JP3260798B2 - Wide-angle zoom lens - Google Patents

Wide-angle zoom lens

Info

Publication number
JP3260798B2
JP3260798B2 JP04051592A JP4051592A JP3260798B2 JP 3260798 B2 JP3260798 B2 JP 3260798B2 JP 04051592 A JP04051592 A JP 04051592A JP 4051592 A JP4051592 A JP 4051592A JP 3260798 B2 JP3260798 B2 JP 3260798B2
Authority
JP
Japan
Prior art keywords
lens
lens group
wide
group
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04051592A
Other languages
Japanese (ja)
Other versions
JPH05264903A (en
Inventor
隆則 山梨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP04051592A priority Critical patent/JP3260798B2/en
Publication of JPH05264903A publication Critical patent/JPH05264903A/en
Application granted granted Critical
Publication of JP3260798B2 publication Critical patent/JP3260798B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、広角なズームレンズに
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wide-angle zoom lens.

【0002】[0002]

【従来技術】近年、高変倍率を有するズームレンズを備
えた全自動カメラが、ニューコンセプトカメラとして製
品化が顕著になっている。このようにズームレンズが高
変倍率になれば、必ず広角化又は望遠化の方向に向か
う。
2. Description of the Related Art In recent years, a fully automatic camera equipped with a zoom lens having a high magnification has been remarkably commercialized as a new concept camera. As described above, when the zoom lens has a high magnification, the zoom lens always moves toward a wide angle or a telephoto direction.

【0003】従来のズームレンズは、広角端が2ω=6
3°程度であるか、低変倍率ズームレンズの中に2ω=
84°程度のものが知られている。例えば特開平2−2
84109号公報に記載されているレンズ系等である。
A conventional zoom lens has a wide angle end at 2ω = 6.
It is about 3 ° or 2ω =
The thing of about 84 degrees is known. For example, Japanese Patent Laid-Open No. 2-2
No. 84109, for example.

【0004】また特開平2−135312号公報に記載
されているレンズ系は、従来一眼レフレックスカメラ用
交換レンズでのみしか知られていなかった超広角なズー
ムレンズを、コンパクトカメラに適応出来るようにした
コンパクトなズームレンズである。
Further, the lens system described in Japanese Patent Application Laid-Open No. Hei 2-135312 enables a super-wide-angle zoom lens, which was conventionally only known as an interchangeable lens for a single-lens reflex camera, to be adapted to a compact camera. This is a compact zoom lens.

【0005】[0005]

【発明が解決しようとする課題】上記の各ズームレンズ
は、従来のタイプをそのまま広角化しようとしたもので
収差補正の面で無理が多い。つまり焦点距離を短くした
のに、ズームレンズのタイプとしては望遠タイプである
ので、光学性能の点で不十分なものである。
Each of the above-mentioned zoom lenses is intended to widen the angle of the conventional type as it is, and it is difficult to correct aberrations. That is, although the focal length is shortened, since the zoom lens is of a telephoto type, it is insufficient in optical performance.

【0006】本発明の目的は、従来の3群構成のズーム
レンズを基とし、その第1レンズ群の構成を適切なもの
とすることによって広角で明るく、収差の良好に補正さ
れたズームレンズを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a zoom lens which is wide-angle, bright, and well corrected in aberrations by appropriately configuring the first lens group based on a conventional three-group zoom lens. To provide.

【0007】[0007]

【課題を解決するための手段】本発明の広角ズームレン
ズは、物体側より順に、正の屈折力の第1レンズ群と、
正の屈折力の第2レンズ群と、負の屈折力の第3レンズ
群とよりなり、広角端に対して望遠端にて第1レンズ群
と第2レンズ群の間隔が広がり第2レンズ群と第3レン
ズ群の間隔が狭まることによって広角端から望遠端への
変倍を行なうもので、第1レンズ群が物体側より順に負
レンズと正レンズとからなる若しくは負レンズ1枚のみ
からなる前群と、物体側より順に1枚の負レンズと2枚
の正レンズとからなる後群で構成され、第2レンズ群が
開口絞りを有する構成であり、次の条件(1)を満足す
ることを特徴とする。 (1)|φf/φ1|<6.0 ただしφfは前記前群の屈折力、φ1は前記第1レンズ
群の屈折力である。また本発明の広角ズームレンズは、
物体側より順に、正の屈折力の第1レンズ群と、正の屈
折力の第2レンズ群と、正の屈折力の第3レンズ群と、
負の屈折力を有する第4レンズ群とよりなり、第1レン
ズ群と第2レンズ群の間隔と第2レンズ群と第3レンズ
群の間隔と第3レンズ群と第4レンズ群の間隔とを変え
ることによって広角端から望遠端への変倍を行なうもの
で、第1レンズ群が少なくとも1枚の負レンズを備えて
構成された前群と、少なくとも1枚の正レンズ成分と少
なくとも1枚の負レンズ成分とにて構成された後群から
なり、前記条件(1)を満足することを特徴とする。
A wide-angle zoom lens according to the present invention comprises, in order from the object side, a first lens unit having a positive refractive power;
A second lens unit having positive refractive power, and more a third lens unit having a negative refractive power, a second lens unit spread distance between the first lens group and the second lens group at the telephoto end than at the wide angle end Zooming from the wide-angle end to the telephoto end by reducing the distance between the first lens unit and the third lens unit, and the first lens unit consists of a negative lens and a positive lens in order from the object side, or only one negative lens a front group is composed of a rear group consisting of one negative lens and two positive lenses in order from the object side, the second lens group
It has a configuration having an aperture stop, and satisfies the following condition (1). (1) | φf / φ1 | <6.0 where φf is the refractive power of the front group, and φ1 is the refractive power of the first lens group. In addition, the wide-angle zoom lens of the present invention includes:
In order from the object side, a first lens group having a positive refractive power, a second lens group having a positive refractive power, a third lens group having a positive refractive power,
A fourth lens group having a negative refractive power, a distance between the first lens group and the second lens group, a distance between the second lens group and the third lens group, a distance between the third lens group and the fourth lens group, The first lens group includes at least one negative lens, at least one positive lens component, and at least one positive lens component. And a negative lens component, and satisfies the condition (1).

【0008】本発明は、前記の本出願人の提案した特開
平2−135312号のレンズ系の広角化の試みを更に
発展させ、レンズ系の全長を短くでき、又ズームレンズ
のタイプとして物体側より順に正の屈折力の第1レンズ
群と、正の屈折力の第2レンズ群と、負の屈折力の第3
レンズ群からなる3群ズームレンズを基本構成とし、第
1レンズ群を広角化に適したレンズ構成とすることによ
って無理なく広角化を達成し得るようにしたものであ
る。
The present invention further develops the attempt of the applicant to propose a wide-angle lens system disclosed in Japanese Patent Application Laid-Open No. Hei 2-135312, whereby the total length of the lens system can be shortened, and the zoom lens type has an object side. The first lens group having a positive refractive power, the second lens group having a positive refractive power, and the third lens group having a negative refractive power are arranged in this order.
The basic configuration is a three-group zoom lens composed of lens groups, and the first lens group has a lens configuration suitable for widening the angle of view.

【0009】本出願人の提案した特願平2−1521号
のレンズ系は、第1レンズ群自体の構成を変更すること
なく、このレンズ群を構成する負のレンズ成分と正のレ
ンズ成分をある一定以上の間隔を隔てて配置することに
よって正の屈折力の第2レンズ群への軸外光線の入射角
を小にして収差補正を容易にして広角化を達成するよう
にしたものである。
The lens system of Japanese Patent Application No. 2-1521 proposed by the applicant of the present invention can convert a negative lens component and a positive lens component constituting the first lens unit without changing the structure of the first lens unit itself. By arranging them at a certain distance or more, the angle of incidence of off-axis rays to the second lens group having a positive refractive power is made small to facilitate aberration correction and achieve a wide angle. .

【0010】これに対して本発明は、次に述べる考えに
もとづいて、第1レンズ群の構成自体を広角化に適した
ものに変更したものである。
On the other hand, in the present invention, the configuration itself of the first lens group is changed to one suitable for widening the angle based on the following idea.

【0011】本発明のズームレンズは、初めから広角化
されたレンズ系を基本仕様としたのではなく、広角端か
ら望遠端までを、設計上容易な画角に設定して設計を行
ない、これを広角側へシフトさせて広角なズームレンズ
を得るようにしたものである。
The zoom lens of the present invention is not designed from the beginning with a wide-angle lens system as a basic specification, but is designed by setting the angle of view from the wide-angle end to the telephoto end to an easy-to-design angle of view. Is shifted to the wide-angle side to obtain a wide-angle zoom lens.

【0012】具体的には、例えば最初に焦点距離fが3
5mm〜135mmの光学系を設計し、これを基としそれに
0.8倍程度の広角アタッチメントを装着すれば28mm
〜105mmのレンズ系を得ることが出来る。ここで基本
となるレンズ系が、全長が短くレンズの外径の小さいも
のであれば、これに広角化を目的とするアタッチメント
を付加しても、全体としてさほど大きなレンズ系にはな
らない。
Specifically, for example, first, when the focal length f is 3
Designing an optical system of 5mm to 135mm, based on this, 28mm if a 0.8-degree wide-angle attachment is attached to it
A lens system of up to 105 mm can be obtained. Here, as long as the basic lens system has a short overall length and a small outer diameter of the lens, even if an attachment for widening the angle is added, the overall lens system does not become very large.

【0013】前記の広角アタッチメントを基本となる光
学系に組込んで全体として一つの光学系とすれば、前記
アタッチメントを収差補正のためのレンズ群として配置
したのと同じ構成と考えられる。つまり前記のアタッチ
メントは、アフォーカルコンバーターとしての性質から
発展し,レンズ系中の広角化のためのレンズ成分と考え
られる。
If the wide-angle attachment is incorporated into a basic optical system to form one optical system as a whole, it is considered that the attachment has the same configuration as that of a lens group for aberration correction. In other words, the attachment is developed from the property of an afocal converter, and is considered as a lens component for widening the angle in the lens system.

【0014】本発明では、図43のようにこのレンズ成
分を第1レンズ群の前群La とし、基本となる光学系の
第1レンズ群を第1レンズ群の後群Lb として前述のよ
うな構成とした。即ち広角レンズの中の逆望遠タイプ
が、広角アフォーカルコンバーター(前群)と正のレン
ズ群(後群)との第1レンズ群ではじまるレンズ系で、
コンパクト化のために両者の実間隔を縮小したレトロフ
ォーカスタイプのレンズ系にしたのが本発明のレンズ系
である。
In the present invention, as shown in FIG. 43, this lens component is defined as the front group La of the first lens group, and the first lens group of the basic optical system is defined as the rear group Lb of the first lens group. The configuration was adopted. That is, the reverse telephoto type of the wide-angle lens is a lens system that starts with a first lens group of a wide-angle afocal converter (front group) and a positive lens group (rear group).
The lens system of the present invention is a retrofocus type lens system in which the actual distance between the two is reduced for compactness.

【0015】ここで、本発明の目的を達成するためには
前記条件(1)を満足する必要がある。 この条件をは
ずれると本発明の目的を達成しにくくなる。
Here, in order to achieve the object of the present invention, it is necessary to satisfy the above condition (1). If this condition is not satisfied, it is difficult to achieve the object of the present invention.

【0016】本発明は、前述のように構成して広角端の
画角2ωが63°程度以上の広角なズームレンズを得る
ようにした。即ち本発明ではレンズ系を広角にするため
に、ズームレンズのタイプやレンズ構成を変更すること
なしに行なった。このようにレンズ系のタイプや構成を
変更することなしに広角化すると、第3レンズ群の負担
が大になり、広角端においてバックフォーカスを余裕を
もって確保することが出来ない。また望遠端での倍率負
担が非常に大になり、収差補正が困難になり、補正のた
めに製造しにくい面になる。
According to the present invention, a wide-angle zoom lens having a field angle 2ω at the wide-angle end of about 63 ° or more is obtained by the above-described configuration. That is, in the present invention, in order to widen the lens system, the zooming was performed without changing the type or lens configuration of the zoom lens. If the angle is widened without changing the type and configuration of the lens system, the load on the third lens group increases, and it is not possible to secure a sufficient back focus at the wide angle end. Further, the magnification burden at the telephoto end becomes extremely large, and it becomes difficult to correct aberrations.

【0017】このような問題点を解決するために、非球
面を用いるか、現在では生産技術面で課題を有している
屈折率分布型レンズ特にラジアル型の屈折率分布型レン
ズが用いられる。これらはレンズの製作が容易でない。
In order to solve such a problem, an aspherical surface is used, or a gradient index lens having a problem in production technology at present, particularly a radial gradient index lens, is used. These are not easy to manufacture lenses.

【0018】一般にレンズ系を広角化するとき、中心光
束と軸外光束のレンズ系中を通る経路が大きく異なって
いるために収差補正上での難点が生ずる。つまり画角が
大になるにつれて像面湾曲、歪曲収差、倍率色収差、サ
ジタルコマフレアー等が増大する。そのため収差を良好
に補正するには対称型もしくはこれに近い構成にするこ
とが望ましい。
In general, when the angle of the lens system is widened, the path of the center light beam and the off-axis light beam passing through the lens system is greatly different, so that there is a problem in aberration correction. That is, as the angle of view increases, curvature of field, distortion, chromatic aberration of magnification, sagittal coma and the like increase. Therefore, in order to favorably correct the aberration, it is desirable to use a symmetric type or a configuration close thereto.

