature of the heat-expandable microcapsules 14 was reached, the insulating state was not established and 1
The resistance value was about 2.0Ω. The same was true when an overcurrent was passed. This is because in Comparative Example 1, the amount of the heat-expandable microcapsules 14 is relatively small, which is 5 parts by weight with respect to 400 parts by weight of the conductive particles 13.
【0031】以上述べた如く図1例によれば過電流が流
れ、発熱したときに熱膨張性マイクロカプセル14の体
積が急激に膨張し、導電路を断つのでヒューズ抵抗器と
して動作すると共に電池の内部のように限られたスペー
スに実装できる薄形本例では200μm〜500μm厚
のヒューズ抵抗器を得ることができる。As described above, according to the example of FIG. 1, when the overcurrent flows and the heat is generated, the volume of the heat-expandable microcapsule 14 rapidly expands, disconnects the conductive path, and operates as a fuse resistor and at the same time as the battery. In the thin example which can be mounted in a limited space such as the inside, a fuse resistor having a thickness of 200 μm to 500 μm can be obtained.
【0032】以下図2を参照して本発明の他の実施例を
説明しよう。図2において、3は例えば210μm厚の
ガラエポ基板より成る回路基板を示し、この回路基板3
上に例えば2μm間隔離して平行に2つの電極パターン
4a及び4bを設ける。この電極パターン4a,4bは
18μm厚の銅箔上に0.5μm厚のNiメッキを施し
たものである。Another embodiment of the present invention will be described below with reference to FIG. In FIG. 2, reference numeral 3 indicates a circuit board made of a glass epoxy substrate having a thickness of 210 μm, for example.
For example, two electrode patterns 4a and 4b are provided parallel to each other with a distance of 2 μm therebetween. The electrode patterns 4a and 4b are copper foil having a thickness of 18 μm and plated with Ni having a thickness of 0.5 μm.
【0033】この回路基板3上に電極パターン4a及び
4bを跨いで所定範囲例えば電極パターン4a,4bの
長さ方向に例えば1.5cm、この電極パターン4a,
4bを跨ぐ方向に1.0cmに亘って、このヒューズ抵
抗組成物層1aを設ける如くする。On the circuit board 3, a predetermined range, for example, 1.5 cm in the longitudinal direction of the electrode patterns 4a and 4b straddling the electrode patterns 4a and 4b.
The fuse resistance composition layer 1a is provided over 1.0 cm in a direction crossing over 4b.
【0034】このヒューズ抵抗組成物層1aを構成する
ヒューズ抵抗組成物は図1のヒューズ抵抗組成物と同様
に熱可塑性の高分子樹脂12中にニッケル、銀等の金属
粒子13及び熱膨張性マイクロカプセル14を分散した
ものである。The fuse resistance composition constituting the fuse resistance composition layer 1a is similar to the fuse resistance composition of FIG. 1 in that the thermoplastic polymer resin 12 contains metal particles 13 of nickel, silver or the like and a thermally expansive micro resin. The capsule 14 is dispersed.
【0035】この熱膨張性マイクロカプセル14は中空
の樹脂粒子中に低沸点の炭化水素を内包した粒径が10
μm〜30μmの微小球である。また、この熱可塑性の
樹脂12はこの熱膨張性マイクロカプセル14の樹脂温
度で軟化もしくはゴム状であることが望ましく、アクリ
ル,ポリエステル,ウレタン等が使用できる。The thermally expandable microcapsules 14 have hollow resin particles containing a low boiling point hydrocarbon and have a particle size of 10
It is a microsphere of μm to 30 μm. The thermoplastic resin 12 is preferably softened or rubber-like at the resin temperature of the heat-expandable microcapsules 14, and acrylic, polyester, urethane or the like can be used.
【0036】次に図2に示す如きヒューズ抵抗器の実施
例11〜15及び比較例2につき説明する。Next, Examples 11 to 15 and Comparative Example 2 of the fuse resistor as shown in FIG. 2 will be described.
【0037】この実施例11は、熱可塑性の高分子樹脂
14として、ユニチカ社製ポリエステルUE3220を
用いると共に導電粒子13として、同和鉱業社製の銀粒
子G−15(粒径0.57μm)を用い、溶媒にトルエ
ンを用い、この樹脂14と導電粒子13とを重量比で1
0:90で配合し、3本ロールで分散し、この中に、こ
の中の樹脂量の100重量部に対して、熱膨張性マイク
ロカプセル14として松本油脂社製のマイクロスフェア
ーF−50D(マイクロバルーン、膨張温度100℃〜
105℃)を1.0重量部の割合で配合し、ディゾルバ
ーで10分間攪拌した、このインクを図2に示す如く回
路基板3の所定範囲に電極パターン4a及び4bを跨い
で、バーコーターを用いて塗布し、80℃で10分間乾
燥し、回路基板3上の乾燥膜厚(ヒューズ抵抗組成物層
1aの厚さ)が48μmとした。In Example 11, polyester polymer UE3220 manufactured by Unitika Ltd. was used as the thermoplastic polymer resin 14, and silver particles G-15 (particle size 0.57 μm) manufactured by Dowa Mining Co., Ltd. were used as the conductive particles 13. Using toluene as the solvent, the resin 14 and the conductive particles 13 are mixed in a weight ratio of 1
It was blended at 0:90 and dispersed by three rolls. Into this, 100 parts by weight of the amount of resin therein was used as a thermally expandable microcapsule 14 as Microsphere F-50D (manufactured by Matsumoto Yushi Co., Ltd.). Micro balloon, expansion temperature 100 ℃ ~
(105 ° C.) in an amount of 1.0 part by weight and stirred with a dissolver for 10 minutes. This ink is spread over a predetermined range of the circuit board 3 across the electrode patterns 4a and 4b as shown in FIG. 2 using a bar coater. Applied and dried at 80 ° C. for 10 minutes to give a dry film thickness (thickness of the fuse resistance composition layer 1a) on the circuit board 3 of 48 μm.