【0019】以上の理由から本発明では、前述のように
3群ズームレンズを基本としたズームレンズとし、第2
レンズ群の中央に開口絞りを配置して対称型に近いレン
ズ構成として、収差補正上極めて好ましいレンズ系にし
たことも特徴としている。またこのレンズ系で、絞り位
置を前後しても、光束の使用範囲が変化するだけで基本
構成は変わらない。
For the above reasons, in the present invention, as described above, the zoom lens based on the three-group zoom lens is
It is also characterized in that an aperture stop is arranged at the center of the lens group to provide a lens configuration that is close to a symmetric type, making the lens system extremely preferable for aberration correction. Also, in this lens system, the basic configuration does not change even if the aperture position is moved back and forth, only the range of use of the light beam changes.

【0020】このようにレンズ構成を対称型にすること
は、収差補正上好ましいので、これを広角化に適するよ
うにレンズ構成の成分をみなおすようにした。特に本発
明で扱うレンズタイプは、バックフォーカスを短くで
き、レンズ系の全長を短くし又レンズの外径を小さくで
きる。この点から、本発明は、絞りに対し対称なレンズ
系を基本にし、それにレンズ成分を付加して広角化する
ことによって一層すぐれた広角ズームレンズを構成する
ことが出来る。
Since it is preferable to make the lens configuration symmetrical in terms of aberration correction, the components of the lens configuration are considered so as to be suitable for widening the angle. In particular, the lens type handled in the present invention can shorten the back focus, shorten the overall length of the lens system, and reduce the outer diameter of the lens. From this point, the present invention can form a more excellent wide-angle zoom lens by using a lens system symmetrical with respect to the diaphragm and adding a lens component to widen the angle.

【0021】ここで第1レンズ群の前群は、後群の作用
を補うものである。前述の構成のズームレンズは、第1
レンズ群と第3レンズ群を通過する光束から考え、これ
らレンズ群は、軸外収差に与える影響力が大きく、第2
レンズ群は、主に球面収差等の軸上収差に与える影響が
大きい。
Here, the front group of the first lens group supplements the action of the rear group. The zoom lens having the above-described configuration includes the first lens.
Considering the luminous flux passing through the lens group and the third lens group, these lens groups have a large influence on off-axis aberration,
The lens group has a large influence mainly on axial aberration such as spherical aberration.

【0022】更にレンズ系を広角化するためには、倍率
色収差や変曲点を持つ歪曲収差など特有の収差を補正し
なければならない。つまり前記のような性質を有する本
発明のズームレンズの構成で、広角化のための特有の収
差を補正するためには、第1レンズ群と第3レンズ群と
の構成に着目する必要がある。また口径比を大きくする
ためには、第2レンズ群の構成に着目する必要がある。
In order to further widen the angle of the lens system, specific aberrations such as chromatic aberration of magnification and distortion having an inflection point must be corrected. In other words, in the configuration of the zoom lens of the present invention having the above-described properties, in order to correct a specific aberration for widening the angle, it is necessary to pay attention to the configuration of the first lens group and the third lens group. . In order to increase the aperture ratio, it is necessary to pay attention to the configuration of the second lens group.

【0023】第3レンズ群は、広角端を考えると構成レ
ンズ枚数を大幅に増やすことは得策でない。本発明の光
学系は後側主点位置がレンズ系の後方に位置するパワー
配置の光学系であるため、収差補正以前にバックフォー
カスを確保することが難かしく、逆に収差補正の自由度
が少なくなる。そのため第3レンズ群は、非球面を用い
て少ないレンズ枚数で構成することが望ましい。これに
よって第3レンズ群自体で残存収差を抑えることがで
き、また第1レンズ群で発生する高次収差分を補正し全
体としてバランスをとることが可能になる。またバック
フォーカスも無理なく確保することが出来、後玉径の増
大の問題やフィルム面との内面反射によるフレアーの発
生の問題を減らすことが出来る。
Considering the wide-angle end, it is not advisable to greatly increase the number of constituent lenses in the third lens group. Since the optical system of the present invention is an optical system having a power arrangement in which the rear principal point is located behind the lens system, it is difficult to secure a back focus before aberration correction, and conversely, the degree of freedom of aberration correction is limited. Less. Therefore, it is desirable that the third lens group is configured with a small number of lenses using an aspheric surface. As a result, residual aberration can be suppressed by the third lens group itself, and higher-order aberrations generated in the first lens group can be corrected and balanced as a whole. Also, the back focus can be ensured without difficulty, and the problem of an increase in the diameter of the rear lens and the problem of the occurrence of flare due to internal reflection from the film surface can be reduced.

【0024】以上の点を吟味して、第1レンズ群に工夫
を加えて、広角レンズに特有の高次の倍率色収差や歪曲
収差等を補正することが好ましい。
In consideration of the above points, it is preferable to modify the first lens group to correct higher-order chromatic aberration and distortion unique to the wide-angle lens.

【0025】広角端付近では特に軸外光線高が高く、第
1レンズ群内で収差を十分補正しないと、第2レンズ群
と第3レンズ群とによって残存高次収差を補正すること
が困難である。それは収差補正係数をみればわかる。特
に高次収差と低次収差のバランスを見ることに意味があ
る。
The off-axis ray height is particularly high near the wide-angle end, and it is difficult to correct residual high-order aberration by the second lens unit and the third lens unit unless aberration is sufficiently corrected in the first lens unit. is there. This can be seen from the aberration correction coefficient. In particular, it is significant to see the balance between high-order aberrations and low-order aberrations.

【0026】表1と表2は、後に示す実施例1の収差係
数による第1レンズ群中の補正状況を示す。
Tables 1 and 2 show the correction status in the first lens unit based on the aberration coefficient of Example 1 described later.

【0027】 表1 広角端 K SA3 CMA3 AST3 DIS3 PTZ3 1 -0.00001 -0.00060 -0.00634 -0.68756 -0.01525 Lf 2 0.00393 -0.00302 0.00026 -0.01807 0.07043 3 -0.00388 -0.00784 -0.00176 -0.03585 -0.05142 4 0.00011 0.00380 0.01529 0.35334 0.01401 5 0.00000 0.00004 -0.01272 -0.66454 0.01346 6 0.01626 0.00255 0.00004 0.00360 0.06885 7 -0.01313 -0.01030 -0.00090 -0.01394 -0.05240 8 0.00030 0.00926 0.03159 0.29145 -0.00313 9 -0.00643 -0.01924 -0.00639 -0.06723 -0.06106 10 -0.00041 0.01420 -0.05513 0.88004 -0.02043 (1) Lf 0.00016 -0.00765 0.00744 -0.38814 0.01777 Lb -0.00341 -0.00348 -0.04350 0.42938 -0.05471 (2) -0.00568 -0.00308 0.11297 -0.99783 -0.10148 (3) 0.00164 0.00491 -0.07868 0.54632 0.13018 K SA5 CMA5 AST5 DIS5 PTZ5 SA7 1 0.00000 0.00000 0.00089 0.19925 0.00537 0.00000 Lf 2 0.00005 0.00010 -0.00019 -0.04197 -0.02465 0.00000 3 -0.00006 -0.00030 0.00309 0.05851 0.02059 0.00000 4 0.00000 0.00001 -0.00278 -0.17371 -0.00664 0.00000 5 0.00000 0.00000 0.00140 0.29779 -0.00517 0.00000 6 0.00045 0.00065 -0.00128 -0.06874 -0.03299 0.00001 Lb 7 -0.00038 -0.00086 0.00385 0.06245 0.02784 -0.00001 8 0.00001 0.00015 -0.00667 -0.24618 -0.00634 0.00000 9 -0.00013 -0.00038 0.00605 0.10153 0.03024 0.00000 10 -0.00001 0.00027 -0.00851 -0.05951 0.00708 0.00000 (1) Lf -0.00001 -0.00019 0.00100 0.04207 -0.00532 0.00000 Lb -0.00006 -0.00017 -0.00516 0.08734 0.02066 0.00000 (2) 0.00215 0.00210 0.02325 0.11002 0.04238 0.00044 (3) -0.00011 -0.00182 -0.01764 -0.23535 -0.04339 -0.00001 表2 望遠端 K SA3 CMA3 AST3 DIS3 PTZ3 1 -0.00012 -0.00129 -0.00153 -0.02522 -0.00533 2 0.07407 -0.15959 0.03821 -0.04511 0.02461 3 -0.07297 0.12950 -0.02554 0.02573 -0.01796 4 0.00198 0.00570 0.00182 0.00645 0.00489 5 0.00000 0.00011 -0.00449 -0.02568 0.00470 6 0.30610 -0.62100 0.13998 -0.11093 0.02405 7 -0.24715 0.48029 -0.10370 0.07903 -0.01831 8 0.00567 0.01211 0.00287 0.00127 -0.00109 9 -0.12109 0.19893 -0.03631 0.03156 -0.02133 10 -0.00765 0.05210 -0.03943 0.10570 -0.00714 (1) Lf 0.00296 -0.02568 0.01292 -0.03815 0.00621 Lb -0.06413 0.12254 -0.04108 0.08095 -0.01912 (2) -0.04759 -0.01905 0.04255 -0.06852 -0.03545 (3) 0.10867 -0.07190 -0.01371 0.05029 0.04548 K SA5 CMA5 AST5 DIS5 PTZ5 SA7 1 0.00000 0.00000 0.00003 0.00058 0.00013 0.00000 Lf 2 0.00378 -0.01177 0.00036 0.00004 -0.00079 0.00023 3 -0.00467 0.01264 -0.00018 -0.00005 0.00061 -0.00035 4 0.00003 -0.00003 0.00001 -0.00043 -0.00024 0.00000 5 0.00000 -0.00002 -0.00015 0.00139 -0.00003 0.00000 6 0.03670 -0.11819 0.00751 -0.00661 -0.00013 0.00506 Lb 7 -0.03092 0.09610 -0.00552 0.00477 0.00010 -0.00437 8 0.00066 -0.00059 -0.00011 -0.00036 -0.00021 0.00008 9 -0.01079 0.03259 -0.00184 0.00146 0.00039 -0.00114 10 -0.00095 0.00630 -0.00199 0.00210 0.00044 -0.00014 (1) Lf -0.00086 0.00083 0.00021 0.00014 -0.00028 -0.00012 Lb -0.00530 0.01618 -0.00209 0.00276 0.00056 -0.00052 (2) 0.06153 0.00426 0.00182 -0.00011 0.00112 0.03223 (3) -0.05301 -0.04412 -0.00037 0.00050 -0.00148 -0.03257 TOTAL 0.00235 -0.02284 -0.00043 0.00329 -0.00008 -0.00097 上記表1は、広角端の値を表2は望遠端の値である。又
第1レンズ群以外は、面固有の収差補正係数の総和を示
してある。又K(1−4)およびLfは前群、K(5−
10)およびLbは後群、(2),(3)は第2,第3
レンズ群を表している。
Table 1 Wide angle end K SA3 CMA3 AST3 DIS3 PTZ3 1 -0.00001 -0.00060 -0.00634 -0.68756 -0.01525 Lf 2 0.00393 -0.00302 0.00026 -0.01807 0.07043 3 -0.00388 -0.00784 -0.00176 -0.03585 -0.05142 4 0.00011 0.00380 0.01529 0.35334 0.01401 5 0.00000 0.00004 -0.01272 -0.66454 0.01346 6 0.01626 0.00255 0.00004 0.00360 0.06885 7 -0.01313 -0.01030 -0.00090 -0.01394 -0.05240 8 0.00030 0.00926 0.03159 0.29145 -0.00313 9 -0.00643 -0.01924 -0.00639 -0.06723 -0.06106 10 -0.00041 0.01420 -0.05513 0.88004 -0.02043 (1) Lf 0.00016 -0.00765 0.00744 -0.38814 0.01777 Lb -0.00341 -0.00348 -0.04350 0.42938 -0.05471 (2) -0.00568 -0.00308 0.11297 -0.99783 -0.10148 (3) 0.00164 0.00491 -0.07868 0.54632 0.13018 K SA5 CMA5 AST5 DIS5 PTZ5 SA7 1 0.00000 0.00000 0.00089 0.19925 0.00537 0.00000 Lf 2 0.00005 0.00010 -0.00019 -0.04197 -0.02465 0.00000 3 -0.00006 -0.00030 0.00309 0.05851 0.02059 0.00000 4 0.00000 0.00001 -0.00278 -0.17371 -0.00664 0.00000 5 0.00000 0.00000 0.00140 0.29779 -0.00517 0.00000 6 0.000 45 0.00065 -0.00128 -0.06874 -0.03299 0.00001 Lb 7 -0.00038 -0.00086 0.00385 0.06245 0.02784 -0.00001 8 0.00001 0.00015 -0.00667 -0.24618 -0.00634 0.00000 9 -0.00013 -0.00038 0.00605 0.10153 0.03024 0.00000 10 -0.00001 0.00027 -0.00851 -0.05951 0.00708 0.00000 ( 1) Lf -0.00001 -0.00019 0.00100 0.04207 -0.00532 0.00000 Lb -0.00006 -0.00017 -0.00516 0.08734 0.02066 0.00000 (2) 0.00215 0.00210 0.02325 0.11002 0.04238 0.00044 (3) -0.00011 -0.00182 -0.01764 -0.23535 -0.04339 -0.00001 Table 2 Telephoto end K SA3 CMA3 AST3 DIS3 PTZ3 1 -0.00012 -0.00129 -0.00153 -0.02522 -0.00533 2 0.07407 -0.15959 0.03821 -0.04511 0.02461 3 -0.07297 0.12950 -0.02554 0.02573 -0.01796 4 0.00198 0.00570 0.00182 0.00645 0.00489 5 0.00000 0.00011 -0.00449 -0.02568 0.00470 6 0.30610 -0.62100 0.13998 -0.11093 0.02405 7 -0.24715 0.48029 -0.10370 0.07903 -0.01831 8 0.00567 0.01211 0.00287 0.00127 -0.00109 9 -0.12109 0.19893 -0.03631 0.03156 -0.02133 10 -0.00765 0.05210 -0.03943 0.10570 -0.00714 (1) Lf 0.00296 -0.02568 0.01292 -0.03815 0.00621 Lb -0.06413 0.12254 -0.04108 0.08095 -0.01912 (2) -0.04759 -0.01905 0.04255 -0.06852 -0.03545 (3) 0.10867 -0.07190 -0.01371 0.05029 0.04548 K SA5 CMA5 AST5 DIS5 PTZ5 SA7 1 0.00000 0.00000 0.00003 0.00058 0.00013 0.00000 Lf 2 0.00378 -0.01177 0.00036 0.00004 -0.00079 0.00023 3 -0.00467 0.01264 -0.00018 -0.00005 0.00061 -0.00035 4 0.00003 -0.00003 0.00001 -0.00043 -0.00024 0.00000 5 0.00000 -0.00002 -0.00015 0.00139 -0.00003 0.00000 6 0.03670 -0.11819 0.00751 -0.00661 -0.00013 0.00506 Lb 7 -0.03092 0.09610 -0.00552 0.00477 0.00010 -0.00437 8 0.00066 -0.00059 -0.00011 -0.00036 -0.00021 0.00008 9 -0.01079 0.03259 -0.00184 0.00146 0.00039 -0.00114 10 -0.00095 0.00630 -0.00199 0.00210 0.00044 -0.00014 (1) Lf -0.00086 0.00083 0.00021 0.00014 -0.00028 -0.00012 Lb -0.00530 0.01618 -0.00209 0.00276 0.00056 -0.00052 (2) 0.06153 0.00426 0.00182 -0.00011 0.00112 0.03223 (3) -0.05301 -0.04412 -0.00037 0.00050 -0.00148 -0.03257 TOTAL 0.00235 -0.02284 -0.00043 0.00329 -0.00008 -0.000 97 Table 1 shows values at the wide-angle end, and Table 2 shows values at the telephoto end. In addition, the sum of the aberration correction coefficients unique to the surface is shown for the units other than the first lens unit. K (1-4) and Lf are in the front group, and K (5-
10) and Lb are the rear group, (2) and (3) are the second and third groups.
This represents a lens group.