【0038】実施例12は実施例11の熱膨張性マイク
ロカプセル14の添加量を樹脂量100重量部に対して
5.0重量部の割合で配合し、その他は実施例11と同
様とし、回路基板3上の乾燥膜厚即ちヒューズ抵抗組成
物層1aの厚さを51μmとした。In Example 12, the addition amount of the heat-expandable microcapsules 14 of Example 11 was blended in a ratio of 5.0 parts by weight with respect to 100 parts by weight of the resin. The dry film thickness on the substrate 3, that is, the thickness of the fuse resistance composition layer 1a was set to 51 μm.
【0039】実施例13は実施例11の熱膨張性マイク
ロカプセル14の添加量を樹脂量100重量部に対して
10.0重量部の割合で配合し、その他は実施例11と
同様とし、回路基板3上の乾燥膜厚即ちヒューズ抵抗組
成物層1aの厚さを52μmとした。In Example 13, the addition amount of the heat-expandable microcapsules 14 of Example 11 was blended in a ratio of 10.0 parts by weight with respect to 100 parts by weight of the resin, and otherwise the same as in Example 11, and the circuit was used. The dry film thickness on the substrate 3, that is, the thickness of the fuse resistance composition layer 1a was set to 52 μm.
【0040】実施例14は実施例12と同様にし、回路
基板3上の乾燥膜厚即ちヒューズ抵抗組成物層1aの厚
さを5μmとした。Example 14 was similar to Example 12, and the dry film thickness on the circuit board 3, that is, the thickness of the fuse resistance composition layer 1a was set to 5 μm.
【0041】実施例15は実施例12と同様にし、回路
基板3上の乾燥膜厚即ちヒューズ抵抗組成物層1aの厚
さを512μmとした。Example 15 was the same as Example 12, except that the dry film thickness on the circuit board 3, that is, the thickness of the fuse resistance composition layer 1a was set to 512 μm.
【0042】また比較例2は実施例11の熱膨張性マイ
クロカプセル14の添加量を樹脂量100重量部に対し
て0.5重量部の割合で配合し、その他は実施例11と
同様とし、回路基板3上の乾燥膜厚即ちヒューズ抵抗組
成物層1aの厚さを49μmとした。Further, in Comparative Example 2, the addition amount of the heat-expandable microcapsules 14 of Example 11 was blended at a ratio of 0.5 parts by weight with respect to 100 parts by weight of the resin, and otherwise the same as in Example 11, The dry film thickness on the circuit board 3, that is, the thickness of the fuse resistance composition layer 1a was set to 49 μm.
【0043】この実施例11〜15及び比較例2を夫々
25℃,50℃,80℃,100℃,120℃,140
℃及び160℃に調整した恒温槽に2分間放置し、その
時の電極パターン4a及び4b間の抵抗値を測定し、ま
た100℃で抵抗値が108Ω以上(Open)となる
までの時間も測定し、その結果を表2に示す。These Examples 11 to 15 and Comparative Example 2 were performed at 25 ° C., 50 ° C., 80 ° C., 100 ° C., 120 ° C., 140, respectively.
Leave for 2 minutes in a constant temperature bath adjusted to ℃ and 160 ℃, measure the resistance value between the electrode patterns 4a and 4b at that time, and also measure the time until the resistance value becomes 10 8 Ω or more (Open) at 100 ℃. The measurement was performed and the results are shown in Table 2.
【0044】[0044]
【表2】 [Table 2]
【0045】この結果によれば実施例11〜15におい
ては100℃で電極パターン4a及び4bよりヒューズ
抵抗組成物層1aが浮き上がり導電路が断たれ(Ope
n)たが、比較例では40KΩ程度となるが108 以上
の抵抗値とはならなかった。According to these results, in Examples 11 to 15, the fuse resistance composition layer 1a was lifted from the electrode patterns 4a and 4b at 100 ° C. and the conductive path was cut off (Ope).
n), the resistance value was about 40 KΩ in the comparative example, but the resistance value was not 10 8 or more.
【0046】また上述実施例11〜15及び比較例12
に10Aの過電流を流したところ、この実施例11〜1
5及び比較例2は夫々発熱し、実施例11〜15は夫々
100℃で表2で示す如く抵抗値が108Ω以上(Op
en)となった。Further, the above-mentioned Examples 11 to 15 and Comparative Example 12
When an overcurrent of 10 A was applied to the
5 and Comparative Example 2 each generate heat, and Examples 11 to 15 each have a resistance value of 108 Ω or more (Op) at 100 ° C. as shown in Table 2.
en).
【0047】このことより、熱膨張性マイクロカプセル
14を樹脂12の100重量部に対して1重量部以上の
割合で配合すればヒューズ抵抗器として満足するが、あ
まり多量に添加すると初期抵抗値が高くなるため目標と
する初期抵抗に応じて適量配合することが好ましい。From the above, if the heat-expandable microcapsules 14 are blended in an amount of 1 part by weight or more with respect to 100 parts by weight of the resin 12, a fuse resistor will be satisfied, but if added in too large an amount, the initial resistance value will increase. Since it becomes high, it is preferable to mix it in an appropriate amount according to the target initial resistance.
【0048】またヒューズ抵抗組成物層1aの厚さは薄
い程遮断速度は速いが、この厚みが増しても時間はかか
るが、遮断されないということはない。上述実施例にお
いてはヒューズ抵抗組成物層1aをバーコーターにより
塗布したが、この代わりにスクリーン印刷等種々の方法
が使用できる。The smaller the thickness of the fuse resistance composition layer 1a, the faster the breaking speed. However, even if this thickness increases, it takes time, but it does not mean that the fuse does not break. Although the fuse resistance composition layer 1a is applied by a bar coater in the above-mentioned embodiments, various methods such as screen printing can be used instead.
【0049】以上述べた如く図2例においても過電流が
流れ、発熱したときに熱膨張性マイクロカプセルの体積
が急激に膨張し、導電路を断つので、ヒューズ抵抗器と
して動作すると共に電池の内部のように限られたスペー
スに実装できる薄形のヒューズ抵抗器を得ることができ
る。As described above, also in the example of FIG. 2, when the overcurrent flows and the heat is generated, the volume of the heat-expandable microcapsule abruptly expands and disconnects the conductive path, so that it functions as a fuse resistor and the inside of the battery. It is possible to obtain a thin fuse resistor that can be mounted in a limited space as shown in.
【0050】また図4は本発明の他の実施例を示す。こ
の図4において、5は例えば2mm以下の多孔質金属板
を示す。この多孔質金属板5は多孔質金属板5の両面が
特に貫通させる必要はなく、その両面もしくは片面に電
極となる金属箔電極6a,6bとこの多孔質金属板5と
を充分に接着しうる凹部があれば良い。FIG. 4 shows another embodiment of the present invention. In FIG. 4 , 5 indicates a porous metal plate having a size of 2 mm or less, for example. The porous metal plate 5 does not need to be penetrated on both sides of the porous metal plate 5, and the metal foil electrodes 6a and 6b to be electrodes and the porous metal plate 5 can be sufficiently adhered to both sides or one side thereof. There should be a recess.
【0051】本例においては、この多孔質金属板5の両
面に接着剤7を介して夫々金属箔電極6a及び6bを積
層被着する。この場合金属箔電極6a,6bの一部はこ
の多孔質金属板5と接触するようにすると共にこの多孔
質金属板5の凹部に存する接着剤7によりこの多孔質金
属板5と金属箔電極6a,6bとが接着される如くす
る。In this example, metal foil electrodes 6a and 6b are laminated and adhered on both surfaces of the porous metal plate 5 with an adhesive 7 interposed therebetween. In this case, a part of the metal foil electrodes 6a and 6b is brought into contact with the porous metal plate 5, and the adhesive 7 present in the recess of the porous metal plate 5 is used to form the porous metal plate 5 and the metal foil electrode 6a. , 6b are bonded together.
【0052】この金属箔電極6a,6bとしてはアル
ミ,ニッケル,銅等金属又は合金類等電気の良導体であ
れば良い。The metal foil electrodes 6a and 6b may be made of a metal or alloy such as aluminum, nickel or copper, or a good conductor of electricity such as alloys.
【0053】また、この接着剤7はアクリル系、エポキ
シ系、ゴム系、ポリエステル系の樹脂12を主成分とす
る接着剤中に熱膨張性マイクロカプセル14を配合した
ものである。この熱膨張性マイクロカプセル14として
は塩化ビニリデン共重合物を殻壁とし、低沸点の炭化水
素化合物を内包したもの等が市販されている。The adhesive 7 is a mixture of the thermally expandable microcapsules 14 in an adhesive containing an acrylic, epoxy, rubber or polyester resin 12 as a main component. As the thermally expandable microcapsules 14, those having a vinylidene chloride copolymer as a shell wall and containing a low boiling point hydrocarbon compound are commercially available.
【0054】この熱膨張性マイクロカプセル14は膨張
温度、例えば100℃で内包してある低沸点の炭化水素
化合物が気化し、更に殻壁を形成している高分子樹脂が
軟化して膨張するものである。The heat-expandable microcapsules 14 expand at a temperature of expansion, for example, 100 ° C., by encapsulating the low boiling point hydrocarbon compound and further softening the polymer resin forming the shell wall. Is.
【0055】この熱膨張性マイクロカプセル14の接着
剤中への配合量は0.1重量%以上が望ましい。これは
接着剤中の熱膨張性マイクロカプセル14の配合量がこ
の0.1重量%を下回ると導通を接断するのに充分な接
着剤7層の体積膨張がおこらないことによる。The amount of the thermally expandable microcapsules 14 incorporated into the adhesive is preferably 0.1% by weight or more. This is because when the compounding amount of the heat-expandable microcapsules 14 in the adhesive is less than 0.1% by weight, the volume expansion of the adhesive 7 layer sufficient for disconnecting the conduction does not occur.
【0056】またこの熱膨張性マイクロカプセル14の
配合量が、あまり多すぎると、単位体積当りの接着剤成
分の減少により、電極となる金属箔電極6a,6bと多
孔質金属板5との接着不良を引き起こす不都合がある。If the amount of the heat-expandable microcapsules 14 is too large, the adhesive component per unit volume decreases, and the metal foil electrodes 6a and 6b to be the electrodes are bonded to the porous metal plate 5. There is an inconvenience that causes defects.