【0028】これら表より軸上収差である球面収差の影
響は、第1レンズ群では小さい。一方、軸外収差である
非点収差,歪曲収差の補正状況は、第1レンズ群内での
作用が大きいことがわかる。即ちこの実施例のレンズ系
は、非点収差においては前群が後群の補正不足を効果的
に補正し、歪曲収差においては、前群が後群の補正過剰
を補正している。このことは、図45に示す光線図で、
前群に鋭角で入射する軸外光束が後群に入射する際に緩
やかな入射角を有することから補正作用を分担している
ことがわかる。
According to these tables, the influence of spherical aberration as axial aberration is small in the first lens group. On the other hand, it can be seen that the correction situation of astigmatism and distortion, which are off-axis aberrations, has a large effect in the first lens group. That is, in the lens system of this embodiment, the front group effectively corrects the undercorrection of the rear group in the astigmatism, and the front group corrects the overcorrection of the rear group in the distortion. This is illustrated by the ray diagram shown in FIG.
Since the off-axis light beam entering the front group at an acute angle has a gentle incident angle when entering the rear group, it can be seen that the correction function is shared.

【0029】本発明においては、従来の第1レンズ群を
基本とした光学系においては、それを広角化しようとす
る場合無理があることを認識した上で、これを広角化す
るために前述のように屈折力の弱いレンズ成分を第1レ
ンズ群の前に付加し、第1レンズ群への入射角を収差補
正の容易なものとした。そしてこの付加されたレンズ成
分を第1レンズ群の前群としいわば従来の第1レンズ群
を第1レンズ群の後群とし、これら全体で第1レンズ群
にして広角で収差の良好に補正されたレンズ系を得るよ
うにしたものである。この場合前群は最も簡単な構成と
して負レンズ1枚が考えられるが、収差を一層良好に補
正するためには、上記負レンズに正レンズを付加するこ
とが効果的である。
In the present invention, it is recognized that it is impossible to widen the angle of the conventional optical system based on the first lens group. As described above, a lens component having a low refractive power is added before the first lens group, and the angle of incidence on the first lens group is easily corrected for aberration. The added lens component is referred to as a front group of the first lens group, in other words, the conventional first lens group is referred to as a rear group of the first lens group. Lens system. In this case, the front group can be considered to be the simplest configuration including a single negative lens. However, in order to correct aberrations better, it is effective to add a positive lens to the negative lens.

【0030】一方前玉径の縮小や入射瞳が遠くなりすぎ
るのを防止するには後に述べる条件により規制すること
が望むましい。前述のように第1レンズ群は、前群を少
なくとも1枚の負レンズを用いることが望ましい。一方
後群は、少なくとも1枚の正のレンズ成分と1枚の負の
レンズ成分とにて構成することが望ましい。
On the other hand, in order to prevent the diameter of the front lens from being reduced and the entrance pupil from being too far away, it is desirable to regulate the diameter in accordance with the conditions described later. As described above, it is desirable that the first lens group uses at least one negative lens in the front group. On the other hand, it is desirable that the rear group includes at least one positive lens component and one negative lens component.

【0031】又、前記条件(1)は、次の各条件と関係
している。 (2)0.1<φ1/φw<1.25 (3)1.1<φ12w/φw<3.0 (4)1.5<β3T/ β3w<4.0 ただしφwは広角端における全系の屈折力、φ12wは広
角端における第1レンズ群と第2レンズ群の合成の屈折
力、β3wは広角端における第3レンズ群の倍率、β3Tは
望遠端における第3レンズ群の倍率である。条件(2)
は、第1レンズ群の屈折力を規定するもので、この条件
(2)の上限を越えると収差補正が困難になる。また条
件(2)の下限を越えるとズ−ミング時の移動量がふえ
小型化を維持するうえで好ましくない。条件(3)は第
1レンズ群と第2レンズ群のレンズ全長を小さくし、収
差補正上から望ましい屈折力を決定するために必要な条
件である。この条件の上限を越えると小型化を達成する
ことはできても十分な光学性能を得ることが困難にな
る。一方、下限を越えるとレンズ系が大型になるため好
ましくない。条件(4)は、変倍率に関係する条件で、
下限を越えると近軸的解が得られても現実的な高変倍ズ
−ムレンズを達成することが困難になる。
The condition (1) is related to the following conditions. (2) 0.1 <φ1 / φw <1.25 (3) 1.1 <φ12w / φw <3.0 (4) 1.5 <β3T / β3w <4.0 where φw is the whole system at the wide-angle end , 12w is the combined refractive power of the first and second lens groups at the wide-angle end, β3w is the magnification of the third lens group at the wide-angle end, and β3T is
This is the magnification of the third lens unit at the telephoto end . Condition (2)
Defines the refractive power of the first lens group. If the upper limit of condition (2) is exceeded, it becomes difficult to correct aberration. When the value exceeds the lower limit of the condition (2), the moving amount during zooming increases, which is not preferable in keeping the miniaturization. Condition (3) is a condition necessary for reducing the total lens length of the first lens unit and the second lens unit and determining a desirable refractive power from the viewpoint of aberration correction. If the upper limit of this condition is exceeded, it will be difficult to obtain sufficient optical performance even though miniaturization can be achieved. On the other hand, exceeding the lower limit is not preferable because the lens system becomes large. Condition (4) is a condition relating to the magnification ratio.
If the lower limit is exceeded, it becomes difficult to achieve a realistic high-magnification zoom lens even if a paraxial solution is obtained.

【0032】更に本発明のレンズ系は、第1レンズ群で
の近軸光線および最軸外主光線について注目すれば、次
の条件(5),(6)を満足することが好ましい。 (5)0.5<hB/hF <1.5 (6)0.2<AB/AF <2.0 ただしhF は広角端における第1レンズ群の前群に入射
する軸上周辺光線高、hB は広角端における第1レンズ
群の後群に入射する軸上周辺光線高、AF は広角端にお
ける第1レンズ群の前群に入射する最大画角の軸外主光
線高、AB は広角端における第1レンズ群の後群に入射
する最大画角の軸外主光線高である。
Further, the lens system of the present invention preferably satisfies the following conditions (5) and (6) when focusing on paraxial rays and off- axis principal rays in the first lens unit. (5) 0.5 <hB / hF <1.5 (6) 0.2 <AB / AF <2.0 where hF is the height of an on-axis marginal ray incident on the front group of the first lens unit at the wide angle end, hB is the height of an on-axis marginal ray incident on the rear group of the first lens unit at the wide-angle end, and AF is the off-axis principal light of the maximum angle of view incident on the front group of the first lens group at the wide-angle end.
The line height AB is the off-axis principal ray height at the maximum angle of view incident on the rear group of the first lens group at the wide angle end.

【0033】条件(3)は、前群が負の群としての作用
を持たせて第1レンズ群を逆望遠タイプに構成すること
により広角化するか、又は前群を収斂系とした場合でも
弱い正の屈折力を持たせるようにしたことを意味してい
る。この条件(5)の下限を越えると広角端で軸外収差
の補正作用が弱くなる。条件(5)の上限を越えると前
群の屈折力が強くなり、収差補正のため構成枚数が増加
し、レンズ系が大型になる。
The condition (3) is satisfied even if the front lens unit has a function as a negative lens unit and the first lens unit is configured as an inverse telephoto type to increase the angle of view, or even if the front lens unit is a convergent system. This means that it has a weak positive refractive power. If the lower limit of the condition (5) is exceeded, the effect of correcting off-axis aberrations becomes weak at the wide-angle end. When the value exceeds the upper limit of the condition (5), the refractive power of the front unit becomes strong, the number of constituent lenses increases for aberration correction, and the lens system becomes large.

【0034】条件(6)も条件(5)と同様で、その下
限を越えると前群の屈折力が大になり、上限を越えると
広角端での収差補正が困難になる。
The condition (6) is also the same as the condition (5). If the lower limit of the condition (6) is exceeded, the refractive power of the front unit becomes large. If the upper limit of the condition (6) is exceeded, it becomes difficult to correct aberrations at the wide-angle end.

【0035】上記のように条件(5),(6)は、入射
する軸外光線の角度を緩くし収差補正をより容易にする
ためのものである。つまりこれら条件を外れると広角端
の画角が望遠側であれば収差補正上の作用が働くが、超
広角では軸外収差の補正効果が減少する。
As described above, the conditions (5) and (6) are intended to ease the angle of the incident off-axis light beam and to make aberration correction easier. In other words, if these conditions are not satisfied, the effect on aberration correction works if the angle of view at the wide-angle end is on the telephoto side, but the effect of correcting off-axis aberrations decreases at an ultra-wide angle.

【0036】以上は、3群ズームについて述べたが、4
群ズームに関しても本発明の要旨を適用し得る。即ち図
44のように物体側より順に正の屈折力の第1レンズ群
と、正の屈折力の第2レンズ群と、正の屈折力の第3レ
ンズ群と、負の屈折力の第4レンズ群との四つのレンズ
群で構成し、第1レンズ群と第2レンズ群、第2レンズ
群と第3レンズ群と、第3レンズ群と第4レンズ群との
間隔を変えることによって変倍作用を持たせるもので、
広角化のために第1レンズ群の構成を前群と後群にて構
成し、前記の3群ズームにおけると同様の条件(1)を
満足するものである。
The three-group zoom has been described above.
The gist of the present invention can be applied to the group zoom. That is, as shown in FIG. 44, in order from the object side, a first lens group having a positive refractive power, a second lens group having a positive refractive power, a third lens group having a positive refractive power, and a fourth lens group having a negative refractive power. The first lens group and the second lens group, the second lens group and the third lens group, and the third lens group and the fourth lens group are changed by changing the distance between the first lens group and the second lens group. It has a doubling effect,
The first lens group is composed of a front group and a rear group for widening the angle, and satisfies the same condition (1) as in the above-described three-group zoom.

【0037】第1レンズ群の近軸および厚肉レンズでの
光線の状況を示すと夫々図46,図47および図48,
図49のとうれである。
FIGS. 46, 47, 48, and 48 show the state of light rays at the paraxial and thick lenses of the first lens group, respectively.
This is shown in FIG.