【0057】次に、図4に示す如きヒューズ抵抗器の実
施例16〜18及び比較例3,4につき説明する。Next, Examples 16 to 18 and Comparative Examples 3 and 4 of the fuse resistor as shown in FIG. 4 will be described.
【0058】この実施例16はスチレン・ブタジエン共
重合物(シエル化学社製 TR1184)の30%トル
エン溶液に固形分比が重量比で7:3となるようにタッ
キファイヤー(トーネックス社製、エスコレッツ530
0)を添加し、次いで膨張温度105℃の熱膨張性マイ
クロカプセル(松本油脂社製 F−50D)を0.1重
量%の割合で配合した。In this Example 16, a tackifier (manufactured by Tonex Corp., Escorets 530) was added to a 30% toluene solution of a styrene / butadiene copolymer (TR1184, manufactured by Shell Chemical Co., Ltd.) so that the solid content ratio was 7: 3.
0) was added, and then heat-expandable microcapsules (F-50D manufactured by Matsumoto Yushi Co., Ltd.) having an expansion temperature of 105 ° C. were blended at a ratio of 0.1% by weight.
【0059】これを電解ニッケル箔(福田金属箔粉工業
社製65μm厚)にバーコーターを用いて、ウエット膜
厚300μmとなるように塗布し、熱風循環式オーブン
中で80℃で10分間乾燥し(このときの乾燥膜厚は5
0μmであった。)、これを図4に示した構成になるよ
うに、多孔質金属板5と90℃、4kgf/cm2 ,6
0秒の条件で熱圧着し、これを1cm角に打ち抜き、厚
み1.0mmのヒューズ抵抗器を得た。This was applied to an electrolytic nickel foil (65 μm thick manufactured by Fukuda Metal Foil & Powder Co., Ltd.) using a bar coater so that a wet film thickness was 300 μm, and dried in a hot air circulation oven at 80 ° C. for 10 minutes. (Dry film thickness at this time is 5
It was 0 μm. ), Which so to the configuration shown in FIG. 4, the porous metal plate 5 and 90 ℃, 4kgf / cm 2, 6
It was thermocompression bonded under the condition of 0 seconds and punched into 1 cm square to obtain a 1.0 mm thick fuse resistor.
【0060】また、実施例17は、飽和ポリエステル
(ユニチカ社製UE−3220)の30%トルエン溶液
に膨張温度145℃の熱膨張性マイクロカプセル(松本
油脂社製F−85D)を10重量%の割合で配合し、こ
れを電解ニッケル箔(福田金属箔粉工業社製65μm
厚)にバーコーターを用いて、ウェット膜厚300μm
となるように塗布し、熱風循環式オーブン中で、80℃
で10分間乾燥し(このときの乾燥膜厚は65μmであ
った。)、これを図4に示した構成になるように多孔質
金属板(住友電工社製セルメット(発泡金属)#7)5
と90℃、10kgf/cm2 、60秒の条件で熱圧着
して、厚み0.8mmのヒューズ抵抗器を得た。In Example 17, 10% by weight of heat-expandable microcapsules (F-85D, manufactured by Matsumoto Yushi Co., Ltd.) having an expansion temperature of 145 ° C. were added to a 30% toluene solution of saturated polyester (UE-3220, manufactured by Unitika Ltd.). Blended in a ratio, and electrolytic nickel foil (Fukuda Metal Foil & Powder Co., Ltd. 65 μm
Thickness) using a bar coater, wet film thickness 300 μm
And apply in a hot air circulation oven at 80 ° C.
In dried for 10 minutes (dry film thickness was 65 .mu.m.), Which porous metal plate so that the structure shown in FIG. 4 (Sumitomo Electric Co. Celmet (metal foam) # 7) 5
Then, thermocompression bonding was performed under the conditions of 90 ° C., 10 kgf / cm 2 , and 60 seconds to obtain a fuse resistor having a thickness of 0.8 mm.
【0061】また実施例18はフェノキシ樹脂(東都化
成社製Yp−50)のトルエン:ブタノールが7:3の
混合溶剤25%溶液に、膨張温度145℃の熱膨張性マ
イクロカプセルを40重量%の割合で配合し、これを電
解ニッケル箔(福田金属箔粉工業社製65μm厚)にバ
ーコーターを用いて、ウエット膜厚300μmとなるよ
うに塗布し、熱風循環式オーブン中で、80℃で10分
間乾燥し(このときの乾燥膜厚は50μmであっ
た。)、これを図4に示した構成になるように多孔質金
属板5と90℃、4kgf/cm2 、60秒の条件で熱
圧着し、厚み1.0mmのヒューズ抵抗器を得た。In Example 18, a phenoxy resin (Yp-50 manufactured by Tohto Kasei Co., Ltd.) in a 25% solution of a mixed solvent of toluene: butanol of 7: 3 was added to 40% by weight of thermally expandable microcapsules having an expansion temperature of 145 ° C. The mixture was mixed in a ratio, and this was applied to an electrolytic nickel foil (65 μm thickness manufactured by Fukuda Metal Foil & Powder Industry Co., Ltd.) using a bar coater so that a wet film thickness was 300 μm, and it was heated at 80 ° C. at 10 ° C. in a hot air circulation oven. minutes dried (dried film thickness was 50 [mu] m.), a porous metal plate 5 and 90 ° C. so that it to the configuration shown in FIG. 4, the heat under the conditions of 4 kgf / cm 2, 60 seconds Crimping was performed to obtain a 1.0 mm thick fuse resistor.
【0062】また比較例3としては実施例18のフェノ
キシ樹脂溶液に50重量%の割合で、熱膨張性マイクロ
カプセルを配合し、実施例16で示した方法で多孔質金
属板5に熱圧着したところ、ニッケル箔の金属箔電極6
a,6bと多孔質金属板5との間で接着強度が得られ
ず、打ち抜き工程ではがれを生じ、ヒューズ抵抗器を得
ることができなかった。In Comparative Example 3, the phenoxy resin solution of Example 18 was mixed with 50% by weight of heat-expandable microcapsules and thermocompression-bonded to the porous metal plate 5 by the method shown in Example 16. By the way, nickel foil metal foil electrode 6
No adhesive strength was obtained between a and 6b and the porous metal plate 5, peeling occurred in the punching process, and a fuse resistor could not be obtained.
【0063】この実施例16,17及び18の温度−抵
抗特性及び電流−抵抗特性を夫々図5及び図6に示す。
即ち、図5の温度−抵抗特性において実施例16におい
ては、105℃までは抵抗は極めて小さいが105℃に
て熱膨張性マイクロカプセルが膨張して金属箔電極6
a,6bと多孔質金属板5との導電路を断つので、この
電極6a及び6b間の抵抗は無限大のオープン(Ope
n)となり、また実施例17及び18においても同様に
して、膨張温度145℃で抵抗は無限大のオープン(O
pen)となる。The temperature-resistance characteristics and the current-resistance characteristics of Examples 16, 17 and 18 are shown in FIGS. 5 and 6, respectively.
That is, in the temperature-resistance characteristics of FIG. 5, in Example 16, the resistance was extremely small up to 105 ° C., but the thermally expandable microcapsules expanded at 105 ° C. and the metal foil electrode 6
Since the conductive paths between a and 6b and the porous metal plate 5 are cut off, the resistance between the electrodes 6a and 6b is infinite open (Ope).
n), and similarly in Examples 17 and 18, the resistance is infinite open (O) at the expansion temperature of 145 ° C.
pen).
【0064】また図6の電流−抵抗特性において、実施
例16においては、8.5Aまでは抵抗は極めて小さい
が8.5Aになると急に電流による発熱により熱膨張性
マイクロカプセルが膨張して金属箔電極6a,6bと多
孔質金属板5との導電路を断つので、この電極6a及び
6b間の抵抗は無限大のオープン(Open)となり、
また実施例17及び18においても同様にして、電流が
9Aで熱膨張性マイクロカプセルが膨張し、金属箔電極
6a及び6b間の抵抗は無限大のオープン(Open)
となる。In the current-resistance characteristics of FIG. 6, in Example 16, the resistance was extremely small up to 8.5 A, but when it reached 8.5 A, the heat-expandable microcapsules suddenly expanded due to heat generation by the current, and the metal Since the conductive paths between the foil electrodes 6a and 6b and the porous metal plate 5 are cut off, the resistance between the electrodes 6a and 6b becomes an infinite open (Open),
Similarly, in Examples 17 and 18, the heat-expandable microcapsule expands when the current is 9 A, and the resistance between the metal foil electrodes 6a and 6b is infinite open (Open).
Becomes
【0065】従って、実施例16,17及び18による
ヒューズ抵抗器は温度ヒューズ及び電流ヒューズとして
優れた特性を持ち、更に形状も小型化、薄形化すること
ができる。Therefore, the fuse resistors according to Examples 16, 17 and 18 have excellent characteristics as temperature fuses and current fuses, and can be made smaller and thinner.
【0066】以下図3を参照して本発明の更に他の実施
例を説明しよう。図3において、8は例えば厚さが21
0μmのガラスエポキシ基板よりなる回路基板を示し、
この回路基板8上に互いに所定距離例えば2mm離して
2個の電極パターン9a及び9bを形成する。[0066] attempt to explain still another embodiment of the present invention with reference to FIG. 3 below. In FIG. 3 , 8 has a thickness of 21
A circuit board consisting of a 0 μm glass epoxy board is shown.
Two electrode patterns 9a and 9b are formed on the circuit board 8 with a predetermined distance from each other, for example, 2 mm.
【0067】また図3A,Bに示す如く、この2個の電
極パターン9a及び9b間の回路基板8上に熱膨張性マ
イクロカプセル14を含有してなる物質層10を所定幅
W0例えば10mmで設ける。[0067] Also FIG. 3 A, as shown in B, and these two electrode patterns 9a and a predetermined width W0 example 10mm material layer 10 comprising a thermally expandable microcapsule 14 on the circuit board 8 between 9b Set up.
【0068】この物質層10を形成するペーストは高分
子樹脂例えばユニチカ社製ポリエステルUE3220に
熱膨張性マイクロカプセル14例えば松本油脂社製マイ
クロバルーン マイクロフェアー F−50D(膨張温
度100℃〜105℃)をこの高分子樹脂に対して例え
ば20重量%の割合で添加し、溶媒にトルエンを用いて
ディゾルバーで10分間攪拌して得た。The paste for forming the material layer 10 is a polymer resin such as polyester UE3220 manufactured by Unitika Ltd. and thermally expandable microcapsules 14 such as Microballoon Microsphere F-50D (expansion temperature 100 ° C. to 105 ° C.) manufactured by Matsumoto Yushi Co., Ltd. For example, 20 wt% was added to this polymer resin, and toluene was used as a solvent, and the mixture was obtained by stirring for 10 minutes with a dissolver.