【0038】[0038]

【実施例】次に本発明のズームレンズの各実施例を説明
する。 実施例1 f=28.90 〜102.00mm,F/4.5 〜F/7.625 ,2ω=73.64 °〜23.94 ° r1 =160.7804 d1 =1.2000 n1 =1.74100 ν1 =52.68 r2 =34.8076 d2 =6.9850 r3 =38.8887 d3 =3.3406 n2 =1.53172 ν2 =48.90 r4 =142.7690 d4 =D1 r5 =-194.6240 d5 =1.0000 n3 =1.83400 ν3 =37.16 r6 =38.0459 d6 =0.3520 r7 =43.6383 d7 =3.4187 n4 =1.65844 ν4 =50.86 r8 =-730.7292 d8 =0.1500 r9 =32.2002 d9 =5.2460 n5 =1.51823 ν5 =58.96 r10=-96.2536 d10=D2 r11=-498.7110 d11=1.0000 n6 =1.78590 ν6 =44.18 r12=15.0840 d12=0.8410 r13=24.1630 d13=2.7640 n7 =1.78470 ν7 =26.22 r14=-102.9802 d14=3.9120 r15=-14.3361 d15=1.1100 n8 =1.65830 ν8 =53.44 r16=-16.3753 d16=4.9610 r17=∞(絞り) d17=3.6000 r18=-79.9489 d18=2.1300 n9 =1.66680 ν9 =33.04 r19=-51.9241 d19=0.5000 r20=-555.5860 d20=3.0490 n10=1.51454 ν10=54.69 r21=-26.8298 d21=0.1200 r22=103.1734 d22=0.6500 n11=1.80518 ν11=25.43 r23=17.2071 d23=5.4150 n12=1.60729 ν12=59.38 r24=-26.0457 d24=1.2500 r25=-21.6894 d25=0.8780 n13=1.77250 ν13=49.66 r26=-22.7792 d26=D3 r27=-54.8870 d27=3.3170 n14=1.78472 ν14=25.71 r28=-22.2644 d28=2.4970 r29=-15.6872(非球面)d29=0.3600 n15=1.52492 ν15=51.77 r30=-16.8658 d30=1.3200 n16=1.77250 ν16=49.66 r31=62.5760 非球面係数 P=1.0000,E=0.30618 ×10-4,F=0.10777 ×1
0-6,G=-0.18514×10-9,H=0.20423 ×10-11 f 28.90 54.44 102.00 D1 1.750 1.750 1.750 D2 1.500 16.298 22.421 D3 15.852 7.073 1.530 |φf/φ1 |=0.65194,φ1/φw=0.246, φ12w/φw=
1.330 hB/hF =1.1256, AB/AF =0.8117, β3T/β3w=3.0 実施例2 f=28.92 〜102.02mm,F/4.5 〜F/7.625 ,2ω=73.6°〜23.94 ° r1 =-82.5283 d1 =1.2500 n1 =1.74100 ν1 =52.68 r2 =8479.1527 d2 =1.0288 r3 =109.7348 d3 =2.2603 n2 =1.53172 ν2 =48.90 r4 =-234.4198 d4 =0.7500 r5 =-104.1899 d5 =0.8500 n3 =1.83400 ν3 =37.16 r6 =35.3417 d6 =0.3000 r7 =39.3253 d7 =4.5192 n4 =1.65844 ν4 =50.86 r8 =-20126.4985 d8 =0.1200 r9 =38.2462 d9 =5.5542 n5 =1.65830 ν5 =53.44 r10=-81.9930 d10=D1 r11=161.3593 d11=0.5000 n6 =1.78590 ν6 =44.18 r12=12.1902 d12=0.7721 r13=20.1078 d13=3.1941 n7 =1.78470 ν7 =26.22 r14=-324.9518 d14=2.9127 r15=-12.2940 d15=0.6569 n8 =1.65830 ν8 =53.44 r16=-14.2480 d16=2.5569 r17=∞(絞り) d17=3.4906 r18=-39.4065 d18=1.9818 n9 =1.59270 ν9 =35.29 r19=-23.5086 d19=1.0128 r20=-77.1442 d20=2.2237 n10=1.50137 ν10=56.40 r21=-27.3780 d21=0.1200 r22=71.2472 d22=0.8500 n11=1.84666 ν11=23.78 r23=17.8516 d23=4.0993 n12=1.60881 ν12=58.94 r24=-19.8521 d24=0.8500 r25=-20.0533 d25=1.5717 n13=1.77250 ν13=49.66 r26=-21.5906 d26=D2 r27=-49.9729 d27=3.4179 n14=1.78472 ν14=25.71 r28=-20.4693 d28=2.6530 r29=-13.9632(非球面)d29=0.1000 n15=1.52492 ν15=51.77 r30=-14.0500 d30=0.9444 n16=1.78590 ν16=44.18 r31=57.0622 非球面係数 P=1.0000,E=0.46567 ×10-4,F=0.16608 ×1
0-6,G=-0.40245×10-9,H=0.76140 ×10-11 f 28.92 54.39 102.02 D1 1.250 15.540 20.970 D2 12.853 5.873 1.207 |φf/φ1 |=0.17379 ,φ1/φw=0.304, φ12w/φw=
1.404 hB/hF =1.0233, AB/AF =0.9179 , β3T/β3w=3.329 実施例3 f=24.50 〜76.49mm ,F/4.5 〜F/7.5 ,2ω=82.88 °〜31.58 ° r1 =96.5532 d1 =1.2000 n1 =1.69350 ν1 =53.23 r2 =27.7448 d2 =11.6550 r3 =-91.4665 d3 =1.2066 n2 =1.78470 ν2 =26.22 r4 =-303.5278 d4 =0.1500 r5 =39.5053 d5 =3.0500 n3 =1.58913 ν3 =60.97 r6 =72.7943 d6 =0.1500 r7 =37.1151 d7 =5.0200 n4 =1.60311 ν4 =60.70 r8 =-206.3245 d8 =D1 r9 =57.4357 d9 =1.0000 n5 =1.67790 ν5 =55.33 r10=16.3022 (非球面)d10=1.5109 r11=36.9971 d11=2.7640 n6 =1.72151 ν6 =29.24 r12=-33.4657 d12=1.1015 r13=-23.8559 d13=1.1100 n7 =1.83400 ν7 =37.16 r14=-125.8813 d14=4.7035 r15=∞(絞り) d15=3.4988 r16=-21.5971 d16=2.1300 n8 =1.46450 ν8 =65.94 r17=-22.7796 d17=3.9083 r18=-54.9728 d18=2.5000 n9 =1.51821 ν9 =65.04 r19=-18.0505 d19=0.1200 r20=52.5661 d20=0.8500 n10=1.84666 ν10=23.78 r21=21.2304 d21=4.0000 n11=1.56873 ν11=63.16 r22=-58.4819 d22=0.8950 r23=70.2181 d23=2.5000 n12=1.77250 ν12=49.66 r24=-204.8691 d24=D2 r25=-76.9580 d25=3.3170 n13=1.74000 ν13=28.29 r26=-25.1526 d26=D2 r27=-19.5931(非球面)d27=0.3600 n14=1.52492 ν14=51.77 r28=-23.2468 d28=1.3200 n15=1.77250 ν15=49.66 r29=35.1917 非球面係数 (第10面)P=1.0000,E=0.15173 ×10-4,F=0.
18351 ×10-6,G=-0.10833×10-8,H=0.28490 ×10
-10 (第27面)P=1.0000,E=0.22735 ×10-4,F=0.
29706 ×10-7,G=-0.30210×10-9,H=0.83428 ×10
-12 f 24.50 45.02 76.49 D1 0.850 16.915 22.361 D2 12.830 5.031 0.510 |φf/φ1 |=2.13856 , φ1/φw=0.175, φ12w/φ
w=1.365 hB/hF =1.2347, AB/AF =0.5986, β3T/β3w=2.727 実施例4 f=29.01 〜105.43mm,F/4 〜F/7.65,2ω=73.42 °〜23.2° r1 =123.2807 d1 =1.2000 n1 =1.69680 ν1 =55.52 r2 =28.1453 d2 =7.0560 r3 =31.7325 d3 =5.4876 n2 =1.53172 ν2 =48.90 r4 =302.3165 d4 =D1 r5 =-125.1445 d5 =1.0000 n3 =1.83400 ν3 =37.16 r6 =33.3387 d6 =0.6923 r7 =40.6740 d7 =3.6156 n4 =1.65844 ν4 =50.86 r8 =-1157.9848 d8 =0.1500 r9 =32.3632 d9 =5.6348 n5 =1.51823 ν5 =58.96 r10=-60.9035 d10=D2 r11=-87.8043 d11=1.0000 n6 =1.78590 ν6 =44.18 r12=16.2024 d12=0.9097 r13=31.3832 d13=2.9131 n7 =1.78470 ν7 =26.22 r14=-49.7711 d14=3.5341 r15=-18.0019 d15=1.2081 n8 =1.65830 ν8 =53.44 r16=-22.3951 d16=4.7231 r17=∞(絞り) d17=3.4676 r18=-115.0000 d18=2.1300 n9 =1.68893 ν9 =31.08 r19=-64.5600 d19=0.5000 r20=484.4333 d20=3.3939 n10=1.54739 ν10=53.55 r21=-26.1713 d21=0.5903 r22=146.1389 d22=0.4350 n11=1.78472 ν11=25.71 r23=17.3114 d23=5.4869 n12=1.58313 ν12=59.36 r24=-25.9767 d24=1.2500 r25=-19.9068 d25=1.4830 n13=1.74100 ν13=52.68 r26=-20.9013 d26=D3 r27=-38.0869 d27=2.7902 n14=1.84666 ν14=23.78 r28=-21.4684 d28=2.6534 r29=-16.2903(非球面)d29=0.3593 n15=1.52492 ν15=51.77 r30=-17.4211 d30=1.3500 n16=1.77250 ν16=49.66 r31=82.1742 非球面係数 P=1.0000,E=0.20587 ×10-4,F=0.86201 ×1
0-7,G=-0.48242×10-9,H=0.27293 ×10-11 f 29.01 54.44 105.43 D1 1.750 1.750 1.750 D2 1.500 15.621 21.576 D3 17.439 8.661 2.636 |φf/φ1 |=0.18545 , φ1/φw=0.322, φ12w/φw
=1.349 hB/hF =1.134 , AB/AF =0.8547, β3T/β3w=2.973 実施例5 f=29.51 〜131.00mm,F/4.5 〜F/8.25,2ω=72.48 °〜18.76 ° r1 =147.7015 d1 =0.8500 n1 =1.74100 ν1 =52.68 r2 =39.8775 d2 =6.9732 r3 =34.9579 d3 =4.4400 n2 =1.53172 ν2 =48.90 r4 =-509.1641 d4 =D1 r5 =-55.5614 d5 =0.8600 n3 =1.83400 ν3 =37.16 r6 =38.7196 d6 =0.3489 r7 =45.0582 d7 =3.6100 n4 =1.65844 ν4 =50.86 r8 =-134.9701 d8 =0.1200 r9 =36.3870 d9 =4.4600 n5 =1.50137 ν5 =56.40 r10=-55.5290 d10=D2 r11=-74.3691 d11=0.5500 n6 =1.78590 ν6 =44.18 r12=15.5103 d12=0.7341 r13=24.6834 d13=2.6600 n7 =1.78470 ν7 =26.22 r14=-63.3984 d14=D3 r15=-13.9591 d15=0.9163 n8 =1.65830 ν8 =53.44 r16=-16.2221 d16=4.3715 r17=∞(絞り) d17=3.3080 r18=-77.7267 d18=1.7100 n9 =1.66680 ν9 =33.04 r19=-56.3440 d19=0.1400 r20=-322.6649 d20=2.3300 n10=1.50137 ν10=56.40 r21=-24.8971 d21=0.1200 r22=74.2271 d22=0.5300 n11=1.80518 ν11=25.43 r23=17.1956 d23=5.1000 n12=1.60311 ν12=60.70 r24=-24.4180 d24=1.0490 r25=-20.8299 d25=0.8800 n13=1.77250 ν13=49.66 r26=-22.2142 d26=D4 r27=-50.1298 d27=3.2000 n14=1.78472 ν14=25.71 r28=-21.5995 d28=2.3876 r29=-14.9318(非球面)d29=0.4500 n15=1.52492 ν15=51.77 r30=-15.1591 d30=1.1900 n16=1.77250 ν16=49.66 r31=52.7870 非球面係数 P=1.0000,E=0.45142 ×10-4,F=0.15406 ×1
0-6,G=-0.58035×10-9,H=0.42319 ×10-11 f 29.51 62.50 131.00 D1 1.460 1.460 1.460 D2 0.766 17.061 22.292 D3 4.073 3.798 3.630 D4 15.086 6.568 1.369 |φf/φ1 |=0.34602, φ1/φw=0.360, φ12w/φw=
1.385 hB/hF =1.0767 AB/AF =0.9845, β3T/β3w=3.442 実施例6 f=29.30 〜102.00mm,F/4.6 〜F/7.65,2ω=72.88 °〜23.94 ° r1 =-60.5111 d1 =1.2500 n1 =1.74100 ν1 =52.68 r2 =-103.1603 d2 =0.2000 r3 =51.3114 d3 =2.6500 n2 =1.53172 ν2 =48.90 r4 =254.0371 d4 =1.0500 r5 =-148.9276 d5 =0.8500 n3 =1.83400 ν3 =37.16 r6 =27.9011 d6 =0.3000 r7 =28.5843 d7 =4.0000 n4 =1.65844 ν4 =50.86 r8 =451.3443 d8 =0.1200 r9 =47.3480 d9 =4.0500 n5 =1.65830 ν5 =53.44 r10=-73.2687 d10=D1 r11=-192.7657 d11=0.5000 n6 =1.78590 ν6 =44.18 r12=11.3110 d12=0.6696 r13=21.2161 d13=1.9980 n7 =1.78470 ν7 =26.22 r14=-75.8136 d14=5.3056 r15=∞(絞り) d15=3.6513 r16=-18.5732 d16=2.1356 n8 =1.59551 ν8 =39.21 r17=-19.9100 d17=0.5046 r18=-31.4506 d18=1.5121 n9 =1.50137 ν9 =56.40 r19=-18.2746 d19=0.1200 r20=75.5019 d20=0.8500 n10=1.84666 ν10=23.78 r21=19.0505 d21=3.9996 n11=1.60881 ν11=58.94 r22=-17.4005 d22=D2 r23=-45.2876 d23=3.0000 n12=1.78472 ν12=25.71 r24=-18.7253 d24=2.6527 r25=-12.9546(非球面)d25=0.1000 n13=1.52492 ν13=51.77 r26=-14.0500 d26=1.0000 n14=1.79952 ν15=42.24 r27=119.6924 非球面係数 P=1.0000,E=0.37563 ×10-4,F=0.36933 ×1
0-6,G=-0.27582×10-8,H=0.24748 ×10-10 f 29.30 54.52 102.00 D1 1.136 13.805 20.500 D2 15.118 6.870 0.998 |φf/φ1 |=0.25624 ,φ1/φw=0.385, φ12w/φw=
1.346 hB/hF =0.9986,AB/AF =1.0469 , β3T/β3w=
2.651 ただしr1 ,r2 ,・・・ は各レンズ面の曲率半径、d1
,d2 ,・・・ は各レンズの肉厚およびレンズ間隔、n1
,n2 ,・・・ は各レンズの屈折率、ν1 ,ν2 ,・・・
は各レンズのアッベ数である。実施例1は、焦点距離が
29.0〜105mmの広角ズームレンズで、図1に示す
ものである。この実施例のレンズ系は、全長にはあまり
制約を与えず、広角端で90mm弱に抑えているが変倍域
の全域で安定した良好な光学性能を有している。この実
施例の収差状況は、図7乃至図12に示す通りで、図
7,図9,図11が夫々無限遠物体に対する広角端,中
間焦点距離,望遠端における収差曲線図、図8,図1
0,図12が夫々2.0mmの物体に対する広角端,中間
焦点距離,望遠端における収差曲線図である。実施例2
は、焦点距離28.9〜102mmの広角ズームレンズ
で、図2に示す構成である。この実施例は、実施例1と
異なり、第2レンズ群中に像面補正用のレンズを配置し
たことにより全長が若干長くなっている。この実施例の
収差状況は、図13乃至図18に示す通りで、図13,
図15,図17が夫々無限遠物体に対する広角端,中間
焦点距離,望遠端における各収差曲線図、図14,図1
6,図18が夫々物体距離2.0mに対する広角端,中
間焦点距離,望遠端における各収差曲線図である。実施
例3は、焦点距離が24.5〜76.5mmの超広角を含
む広角ズームレンズである。図3に示すように、第1レ
ンズ群中の前群は負のレンズ成分1枚からなり、又第2
レンズ群に特徴を持たせた実施例である。収差補正上第
3レンズ群以外に第2レンズ群にも非球面を用いてい
る。この実施例の収差状況は図19乃至図24に示す通
りである。つまり図19,図21,図22が夫々無限遠
物体に対する広角端,中間焦点距離,望遠端における各
収差曲線図であり、図20,図22,図24が夫々2.
0mの物体に対する広角端,中間焦点距離,望遠端にお
ける収差曲線図である。実施例4は、焦点距離29.0
〜105mmの広角ズームレンズである。この実施例は、
図4に示すレンズ構成で、全長が比較的長くなってい
る。それによって光学性能は一層良好になった。この実
施例4の収差状況は、図25乃至図30に示す通りであ
る。これら図のうち、図25,図27,図29が夫々無
限遠物体に対する広角端,中間焦点距離,望遠端におけ
る収差曲線図であり、図26,図28,図30は夫々
2.0mの物体に対する広角端,中間焦点距離,望遠端
における収差曲線図である。実施例5は、焦点距離が2
9.5〜131mmの高変倍率の広角ズームレンズであ
る。この実施例は、図5に示す通りの構成で4群ズーム
レンズである。広角端の全長は83.6と短縮されてお
り、又バックフォーカスは8.92である。この実施例
の収差状況は、図31乃至図36に示す通りで、図3
1,図33,図35が夫々無限遠物体に対する広角端,
中間焦点距離,望遠端における収差曲線図、図32,図
34,図36は夫々2.0mの物体に対する広角端,中
間焦点距離,望遠端における収差曲線図である。この実
施例は、望遠端での球面収差の補正状況にやや難がみら
れるが実用上は十分である。実施例6は、焦点距離が2
9.3〜102mmの広角ズームレンズで、全長が広角端
で68.25である。この実施例は、図6に示す通り
で、第1レンズ群が負レンズと正レンズとからなる前群
と、1枚の負レンズと2枚の正レンズとからなる後群と
で構成されている。また第3レンズ群は、合成樹脂材料
を用いることを想定した非球面を用いている。またバッ
クフォーカスは、広角端で9.52であり、十分に確保
されている。この実施例6の収差状況は、図37乃至図
42に示す通りで、図37,図39,図41が夫々無限
遠物体に対する広角端,中間焦点距離,望遠端における
収差曲線図、図38,図40,図42が夫々2.0mの
物体に対する広角端,中間焦点距離,望遠端における収
差曲線図である。この実施例6は、全長の短縮をはかっ
たもので、そのため広角端で倍率色収差がg線で十分に
は補正し得ていないが、全体的には良好な補正状態であ
る。また歪曲収差は比較的単調な変化である。更に広角
端でのメリディオナル方向の非点収差の曲がりは第3レ
ンズ群の非球面による影響である。尚上記実施例のレン
ズ系のフォーカシングは、3群ズームレンズの場合第2
レンズ群により、又4群ズームレンズの場合第2−3レ
ンズ群によって行なわれる。実施例6以外の実施例は、
フォーカシング時、フォーカシングレンズ群内の最も像
面側に近距離収差補正用のレンズ成分を設け、このレン
ズ成分を固定し残りのレンズ成分を移動してフォーカシ
ングと収差補正を行なうようになっている。上記実施例
で用いている非球面の形状は、光軸方向をx軸、光軸と
垂直な方向をy軸とした時次の式で表わされる。 ただしrは非球面頂点近傍での曲率半径、Pは円錐定
数、E,F,G,H,…は非球面係数である。
Next, embodiments of the zoom lens according to the present invention will be described. Example 1 f = 28.90 to 102.00 mm, F / 4.5 to F / 7.625, 2ω = 73.64 ° to 23.94 ° r1 = 160.7804 d1 = 1.2000 n1 = 1.74100 ν1 = 52.68 r2 = 34.8076 d2 = 6.9850 r3 = 38.883.34063 = 1.53172 v2 = 48.90 r4 = 142.7690 d4 = D1 r5 = -194.6240 d5 = 1.0000 n3 = 1.83400 v3 = 37.16 r6 = 38.00459 d6 = 0.3520 r7 = 43.6383 d7 = 3.4187 n4 = 8. = 32.2002 d9 = 5.2460 n5 = 1.51823 v5 = 58.96 r10 = -96.2536 d10 = D2 r11 = -498.7110 d11 = 1.000 n6 = 1.79090 v6 = 44.18 r12 = 15.0840 d12 = 0.8410 r13 = 24.1630 d13 = 2.76 470 = -102.9802 d14 = 3.9120 r15 = -14.3361 d15 = 1.1100 n8 = 1.65830 ν8 = 53.44 r16 = -16.3753 d16 = 4.9610 r17 = ∞ (aperture) d17 = 3.6000 r18 = -79.9489 d18 = 2.1300 n9 = 1.66680 r9 = 33.04 -51.9241 d19 = 0.5000 r20 = -555.5860 d20 = 3.0490 n10 = 1.51454 v10 = 54.69 r21 = -26.8298 d21 = 0.1200 r22 = 103.1734 d22 = 0.6500 n11 = 1.80518 v11 = 25.43 r23 = 17.2071 d23 = 5.4150 n12 = 1.60729 v12 = 59.38 r24 = -26000457 d24 = 1.2,500 25 0.8780 n13 = 1.77250 v13 = 49.66 r26 = -22.7792 d26 = D3 r27 = -54.8870 d27 = 3.3170 n14 = 1.84772 v14 = 25.71 r28 = -22.2644 d28 = 2.4970 r29 = -15.6872 (aspherical surface) d29 = 0.3600 n15 = 1.52492 v15 51.77 r30 = -16.8658 d30 = 1.3200 n16 = 1.77250 v16 = 49.66 r31 = 62.5760 Aspherical surface coefficient P = 1.0000, E = 0.30618 × 10 -4 , F = 0.10777 × 1
0 -6, G = -0.18514 × 10 -9, H = 0.20423 × 10 -11 f 28.90 54.44 102.00 D1 1.750 1.750 1.750 D2 1.500 16.298 22.421 D3 15.852 7.073 1.530 | φf / φ1 | = 0.65194, φ1 / φw = 0.246, φ12w / φw =
1.330 hB / hF = 1.1256, AB / AF = 0.8117, β3T / β3w = 3.0 Example 2 f = 28.92 to 102.02 mm, F / 4.5 to F / 7.625, 2ω = 73.6 ° to 23.94 ° r1 = -82.5283 d1 = 1.2500 n1 = 1.74100 v1 = 52.68 r2 = 8479.1527 d2 = 1.0288 r3 = 109.7348 d3 = 2.2603 n2 = 1.53172 v2 = 48.90 r4 = -234.4198 d4 = 0.7500 r5 = -104.1899 d5 = 0.83 n3 = 6,500 n3 = 6,500 r7 = 39.3253 d7 = 4.5192 n4 = 1.65844 ν4 = 50.86 r8 = -20126.4985 d8 = 0.1200 r9 = 38.2462 d9 = 5.5542 n5 = 1.65830 ν5 = 53.44 r10 = -81.9930 d10 = 1.3111 = 16. r12 = 12.1902 d12 = 0.7721 r13 = 20.1078 d13 = 3.1941 n7 = 1.78470 ν7 = 26.22 r14 = −324.9518 d14 = 2.9127 r15 = -12.2940 d15 = 0.6569 n8 = 1.65830 v8 = 53.44 r16 = −14.2480 d16 D17 = 3.4906 r18 = -39.4065 d18 = 1.9818 n9 = 1.59270 ν9 = 3 5.29 r19 = -23.5086 d19 = 1.0128 r20 = -77.1442 d20 = 2.2237 n10 = 1.50137 ν10 = 56.40 r21 = -27.3780 d21 = 0.1200 r22 = 71.2472 d22 = 0.8500 n11 = 1.84666 ν11 = 23.78 r23 = 17.8516 d12 = 14.0983 = 58.94 r24 = -19.8521 d24 = 0.8500 r25 = -20.0533 d25 = 1.5717 n13 = 1.77250 v13 = 49.66 r26 = -21.5906 d26 = D2 r27 = -49.9729 d27 = 3.4179 n14 = 1.8472 v14 = 25.71 r28 = -20.4630 d29 = 2.684 = -13.9632 (aspherical surface) d29 = 0.1000 n15 = 1.52492 ν15 = 51.77 r30 = -14.0500 d30 = 0.9444 n16 = 1.78590 ν16 = 44.18 r31 = 57.0622 Aspherical surface coefficient P = 1.0000, E = 0.46567 × 10 -4 , F = 0.16608 × 1
0 -6, G = -0.40245 × 10 -9, H = 0.76140 × 10 -11 f 28.92 54.39 102.02 D1 1.250 15.540 20.970 D2 12.853 5.873 1.207 | φf / φ1 | = 0.17379, φ1 / φw = 0.304, φ12w / φw =
1.404 hB / hF = 1.0233, AB / AF = 0.9179, β3T / β3w = 3.329 Example 3 f = 24.50-76.49 mm, F / 4.5-F / 7.5, 2ω = 82.88 ° -31.58 ° r1 = 96.5532 d1 = 1.2000 n1 = 1.69350 v1 = 53.23 r2 = 27.7448 d2 = 11.6550 r3 = -91.4665 d3 = 1.2066 n2 = 1.78470 v2 = 26.22 r4 = -303.5278 d4 = 0.1500 r5 = 39.5053 d5 = 3.0500 n3 = 1.5500 n3 = 1.5500 = 37.1151 d7 = 5.0200 n4 = 1.60311 v4 = 60.70 r8 = -206.3245 d8 = D1 r9 = 57.4357 d9 = 1.0000 n5 = 1.67790 v5 = 55.33 r10 = 16.3022 (aspherical surface) d10 = 1.5109 r11 = 61.795 = 29.24 r12 = -33.4657 d12 = 1.1015 r13 = -23.8559 d13 = 1.1100 n7 = 1.83400 v7 = 37.16 r14 = -125.8813 d14 = 4.7035 r15 = ∞ (aperture) d15 = 3.4988 r16 = -21.5971 d16 = 2.164 n8 = 1.464 65.94 r17 = -22.7796 d17 = 3.9083 r18 = -54.9728 d18 = 2.5000 n9 = 1.5182 1 ν9 = 65.04 r19 = -18.0505 d19 = 0.1200 r20 = 52.5661 d20 = 0.8500 n10 = 1.84666 ν10 = 23.78 r21 = 21.2304 d21 = 4.0000 n11 = 1.56873 ν11 = 63.16 r22 = -58.4819 d22 = 0.8250 n23 = 70.2181 n23 1.77250 v12 = 49.66 r24 = -204.8691 d24 = D2 r25 = -76.9580 d25 = 3.3170 n13 = 1.74000 v13 = 28.29 r26 = -25.1526 d26 = D2 r27 = -19.5931 (aspherical surface) d27 = 0.3600 n14 = 1.52492 v14 = 51.77 r28 -23.2468 d28 = 1.3200 n15 = 1.77250 v15 = 49.66 r29 = 35.1917 Aspheric coefficient (tenth surface) P = 1.0000, E = 0.15173 × 10 -4 , F = 0.
18351 × 10 -6 , G = -0.10833 × 10 -8 , H = 0.28490 × 10
-10 (Surface 27) P = 1.0000, E = 0.22735 × 10 -4 , F = 0.
29706 × 10 -7 , G = -0.30210 × 10 -9 , H = 0.83428 × 10
-12 f 24.50 45.02 76.49 D1 0.850 16.915 22.361 D2 12.830 5.031 0.510 | φf / φ1 | = 2.13856, φ1 / φw = 0.175, φ12w / φ
w = 1.365 hB / hF = 1.2347, AB / AF = 0.5986, β3T / β3w = 2.727 Example 4 f = 29.01 to 105.43 mm, F / 4 to F / 7.65, 2ω = 73.42 ° to 23.2 ° r1 = 123.2807 d1 = 1.2000 n1 = 1.69680 ν1 = 55.52 r2 = 28.1453 d2 = 7.0560 r3 = 31.7325 d3 = 5.4876 n2 = 1.53172 ν2 = 48.90 r4 = 302.3165 d4 = D1 r5 = -125.1445 d5 = 1.68 33.36 333.63 1.00.60 r7 = 40.6740 d7 = 3.6156 n4 = 1.65844 ν4 = 50.86 r8 = -1157.9848 d8 = 0.1500 r9 = 32.3632 d9 = 5.6348 n5 = 1.51823 ν5 = 58.96 r10 = -60.9035 d10 = 61.07 = 871.07 44.18 r12 = 16.2024 d12 = 0.9097 r13 = 31.3832 d13 = 2.9131 n7 = 1.78470 ν7 = 26.22 r14 = -49.7711 d14 = 3.5341 r15 = -18.0019 d15 = 1.2081 n8 = 1.65830 ν8 = 53.44 r16 = ∞23.1951 Aperture) d17 = 3.4676 r18 = -115.0000 d18 = 2.1300 n9 = 1.68893 ν9 = 31.08 r19 = -64.5600 d19 = 0.5000 r20 = 484.4333 d20 = 3.3939 n10 = 1.54739 ν10 = 53.55 r21 = -26.1713 d21 = 0.5903 r22 = 146.1389 d22 = 0.4350 n11 = 1.78472 ν11 = 25.71 r23 = 17.3114 d23 = 5.4869 n12 = 1.58313 -25.9767 d24 = 1.2500 r25 = -19.9068 d25 = 1.4830 n13 = 1.74100 ν13 = 52.68 r26 = -20.9013 d26 = D3 r27 = -38.0869 d27 = 2.7902 n14 = 1.84666 ν14 = 23.78 r28 = -21.4684 d28 = 2.6534 r29 = -1903 Aspheric surface) d29 = 0.3593 n15 = 1.52492 v15 = 51.77 r30 =-17.4211 d30 = 1.3500 n16 = 1.77250 v16 = 49.66 r31 = 82.1742 Aspheric coefficient P = 1.0000, E = 0.20587 × 10 -4 , F = 0.86201 × 1
0 -7 , G = -0.48242 x 10 -9 , H = 0.27293 x 10 -11 f 29.01 54.44 105.43 D1 1.750 1.750 1.750 D2 1.500 15.621 21.576 D3 17.439 8.661 2.636 | φf / φ1 | = 0.18545, φ1 / φw = 0.322, φ12w / φw