【0069】この場合、この高分子樹脂は熱膨張性マイ
クロカプセル14の膨張温度で軟化しているかもしくは
ゴム状領域であることが好ましく、アクリル、ポリエス
テル、ウレタン等種々の樹脂が使用できる。In this case, the polymer resin is preferably softened or has a rubber-like region at the expansion temperature of the heat-expandable microcapsules 14, and various resins such as acryl, polyester and urethane can be used.
【0070】この物質層10を跨ぎ、この電極パターン
9a及び9bを電気的に接続する如く導電塗料層11を
形成する。この導電塗料層11を形成する導電塗料の例
としては高分子樹脂例えばユニチカ社製ポリエステルU
E3220に導電粒子(同和鉱業社製銀粒子G−15一
次粒子径0.57μm)を樹脂に対して900重量%の
割合で添加し、溶媒にトルエンを用いて、3本ロールで
分散して得た。A conductive paint layer 11 is formed so as to straddle the material layer 10 and electrically connect the electrode patterns 9a and 9b. An example of the conductive paint forming the conductive paint layer 11 is a polymer resin such as polyester U manufactured by Unitika Ltd.
Conductive particles (silver particles G-15 primary particle diameter 0.57 μm manufactured by Dowa Mining Co., Ltd.) were added to E3220 at a ratio of 900% by weight with respect to the resin, and toluene was used as a solvent to obtain a dispersion by three rolls. It was
【0071】この場合、この導電粒子としては、カーボ
ン、ニッケル、銀等が使用できる。In this case, carbon, nickel, silver or the like can be used as the conductive particles.
【0072】この熱膨張性マイクロカプセルを含有する
物質層10及び導電塗料層11はスクリーン印刷等の方
法で形成できるが、粘着性のある樹脂を用いればフィル
ム状にした後に貼付することもできる。The material layer 10 and the conductive coating layer 11 containing the heat-expandable microcapsules can be formed by a method such as screen printing, but if an adhesive resin is used, it can be formed into a film and then attached.
【0073】この物質層10の厚さd0 と導電塗料層1
1の厚さd1 との関係はd0 /d1≧0.2であること
が望ましく、これ以下であると熱膨張性マイクロカプセ
ルが導電塗料層11を突き破って膨張することが困難に
なる。またこの導電塗料層11の厚さd1 が500μm
を超えるようになると、この熱膨張性マイクロカプセル
がこの導電塗料層11を突き破って膨張することが困難
になる。The thickness d 0 of the material layer 10 and the conductive coating layer 1
The relationship with the thickness d 1 of 1 is preferably d 0 / d 1 ≧ 0.2, and if it is less than this, it becomes difficult for the thermally expandable microcapsules to penetrate through the conductive coating layer 11 and expand. . Further, the thickness d 1 of the conductive paint layer 11 is 500 μm
When it exceeds, it becomes difficult for the thermally expandable microcapsules to break through the conductive paint layer 11 and expand.
【0074】また熱膨張マイクロカプセルを含有する物
質層10の幅W0 と導電塗料層11の幅W1 との関係は
W0 ≧W1 が好ましく、そうでない場合は導通切断され
ない部分が残る不都合がある。[0074] The relationship between the width W 1 of the width W 0 and the conductive coating layer 11 of the material layer 10 containing a thermal expansion microcapsules is preferably W 0 ≧ W 1, otherwise disadvantages portions not conduct cutting remains There is.
【0075】本例は上述の如く構成されているので過熱
又は過電流により電極パターン9a及び9b間の温度が
熱膨張性マイクロカプセルの熱膨張温度例えば100℃
となったときに図4C,Dに示す如く、この熱膨張性マ
イクロカプセルが膨張して導電塗料層11を突き破って
導電路を断ち、電極パターン9a及び9b間を電気的に
不導通とするのでヒューズ抵抗器として動作する。また
この場合薄形のヒューズ抵抗器とすることができる。Since this example is constructed as described above, the temperature between the electrode patterns 9a and 9b is overheated or overcurrent so that the temperature of the thermally expandable microcapsules is, for example, 100 ° C.
4C and 4D, the thermally expandable microcapsules expand and pierce the conductive paint layer 11 to cut the conductive path, thereby electrically disconnecting the electrode patterns 9a and 9b. Acts as a fuse resistor. In this case, a thin fuse resistor can be used.
【0076】ここで、実施例1〜15は、本発明外であ
る。尚本発明は上述実施例に限ることなく本発明の要旨
を逸脱することなく、その他種々の構成が採り得ること
は勿論である。 Here, Examples 1 to 15 are outside the present invention.
It The present invention is not limited to the above-described embodiments, and it goes without saying that various other configurations can be adopted without departing from the gist of the present invention.
【0077】[0077]
【発明の効果】本発明によれば過電流が流れ発熱したと
きに熱膨張性マイクロカプセルが膨張し、導電路を断つ
のでヒューズ抵抗器として動作すると共に電池の内部の
ような限られたスペースに実装できる薄形のヒューズ抵
抗器を得ることができる利益がある。According to the present invention, when an overcurrent flows and heat is generated, the heat-expandable microcapsule expands, disconnects the conductive path, and operates as a fuse resistor, and in a limited space such as the inside of a battery. There is an advantage in having a thin fuse resistor that can be implemented.