= 1.349 hB / hF = 1.134, AB / AF = 0.5457, β3T / β3w = 2.973 Example 5 f = 29.51 to 131.00 mm, F / 4.5 to F / 8.25, 2ω = 72.48 ° to 18.76 ° r1 = 147.7015 d1 = 0.8500 n1 = 1.74100 ν1 = 52.68 r2 = 39.8775 d2 = 6.9732 r3 = 34.9579 d3 = 4.4400 n2 = 1.53172 ν2 = 48.90 r4 = −509.1641 d4 = D1 r5 = -55.5614 d5 = 0.81.8 n3 = 0.8600 n3 = 0.8600 n3 = 0.8600 n3 = 0.8600 n3 = 0.8600 n3 = 0.8600 n3 r7 = 45.0582 d7 = 3.6100 n4 = 1.65844 ν4 = 50.86 r8 = -134.9701 d8 = 0.1200 r9 = 36.3870 d9 = 4.4600 n5 = 1.50137 ν5 = 56.40 r10 = -55.5290 d10 = 11 = 6 = 11.75 44.18 r12 = 15.5103 d12 = 0.7341 r13 = 24.6834 d13 = 2.6600 n7 = 1.78470 ν7 = 26.22 r14 = -63.3984 d14 = D3 r15 = -13.9591 d15 = 0.9163 n8 = 1.65830 ν8 = 53.44 r16 = 6.2172.1 Aperture) d17 = 3.3080 r18 = -77.7267 d18 = 1.7100 n9 = 1.66680 v9 = 33.04 19 = -56.3440 d19 = 0.1400 r20 = -322.6649 d20 = 2.3300 n10 = 1.50137 ν10 = 56.40 r21 = -24.8971 d21 = 0.1200 r22 = 74.2271 d22 = 0.5300 n11 = 1.80518 ν11 = 25.43 r23 = 17.1956 d12 = 5.1000 n12 60.70 r24 = -24.4180 d24 = 1.0490 r25 = -20.8299 d25 = 0.8800 n13 = 1.77250 v13 = 49.66 r26 = -22.2142 d26 = D4 r27 = -50.1298 d27 = 3.2000 n14 = 1.84772 v14 = 25.71 r28 = -21.599 d28 = 2.3876 -14.9318 (aspherical surface) d29 = 0.4500 n15 = 1.52492 ν15 = 51.77 r30 = -15.1591 d30 = 1.1900 n16 = 1.77250 ν16 = 49.66 r31 = 52.7870 Aspherical surface coefficient P = 1.0000, E = 0.45142 × 10 -4 , F = 0.15406 × 1
0 -6 , G = -0.58035 x 10 -9 , H = 0.42319 x 10 -11 f 29.51 62.50 131.00 D1 1.460 1.460 1.460 D2 0.766 17.061 22.292 D3 4.073 3.798 3.630 D4 15.086 6.568 1.369 │φf / φ1 │ = 0.34602, φ1 / φw = 0.360, φ12w / φw =
1.385 hB / hF = 1.0767 AB / AF = 0.9845, β3T / β3w = 3.442 Example 6 f = 29.30 to 102.00 mm, F / 4.6 to F / 7.65, 2ω = 72.88 ° to 23.94 ° r1 = -60.5111 d1 = 1.2500 n1 = 1.74100 ν1 = 52.68 r2 = -103.1603 d2 = 0.2000 r3 = 51.3114 d3 = 2.6500 n2 = 1.53172 ν2 = 48.90 r4 = 254.0371 d4 = 1.0500 r5 = -148.9276 d5 = 0.8500 n3 = 1.83400 6.75 n3 = 1.83400 = 28.5843 d7 = 4.0000 n4 = 1.65844 ν4 = 50.86 r8 = 451.3443 d8 = 0.1200 r9 = 47.3480 d9 = 4.0500 n5 = 1.65830 ν5 = 53.44 r10 = -73.2687 d10 = D1r r11 = -192.7657d6 = 11.3110 d12 = 0.6696 r13 = 21.2161 d13 = 1.9980 n7 = 1.78470 ν7 = 26.22 r14 = -75.8136 d14 = 5.3056 r15 = ∞ (aperture) d15 = 3.6513 r16 = -18.5732 d16 = 2.1356 n8 = 1.59551 ν8 = 39.100 d17 = 0.5046 r18 = -31.4506 d18 = 1.5121 n9 = 1.50137 ν9 = 56.40 r 19 = -18.2746 d19 = 0.1200 r20 = 75.5019 d20 = 0.8500 n10 = 1.84666 ν10 = 23.78 r21 = 19.0505 d21 = 3.9996 n11 = 1.60881 v11 = 58.94 r22 = -17.4005 d22 = D2 r23 = -45.2876 d23 = 3.0000 n12 = 1.7000 25.71 r24 = -18.7253 d24 = 2.6527 r25 = -12.9546 (aspherical surface) d25 = 0.1000 n13 = 1.52492 ν13 = 51.77 r26 = -14.0500 d26 = 1.0000 n14 = 1.79952 ν15 = 42.24 r27 = 119.6924 Aspherical surface coefficient P = 1.000, E = 0.37563 × 10 -4 , F = 0.36933 × 1
0 -6, G = -0.27582 × 10 -8, H = 0.24748 × 10 -10 f 29.30 54.52 102.00 D1 1.136 13.805 20.500 D2 15.118 6.870 0.998 | φf / φ1 | = 0.25624, φ1 / φw = 0.385, φ12w / φw =
1.346 hB / hF = 0.9986, AB / AF = 1.0469, β3T / β3w =
2.651 where r1, r2, ... are the radii of curvature of the respective lens surfaces, d1
, D2,... Are the thickness of each lens and the lens interval, n1
, N2, ... are the refractive indices of each lens, ν1, ν2, ...
Is the Abbe number of each lens. The first embodiment is a wide-angle zoom lens having a focal length of 29.0 to 105 mm, as shown in FIG. The lens system of this embodiment does not impose much restrictions on the overall length, and keeps a little less than 90 mm at the wide-angle end, but has stable and good optical performance over the entire zoom range. The aberration states of this embodiment are as shown in FIGS. 7 to 12, and FIGS. 7, 9, and 11 are aberration curve diagrams at the wide-angle end, an intermediate focal length, and a telephoto end for an object at infinity, and FIGS. 1
FIGS. 0 and 12 are aberration curve diagrams at the wide angle end, the intermediate focal length, and the telephoto end, respectively, for an object of 2.0 mm. Example 2
Is a wide-angle zoom lens having a focal length of 28.9 to 102 mm, and has a configuration shown in FIG. This embodiment differs from the first embodiment in that the overall length is slightly longer due to the arrangement of the lens for image plane correction in the second lens group. The aberration states of this embodiment are as shown in FIGS.
15 and 17 are aberration curve diagrams at the wide-angle end, an intermediate focal length, and a telephoto end for an object at infinity, respectively, and FIGS. 14 and 1.
6 and FIG. 18 are aberration curve diagrams at the wide-angle end, the intermediate focal length, and the telephoto end for an object distance of 2.0 m, respectively. Example 3 is a wide-angle zoom lens including a super-wide-angle lens having a focal length of 24.5 to 76.5 mm. As shown in FIG. 3, the front group in the first lens group is composed of one negative lens component.
This is an embodiment in which a lens group is provided with features. An aspheric surface is used for the second lens group in addition to the third lens group for aberration correction. The aberration states of this embodiment are as shown in FIGS. That is, FIGS. 19, 21, and 22 are aberration curve diagrams at the wide-angle end, the intermediate focal length, and the telephoto end, respectively, of an object at infinity. FIGS.
FIG. 7 is an aberration curve diagram for an object at 0 m at a wide angle end, an intermediate focal length, and a telephoto end. Example 4 has a focal length of 29.0.
It is a wide-angle zoom lens of up to 105 mm. This example is
In the lens configuration shown in FIG. 4, the overall length is relatively long. Thereby, the optical performance became better. The aberration states of the fourth embodiment are as shown in FIGS. Among these figures, FIG. 25, FIG. 27, and FIG. 29 are aberration curve diagrams of the object at infinity at the wide-angle end, the intermediate focal length, and the telephoto end, respectively, and FIGS. FIG. 7 is an aberration curve diagram at the wide angle end, an intermediate focal length, and a telephoto end with respect to FIG. In the fifth embodiment, the focal length is 2
This is a wide-angle zoom lens with a high magnification of 9.5 to 131 mm. This embodiment is a four-unit zoom lens having a configuration as shown in FIG. The overall length at the wide-angle end is reduced to 83.6, and the back focus is 8.92. The aberration states of this embodiment are as shown in FIGS.
1, FIG. 33 and FIG. 35 show the wide-angle end for an object at infinity,
FIG. 32, FIG. 34, and FIG. 36 are aberration curve diagrams at the wide-angle end, the intermediate focal length, and the telephoto end for an object of 2.0 m, respectively. In this embodiment, although there are some difficulties in the correction of the spherical aberration at the telephoto end, it is practically sufficient. In the sixth embodiment, the focal length is 2
It is a wide-angle zoom lens of 9.3 to 102 mm, and the total length is 68.25 at the wide-angle end. In this embodiment, as shown in FIG. 6, the first lens group includes a front group consisting of a negative lens and a positive lens, and a rear group consisting of one negative lens and two positive lenses. I have. Further, the third lens group uses an aspherical surface assuming that a synthetic resin material is used. The back focus is 9.52 at the wide angle end, which is sufficiently ensured. The aberration states of the sixth embodiment are as shown in FIGS. 37 to 42. FIGS. 37, 39, and 41 are aberration curve diagrams at the wide-angle end, an intermediate focal length, and a telephoto end for an object at infinity, respectively, and FIGS. 40 and 42 are aberration curve diagrams at the wide angle end, the intermediate focal length, and the telephoto end, respectively, for an object of 2.0 m. In the sixth embodiment, the total length is shortened. For this reason, the chromatic aberration of magnification at the wide-angle end cannot be sufficiently corrected at the g-line, but is in a good correction state as a whole. Also, distortion is a relatively monotonous change. Furthermore, the curvature of astigmatism in the meridional direction at the wide-angle end is affected by the aspheric surface of the third lens unit. The focusing of the lens system of the above embodiment is the second in the case of a three-unit zoom lens.
The zooming is performed by a lens group, or in the case of a four-group zoom lens, by a 2-3 lens group. Examples other than Example 6 include:
At the time of focusing, a lens component for short-range aberration correction is provided closest to the image plane in the focusing lens unit, and the lens component is fixed and the remaining lens components are moved to perform focusing and aberration correction. The shape of the aspherical surface used in the above embodiment is expressed by the following equation when the optical axis direction is the x axis and the direction perpendicular to the optical axis is the y axis. Here, r is a radius of curvature near the aspherical vertex, P is a conic constant, and E, F, G, H,... Are aspherical surface coefficients.