【図1】本発明ヒューズ抵抗器の一実施例を示す断面図
である。FIG. 1 is a sectional view showing an embodiment of a fuse resistor of the present invention.
【図2】本発明の他の実施例を示す平面図である。FIG. 2 is a plan view showing another embodiment of the present invention.
【図3】本発明の他の実施例を示す断面図である。FIG. 3 is a sectional view showing another embodiment of the present invention.
【図4】Aは本発明の他の実施例を示す断面図、Bは図
4Aの平面図、Cは本例の動作の説明に供する断面図、
Dは図4Cの平面図である。4A is a cross-sectional view showing another embodiment of the present invention, B is a plan view of FIG. 4A, C is a cross-sectional view for explaining the operation of this embodiment,
D is a plan view of FIG. 4C.
【図5】図3例の説明に供する線図である。5 is a diagram for explaining the example of FIG. 3; FIG.
【図6】図3例の説明に供する線図である。FIG. 6 is a diagram for explaining the example of FIG. 3;
1 ヒューズ抵抗組成物層 2a,2b 金属電極 3,8 回路基板 4a,4b,9a,9b 電極パターン 5 多孔質金属板 6a,6b 金属箔電極 7 接着剤 10 熱膨張性マイクロカプセルを含有する物質層 11 導電塗料層 12 樹脂 13 導電粒子 14 熱膨張性マイクロカプセル 1 Fuse resistance composition layer 2a, 2b Metal electrode 3,8 circuit board 4a, 4b, 9a, 9b electrode pattern 5 Porous metal plate 6a, 6b Metal foil electrode 7 adhesive 10 Material layer containing thermally expandable microcapsules 11 Conductive paint layer 12 resin 13 Conductive particles 14 Thermally expandable microcapsules
───────────────────────────────────────────────────── フロントページの続き (72)発明者 武市 元秀 栃木県鹿沼市さつき町18番地 ソニーケ ミカル株式会社 鹿沼工場内 (56)参考文献 特開 平3−96255(JP,A) 特開 平4−245131(JP,A) 特開 昭53−88193(JP,A) 特開 昭60−19033(JP,A) 実開 昭58−71955(JP,U) 実開 昭62−23439(JP,U) 実開 昭57−170535(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01H 85/06 C08J 9/14 C08K 3/00 C08L 101/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Motohide Takeshi 18 Satsuki-cho, Kanuma City, Tochigi Prefecture Sony Chemical Co., Ltd. Kanuma Plant (56) Reference JP-A-3-96255 (JP, A) JP-A-4 -245131 (JP, A) JP-A-53-88193 (JP, A) JP-A-60-19033 (JP, A) Actual opening Sho-58-71955 (JP, U) Actual opening Sho-62-23439 (JP, U) ) Shokai 57-170535 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) H01H 85/06 C08J 9/14 C08K 3/00 C08L 101/00
Claims (4)
張性マイクロカプセルを含有する接着剤で積層被着した
ヒューズ抵抗器であって、前記接着剤は、熱膨張性マイ
クロカプセルの熱膨張温度以上になると、前記熱膨張性
マイクロカプセルが膨張して前記多孔質金属板と前記金
属箔電極間の導電を切断することを特徴とするヒューズ
抵抗器。1. A metal foil electrode is laminated on both surfaces of a porous metal plate with an adhesive containing thermally expandable microcapsules.
A fuse resistor, wherein the adhesive is a thermally expansive adhesive.
Above the thermal expansion temperature of the black capsule, the thermal expansion
When the microcapsules expand, the porous metal plate and the gold
A fuse resistor characterized by cutting the conduction between metal foil electrodes .
に熱膨張性マイクロカプセルを含有してなる物質層を設
けると共に該物質層を跨ぎ前記複数の電極パターンを接
続する如く導電塗料層を、形成したヒューズ抵抗器であ
って、物質層の厚さd 0 と導電塗料層の厚さd 1 の関係
はd 0 /d 1 ≧0.2であり、前記電極パターン間の温
度が前記熱膨張性マイクロカプセルの熱膨張温度以上に
なると、前記熱膨張性マイクロカプセルが膨張して前記
導電塗料層を突き破ることを特徴とするヒューズ抵抗
器。2. A material layer containing heat-expandable microcapsules is provided between a plurality of electrode patterns formed on a substrate, and a conductive paint layer is formed so as to connect the plurality of electrode patterns across the material layer . In the formed fuse resistor
Therefore, the relationship between the material layer thickness d 0 and the conductive coating layer thickness d 1
Is d 0 / d 1 ≧ 0.2, and the temperature between the electrode patterns is
Above the thermal expansion temperature of the thermally expandable microcapsules
Then, the thermally expandable microcapsules expand and the
A fuse resistor characterized by breaking through a conductive paint layer .
張性マイクロカプセルを含有する接着剤で積層被着し、 前記金属箔電極の一部は前記多孔質金属板と接触する こ
とを特徴とするヒューズ抵抗器。3. This metal foil electrodes on both surfaces of the porous metal plate by laminating an adherend with an adhesive containing heat-expandable microcapsules, a portion of the metal foil electrode is in contact with the porous metal plate < A fuse resistor characterized by the following.
に熱膨張性マイクロカプセルを含有してなる物質層を設
けると共に該物質層を跨ぎ前記複数の電極パターンを接
続する如く導電塗料層を形成したことを特徴とするヒュ
ーズ抵抗器。4. A material layer containing thermally expandable microcapsules is provided between a plurality of electrode patterns formed on a substrate, and a conductive paint layer is formed so as to connect the plurality of electrode patterns across the material layer. Fuse resistor characterized by having done.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14649393A JP3409190B2 (en) | 1993-06-17 | 1993-06-17 | Fuse resistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14649393A JP3409190B2 (en) | 1993-06-17 | 1993-06-17 | Fuse resistor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH076684A JPH076684A (en) | 1995-01-10 |
JP3409190B2 true JP3409190B2 (en) | 2003-05-26 |
Family
ID=15408878
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14649393A Expired - Lifetime JP3409190B2 (en) | 1993-06-17 | 1993-06-17 | Fuse resistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3409190B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3961747A4 (en) * | 2019-04-25 | 2022-06-08 | SANYO Electric Co., Ltd. | Voltage detection line and voltage detection line module |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6242389B1 (en) | 1997-04-14 | 2001-06-05 | Bp Chemicals Limited | Ethers |
JP4727021B2 (en) * | 2000-05-22 | 2011-07-20 | 株式会社クレハ | Electrode and non-aqueous battery using the same |
KR100828238B1 (en) * | 2006-12-08 | 2008-05-07 | 엘에스전선 주식회사 | Anisotropic conductive film |
JP2013014734A (en) * | 2011-07-06 | 2013-01-24 | Nitto Denko Corp | Conductive pressure-sensitive adhesive tape |
JPWO2013172256A1 (en) | 2012-05-15 | 2016-01-12 | 株式会社Uacj | Current collector, electrode structure, non-aqueous electrolyte battery, power storage component, and current collector manufacturing method |
WO2019189866A1 (en) * | 2018-03-30 | 2019-10-03 | 三井化学株式会社 | Positive electrode equipped with undercoat layer containing microcapsules, and lithium-ion secondary battery |
JP6819657B2 (en) * | 2018-07-25 | 2021-01-27 | カシオ計算機株式会社 | program |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2800102A1 (en) * | 1977-01-12 | 1978-07-20 | Philips Nv | CARRIER WITH A PATTERN OF ELECTRICALLY CONDUCTIVE TRACKS |
JPS6223076Y2 (en) * | 1981-04-20 | 1987-06-12 | ||
JPS5871955U (en) * | 1981-11-11 | 1983-05-16 | 日本電気株式会社 | Ultra small fuse |
JPS6019033A (en) * | 1983-07-12 | 1985-01-31 | Matsumoto Yushi Seiyaku Kk | Hollow micro-balloon and preparation thereof |
JPS6223439U (en) * | 1985-07-25 | 1987-02-13 | ||
FR2651083B1 (en) * | 1989-08-18 | 1995-12-29 | Commissariat Energie Atomique | ELECTRICAL CONNECTION OR DISCONNECTION ELEMENT, INTEGRATED CIRCUIT COMPRISING SUCH ELEMENTS AND CORRESPONDING CONNECTION OR DISCONNECTION METHOD |
JPH04245131A (en) * | 1991-01-30 | 1992-09-01 | Hitachi Chem Co Ltd | Chip type fuse |
-
1993
- 1993-06-17 JP JP14649393A patent/JP3409190B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3961747A4 (en) * | 2019-04-25 | 2022-06-08 | SANYO Electric Co., Ltd. | Voltage detection line and voltage detection line module |
US12044740B2 (en) | 2019-04-25 | 2024-07-23 | Sanyo Electric Co., Ltd. | Voltage detection line and voltage detection line module |
Also Published As
Publication number | Publication date |
---|---|
JPH076684A (en) | 1995-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3257521B2 (en) | PTC element, protection device and circuit board | |
US6723467B2 (en) | Separator for battery and battery | |
US4876439A (en) | PTC devices | |
JP3409190B2 (en) | Fuse resistor | |
JP3470694B2 (en) | Protection element | |
JP2020533734A (en) | Lithium energy storage device with internal fuse | |
EP0233751A3 (en) | Fuse for electronic component | |
WO1999067835A1 (en) | Electrode, method of producing electrode, and cell comprising the electrode | |
CN205069250U (en) | Novel PTC temperature sensitive element | |
US6440605B1 (en) | Electrode, method or producing electrode, and cell comprising the electrode | |
JP3786973B2 (en) | Electrode, method for producing the electrode, and battery using the electrode | |
CN105869806B (en) | High stability PTC temperature sensing subassembly | |
JP2002124128A (en) | Adhesives and adhesive film | |
CN101026029B (en) | Overcurrent protection element | |
TW531557B (en) | Conductive composition | |
CN1755866B (en) | Solid state composite fuse element and methods of making same | |
KR950004369B1 (en) | Heat-melt adhesive interconnector | |
JPH08172001A (en) | Ptc element, protective circuit using it, and circuit board | |
JP3409189B2 (en) | Fuse resistor | |
JPH09320808A (en) | Ptc thermistor | |
WO2017101682A1 (en) | Protection element | |
JPS61287974A (en) | Anisotropically conductive adhesive | |
KR200433719Y1 (en) | Planar Heating Panel | |
JPH072938B2 (en) | Anisotropic conductive adhesive | |
JP2000348583A (en) | Alloy temperature fuse |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080320 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090320 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090320 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100320 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100320 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110320 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110320 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120320 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120320 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130320 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130320 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140320 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term |