【0039】[0039]

【発明の効果】本発明は、第1レンズ群の構成に特徴を
持たせることによって、全長や外径をあまり大きくする
ことなしに、従来広角化に不利であるといわれているこ
の種のズームレンズにおいて、光学性能を良好に保ちな
がら広角になし得た。
According to the present invention, this type of zoom, which is conventionally considered to be disadvantageous for widening the angle of view, by giving a characteristic to the structure of the first lens group without making the overall length and outer diameter too large, is provided. The lens was able to be wide-angled while maintaining good optical performance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の断面図。FIG. 1 is a cross-sectional view of a first embodiment.

【図2】実施例2の断面図。FIG. 2 is a sectional view of a second embodiment.

【図3】実施例3の断面図。FIG. 3 is a sectional view of a third embodiment.

【図4】実施例4の断面図。FIG. 4 is a sectional view of a fourth embodiment.

【図5】実施例5の断面図。FIG. 5 is a sectional view of a fifth embodiment.

【図6】実施例6の断面図。FIG. 6 is a sectional view of a sixth embodiment.

【図7】実施例1の無限遠物体に対する広角端における
収差曲線図。
FIG. 7 is an aberration curve diagram at the wide-angle end for an object at infinity according to the first embodiment.

【図8】実施例1の2.0mの物体に対する広角端にお
ける収差曲線図。
FIG. 8 is an aberration curve diagram at the wide-angle end for a 2.0-meter object according to the first embodiment.

【図9】実施例1の無限遠物体に対する中間焦点距離に
おける収差曲線図。
FIG. 9 is an aberration curve diagram at an intermediate focal length of an object at infinity according to the first embodiment.

【図10】実施例1の2.0mの物体に対する中間焦点
距離における収差曲線図。
FIG. 10 is an aberration curve diagram at an intermediate focal length of a 2.0 m object according to the first embodiment.

【図11】実施例1の無限遠物体に対する望遠端におけ
る収差曲線図。
FIG. 11 is an aberration curve diagram at the telephoto end of an object at infinity according to the first embodiment.

【図12】実施例1の2.0mの物体に対する望遠端に
おける収差曲線図。
FIG. 12 is an aberration curve diagram at a telephoto end of a 2.0-meter object according to the first embodiment.

【図13】実施例2の無限遠物体に対する広角端におけ
る収差曲線図。
FIG. 13 is an aberration curve diagram at a wide-angle end of an object at infinity according to a second embodiment.

【図14】実施例2の2.0mの物体に対する広角端に
おける収差曲線図。
FIG. 14 is an aberration curve diagram at the wide-angle end for a 2.0-meter object according to the second embodiment.

【図15】実施例2の無限遠物体に対する中間焦点距離
における収差曲線図。
FIG. 15 is an aberration curve diagram at an intermediate focal length of an object at infinity according to the second embodiment.

【図16】実施例2の2.0mの物体に対する中間焦点
距離における収差曲線図。
FIG. 16 is an aberration curve diagram at an intermediate focal length for a 2.0-meter object according to the second embodiment.

【図17】実施例2の無限遠物体に対する望遠端におけ
る収差曲線図。
FIG. 17 is an aberration curve diagram at the telephoto end for an object at infinity according to the second embodiment.

【図18】実施例2の2.0mの物体に対する望遠端に
おける収差曲線図。
FIG. 18 is an aberration curve diagram at a telephoto end of a 2.0 m object according to the second embodiment.

【図19】実施例3の無限遠物体に対する広角端におけ
る収差曲線図。
FIG. 19 is an aberration curve diagram at the wide-angle end of an object at infinity according to a third embodiment.

【図20】実施例3の2.0mの物体に対する広角端に
おける収差曲線図。
FIG. 20 is an aberration curve diagram at the wide-angle end of a 2.0-meter object according to the third embodiment.

【図21】実施例3の無限遠物体に対する中間焦点距離
における収差曲線図。
FIG. 21 is an aberration curve diagram at an intermediate focal length of an object at infinity according to a third embodiment.

【図22】実施例3の2.0mの物体に対する中間焦点
距離における収差曲線図。
FIG. 22 is an aberration curve diagram at an intermediate focal length of a 2.0-meter object according to the third embodiment.

【図23】実施例3の無限遠物体に対する望遠端におけ
る収差曲線図。
FIG. 23 is an aberration curve diagram at the telephoto end of an object at infinity according to a third embodiment.

【図24】実施例3の2.0mの物体に対する望遠端に
おける収差曲線図。
FIG. 24 is an aberration curve diagram at the telephoto end of a 2.0-meter object according to the third embodiment.

【図25】実施例4の無限遠物体に対する広角端におけ
る収差曲線図。
FIG. 25 is an aberration curve diagram at the wide-angle end of an object at infinity according to a fourth embodiment.

【図26】実施例4の2.0mの物体に対する広角端に
おける収差曲線図。
FIG. 26 is an aberration curve diagram at the wide-angle end for a 2.0-meter object in Example 4.

【図27】実施例4の無限遠物体に対する中間焦点距離
における収差曲線図。
FIG. 27 is an aberration curve diagram at an intermediate focal length of an object at infinity according to a fourth embodiment.

【図28】実施例4の2.0mの物体に対する中間焦点
距離における収差曲線図。
FIG. 28 is an aberration curve diagram at an intermediate focal length of a 2.0 m object according to the fourth embodiment.

【図29】実施例4の無限遠物体に対する望遠端におけ
る収差曲線図。
FIG. 29 is an aberration curve diagram at the telephoto end of an object at infinity according to a fourth embodiment.

【図30】実施例4の2.0mの物体に対する望遠端に
おける収差曲線図。
FIG. 30 is an aberration curve diagram at the telephoto end of a 2.0-meter object in Example 4.

【図31】実施例5の無限遠物体に対する広角端におけ
る収差曲線図。
FIG. 31 is an aberration curve diagram at the wide-angle end of an object at infinity according to a fifth embodiment.

【図32】実施例5の2.0mの物体に対する広角端に
おける収差曲線図。
FIG. 32 is an aberration curve diagram at a wide-angle end of a 2.0 m object according to the fifth embodiment.

【図33】実施例5の無限遠物体に対する中間焦点距離
における収差曲線図。
FIG. 33 is an aberration curve diagram of the fifth embodiment at an intermediate focal length with respect to an object at infinity.

【図34】実施例5の2.0mの物体に対する中間焦点
距離における収差曲線図。
FIG. 34 is an aberration curve diagram at an intermediate focal length of a 2.0 m object according to the fifth embodiment.

【図35】実施例5の無限遠物体に対する望遠端におけ
る収差曲線図。
FIG. 35 is an aberration curve diagram at the telephoto end of an infinitely distant object according to the fifth embodiment.

【図36】実施例5の2.0mの物体に対する望遠端に
おける収差曲線図。
FIG. 36 is an aberration curve diagram at the telephoto end of a 2.0-meter object in Example 5.

【図37】実施例6の無限遠物体に対する広角端におけ
る収差曲線図。
FIG. 37 is an aberration curve diagram at the wide-angle end of an object at infinity according to a sixth embodiment.

【図38】実施例6の2.0mの物体に対する広角端に
おける収差曲線図。
FIG. 38 is an aberration curve diagram at the wide-angle end of a 2.0-meter object according to the sixth embodiment.

【図39】実施例6の無限遠物体に対する中間焦点距離
における収差曲線図。
FIG. 39 is an aberration curve diagram at an intermediate focal length of an object at infinity according to a sixth embodiment.

【図40】実施例6の2.0mの物体に対する中間焦点
距離における収差曲線図。
FIG. 40 is an aberration curve diagram at an intermediate focal length of a 2.0 m object according to the sixth embodiment.

【図41】実施例6の無限遠物体に対する望遠端におけ
る収差曲線図。
FIG. 41 is an aberration curve diagram at the telephoto end of an infinitely distant object according to the sixth embodiment.

【図42】実施例6の2.0mの物体に対する望遠端に
おける収差曲線図。
FIG. 42 is an aberration curve diagram at the telephoto end of a 2.0-meter object in Example 6.

【図43】本発明の3群ズ−ムのときの基本構成を示す
FIG. 43 is a diagram showing a basic configuration of a third group zoom of the present invention;

【図44】本発明の4群ズ−ムのときの基本構成を示す
FIG. 44 is a diagram showing a basic configuration of a fourth group zoom of the present invention;

【図45】第1レンズ群の前群および後群への軸外光線
の入射状況を示す図。
FIG. 45 is a diagram showing the state of incidence of off-axis rays on the front group and the rear group of the first lens group.

【図46】第1レンズ群広角端における近軸での光線の
状況を示す図。
FIG. 46 is a diagram showing the state of light rays on the paraxial axis at the wide angle end of the first lens unit.

【図47】第1レンズ望遠端における近軸での光線の状
況を示す図。
FIG. 47 is a view showing the state of light rays on the paraxial line at the telephoto end of the first lens.

【図48】第1レンズ群広角端における厚肉レンズでの
光線の状況を示す図。
FIG. 48 is a diagram showing a state of light rays in a thick lens at the wide-angle end of the first lens group.

【図49】第1レンズ群における近軸での光線の状況を
示す図。
FIG. 49 is a diagram showing the state of light rays on the paraxial axis in the first lens group.

フロントページの続き (56)参考文献 特開 昭63−148223(JP,A) 特開 昭47−33373(JP,A) 特開 平4−362910(JP,A) 特開 平3−50516(JP,A) 特開 平3−85508(JP,A) 特開 平2−73211(JP,A) 特開 平3−31809(JP,A) 特開 平2−103014(JP,A) 特開 昭58−137813(JP,A) 特開 昭61−52620(JP,A) 特開 昭64−93713(JP,A) 特開 昭58−224322(JP,A) 特開 平3−17609(JP,A) 特開 平3−208004(JP,A) 特開 平4−338910(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02B 9/00 - 17/08 G02B 21/02 - 21/04 G02B 25/00 - 25/04 Continuation of the front page (56) References JP-A-63-148223 (JP, A) JP-A-47-33373 (JP, A) JP-A-4-362910 (JP, A) JP-A-3-50516 (JP) JP-A-3-85508 (JP, A) JP-A-2-73211 (JP, A) JP-A-3-31809 (JP, A) JP-A-2-103014 (JP, A) JP JP-A-58-137713 (JP, A) JP-A-61-52620 (JP, A) JP-A-64-93713 (JP, A) JP-A-58-224322 (JP, A) JP-A-3-17609 (JP, A A) JP-A-3-208004 (JP, A) JP-A-4-338910 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G02B 9/00-17/08 G02B 21 / 02-21/04 G02B 25/00-25/04

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】物体側より順に、正の屈折力の第1レンズ
群と、正の屈折力の第2レンズ群と、負の屈折力の第3
レンズ群とよりなり、広角端に対して望遠端にて第1レ
ンズ群と第2レンズ群の間隔が広がり第2レンズ群と第
3レンズ群の間隔が狭まることによって広角端から望遠
端への変倍を行なうもので、第1レンズ群が物体側より
順に負レンズと正レンズとからなる若しくは負レンズ1
枚のみからなる前群と、物体側より順に1枚の負レンズ
と2枚の正レンズとからなる後群で構成され、第2レン
ズ群が開口絞りを有する構成であり、次の条件(1)を
満足することを特徴とする広角ズームレンズ。 (1)|φf/φ1 |<6.0 ただしφf は前記前群の屈折力、φ1 は前記第1レンズ
群の屈折力である。
A first lens group having a positive refractive power, a second lens group having a positive refractive power, and a third lens group having a negative refractive power.
More becomes lens group from the wide-angle end by the narrowed distance between the first lens group and the second lens group and the third lens group spread distance of the second lens group at the telephoto end than at the wide angle end to the telephoto end The first lens group is composed of a negative lens and a positive lens in order from the object side or a negative lens 1
A front group formed of only a sheet, is composed of a rear group consisting of one negative lens and two positive lenses in order from the object side, the second lens
A wide-angle zoom lens, wherein the lens group has an aperture stop, and satisfies the following condition (1). (1) | φf / φ1 | <6.0 where φf is the refractive power of the front lens unit, and φ1 is the refractive power of the first lens unit.
【請求項2】物体側より順に、正の屈折力の第1レンズ
群と、正の屈折力の第2レンズ群と、正の屈折力の第3
レンズ群と、負の屈折力を有する第4レンズ群とよりな
り、第1レンズ群と第2レンズ群の間隔と第2レンズ群
と第3レンズ群の間隔と第3レンズ群と第4レンズ群の
間隔とを変えることによって広角端から望遠端への変倍
を行なうもので、第1レンズ群が少なくとも1枚の負レ
ンズを備えて構成された前群と、少なくとも1枚の正レ
ンズ成分と少なくとも1枚の負レンズ成分とにて構成さ
れた後群からなり、次の条件(1)を満足することを特
徴とする広角ズームレンズ。 (1)|φf/φ1 |<6.0 ただしφ1 は第1レンズ群の屈折力、φf は前記前群の
屈折力である。
2. A first lens group having a positive refractive power, a second lens group having a positive refractive power, and a third lens group having a positive refractive power, in order from the object side.
A first lens group, a second lens group, a second lens group, a third lens group, a third lens group, and a fourth lens. A magnification change from the wide-angle end to the telephoto end is performed by changing the distance between the groups. The first lens group includes at least one negative lens, a front group, and at least one positive lens component. A wide-angle zoom lens, comprising: a rear group composed of at least one negative lens component and satisfying the following condition (1): (1) | φf / φ1 | <6.0 where φ1 is the refractive power of the first lens unit, and φf is the refractive power of the front unit.
【請求項3】前記第1レンズ群が、以下の条件(2)、
(3)、(4)を満足するように構成されたことを特徴
とする請求項1の広角ズームレンズ。 (2)0.1<φ1/φw<1.25 (3)1.1<φ12w/φw<3.0 (4)1.5<β3T/ β3w<4.0 ただしφwは広角端における全系の屈折力、φ12wは広
角端における第1レンズ群と第2レンズ群の合成の屈折
力、β3wは広角端における第3レンズ群の倍率、β3Tは
望遠端における第3レンズ群の倍率である。
3. The lens system according to claim 1, wherein the first lens group satisfies the following condition (2):
2. The wide-angle zoom lens according to claim 1, wherein the zoom lens is configured to satisfy (3) and (4). (2) 0.1 <φ1 / φw <1.25 (3) 1.1 <φ12w / φw <3.0 (4) 1.5 <β3T / β3w <4.0 where φw is the whole system at the wide-angle end Is the combined refractive power of the first and second lens groups at the wide-angle end, β3w is the magnification of the third lens group at the wide-angle end, and β3T is the magnification of the third lens group at the telephoto end.
【請求項4】物体側より順に、正の屈折力の第1レンズ
群と、正の屈折力の第2レンズ群と、負の屈折力の第3
レンズ群とよりなり、広角端に対して望遠端にて第1レ
ンズ群と第2レンズ群の間隔が広がり第2レンズ群と第
3レンズ群の間隔が狭まることによって広角端から望遠
端への変倍を行なうもので、第1レンズ群が物体側より
順に負レンズと正レンズとからなる前群と、1枚の負レ
ンズと2枚の正レンズとからなる後群で構成され、第2
レンズ群が開口絞りを有する構成であり、次の条件
(1)を満足することを特徴とする広角ズームレンズ。 (1)|φf/φ1 |<6.0 ただしφf は前記前群の屈折力、φ1 は前記第1レンズ
群の屈折力である。
4. A first lens group having a positive refractive power, a second lens group having a positive refractive power, and a third lens group having a negative refractive power are arranged in order from the object side.
More becomes lens group from the wide-angle end by the narrowed distance between the first lens group and the second lens group and the third lens group spread distance of the second lens group at the telephoto end than at the wide angle end to the telephoto end The first lens group includes, in order from the object side, a front group including a negative lens and a positive lens, and a rear group including one negative lens and two positive lenses .
A wide-angle zoom lens , wherein the lens group has an aperture stop and satisfies the following condition (1). (1) | φf / φ1 | <6.0 where φf is the refractive power of the front lens unit, and φ1 is the refractive power of the first lens unit.
【請求項5】広角ズームレンズを備えたカメラにおい
て、前記広角ズームレンズは、物体側より順に、正の屈
折力の第1レンズ群と、正の屈折力の第2レンズ群と、
負の屈折力の第3レンズ群とよりなり、第1レンズ群と
第2レンズ群の間隔および第2レンズ群と第3レンズ群
の間隔を変えることによって広角端から望遠端への変倍
を行なうもので、第1レンズ群が物体側より順に負レン
ズと正レンズとからなる前群と、1枚の負レンズと2枚
の正レンズとからなる後群で構成され、次の条件(1)
から(6)を満足することを特徴とするカメラ。 (1)|φf/φ1 |<6.0 (2)0.1<φ1/φw<1.25 (3)1.1<φ12w/φw<3.0 (4)1.5<β3T/β3w<4.0 (5)0.5<hB/hF <1.5 (6)0.2<AB/AF <2.0 ただしφf は前記前群の屈折力、φ1 は前記第1レンズ
群の屈折力、φwは広角端における全系の屈折力、φ1
2wは広角端における第1レンズ群と第2レンズ群の合
成の屈折力、β3wは広角端における第3レンズ群の倍
率、β3Tは望遠端における第3レンズ群の倍率、hF
は広角端における第1レンズ群の前群に入射する軸上
光線高、hB は広角端における第1レンズ群の後群に
入射する軸上周辺光線高、AF は広角端における第1レ
ンズ群の前群に入射する最大画角の軸外光線高、AB
は広角端における第1レンズ群の後群に入射する最大画
角の軸外光線高である。
5. A camera equipped with a wide-angle zoom lens.
The wide-angle zoom lens includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a positive refractive power,
The third lens unit has a negative refractive power. By changing the distance between the first and second lens groups and the distance between the second and third lens groups, zooming from the wide-angle end to the telephoto end is achieved. The first lens group includes, in order from the object side, a front group including a negative lens and a positive lens, and a rear group including one negative lens and two positive lenses. )
A camera characterized by satisfying (6). (1) | φf / φ1 | <6.0 (2) 0.1 <φ1 / φw <1.25 (3) 1.1 <φ12w / φw <3.0 (4) 1.5 <β3T / β3w <4.0 (5) 0.5 <hB / hF <1.5 (6) 0.2 <AB / AF <2.0 where φf is the refractive power of the front lens group, and φ1 is the refractive power of the first lens group. Refractive power, φw is the refractive power of the entire system at the wide-angle end, φ1
2w is the combined refractive power of the first and second lens groups at the wide-angle end, β3w is the magnification of the third lens group at the wide-angle end, β3T is the magnification of the third lens group at the telephoto end, hF
Is the axial circumference that enters the front group of the first lens group at the wide-angle end
Edge ray height, hB is an axial peripheral ray height incident on the rear group of the first lens group at the wide angle end, AF is an off- axis principal ray height of a maximum angle of view incident on the front group of the first lens group at the wide angle end, AB
Is the largest image incident on the rear group of the first lens group at the wide-angle end.
Off- axis chief ray height of the corner .
JP04051592A 1991-03-04 1992-01-31 Wide-angle zoom lens Expired - Fee Related JP3260798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04051592A JP3260798B2 (en) 1991-03-04 1992-01-31 Wide-angle zoom lens

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-61077 1991-03-04
JP6107791 1991-03-04
JP04051592A JP3260798B2 (en) 1991-03-04 1992-01-31 Wide-angle zoom lens

Publications (2)

Publication Number Publication Date
JPH05264903A JPH05264903A (en) 1993-10-15
JP3260798B2 true JP3260798B2 (en) 2002-02-25

Family

ID=26379979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04051592A Expired - Fee Related JP3260798B2 (en) 1991-03-04 1992-01-31 Wide-angle zoom lens

Country Status (1)

Country Link
JP (1) JP3260798B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3262398B2 (en) * 1993-02-25 2002-03-04 キヤノン株式会社 Small zoom lens
JP3412939B2 (en) * 1994-12-22 2003-06-03 キヤノン株式会社 Zoom lens
US6215600B1 (en) 1997-09-30 2001-04-10 Canon Kabushiki Kaisha Zoom lens
US6480341B2 (en) 1999-12-20 2002-11-12 Nikon Corporation Variable focal length lens system
JP3914058B2 (en) 2002-01-31 2007-05-16 オリンパス株式会社 3 group zoom optical system
JP5545531B2 (en) * 2010-03-19 2014-07-09 株式会社ニコン Photographic lens, optical apparatus having the photographic lens, and method of manufacturing the photographic lens
JP6099966B2 (en) 2012-12-21 2017-03-22 キヤノン株式会社 Imaging optical system and imaging apparatus having the same
JP7096065B2 (en) * 2018-05-17 2022-07-05 株式会社タムロン Optical system and image pickup device
CN114185160B (en) * 2021-12-20 2023-04-07 福建福光股份有限公司 Diaphragm-preposed continuous zooming visible light optical system

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58137813A (en) * 1982-02-10 1983-08-16 Konishiroku Photo Ind Co Ltd Small-sized zoom lens
JPS58224322A (en) * 1982-06-23 1983-12-26 Konishiroku Photo Ind Co Ltd Small-sized three-group zoom lens
JPH0668575B2 (en) * 1984-08-23 1994-08-31 キヤノン株式会社 Small zoom lens
JPS63148223A (en) * 1986-12-12 1988-06-21 Nikon Corp Zoom lens
JP2546293B2 (en) * 1987-10-05 1996-10-23 キヤノン株式会社 Small zoom lens
JP3141996B2 (en) * 1988-09-08 2001-03-07 旭光学工業株式会社 High zoom lens for compact cameras
JPH02103014A (en) * 1988-10-12 1990-04-16 Minolta Camera Co Ltd Zoom lens having optical system for correcting camera-shake
JP2903473B2 (en) * 1988-11-16 1999-06-07 オリンパス光学工業株式会社 Compact high-magnification zoom lens
JP2607957B2 (en) * 1989-06-15 1997-05-07 オリンパス光学工業株式会社 Compact zoom lens
JPH0331809A (en) * 1989-06-29 1991-02-12 Olympus Optical Co Ltd Zoom lens
JP2832370B2 (en) * 1989-07-19 1998-12-09 富士写真光機株式会社 Compact high magnification zoom lens system
JP2784942B2 (en) * 1989-08-30 1998-08-13 富士写真光機株式会社 Compact high-magnification 4-group zoom lens
JP3038350B2 (en) * 1990-01-10 2000-05-08 オリンパス光学工業株式会社 Wide-angle zoom lens
JPH04362910A (en) * 1990-11-16 1992-12-15 Minolta Camera Co Ltd Zoom lens
JP3060118B2 (en) * 1991-02-07 2000-07-10 オリンパス光学工業株式会社 High-magnification zoom lens with minimal short-range aberration fluctuation

Also Published As

Publication number Publication date
JPH05264903A (en) 1993-10-15

Similar Documents

Publication Publication Date Title
JP4845502B2 (en) Optical system and optical apparatus having the same
JP3196283B2 (en) Zoom lens device
US5189557A (en) High variable magnification range zoom lens
JP4921045B2 (en) Optical system and optical apparatus having the same
US5574599A (en) Zoom lens and zooming method
US5111338A (en) Zoom Lens
US6147810A (en) Zoom lens having focusing subunit in second lens unit and optical apparatus equipped with the same
JP3226297B2 (en) Zoom lens and camera with zoom lens
US5568321A (en) Zoom lens
US5528427A (en) Zoom lens
US7075730B2 (en) Zoom lens system and image pickup apparatus including the same
JPH07253542A (en) Zoom lens
JP2001116992A (en) Zoom lens
JP3144191B2 (en) Zoom lens
JPH05241073A (en) Zoom lens
JP3260798B2 (en) Wide-angle zoom lens
JP3144193B2 (en) Zoom lens
US4621905A (en) Fast compact zoom lens
JPH04217219A (en) Zoom lens
JP3331223B2 (en) Small two-group zoom lens
JPH11352400A (en) Zoom lens system
US4712883A (en) Rear focus zoom lens
US4618219A (en) Zoom lens
JPH0743613A (en) Zoom lens
JP3315671B2 (en) Zoom lens

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees